Problem:

e Thedefinition x =¢; (x ¢ Vars,) may only be moved to
an edge where ¢ issafe ;-)

e The definition must still be available for uses of x ;-)

—

We define an analysis which maximally delays computations:

[1°D = D

[x =¢]*D = {D\(USBBUDefx)U{x—B;} if x & Vars,

D\ (Use, U Def) if x € Vars,

464

... Where:

Use, = {y=¢;|ye Vars.}
Def = {y=¢e;|y=xVxeVars,}

465

... Where:

Use, = {y=¢;|ye Vars.}
Def = {y=¢;|ly=xVxeVars,}

For the remaining edges, we define:

[x = Mle;])D = D\(Use, U Def)
[Mle)] =e;]*D = D\ (Use,, UUse,,)
[Pos(e)]* D = [Neg(e)]*D = D\Use,

466

Warning:

We may move vy =r¢; beyondajoinonlyif v =e¢;, canbe
delayed along all joining edges:

Here, T = x+1; cannotbe moved beyond 1 !

467

We conclude:
e The partial ordering of the lattice for delayability is given by
1/ 2 II.
e Atprogram start: Dy = ().

Therefore, the sets D|[u] ofat u delayable assignments
can be computed by solving a system of constraints.

e Wedelay only assignments @ where aa has the same
effect as a alone.

o The extra insertions render the original assignments as
assignments to dead variables ...

468

Transformation 7:

a € Dlu]\[lab]*(D[u})

imb —) lab

a € [lab]*(D[u])\D[v]

a € D[u]\[Pos(e)]* (DIu])

Neg(e)}/@\fos(e) Neg(e) Pos(e)

@ @)
@ € [Neg(e)]F (Du])\ D[] 7 € [Pos(e)[(Dlu])\ Dl

469

%Da € D[u]\[Pos(e)]*(D[u])
ﬁ

Neg(e) / @\\POS(e)

€ [Neg(e)ﬂﬁ(D[u])\D[vl? ? e [Pos(e) F(D[u])\Dle2]
@ @)

Neg(e) / @\505(e)
@) D

Note:

Transformation 17 1is only meaningful, if we subsequently
eliminate assighments to dead variables by means of
transformation 12 :-)

In the example, the partially dead code is eliminated:

470

0)
1 {T =x+1;}
21 {T =x+1;}
3 0
4 0

471

T =x+1;

472

= W N = O

L
0 {x}
1| {x}
2 | {x}
2" {x, T}
30 0
41 0

473

Remarks:

o After 77,all original assignments vy =e¢; withy & Vars,
are assignments to dead variables and thus can always be
eliminated :-)

e By this, it can be proven that the transformation is guaranteed
to be non-degradating efficiency of the code :-))

e Similar to the elimination of partial redundancies, the
transformation can be repeated :-}

474

Conclusion:

— The design of a meaningful optimization is non-trivial.

— Many transformations are advantageous only in connection
with other optimizations :-)

— The ordering of applied optimizations matters !!

— Some optimizations can be iterated !!!

475

... a meaningtul ordering:

T4 Constant Propagation
Interval Analysis
Alias Analysis
T6 Loop Rotation
11,713,7T2 | Available Expressions
T2 Dead Variables
17,12 Partially Dead Code
15,713, T2 | Partially Redundant Code

476

2 Replacing Expensive Operations by

Cheaper Ones

2.1 Reduction of Strength

(1) Evaluation of Polynomials

f(x) = a, - x"4+a, - X"+, . 4+a-x+ag

Multiplications | Additions
naive n(n+1) n
re-use 2n —1 n
Horner-Scheme n n

477

Idea:

f(x) = (..((ap-x+a,1)-x+a,2)...) - x+ag

(2) Tabulation of a polynomial f(x) of degree n:
— Torecompute f(x) forevery argument x is too expensive

)

— Luckily, the n-th differences are constant !!!

