Remark:

If $f : \mathbb{D}_1 \to \mathbb{D}_2$ is distributive, then also monotonic :-)

Remark:

If \(f : D_1 \to D_2 \) is distributive, then also monotonic :-)

Obviously: \(a \sqsubseteq b \) iff \(a \sqcup b = b \).
Remark:

If \(f : \mathbb{D}_1 \rightarrow \mathbb{D}_2 \) is distributive, then also monotonic :-)

Obviously: \(a \sqsubseteq b \) iff \(a \sqcup b = b \).
From that follows:

\[
\begin{align*}
fb &= f(a \sqcup b) \\
 &= fa \sqcup fb \\
\implies fa &\sqsubseteq fb
\end{align*}
\]
Assumption: all v are reachable from \textit{start}.
Assumption: all v are reachable from \textit{start}.

Then:

Theorem \hspace{1cm} Kildall 1972

If all effects of edges $[[k]]^\#$ are distributive, then: $I^*[v] = I[v]$ for all v.

182

Has developed the operating system CP/M and GUIs for PCs.
Assumption: all v are reachable from start.

Then:

Theorem

Kildall 1972

If all effects of edges $[[k]]^\#$ are distributive, then: $\mathcal{I}^*[v] = \mathcal{I}[v]$ for all v.
Assumption: all v are reachable from $start$.

Then:

Theorem \[\text{Kildall 1972} \]

If all effects of edges $[k]^\#$ are distributive, then: $I^*[v] = I[v]$ for all v.

Proof:

It suffices to prove that I^* is a solution :-)

For this, we show that I^* satisfies all constraints :-))
(1) We prove for start:

$$
\mathcal{I}^*\text{[start]} = \bigsqcup \{ \llbracket \pi \rrbracket \# d_0 \mid \pi : \text{start} \rightarrow^* \text{start} \}
\ni \llbracket \epsilon \rrbracket \# d_0
\ni d_0 \quad :-)$$
We prove for \(\text{start} \):

\[
\mathcal{I}^*[\text{start}] = \bigsqcup \{ [[\pi]]^\# d_0 \mid \pi : \text{start} \rightarrow^* \text{start} \}
\]
\[
\ni \quad [e]^\# d_0
\]
\[
\ni \quad d_0 \quad :-)
\]

For every \(k = (u, _, v) \) we prove:

\[
\mathcal{I}^*[v] = \bigsqcup \{ [[\pi]]^\# d_0 \mid \pi : \text{start} \rightarrow^* v \}
\]
\[
\ni \quad \bigsqcup \{ [[\pi']k]^\# d_0 \mid \pi' : \text{start} \rightarrow^* u \}
\]
\[
= \bigsqcup \{ [[k]]^\# (\bigsqcup \{ [[\pi']]^\# d_0 \mid \pi' : \text{start} \rightarrow^* u \}) \}
\]
\[
= [[k]]^\# (\mathcal{I}^*[u])
\]

since \(\{ \pi' \mid \pi' : \text{start} \rightarrow^* u \} \) is non-empty \(:-) \)
Warning:

- **Reachability** of all program points cannot be abandoned!

Consider:

\[
\mathbb{D} = \mathbb{N} \cup \{\infty\}
\]
Warning:

- **Reachability** of all program points cannot be abandoned!

Consider:

\[D = \mathbb{N} \cup \{\infty\} \]

Then:

\[I[2] = \text{inc} 0 = 1 \]
\[I^*[2] = \bigcup \emptyset = 0 \]
Warning:

- **Reachability** of all program points cannot be abandoned!

