The Effects of Edges:

[(_,)]F (D, M) = (D, M)

[(_, Pos(e),)]* (D, M) = (D,M)

[(x =y,)]* (D, M) = (D&{x— Dy}, M)

[(,x=¢;,)] (D,M) = De{x—0},M) , e¢& Vars
[(, x = new();,0)[* (D,M) = (D& {x— {(u,0)}}, M)
[(Lx=ylel, JJF(D,M) = (Do {x—U{M(f)|f € Dy}}, M)

[(yler] =2,)F(D,M) = (D,M®{f (MfUDx)|feDuy})

377

Warning:

e Thevalue Null hasbeenignored. Dereferencing of Null
or negative indices are not detected :-(

e Destructive updates are only possible for variables, not for
blocks in storage!

—— no information, if not all block entries are initialized
before use :-((

o The effects now depend on the edge itself.

The analysis cannot be proven correct w.r.t. the reference
semantics :-(

In order to prove correctness, we first instrument the concrete
semantics with extra information which records where a
block has been created.

378

We compute possible points-to information.
From that, we can extract may-alias information.

The analysis can be rather expensive — without finding very
much :~(

Separate information for each program point can perhaps be
abandoned ?7?

379

Alias Analysis 2. Idea:

Compute for each variable and address a value which safely
approximates the values at every program point simultaneously !

... in the Simple Example:
O
x = new();

380

Each edge (u,lab,v) gives rise to constraints:

lab Constraint

X =y; Plx] 2 Plyl

x =new(); | Plx] 2 {(u,0)}

x=ylel; | Plx] 2 ULPI|f e Plyl;

ylel =% | Pl 2 (fePly])?P[x] : 0
forall f e Addr

Other edges have no effect :-)

381

Discussion:

e The resulting constraint system has size O(k-n) for &k
abstract addressesand n edges :-(

e The number of necessary iterations is (k) ...
e The computed information is perhaps still too zu precise !!?

e In order to prove correctness of a solution s° States® we
show:

382

Alias Analysis 3. Idea:

Determine one equivalence relation = on variables x and
memory accesses Y| | with s;=s, whenever s;,5, may
contain the same address at some 14, 1,

... in the Simple Example:
O
x = new()

= {{x},
{y,x[},

D
Yy

e .

ol {1
Y p

@

383

Discussion:

l

We compute a single information fo the whole program.

l

The computation of this information maintains partitions
7T:{P1,...,Pm} I-)

— Individual sets P; are identified by means of
representatives p; € P.

— The operations on a partition 7 are:

find (77, p) = pi if p € P,
// returns the representative

union (71, pi,, piy) = APy UP,} U{P; | iy #] # iz}

// unions the represented classes

384

If x,x, € Vars are equivalent, then also x;[] and
x|] mustbe equivalent :-)

If PN Vars # (), then we choose p; € Vars . Then we can
apply union recursively :

union® (71,41,42) = let p;, = find (7, q1)
p;, = find(7,q,)
in if p, ==p,, then

else let 7 = union (7, pi,, pi,)

in if p;,, pi, € Vars then
Ur]iOr]>|< (7-[, pil[]/ piz[])

385

The analysis iterates over all edges once:

m={{x},{x[]} | x € Vars};
forall k= (_,lab,_) do m = [lab]*m;

where:

[x=y;]*7 = union* (7,x,v)

[x = ylel[Fr = union” (7, x,y[])
[ylel = sl = union* (%, y[]
[lab]* 7 = 7 otherwise

386

... in the Simple Example:

O

x = new(); b vk Al]F Al]}
Y = new() (0, 1) | {{xb Ay A=l]} Avl]}}

x[o]_ (L2) | {{xp Ayvp A=l]} Avl]}}

(3) ’ (2,3) | {{xh {21} Ayl]}
y[1] =7 3,4 xH Ay x[1}

0! (3,4)| {{xt{w]} {vl]}}

387

.. in the More Complex Example:

AU UALNAUN;
(2,3) | { Uty b Ut}
4| YUt ALt} ry)
(4,5) Uit i T
(5,6) Wt i]y

388

Warning:

In order to find something, we must assume that variables /
addresses always receive a value before they are accessed.