478

Example: f(x) =3x" —5x*+4x+ 13

ni| f(n)| A | A% | A3
0] 13 2 8 |18
1 15 | 10 ||26

21 25 ||36

31 |61

4

Here, the n-th difference is always

Ay(f)=mn!-a, K" (h step width)

479

Costs:

e 1n timesevaluationof f;

° % - (n—1)-n subtractions to determine the AF

e 2n—2 multiplications for computing A7(f);

e 1 additions for every further value :-)

Number of multiplications only dependson 7 :-))

480

Simple Case: f(x) =ay-x+ag

e .. naturally occurs in many numerical loops :-)

o The first differences are already constant:
fledh)=f(x)=ar-h

o Instead of the sequence: yi=f(xo+i-h), i>0
we compute: vo=f(x0), A=ay-h

yi=vyi1+A, i1>0

481

Example:

for (i=igi<mi=i+h) {
A=Ay+b-i;

482

.. or, after loop rotation:

I = lo; Neg(i < n)
if (i <n) do {

A=Ao+Db-i

M[A] =...;

i=1i+h;

} while (i < n);

483

.. and reduction of strength:

1 = Ip;

if (i<n){
A=b-h Neg(i < n)
A=Ag+Db-ip;

do {
M[A]=...;
i=1+h;
A=A+ A
} while (i < n);

484

Warning:

e Thevalues b,/1, Ay mustnotchange their values during
the loop.

e i,A maybemodified at exactly one position in the loop :-(

e One may try to eliminate the variable i altogether :

l

I may not be used else-where.

The initialization must be transformed into:
A — AO —l— b ’ i() .

— Theloop condition 7 <n mustbe transformed into:
A<N for N=Ay+b-n.

— b must always be different from zero !!!

l

485

Approach:

Identify

loops;
iteration variables;
constants;

the matching use structures.

486

Loops:

... are identified through the node ©v withbackedge (_,_,v)
-)

For the sub-graph G, ofthecfgon {w |v = w}, we define:

Looplv] = {w|w—*v in G,}

487

Example:

(0) P
0 {0}
(L) 1 0,1}
2 {0,1,2}
© 2 3| {0,1,2,3)
(3) 410,1,2,3,4}
y 5| {0,1,5)

488

Example:

(0) P

10}

10,1}

{0,1,2}

{0,1,2,3}

{0,1,2,3,4}

G W I~k |O

{0,1,5}

489

Example:

(0) P

10}

10,1}

{0,1,2}

{0,1,2,3}

{0,1,2,3,4}

G W I~k |O

{0,1,5}

490

We are interested in edges which during each iteration are

:

Graph-theoretically, this is not easily expressible :-(

executed exactly once:

491

Edges k could be selected such that:

e the sub-graph G = Loop[v|\{(_, ,v)} is connected;
e the graph G\{k} is splitinto two unconnected sub-graphs.

492

Edges k could be selected such that:

e the sub-graph G = Loop[v|\{(_, ,v)} is connected;
e the graph G\{k} is splitinto two unconnected sub-graphs.

On the level of source programs, this is trivial:

do { s1...s¢
} while (e);

The desired assignments must be among the s; :-)

493

[teration Variable:

i is an iteration variable if the only definition of 7 inside the loop
occurs at an edge which separates the body and is of the form:

I=1+h;
for some loop constant /1.
A loop constant is simply a constant (e.g., 42), or slightly more

libaral, an expression which only depends on variables which are
not modified during the loop :-)

494

(3) Differences for Sets

Consider the fixpoint computation:
x=10;
for (t=Fx;t Z x;|t =Fx;|

xX=xUt;

If F isdistributive, it could be replaced by:

x = ();
for (A=Fx;A#0;|A=(FA)\ x;))
x =xUA;

The function F must only be computed for the smaller sets A
-) semi-naive iteration

495

Instead of the sequence:

we compute:

where:

Ay U Ay U ...

b < F(0) < F(0)

1M

Air = F(F(0))\F(0)

= F(A)\(A1U...UA)

Assume thatthe costsof Fx is 1+ #x.

Then the costs may sum up to:

naive 1+2+...+n+n = In(n+3)
semi-naive 2n
where 1 is the cardinality of the result.

—

A linear factor is saved

496

)

with Ay = 0

2.2 Peephole Optimization

Idea:

e Slide a small window over the program.

e Optimize agressively inside the window, i.e.,

— Eliminate redundancies!

— Replace expensive operations inside the window by
cheaper ones!

497

Examples:

x=x+1; — X+
// given that there is a specific increment instruction :-)
z=y—a+a, —— zZ=1;
/| algebraic simplifications :-)
X = Xx; BN ;
x =0; — X=x®x;
X=2-X; — X = x4+ x;

498

