2. One Polynomial Special Case:

$$x \geq y+5$$

$$19 \geq x$$

$$y \geq 13$$

$$y \geq x-7$$

- There are at most 2 variables per in-equation;
- no scaling factors.

Idea: Represent the system by a graph:

The in-equations are satisfiable iff

- the weight of every cycle are at most 0;
- the weights of paths reaching *x* are bounded by the weights of edges from *x* into the sink.

The in-equations are satisfiable iff

- the weight of every cycle are at most 0;
- the weights of paths reaching *x* are bounded by the weights of edges from *x* into the sink.

Compute the reflexive and transitive closure of the edge weights!

3. A General Solution Method:

Idea: Fourier-Motzkin Elimination

- Successively remove individual variables *x* !
- All in-equations with positive occurrences of *x* yield lower bounds.
- All in-equations with negative occurrences of *x* yield upper bounds.
- All lower bounds must be at most as big as all upper bounds
 ;-))

Jean Baptiste Joseph Fourier, 1768–1830

Example:

$$9 \leq 4x_1 + x_2 \quad (1)$$

$$4 \leq x_1 + 2x_2 \quad (2)$$

$$0 \leq 2x_1 - x_2 \quad (3)$$

$$6 \leq x_1 + 6x_2 \quad (4)$$

$$-11 \leq -x_1 - 2x_2 \quad (5)$$

$$-17 \leq -6x_1 + 2x_2 \quad (6)$$

$$-4 \leq -x_2 \quad (7)$$

For x_1 we obtain:

If such an x_1 exists, all lower bounds must be bounded by all upper bounds, i.e.,

$\frac{9}{4} - \frac{1}{4}x_2 \leq 11 - 2x_2$	(1, 5)		$-5 \leq -x_2$	(1,5)
$\frac{9}{4} - \frac{1}{4}x_2 \leq \frac{17}{6} + \frac{1}{3}x_2$	(1,6)		$-1 \leq x_2$	(1,6)
$4-2x_2 \leq 11-2x_2$	(2,5)		$-7~\leq~0$	(2,5)
$4-2x_2 \leq \frac{17}{6}+\frac{1}{3}x_2$	(2,6)		$\frac{1}{2} \leq x_2$	(2,6)
$\frac{1}{2}x_2 \leq 11 - 2x_2$	(3,5)	or	$-\frac{22}{5} \leq -x_2$	(3,5)
$\frac{1}{2}x_2 \leq \frac{17}{6} + \frac{1}{3}x_2$	(3,6)		$-17 \leq -x_2$	(3,6)
$6-6x_2 \leq 11-2x_2$	(4,5)		$-rac{5}{4} \leq x_2$	(4,5)
$6 - 6x_2 \leq \frac{17}{6} + \frac{1}{3}x_2$	(4,6)		$\frac{1}{2} \leq x_2$	(4,6)
$-4 \leq -x_2$	(7)		$-4 \leq -x_2$	(7)

This is the **one-variable case** which we can solve exactly:

 $\max \{-1, \frac{1}{2}, -\frac{5}{4}, \frac{1}{2}\} \le x_2 \le \min \{5, \frac{22}{5}, 17, 4\}$ From which we conclude: $x_2 \in [\frac{1}{2}, 4]$:-)

In General:

- The original system has a solution over \mathbb{Q} iff the system after elimination of one variable has a solution over \mathbb{Q} :-)
- Every elimination step may square the number of in-equations =>> exponential run-time :-((
- It can be modified such that it also decides satisfiability over
 Z >> Omega Test

William Worthington Pugh, Jr. University of Maryland, College Park

Idea:

- We successively remove variables. Thereby we omit division ...
- If *x* only occurs with coefficient ± 1 , we apply Fourier-Motzkin elimination :-)
- Otherwise, we provide a bound for a positive multiple of *x* ...

Consider, e.g., (1) and (6):

$$6 \cdot x_1 \leq 17 + 2x_2$$

$$9 - x_2 \leq 4 \cdot x_1$$

W.l.o.g., we only consider strict in-equations:

$$6 \cdot x_1 < 18 + 2x_2$$

$$8 - x_2 < 4 \cdot x_1$$

... where we always divide by gcds:

 $3 \cdot x_1 < 9 + x_2$ $8 - x_2 < 4 \cdot x_1$

This implies:

$$3 \cdot (8 - x_2) < 4 \cdot (9 + x_2)$$

We thereby obtain:

- If one derived in-equation is unsatisfiable, then also the overall system :-)
- If all derived in-equations are satisfiable, then there is a solution which, however, need not be integer :-(
- An integer solution is guaranteed to exist if there is sufficient separation between lower and upper bound ...
- Assume $\alpha < a \cdot x$ $b \cdot x < \beta$.

Then it should hold that:

$$b \cdot \alpha < a \cdot \beta$$

and moreover:

$$\boxed{a \cdot b} < a \cdot \beta - b \cdot \alpha$$

... in the Example:

$$12 < 4 \cdot (9 + x_2) - 3 \cdot (8 - x_2)$$
$$12 < 12 + 7x_2$$
$$0 < x_2$$

In the example, also these strengthened in-equations are satisfiable

 \implies

or:

or:

the system has a solution over \mathbb{Z} :-)

Discussion:

- If the strengthened in-equations are satisfiable, then also the original system. The reverse implication may be wrong :-(
- In the case where upper and lower bound are not sufficiently separated, we have:

$$a \cdot \beta \leq b \cdot \alpha + a \cdot b$$

or:

$$b \cdot \alpha < ab \cdot x < b \cdot \alpha + a \cdot b$$

Division with *b* yields:

$$\alpha < a \cdot x < \alpha + a$$

$$\implies \qquad \alpha + i = a \cdot x \quad \text{for some} \quad i \in \{1, \dots, a - 1\} \quad !!!$$

Discussion (cont.):

- → Fourier-Motzkin Elimination is not the best method for rational systems of in-equations.
- → The Omega test is necessarily exponential :-)
 If the system is solvable, the test generally terminates rapidly.

