Background 1: An Operational Semantics

we choose a small-step operational approach.
Programs are represented as control-flow graphs.
In the example:

\[A_1 = A_0 + 1 \times i; \]
\[R_1 = M[A_1]; \]
\[A_2 = A_0 + 1 \times j; \]
\[R_2 = M[A_2]; \]
\[A_3 = A_0 + 1 \times j; \]
Thereby, represent:

<table>
<thead>
<tr>
<th>vertex</th>
<th>program point</th>
</tr>
</thead>
<tbody>
<tr>
<td>start</td>
<td>programm start</td>
</tr>
<tr>
<td>stop</td>
<td>program exit</td>
</tr>
<tr>
<td>edge</td>
<td>step of computation</td>
</tr>
</tbody>
</table>
Thereby, represent:

<table>
<thead>
<tr>
<th>vertex</th>
<th>program point</th>
</tr>
</thead>
<tbody>
<tr>
<td>start</td>
<td>programm start</td>
</tr>
<tr>
<td>stop</td>
<td>program exit</td>
</tr>
<tr>
<td>edge</td>
<td>step of computation</td>
</tr>
</tbody>
</table>

Edge Labelings:

- **Test**: Pos \((e) \) or Neg \((e) \)
- **Assignment**: \(R = e; \)
- **Load**: \(R = M[e]; \)
- **Store**: \(M[e_1] = e_2; \)
- **Nop**: \(; \)
Computations follow paths.

Computations transform the current state

\[s = (\rho, \mu) \]

where:

<table>
<thead>
<tr>
<th>(\rho : Vars \rightarrow \text{int})</th>
<th>contents of registers</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\mu : \mathbb{N} \rightarrow \text{int})</td>
<td>contents of storage</td>
</tr>
</tbody>
</table>

Every edge \(k = (u, lab, v) \) defines a partial transformation

\[[k] = [lab] \]

of the state:
\[
\begin{align*}
\llbracket;\rrbracket (\rho, \mu) &= (\rho, \mu) \\
\llbracket \text{Pos}(e) \rrbracket (\rho, \mu) &= (\rho, \mu) \quad \text{if } \llbracket e \rrbracket \rho \neq 0 \\
\llbracket \text{Neg}(e) \rrbracket (\rho, \mu) &= (\rho, \mu) \quad \text{if } \llbracket e \rrbracket \rho = 0
\end{align*}
\]
\[
\left[; \right] (\rho, \mu) = (\rho, \mu)
\]

\[
\left[\text{Pos} (e) \right] (\rho, \mu) = (\rho, \mu) \quad \text{if } \left[e \right] \rho \neq 0
\]

\[
\left[\text{Neg} (e) \right] (\rho, \mu) = (\rho, \mu) \quad \text{if } \left[e \right] \rho = 0
\]

// [e] : evaluation of the expression e, e.g.

// \[x + y \] \{ x \mapsto 7, y \mapsto -1 \} = 6

// \[! (x == 4) \] \{ x \mapsto 5 \} = 1
\[; \] (\(\rho, \mu\)) = (\(\rho, \mu\))

\[\text{Pos}(e)\] (\(\rho, \mu\)) = (\(\rho, \mu\)) \quad \text{if} \ [e] \rho \neq 0

\[\text{Neg}(e)\] (\(\rho, \mu\)) = (\(\rho, \mu\)) \quad \text{if} \ [e] \rho = 0

// \([e]\) : evaluation of the expression e, e.g.

