Warning:

In order to find something, we must assume that variables / addresses always receive a value before they are accessed.

Complexity:

we havve:

$$\mathcal{O}(\#edges + \#Vars)$$
 calls of union* $\mathcal{O}(\#edges + \#Vars)$ calls of find $\mathcal{O}(\#Vars)$ calls of union

→ We require efficient Union-Find data-structure :-)

Idea:

Represent partition of *U* as directed forest:

- For $u \in U$ a reference F[u] to the father is maintained;
- Roots are elements u with F[u] = u.

Single trees represent equivalence classes.

Their roots are their representatives ...

- \rightarrow find (π, u) follows the father references :-)
- \rightarrow union (π, u_1, u_2) re-directs the father reference of one u_i ...

0 1 2 3 4 5 6 7

1 1 3 1 4 7 5 7

1	1	3	1	7	7	5	7
---	---	---	---	---	---	---	---

The Costs:

```
union : \mathcal{O}(1) :-) find : \mathcal{O}(depth(\pi)) :-(
```

Strategy to Avoid Deep Trees:

- Put the smaller tree below the bigger!
- Use find to compress paths ...

0 1 2 3 4 5 6 7

1 1 3 1 4 7 5 7

0 1 2 3 4 5 6 7

1 1 3 1 7 7 5 7

0	1	2	3	4	5	6	7
5	1	3	1	7	7	5	3

0	1	2	3	4	5	6	7
5	1	3	1	7	7	5	3

0	1	2	3	4	5	6	7
5	1	3	1	7	7	5	3

0	1	2	3	4	5	6	7
5	1	3	1	7	7	5	3

0	1	2	3	4	5	6	7
5	1	3	1	1	7	1	1

Robert Endre Tarjan, Princeton

Note:

• By this data-structure, n union- und m find operations require time $\mathcal{O}(n+m\cdot\alpha(n,n))$

```
// \alpha the inverse Ackermann-function :-)
```

- For our application, we only must modify union such that roots are from *Vars* whenever possible.
- This modification does not increase the asymptotic run-time.
 :-)

Summary:

The analysis is extremely fast — but may not find very much.

Background 3: Fixpoint Algorithms

Consider: $x_i \supseteq f_i(x_1, ..., x_n), i = 1, ..., n$

Observation:

RR-Iteration is inefficient:

- → We require a complete round in order to detect termination :-(
- → If in some round, the value of just one unknown is changed,
 then we still re-compute all :-(
- → The practical run-time depends on the ordering on the variables :-(

Idea:

Worklist Iteration

If an unknown x_i changes its value, we re-compute all unknowns which depend on x_i . Technically, we require:

 \rightarrow the lists $Dep f_i$ of unknowns which are accessed during evaluation of f_i . From that, we compute the lists:

$$I[x_i] = \{x_j \mid x_i \in Dep f_j\}$$

i.e., a list of all x_i which depend on the value of x_i ;

- \rightarrow the values $D[x_i]$ of the x_i where initially $D[x_i] = \bot$;
- \rightarrow a list W of all unknowns whose value must be recomputed ...

The Algorithm:

```
W = [x_1, \ldots, x_n];
           while (W \neq []) {
                   x_i = \text{extract } W;
                   t = f_i \text{ eval};
                   t = D[x_i] \sqcup t;
                   if (t \neq D[x_i]) {
                         D[x_i] = t;
                        W = \operatorname{append} I[x_i] W;
where: eval x_i = D[x_i]
```

Example:

$$x_1 \supseteq \{a\} \cup x_3$$

 $x_2 \supseteq x_3 \cap \{a, b\}$
 $x_3 \supseteq x_1 \cup \{c\}$

	I
x_1	$\{x_3\}$
x_2	Ø
x_3	$\{x_1, x_2\}$

Example:

$$x_1 \supseteq \{a\} \cup x_3$$

 $x_2 \supseteq x_3 \cap \{a, b\}$
 $x_3 \supseteq x_1 \cup \{c\}$

	I
x_1	$\{x_3\}$
x_2	Ø
x_3	$\{x_1, x_2\}$

$D[x_1]$	$D[x_2]$	$D[x_3]$	W
Ø	Ø	Ø	x_1 , x_2 , x_3
{ a }	Ø	Ø	x_2 , x_3
{ a }	Ø	Ø	χ_3
{ a }	Ø	$\{a,c\}$	x_1 , x_2
$\{a,c\}$	Ø	{ <i>a</i> , <i>c</i> }	x_3 , x_2
$\{a,c\}$	Ø	{ <i>a</i> , <i>c</i> }	x_2
$\{a,c\}$	{ a }	{ <i>a</i> , <i>c</i> }	[]

Theorem

Let $x_i \supseteq f_i(x_1,...,x_n)$, i=1,...,n denote a constraint system over the complete lattice \mathbb{D} of hight h>0.