It may have problems with **unsolvable** systems :-(

- \rightarrow Also for ILP, there are other/smarter algorithms ...
- → For programming language problems, however, it seems to behave quite well :-)

4. Generalization to a Logic

Disjunction:

$$(x-2y=15 \land x+y=7) \lor$$

 $(x+y=6 \land 3x+z=-8)$

Quantors:

$$\exists x: z-2x = 42 \land z+x = 19$$

4. Generalization to a Logic

Disjunction:

$$(x-2y=15 \land x+y=7) \lor$$

 $(x+y=6 \land 3x+z=-8)$

Quantors:

$$\exists x: z-2x = 42 \land z+x = 19$$

Mojzesz Presburger, 1904–1943 (?)

Presburger Arithmetic = full arithmetic

without multiplication

Presburger Arithmetic = full arithmetic without multiplication

Arithmetic : highly undecidable :-(even incomplete :-((

Presburger Arithmetic = full arithmetic without multiplication

Arithmetic : highly undecidable :-(even incomplete :-((

- \implies Hilbert's 10th Problem
 - → Gödel's Theorem

Presburger Formulas over \mathbb{N} :

$$\phi \quad ::= \quad x + y = z \quad | \quad x = n \quad |$$
$$\phi_1 \land \phi_2 \quad | \quad \neg \phi \quad |$$
$$\exists x : \phi$$

Presburger Formulas over \mathbb{N} :

$$\phi \quad ::= \quad x + y = z \quad | \quad x = n \quad |$$
$$\phi_1 \land \phi_2 \quad | \quad \neg \phi \quad |$$
$$\exists x : \phi$$

Goal: PSAT

Find values for the free variables in \mathbb{N} such that ϕ holds ...

213	t	1	0	1	0	1	0	1	1
42	Z	0	1	0	1	0	1	0	0
89	У	1	0	0	1	1	0	1	0
17	X	1	0	0	0	1	0	0	0

213	t	1	0	1	0	1	0	1	1
42	Ζ	0	1	0	1	0	1	0	0
89	У	1	0	0	1	1	0	1	0
17	X	1	0	0	0	1	0	0	0

213	t	1	0	1	0	1	0	1	1
42	Ζ	0	1	0	1	0	1	0	0
89	У	1	0	0	1	1	0	1	0
17	X	1	0	0	0	1	0	0	0

213	t	1	0	1	0	1	0	1	1
42	Ζ	0	1	0	1	0	1	0	0
89	У	1	0	0	1	1	0	1	0
17	X	1	0	0	0	1	0	0	0

213	t	1	0	1	0	1	0	1	1
42	Ζ	0	1	0	1	0	1	0	0
89	У	1	0	0	1	1	0	1	0
17	X	1	0	0	0	1	0	0	0

213	t	1	0	1	0	1	0	1	1
42	Ζ	0	1	0	1	0	1	0	0
89	У	1	0	0	1	1	0	1	0
17	X	1	0	0	0	1	0	0	0

213	t	1	0	1	0	1	0	1	1
42	Ζ	0	1	0	1	0	1	0	0
89	У	1	0	0	1	1	0	1	0
17	X	1	0	0	0	1	0	0	0

213	t	1	0	1	0	1	0	1	1
42	Z	0	1	0	1	0	1	0	0
89	У	1	0	0	1	1	0	1	0
17	X	1	0	0	0	1	0	0	0

213	t	1	0	1	0	1	0	1	1
42	Ζ	0	1	0	1	0	1	0	0
89	У	1	0	0	1	1	0	1	0
17	X	1	0	0	0	1	0	0	0

213	t	1	0	1	0	1	0	1	1
42	Ζ	0	1	0	1	0	1	0	0
89	У	1	0	0	1	1	0	1	0
17	X	1	0	0	0	1	0	0	0

Observation:

The set of satisfying variable assignments is regular :-))

Observation:

The set of satisfying variable assignments is regular :-))

$$\begin{aligned} \phi_1 \wedge \phi_2 & \implies & \mathcal{L}(\phi_1) \cap \mathcal{L}(\phi_2) & \text{(Intersection)} \\ \neg \phi & \implies & \overline{\mathcal{L}(\phi)} & \text{(Complement)} \\ \exists x : \phi & \implies & \pi_x(\mathcal{L}(\phi)) & \text{(Projection)} \end{aligned}$$

Projecting away the *x*-component:

213	t	1	0	1	0	1	0	1	1
42	Z	0	1	0	1	0	1	0	0
89	У	1	0	0	1	1	0	1	0
17	X	1	0	0	0	1	0	0	0

Projecting away the *x*-component:

213	t	1	0	1	0	1	0	1	1
42	Ζ	0	1	0	1	0	1	0	0
89	У	1	0	0	1	1	0	1	0

Warning:

- Our representation of numbers is not unique: 011101 should be accepted iff every word from 011101 · 0* is accepted!
- This property is preserved by union, intersection and complement :-)
- It is lost by projection !!!
- → The automaton for projection must be enriched such that the property is re-established !!

Automata for Basic Predicates:

$$x = 5$$

Automata for Basic Predicates:

Automata for Basic Predicates:

x+y = z