// \([x + y]\) \{x \mapsto 7, y \mapsto -1\} = 6

// \([!(x == 4)]\) \{x \mapsto 5\} = 1

\[[R = e;]\] (\(\rho, \mu\)) = (\(\rho \oplus \{R \mapsto [e] \rho\}, \mu\))

// where “\(\oplus\)” modifies a mapping at a given argument
$$\llbracket R = M[e]; \rrbracket (\rho, \mu) = (\rho \oplus \{ R \mapsto \mu(\llbracket e \rrbracket \rho) \}, \mu)$$

$$\llbracket M[e_1] = e_2; \rrbracket (\rho, \mu) = (\rho, \mu \oplus \{ [e_1] \rho \mapsto [e_2] \rho \})$$

Example:

$$\llbracket x = x + 1; \rrbracket (\{ x \mapsto 5 \}, \mu) = (\rho, \mu)$$ where:

$$\rho = \{ x \mapsto 5 \} \oplus \{ x \mapsto \llbracket x + 1 \rrbracket \{ x \mapsto 5 \} \}$$

$$= \{ x \mapsto 5 \} \oplus \{ x \mapsto 6 \}$$

$$= \{ x \mapsto 6 \}$$
A path \(\pi = k_1 k_2 \ldots k_m \) is a computation for the state \(s \) if:

\[
s \in \text{def} \left([[k_m] \circ \ldots \circ [k_1]] \right)
\]

The result of the computation is:

\[
[[\pi]] s = ([[k_m] \circ \ldots \circ [k_1]]) s
\]

Application:

Assume that we have computed the value of \(x + y \) at program point \(u \):

![Diagram](x+y \quad \pi \quad v)

We perform a computation along path \(\pi \) and reach \(v \) where we evaluate again \(x + y \) ...
Idea:

If x and y have not been modified in π, then evaluation of $x + y$ at v must return the same value as evaluation at u :-)

We can check this property at every edge in π :-}
Idea:

If x and y have not been modified in π, then evaluation of $x + y$ at v must return the same value as evaluation at u :-)

We can check this property at every edge in π :-)

More generally:

Assume that the values of the expressions $A = \{e_1, \ldots, e_r\}$ are available at u.
Idea:

If x and y have not been modified in π, then evaluation of $x + y$ at v must return the same value as evaluation at u :-)

We can check this property at every edge in π :-}

More generally:

Assume that the values of the expressions $A = \{e_1, \ldots, e_r\}$ are available at u.

Every edge k transforms this set into a set $[[k]# A$ of expressions whose values are available after execution of k ...
... which transformations can be composed to the effect of a path $\pi = k_1 \ldots k_r$:

$$[\pi]^{\#} = [k_r]^{\#} \circ \ldots \circ [k_1]^{\#}$$
... which transformations can be composed to the effect of a path
\(\pi = k_1 \ldots k_r \):

\[
[\pi]^\# = [k_r]^\# \circ \ldots \circ [k_1]^\#
\]

The effect \([k]^\# \) of an edge \(k = (u, \text{lab}, v) \) only depends on
the label \(\text{lab} \), i.e., \([k]^\# = [\text{lab}]^\# \)
... which transformations can be composed to the effect of a path $\pi = k_1 \ldots k_r$:

$$\left[\pi\right]^{\#} = \left[k_r\right]^{\#} \circ \ldots \circ \left[k_1\right]^{\#}$$

The effect $\left[k\right]^{\#}$ of an edge $k = (u, lab, v)$ only depends on the label lab, i.e., $\left[k\right]^{\#} = \left[lab\right]^{\#}$ where:

$$\left[;\right]^{\#} A = A$$
$$\left[\text{Pos}(e)\right]^{\#} A = \left[\text{Neg}(e)\right]^{\#} A = A \cup \{e\}$$
$$\left[x = e;\right]^{\#} A = (A \cup \{e\}) \setminus \text{Expr}_x$$

where Expr_x all expressions which contain x
\begin{align*}
\llbracket x = M[e]; \rrbracket_A & \not\in A = (A \cup \{e\}) \setminus \mathit{Expr}_x \\
\llbracket M[e_1] = e_2; \rrbracket_A & = A \cup \{e_1, e_2\}
\end{align*}
\[[x = M[e];] \triangleright^{\sharp} A \quad = \quad (A \cup \{e\}) \setminus \text{Expr}_x \]
\[[M[e_1] = e_2;] \triangleright^{\sharp} A \quad = \quad A \cup \{e_1, e_2\} \]

By that, every path can be analyzed :-)

