Problem:

- The definition $x=e ;\left(x \notin\right.$ Vars $\left._{e}\right)$ may only be moved to an edge where e is safe ;-)
- The definition must still be available for uses of x;-)

We define an analysis which maximally delays computations:

$$
\begin{aligned}
& \llbracket ; \|^{\sharp} D= \\
& \llbracket x=e ; \rrbracket^{\sharp} D=\left\{\begin{array}{lll}
D \backslash\left(\text { Use }_{e} \cup \text { Def }_{x}\right) \cup\{x=e ;\} & \text { if } & x \notin \text { Vars }_{e} \\
D \backslash\left(\text { Use }_{e} \cup \text { Def }_{x}\right) & \text { if } & x \in \text { Vars }_{e}
\end{array}\right.
\end{aligned}
$$

... where:

$$
\begin{aligned}
\text { Use }_{e} & =\left\{y=e^{\prime} ; \mid y \in \text { Vars }_{e}\right\} \\
\text { Def }_{x} & =\left\{y=e^{\prime} ; \mid y \equiv x \vee x \in \text { Vars }_{e^{\prime}}\right\}
\end{aligned}
$$

... where:

$$
\begin{aligned}
\text { Use }_{e} & =\left\{y=e^{\prime} ; \mid y \in \text { Vars }_{e}\right\} \\
\text { Def }_{x} & =\left\{y=e^{\prime} ; \mid y \equiv x \vee x \in \text { Vars }_{e^{\prime}}\right\}
\end{aligned}
$$

For the remaining edges, we define:

$$
\begin{array}{ll}
\llbracket x=M[e] ; \rrbracket^{\sharp} D & =D \backslash\left(U_{s e_{e}} \cup \text { Def }_{x}\right) \\
\llbracket M\left[e_{1}\right]=e_{2} ; \rrbracket^{\sharp} D & =D \backslash\left(\text { Use }_{e_{1}} \cup \text { Use }_{e_{2}}\right) \\
\llbracket \operatorname{Pos}(e) \rrbracket^{\sharp} D & =\llbracket \operatorname{Neg}(e) \rrbracket^{\sharp} D=D \backslash \text { ese }_{e}
\end{array}
$$

Warning:

We may move $y=e$; beyond a join only if $y=e$; can be delayed along all joining edges:

Here, $\quad T=x+1$; cannot be moved beyond 1 !!!

We conclude:

- The partial ordering of the lattice for delayability is given by " \supseteq ".
- At program start: $D_{0}=\emptyset$.

Therefore, the sets $\mathcal{D}[u]$ of at u delayable assignments can be computed by solving a system of constraints.

- We delay only assignments a where a a has the same effect as a alone.
- The extra insertions render the original assignments as assignments to dead variables ...

Transformation 7:

Note:
Transformation T7 is only meaningful, if we subsequently eliminate assignments to dead variables by means of transformation T2 :-)
In the example, the partially dead code is eliminated:

	\mathcal{D}
0	\emptyset
1	$\{T=x+1 ;\}$
2	$\{T=x+1 ;\}$
3	\emptyset
4	\emptyset

	\mathcal{D}
0	\emptyset
1	$\{T=x+1 ;\}$
2	$\{T=x+1 ;\}$
3	\emptyset
4	\emptyset

	\mathcal{L}
0	$\{x\}$
1	$\{x\}$
2	$\{x\}$
2^{\prime}	$\{x, T\}$
3	\emptyset
4	\emptyset

Remarks:

- After T7, all original assignments $y=e ; \quad$ with $y \notin \operatorname{Vars}_{e}$ are assignments to dead variables and thus can always be eliminated :-)
- By this, it can be proven that the transformation is guaranteed to be non-degradating efficiency of the code :-))
- Similar to the elimination of partial redundancies, the transformation can be repeated :-\}

Conclusion:

$\rightarrow \quad$ The design of a meaningful optimization is non-trivial.
\rightarrow Many transformations are advantageous only in connection with other optimizations :-)
$\rightarrow \quad$ The ordering of applied optimizations matters !!
$\rightarrow \quad$ Some optimizations can be iterated !!!
... a meaningful ordering:

