Improvement (Cont.):

→ Also, composition can be directly implemented:

$$(M_1 \circ M_2) \ x = b' \sqcup \bigsqcup_{y \in I'} y$$
 with $b' = b \sqcup \bigsqcup_{z \in I} b_z$ $I' = \bigcup_{z \in I} I_z$ where $M_1 \ x = b \sqcup \bigsqcup_{y \in I} y$ $M_2 \ z = b_z \sqcup \bigsqcup_{y \in I_z} y$

 \rightarrow The effects of assignments then are:

$$[x = e;]^{\sharp} = \begin{cases} \operatorname{Id}_{Vars} \oplus \{x \mapsto c\} & \text{if} \quad e = c \in \mathbb{Z} \\ \operatorname{Id}_{Vars} \oplus \{x \mapsto y\} & \text{if} \quad e = y \in Vars \\ \operatorname{Id}_{Vars} \oplus \{x \mapsto \top\} & \text{otherwise} \end{cases}$$

$$[t = 0;]^{\sharp} = \{a_1 \mapsto a_1, \text{ret} \mapsto \text{ret}, t \mapsto 0\}$$
$$[a_1 = t;]^{\sharp} = \{a_1 \mapsto t, \text{ret} \mapsto \text{ret}, t \mapsto t\}$$

In order to implement the analysis, we additionally must construct the effect of a call $k = (_, f();, _)$ from the effect of a procedure f:

$$\llbracket k
bracket^{\sharp} = H\left(\llbracket f
bracket^{\sharp}\right)$$
 where:
$$H\left(M\right) = \operatorname{Id}_{Locals} \oplus \left\{\mathsf{x} \mapsto (M \circ \operatorname{enter}^{\sharp})|_{Globals}\right\}$$

$$\operatorname{enter}^{\sharp} x = \begin{cases} x & \text{if } x \in Globals \\ 0 & \text{otherwise} \end{cases}$$

If
$$\llbracket \text{work} \rrbracket^{\sharp} = \{a_1 \mapsto a_1, \text{ret} \mapsto a_1, t \mapsto t\}$$

then $H \llbracket \text{work} \rrbracket^{\sharp} = \text{Id}_{\{t\}} \oplus \{a_1 \mapsto a_1, \text{ret} \mapsto a_1\}$
 $= \{a_1 \mapsto a_1, \text{ret} \mapsto a_1, t \mapsto t\}$

Now we can perform fixpoint iteration :-)

	1
7	$\{a_1 \mapsto a_1, \operatorname{ret} \mapsto \operatorname{ret}, t \mapsto t\}$
9	$\{a_1 \mapsto a_1, \text{ret} \mapsto \text{ret}, t \mapsto t\}$
10	$\{a_1 \mapsto a_1, \text{ret} \mapsto \text{ret}, t \mapsto t\}$ $\{a_1 \mapsto a_1, \text{ret} \mapsto \text{ret}, t \mapsto t\}$ $\{a_1 \mapsto a_1, \text{ret} \mapsto a_1, t \mapsto t\}$
8	

$$[[(8,...,9)]]^{\sharp} \circ [[8]]^{\sharp} = \{a_1 \mapsto a_1, \operatorname{ret} \mapsto a_1, t \mapsto t\} \circ$$

$$\{a_1 \mapsto a_1, \operatorname{ret} \mapsto \operatorname{ret}, t \mapsto t\}$$

$$= \{a_1 \mapsto a_1, \operatorname{ret} \mapsto a_1, t \mapsto t\}$$

$$[[(8,...,9)]]^{\sharp} \circ [[8]]^{\sharp} = \{a_1 \mapsto a_1, \operatorname{ret} \mapsto a_1, t \mapsto t\} \circ$$

$$\{a_1 \mapsto a_1, \operatorname{ret} \mapsto \operatorname{ret}, t \mapsto t\}$$

$$= \{a_1 \mapsto a_1, \operatorname{ret} \mapsto a_1, t \mapsto t\}$$

If we know the effects of procedure calls, we can put up a constraint system for determining the abstract state when reaching a program point:


```
\begin{array}{c|c}
0 & \{a_1 \mapsto \top, \operatorname{ret} \mapsto \top, t \mapsto 0\} \\
1 & \{a_1 \mapsto \top, \operatorname{ret} \mapsto \top, t \mapsto 0\} \\
2 & \{a_1 \mapsto \top, \operatorname{ret} \mapsto \top, t \mapsto 0\} \\
3 & \{a_1 \mapsto \top, \operatorname{ret} \mapsto \top, t \mapsto 0\} \\
4 & \{a_1 \mapsto 0, \operatorname{ret} \mapsto \top, t \mapsto 0\} \\
5 & \{a_1 \mapsto 0, \operatorname{ret} \mapsto 0, t \mapsto 0\} \\
6 & \{a_1 \mapsto 0, \operatorname{ret} \mapsto \top, t \mapsto 0\}
\end{array}
```

Discussion:

- At least copy-constants can be determined interprocedurally.
- For that, we had to ignore conditions and complex assignments :-(
- In the second phase, however, we could have been more precise :-)
- The extra abstractions were necessary for two reasons:
 - (1) The set of occurring transformers $\mathbb{M} \subseteq \mathbb{D} \to \mathbb{D}$ must be finite;
 - (2) The functions $M \in \mathbb{M}$ must be efficiently implementable :-)
- The second condition can, sometimes, be abandoned ...

Observation:

Sharir/Pnueli, Cousot

- → Often, procedures are only called for few distinct abstract arguments.
- → Each procedure need only to be analyzed for these :-)
- → Put up a constraint system:

Discussion:

- This constraint system may be huge :-(
- We do not want to solve it completely!!!
- It is sufficient to compute the correct values for all calls which occur, i.e., which are necessary to determine the value $[main(), a_0]^{\sharp} \longrightarrow We$ apply our local fixpoint algorithm :-))
- The fixpoint algo provides us also with the set of actual parameters $a \in \mathbb{D}$ for which procedures are (possibly) called and all abstract values at their program points for each of these calls :-)

Let us try a full constant propagation ...

	a_1	ret	a_1	ret
0	Т	T	Т	Т
1	Т	T	T	T
2	Т	T		
3	Т	T	Τ	Т
4	Т	T	0	Т
7	0	T	0	T
8	0	T	上	
9	0	T	0	T
10	0	\top	0	0
5	Т	T	0	0
main()	Т	T	0	1

Discussion:

- In the Example, the analysis terminates quickly :-)
- If D has finite height, the analysis terminates if each procedure is only analyzed for finitely many arguments :-))
- Analogous analysis algorithms have proved very effective for the analysis of Prolog :-)
- Together with a points-to analysis and propagation of negative constant information, this algorithm is the heart of a very successful race analyzer for C with Posix threads :-)