A given program may admit several paths :-(

For any given input, another path may be chosen :-((
\[[x = M[e];] A \supseteq (A \cup \{e\}) \setminus \text{Expr}_x \]
\[[M[e_1] = e_2;] A = A \cup \{e_1, e_2\} \]

By that, every path can be analyzed

A given program may admit several paths

For any given input, another path may be chosen

We require the set:

\[\mathcal{A}[v] = \bigcap \{ [[\pi]] \setminus \emptyset \mid \pi : \text{start} \rightarrow^* v \} \]
Concretely:

→ We consider all paths π which reach v.
→ For every path π, we determine the set of expressions which are available along π.
→ Initially at program start, nothing is available :-)
→ We compute the intersection \Rightarrow safe information
Concretely:

→ We consider all paths π which reach v.
→ For every path π, we determine the set of expressions which are available along π.
→ Initially at program start, nothing is available :-)
→ We compute the intersection \implies safe information

How do we exploit this information ???
Transformation 1.1:

We provide novel registers T_e as storage for the e:

\[
x = e; \quad T_e = e; \quad x = T_e;
\]
Transformation 1.1:

We provide novel registers T_e as storage for the e:

$\text{Pos}(e) = e$

$\text{Neg}(e) = T_e$

$\text{Pos}(T_e) = T_e$

$\text{Neg}(T_e) = e$
... analogously for \(R = M[e]; \) and \(M[e_1] = e_2; \).

Transformation 1.2:

If \(e \) is available at program point \(u \), then \(e \) need not be re-evaluated:

We replace the assignment with \(Nop \) :-)}
Example:

\[x = y + 3; \]
\[x = 7; \]
\[z = y + 3; \]
Example:

\[x = y + 3; \]
\[x = 7; \]
\[z = y + 3; \]
Example:

\[x = y + 3; \]
\[x = 7; \]
\[z = y + 3; \]
Example:

\[
\begin{align*}
T &= y + 3; \\
\{y + 3\} &\rightarrow x = T; \\
\{y + 3\} &\rightarrow x = 7; \\
\{y + 3\} &\rightarrow z = T; \\
\{y + 3\} &\rightarrow \;
\end{align*}
\]

\[
\begin{align*}
x &= y + 3; \\
x &= 7; \\
z &= y + 3;
\end{align*}
\]
Correctness: (Idea)

Transformation 1.1 preserves the semantics and $A[u]$ for all program points u :-)

Assume $\pi : start \rightarrow^* u$ is the path taken by a computation. If $e \in A[u]$, then also $e \in [\pi]^\# \emptyset$.

Therefore, π can be decomposed into:

\[\text{start} \xrightarrow{\pi_1} u_1 \xrightarrow{k} u_2 \xrightarrow{\pi_2} u \]

with the following properties:
• The expression e is evaluated at the edge k;
• The expression e is not removed from the set of available expressions at any edge in π_2, i.e., no variable of e receives a new value :-)

52
• The expression e is evaluated at the edge k;
• The expression e is not removed from the set of available expressions at any edge in π_2, i.e., no variable of e receives a new value

The register T_e contains the value of e whenever u is reached
Warning:

Transformation 1.1 is only meaningful for assignments \(x = e; \) where:

\[\rightarrow x \notin Vars(e); \]
\[\rightarrow e \notin Vars; \]
\[\rightarrow \text{the evaluation of } e \text{ is non-trivial} \quad :-} \]
Warning:

Transformation 1.1 is only meaningful for assignments $x = e$; where:

$\rightarrow x \notin Vars(e);$
$\rightarrow e \notin Vars;$
\rightarrow the evaluation of e is non-trivial ::- }

Which leaves us with the following question ...
Question:

How do we compute $A[u]$ for every program point u??

Idea:

We collect all restrictions to the values of $A[u]$ into a system of constraints:

$A[\text{start}] \subseteq \emptyset$

$A[v] \subseteq \{k\} \#(A[u])$

$k = (u, _{\text{edge}}, v)$