Complexity:
we havve:

O(#edges + # Vars) calls of union”
O(#edges + # Vars) calls of find
O (# Vars) calls of union

—— We require efficient Union-Find data-structure :-)

389

Idea:

Represent partition of U as directed forest:

e For uelU areference Flu| tothe fatheris maintained;

e Rootsareelements u with Flu|=u.

Single trees represent equivalence classes.

Their roots are their representatives ...

390

©)
O
@)~

— find (7r,u) follows the father references :-)

— union (7T, 11, Uy) re-directs the father reference of one u; ...

391

01,23, 4/5|6|7

111(3,1|4|7|5|7

392

01,23, 4/5|6|7

111 (317|757

393

The Costs:

union : O(1) -)
find . Of(depth(m)) (.

Strategy to Avoid Deep Trees:

e Put the smaller tree below the bigger !

e Use find to compress paths ...

394

01,23, 4/5|6|7

111(3,1|4|7|5|7

395

01,23, 4/5|6|7

111 (317|757

396

01,234/ 5|/6|7
5|1 (3|1|7|7|5]|3

01,23/ 4/5|/6|7
5|1 (3|1|7|7|5]|3

398

%

)

01,23/ 4/5|/6|7
5|1 (3|1|7|7|5]|3

01,23/ 4/5|/6|7

51|31 (1/7|1]|1

Robert Endre Tarjan, Princeton

402

Note:

e By this data-structure, #n union- und m find operations
require time O(n+m-a(n,n))

// « theinverse Ackermann-function :-)

e For our application, we only must modify union such that
roots are from Vars whenever possible.

e This modification does not increase the asymptotic run-time.

-)

Summary:

The analysis is extremely fast — but may not find very much.

403

Background 3: Fixpoint Algorithms

Consider: xi 3 fi(xy,...,x,), i=1,...,n

Observation:

RR-Iteration is inefficient:

— We require a complete round in order to detect termination
~(

— If in some round, the value of just one unknown is changed,
then we still re-compute all :-(

— The practical run-time depends on the ordering on the
variables :-(

404

Idea: Worklist Iteration

If an unknown x; changes its value, we re-compute all
unknowns which depend on x; . Technically, we require:

— thelists Dep f; of unknowns which are accessed during
evaluation of f;. From that, we compute the lists:

I[x;] = {xj | xi € Dep f;}

ie,alistofall x; whichdepend on the valueof x;;

l

the values D|x;] ofthe x; whereinitially D|x;] = 1;

alist W of all unknowns whose value must be

l

recomputed ...

405

The Algorithm:

W =|xq,...,x;
while (W # []) {

X; = extractW;
t = fieval,
if (+ £ Dlxi]) {
D|x;] = Dlx;jUt;
W = append I[x;| W;
}

where :

406

Example:

x; 2 {alUxs
x, 2 x3N{a,b}
x3 2 xUA{c}
I
x1 | {xs}
X9 (Z)
X3 {xl,xz}

407

Example:

D {61} U x3
D) X3 M {61, b}
D x1UA{c}
I
X1 {x3}
X2 0
X3 {xl,xz}

D|x1] | D[x3] | D|x3] 4%

0 0 0 X1, X2, X3
{a} 0 0 X7 |, X3
{a} 0 0 X3
{a} 0 |{a,c} X1, %2

{a,c} | 0 | {a,c} X3, X2
{a,c}| 0 |{a,c} X2

1a,¢c}

1a,¢}

408

Theorem

Let x;, J fi(xy,...,x,), i=1,...,n denote a constraint
system over the complete lattice D of hight 7 > 0.

(1) The algorithm terminates after at most /- N evaluations
of right-hand sides where

n

Z (1+#(Dep fi)) /] size of the system :-)

1=1

N

(2) The algorithm returns a solution.
Ifall f; are monotonic, it returns the least one.

409

