Organization

Dates: Lecture: Monday, 12:15-13:45
 Wednesday, 12:15-13:45
Tutorials: Thursday, 16:30-18:00
Vesal Vojdani: vojdanig@in.tum.de
Material: slides, recording :-) simulator environment

Grades: • Bonus for homeworks
 • written exam
Proposed Content:

1. Avoiding redundant computations
 → available expressions
 → constant propagation/array-bound checks
 → code motion

2. Replacing expensive with cheaper computations
 → peep hole optimization
 → inlining
 → reduction of strength
 ...

...
3. Exploiting Hardware

→ Instruction selection
→ Register allocation
→ Scheduling
→ Memory management
0 Introduction

Observation 1: Intuitive programs often are inefficient.

Example:

```c
void swap (int i, int j) {
    int t;
    if (a[i] > a[j]) {
        t = a[j];
        a[j] = a[i];
        a[i] = t;
    }
}
```
Inefficiencies:

- Addresses $a[i], a[j]$ are computed three times
- Values $a[i], a[j]$ are loaded twice

Improvement:

- Use a pointer to traverse the array a
- Store the values of $a[i], a[j]$!
void swap (int *p, int *q) {
 int t, ai, aj;
 ai = *p; aj = *q;
 if (ai > aj) {
 t = aj;
 *q = ai;
 *p = t; // t can also be
 } // eliminated!
}

Observation 2:

Higher programming languages (even C :-) abstract from hardware and efficiency.

It is up to the compiler to adapt intuitively written program to hardware.

Examples:

... Filling of delay slots;
... Utilization of special instructions;
... Re-organization of memory accesses for better cache behavior;
... Removal of (useless) overflow/range checks.
Observation 3:
Programm-Improvements need not always be correct :-(

Example:

\[y = f() + f(); \quad \rightarrow \quad y = 2 * f(); \]

Idea: Save second evaluation of \(f() \) ...
Observation 3:
Programm-Improvements need not always be correct

Example:

\[y = f() + f(); \quad \Rightarrow \quad y = 2 \times f(); \]

Idea: Save the second evaluation of \(f() \)

Problem: The second evaluation may return a result different from the first; (e.g., because \(f() \) reads from the input)
Consequences:

\[\implies \text{Optimizations have assumptions.} \]
\[\implies \text{The assumption must be:} \]
\[\quad \bullet \text{ formalized,} \]
\[\quad \bullet \text{ checked :)} \]
\[\implies \text{It must be proven that the optimization is correct, i.e., preserves the semantics !!!} \]
Observation 4:

Optimization techniques depend on the **programming language**:

- which inefficiencies occur;
- how analyzable programs are;
- how difficult/impossible it is to prove correctness ...

Example: Java
Unavoidable Inefficiencies:

* Array-bound checks;
* Dynamic method invocation;
* Bombastic object organization ...

Analyzezability:

+ no pointer arithmetic;
+ no pointer into the stack;
− dynamic class loading;
− reflection, exceptions, threads, ...
Correctness proofs:

+ more or less well-defined semantics;
– features, features, features;
– libraries with changing behavior ...
... in this course:

a simple imperative programming language with:

- variables // registers
- $R = e$; // assignments
- $R = M[e]$; // loads
- $M[e_1] = e_2$; // stores
- if (e) s_1 else s_2 // conditional branching
- goto L; // no loops :-(
Note:

- For the beginning, we omit procedures :-)
- External procedures are taken into account through a statement $f()$ for an unknown procedure f.

\implies intra-procedural

\implies kind of an intermediate language in which (almost) everything can be translated.

Example: swap()
0: \(A_1 = A_0 + 1 \times i; \quad // \quad A_0 == &a \)
1: \(R_1 = M[A_1]; \quad // \quad R_1 == a[i] \)
2: \(A_2 = A_0 + 1 \times j; \)
3: \(R_2 = M[A_2]; \quad // \quad R_2 == a[j] \)
4: if \((R_1 > R_2)\) {
5: \(A_3 = A_0 + 1 \times j; \)
6: \(t = M[A_3]; \)
7: \(A_4 = A_0 + 1 \times j; \)
8: \(A_5 = A_0 + 1 \times i; \)
9: \(R_3 = M[A_5]; \)
10: \(M[A_4] = R_3; \)
11: \(A_6 = A_0 + 1 \times i; \)
12: \(M[A_6] = t; \)
}
Optimization 1: \[1 \ast R \quad \Rightarrow \quad R \]

Optimization 2: Reuse of subexpressions

\[A_1 == A_5 == A_6 \]
\[A_2 == A_3 == A_4 \]

\[M[A_1] == M[A_5] \]
\[M[A_2] == M[A_3] \]

\[R_1 == R_3 \]
By this, we obtain:

\[A_1 = A_0 + i; \]
\[R_1 = M[A_1]; \]
\[A_2 = A_0 + j; \]
\[R_2 = M[A_2]; \]
\[\text{if } (R_1 > R_2) \{ \]
 \[t = R_2; \]
 \[M[A_2] = R_1; \]
 \[M[A_1] = t; \]
\[\} \]
Optimization 3: Contraction of chains of assignments

Gain:

<table>
<thead>
<tr>
<th></th>
<th>before</th>
<th>after</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>*</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>load</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>store</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>=</td>
<td>6</td>
<td>2</td>
</tr>
</tbody>
</table>
1 Removing superfluous computations

1.1 Repeated computations

Idea:

If the same value is computed repeatedly, then

→ store it after the first computation;
→ replace every further computation through a look-up!

⇒ Availability of expressions
⇒ Memoization
Problem: Identify repeated computations!

Example:

\[
\begin{align*}
z & = 1; \\
y & = M[17]; \\
A: \quad x_1 & = y + z; \\
\quad & \quad \ldots \\
B: \quad x_2 & = y + z;
\end{align*}
\]
Note:

B is a repeated computation of the value of $y + z$, if:
(1) A is always executed before B; and
(2) y and z at B have the same values as at A.

We need:

→ an operational semantics

→ a method which identifies at least some repeated computations ...