T4	Constant Propagation Interval Analysis Alias Analysis
T 6	Loop Rotation
$\mathrm{T} 1, \mathrm{~T} 3, \mathrm{~T} 2$	Available Expressions
T 2	Dead Variables
$\mathrm{T} 7, \mathrm{~T} 2$	Partially Dead Code
$\mathrm{T} 5, \mathrm{~T} 3, \mathrm{~T} 2$	Partially Redundant Code

2 Replacing Expensive Operations by Cheaper Ones

2.1 Reduction of Strength
(1) Evaluation of Polynomials

$$
f(x)=a_{n} \cdot x^{n}+a_{n-1} \cdot x^{n-1}+\ldots+a_{1} \cdot x+a_{0}
$$

	Multiplications	Additions
naive	$\frac{1}{2} n(n+1)$	n
re-use	$2 n-1$	n
Horner-Scheme	n	n

Idea:

$$
f(x)=\left(\ldots\left(\left(a_{n} \cdot x+a_{n-1}\right) \cdot x+a_{n-2}\right) \ldots\right) \cdot x+a_{0}
$$

(2) Tabulation of a polynomial $f(x)$ of degree n :
$\rightarrow \quad$ To recompute $f(x)$ for every argument x is too expensive :-)
$\rightarrow \quad$ Luckily, the n-th differences are constant !!!

Example:

$$
f(x)=3 x^{3}-5 x^{2}+4 x+13
$$

n	$f(n)$	Δ	Δ^{2}	Δ^{3}
0	13	2	8	18
1	15	10	26	
2	25	36		
3	61			
4	\ldots			

Here, the n-th difference is always

$$
\Delta_{h}^{n}(f)=n!\cdot a_{n} \cdot h^{n} \quad(h \text { step width })
$$

Costs:

- n times evaluation of f;
- $\frac{1}{2} \cdot(n-1) \cdot n$ subtractions to determine the Δ^{k};
- 2n-2 multiplications for computing $\Delta_{h}^{n}(f)$;
- n additions for every further value :-)

Number of multiplications only depends on n :-))

Simple Case: $\quad f(x)=a_{1} \cdot x+a_{0}$

- ... naturally occurs in many numerical loops :-)
- The first differences are already constant:

$$
f(x+h)-f(x)=a_{1} \cdot h
$$

- Instead of the sequence: $\quad y_{i}=f\left(x_{0}+i \cdot h\right), i \geq 0$
we compute:

$$
\begin{aligned}
& y_{0}=f\left(x_{0}\right), \quad \Delta=a_{1} \cdot h \\
& y_{i}=y_{i-1}+\Delta, \quad i>0
\end{aligned}
$$

Example:

... or, after loop rotation:

$$
\begin{aligned}
& i=i_{0} ; \\
& \text { if }(i<n) \text { do }\{ \\
& \qquad \begin{array}{l}
A=A_{0}+b \cdot i ; \\
M[A]=\ldots ; \\
i=i+h ;
\end{array} \\
& \qquad \text { while }(i<n) ;
\end{aligned}
$$

... and reduction of strength:

$$
\begin{aligned}
& i=i_{0} ; \\
& \text { if }(i<n) \text { \{ } \\
& \Delta=b \cdot h ; \\
& A=A_{0}+b \cdot i_{0} ; \\
& \text { do \{ } \\
& M[A]=\ldots ; \\
& i=i+h ; \\
& A=A+\Delta ; \\
& \} \text { while }(i<n) \text {; }
\end{aligned}
$$

Warning:

- The values b, h, A_{0} must not change their values during the loop.
- i, A may be modified at exactly one position in the loop
- One may try to eliminate the variable i altogether :
$\rightarrow \quad i \quad$ may not be used else-where.
$\rightarrow \quad$ The initialization must be transformed into: $A=A_{0}+b \cdot i_{0}$.
$\rightarrow \quad$ The loop condition $i<n$ must be transformed into: $A<N$ for $N=A_{0}+b \cdot n$.
$\rightarrow \quad b \quad$ must always be different from zero !!!

Approach:

Identify
... loops;
... iteration variables;
... constants;
... the matching use structures.