(1) The algorithm terminates after at most $h \cdot N$ evaluations of right-hand sides where

$$N = \sum_{i=1}^{n} (1 + \# (\text{Dep } f_i)) \qquad // \text{ size of the system :-)}$$

(2) The algorithm returns a solution. If all f_i are monotonic, it returns the least one.

Proof:

Ad (1):

Every unknown x_i may change its value at most h times :-) Each time, the list $I[x_i]$ is added to W. Thus, the total number of evaluations is:

$$\leq n + \sum_{i=1}^{n} (h \cdot \# (I[x_i]))$$

$$= n + h \cdot \sum_{i=1}^{n} \# (I[x_i])$$

$$= n + h \cdot \sum_{i=1}^{n} \# (Dep f_i)$$

$$\leq h \cdot \sum_{i=1}^{n} (1 + \# (Dep f_i))$$

$$= h \cdot N$$

Ad (2):

We only consider the assertion for monotonic f_i .

Let D_0 denote the least solution. We show:

- $D_0[x_i] \supseteq D[x_i]$ (all the time)
- $D[x_i] \not\supseteq f_i \text{ eval } \Longrightarrow x_i \in W$ (at exit of the loop body)
- On termination, the algo returns a solution :-))

Discussion:

- In the example, fewer evaluations of right-hand sides are required than for RR-iteration :-)
- The algo also works for non-monotonic f_i :-)
- For monotonic f_i , the algo can be simplified:

$$t = D[x_i] \sqcup t; \Longrightarrow$$
 ;

• In presence of widening, we replace:

$$t = D[x_i] \sqcup t; \implies t = D[x_i] \sqcup t;$$

• In presence of Narrowing, we replace:

$$t = D[x_i] \sqcup t; \longrightarrow t = D[x_i] \sqcap t;$$

Warning:

- The algorithm relies on explicit dependencies among the unknowns.
 - So far in our applications, these were obvious. This need not always be the case :-(
- We need some strategy for extract which determines the next unknown to be evaluated.
- It would be ingenious if we always evaluated first and then accessed the result ... :-)
 - → recursive evaluation ...

Idea:

If during evaluation of f_i , an unknown x_j is accessed, x_j is first solved recursively. Then x_i is added to $I[x_j]$:-)

```
eval x_i x_j = solve x_j; I[x_j] = I[x_j] \cup \{x_i\}; D[x_j];
```

→ In order to prevent recursion to descend infinitely, a set
 Stable of unknown is maintained for which solve just looks up their values :-)

```
Initially, Stable = \emptyset ...
```

The Function solve:

```
solve x_i = if(x_i \notin Stable)
                        Stable = Stable \cup \{x_i\};
                        t = f_i (eval x_i);
                        t = D[x_i] \sqcup t;
                        if (t \neq D[x_i]) {
                               W = I[x_i]; \quad I[x_i] = \emptyset;
                               D[x_i] = t;
                               Stable = Stable \setminus W;
                               app solve W;
```


Helmut Seidl, TU München ;-)

Example:

Consider our standard example:

$$x_1 \supseteq \{a\} \cup x_3$$

 $x_2 \supseteq x_3 \cap \{a, b\}$
 $x_3 \supseteq x_1 \cup \{c\}$

A trace of the fixpoint algorithm then looks as follows:

solve x_2 eval x_2 x_3 solve x_3 eval $x_3 x_1$ solve x_1 eval x_1 x_3 solve x_3 stable! $I[x_3] = \{x_1\}$ \Rightarrow \emptyset $D[x_1] = \{a\}$ $I[x_1] = \{x_3\}$ $\Rightarrow \{a\}$ $D[x_3] = \{a, c\}$ $I[x_3] = \emptyset$ solve x_1 eval x_1 x_3 solve x_3 stable! $I[x_3] = \{x_1\}$ $\Rightarrow \{a,c\}$ $D[x_1] = \{a, c\}$ $I[x_1] = \emptyset$ solve x_3 eval $x_3 x_1$ solve x_1 stable! $I[x_1] = \{x_3\}$ $\Rightarrow \{a,c\}$ ok $I[x_3] = \{x_1, x_2\}$

 $D[x_2] = \{a\}$

- \rightarrow Evaluation starts with an interesting unknown x_i (e.g., the value at stop)
- Then automatically all unknowns are evaluated which influence x_i :-)
- → The number of evaluations is often smaller than during worklist iteration ;-)
- → The algorithm is more complex but does not rely on pre-computation of variable dependencies :-))
- → It also works if variable dependencies during iteration change !!!

⇒ interprocedural analysis