Loops:

... are identified through the node v with back edge ($\quad, \quad, v)$:-)

For the sub-graph G_{v} of the cfg on $\{w \mid v \Rightarrow w\}$, we define:

$$
\operatorname{Loop}[v]=\left\{w \mid w \rightarrow^{*} v \text { in } G_{v}\right\}
$$

Example:

	\mathcal{P}
0	$\{0\}$
1	$\{0,1\}$
2	$\{0,1,2\}$
3	$\{0,1,2,3\}$
4	$\{0,1,2,3,4\}$
5	$\{0,1,5\}$

Example:

	\mathcal{P}
0	$\{0\}$
1	$\{0,1\}$
2	$\{0,1,2\}$
3	$\{0,1,2,3\}$
4	$\{0,1,2,3,4\}$
5	$\{0,1,5\}$

Example:

	\mathcal{P}
0	$\{0\}$
1	$\{0,1\}$
2	$\{0,1,2\}$
3	$\{0,1,2,3\}$
4	$\{0,1,2,3,4\}$
5	$\{0,1,5\}$

We are interested in edges which during each iteration are executed exactly once:

Graph-theoretically, this is not easily expressible :-(

Edges k could be selected such that:

- the sub-graph $G=\operatorname{Loop}[v] \backslash\left\{\left(_, \ldots, v\right)\right\}$ is connected;
- the graph $G \backslash\{k\} \quad$ is split into two unconnected sub-graphs.

Edges $\quad k \quad$ could be selected such that:

- the sub-graph $G=\operatorname{Loop}[v] \backslash\left\{\left(_, \quad, v\right)\right\}$ is connected;
- the graph $G \backslash\{k\} \quad$ is split into two unconnected sub-graphs.

On the level of source programs, this is trivial:

$$
\begin{aligned}
& \text { do }\left\{s_{1} \ldots s_{k}\right. \\
& \quad\} \text { while }(e)
\end{aligned}
$$

The desired assignments must be among the s_{i} :-)

Iteration Variable:

i is an iteration variable if the only definition of i inside the loop occurs at an edge which separates the body and is of the form:

$$
i=i+h
$$

for some loop constant h.

A loop constant is simply a constant (e.g., 42), or slightly more libaral, an expression which only depends on variables which are not modified during the loop :-)

(3) Differences for Sets

Consider the fixpoint computation:

$$
\begin{aligned}
& x=\emptyset \\
& \text { for } \quad(t=F x ; t \nsubseteq x ; t=F x ;) \\
& \quad x=x \cup t ;
\end{aligned}
$$

If F is distributive, it could be replaced by:

$$
\begin{aligned}
& x=\emptyset ; \\
& \text { for }(\Delta=F x ; \Delta \neq \emptyset ; \Delta=(F \Delta) \backslash x ;) \\
& \qquad x=x \cup \Delta ;
\end{aligned}
$$

The function $\quad F$ must only be computed for the smaller sets Δ
:-) semi-naive iteration

Instead of the sequence: $\emptyset \subseteq F(\emptyset) \subseteq F^{2}(\emptyset) \subseteq \ldots$ we compute: $\Delta_{1} \cup \Delta_{2} \cup \ldots$
where:

$$
\begin{aligned}
\Delta_{i+1} & =F\left(F^{i}(\emptyset)\right) \backslash F^{i}(\emptyset) \\
& =F\left(\Delta_{i}\right) \backslash\left(\Delta_{1} \cup \ldots \cup \Delta_{i}\right) \quad \text { with } \Delta_{0}=\emptyset
\end{aligned}
$$

Assume that the costs of $F x$ is $1+\# x$.
Then the costs may sum up to:

naive	$1+2+\ldots+n+n$	$=$	$\frac{1}{2} n(n+3)$
semi-naive			$2 n$

where n is the cardinality of the result.
$\Longrightarrow \quad$ A linear factor is saved :-)

2.2 Peephole Optimization

Idea:

- Slide a small window over the program.
- Optimize agressively inside the window, i.e.,
$\rightarrow \quad$ Eliminate redundancies!
$\rightarrow \quad$ Replace expensive operations inside the window by cheaper ones!

Examples:

$$
x=x+1 ; \quad \Longrightarrow \quad x++;
$$

given that there is a specific increment instruction :-)
$z=y-a+a ; \quad \Longrightarrow \quad z=y$;
// algebraic simplifications :-)

$$
\begin{array}{lll}
x=x ; & \Longrightarrow & ; \\
x=0 ; & \Longrightarrow & x=x \oplus x ; \\
x=2 \cdot x ; & \Longrightarrow & x=x+x ;
\end{array}
$$