 Consider:

 Example diagram:

 \[D = \mathbb{N} \cup \{\infty\} \]

 Then:

 \[I[2] = \text{inc}0 = 1 \]

 \[I^*[2] = \bigcup \emptyset = 0 \]

- **Unreachable** program points can always be thrown away :-)

190
Summary and Application:

→ The effects of edges of the analysis of availability of expressions are distributive:

\[
(a \cup (x_1 \cap x_2)) \setminus b = ((a \cup x_1) \cap (a \cup x_2)) \setminus b \\
= ((a \cup x_1) \setminus b) \cap ((a \cup x_2) \setminus b)
\]
Summary and Application:

\rightarrow The effects of edges of the analysis of availability of expressions are distributive:

\[
(a \cup (x_1 \cap x_2)) \setminus b = ((a \cup x_1) \cap (a \cup x_2)) \setminus b = ((a \cup x_1) \setminus b) \cap ((a \cup x_2) \setminus b)
\]

\rightarrow If all effects of edges are distributive, then the MOP can be computed by means of the constraint system and RR-iteration. :-)

Summary and Application:

→ The effects of edges of the analysis of availability of expressions are distributive:

\[(a \cup (x_1 \cap x_2)) \setminus b = ((a \cup x_1) \cap (a \cup x_2)) \setminus b = ((a \cup x_1) \setminus b) \cap ((a \cup x_2) \setminus b)\]

→ If all effects of edges are distributive, then the MOP can be computed by means of the constraint system and RR-iteration. :-)

→ If not all effects of edges are distributive, then RR-iteration for the constraint system at least returns a safe upper bound to the MOP :-)
1.2 Removing Assignments to Dead Variables

Example:

1: \(x = y + 2; \)
2: \(y = 5; \)
3: \(x = y + 3; \)

The value of \(x \) at program points 1, 2 is over-written before it can be used.

Therefore, we call the variable \(x \) dead at these program points :-(
Note:

→ Assignments to dead variables can be removed ;-)
→ Such inefficiencies may originate from other transformations.
Note:

→ Assignments to dead variables can be removed ;-)
→ Such inefficiencies may originate from other transformations.

Formal Definition:

The variable x is called **live at** u along the path π starting at u relative to a set X of variables either:

if $x \in X$ and π does not contain a **definition** of x; or:

if π can be decomposed into: $\pi = \pi_1 k \pi_2$ such that:

• k is a **use** of x; and

• π_1 does not contain a **definition** of x.

196
Thereby, the set of all defined or used variables at an edge \(k = (_, lab, _{\text{lab}}) \) is defined by:

<table>
<thead>
<tr>
<th>lab</th>
<th>used</th>
<th>defined</th>
</tr>
</thead>
<tbody>
<tr>
<td>;</td>
<td>(\emptyset)</td>
<td>(\emptyset)</td>
</tr>
<tr>
<td>Pos ((e))</td>
<td>Vars ((e))</td>
<td>(\emptyset)</td>
</tr>
<tr>
<td>Neg ((e))</td>
<td>Vars ((e))</td>
<td>(\emptyset)</td>
</tr>
<tr>
<td>(x = e;)</td>
<td>Vars ((e))</td>
<td>({ x })</td>
</tr>
<tr>
<td>(x = M[e];)</td>
<td>Vars ((e))</td>
<td>({ x })</td>
</tr>
<tr>
<td>(M[e_1] = e_2;)</td>
<td>Vars ((e_1) \cup Vars (e_2))</td>
<td>(\emptyset)</td>
</tr>
</tbody>
</table>
A variable \(x \) which is not live at \(u \) along \(\pi \) (relative to \(X \)) is called dead at \(u \) along \(\pi \) (relative to \(X \)).

Example:

\[x = y + 2; \quad y = 5; \quad x = y + 3; \]

where \(X = \emptyset \). Then we observe:

<table>
<thead>
<tr>
<th></th>
<th>live</th>
<th>dead</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>{y}</td>
<td>{x}</td>
</tr>
<tr>
<td>1</td>
<td>\emptyset</td>
<td>{x, y}</td>
</tr>
<tr>
<td>2</td>
<td>{y}</td>
<td>{x}</td>
</tr>
<tr>
<td>3</td>
<td>\emptyset</td>
<td>{x, y}</td>
</tr>
</tbody>
</table>
The variable x is live at u (relative to X) if x is live at u along some path to the exit (relative to X). Otherwise, x is called dead at u (relative to X).
The variable x is **live** at u (relative to X) if x is live at u along some path to the exit (relative to X). Otherwise, x is called **dead** at u (relative to X).

Question:

How can the sets of all dead/live variables be computed for every u???
The variable x is live at u (relative to X) if x is live at u along some path to the exit (relative to X). Otherwise, x is called dead at u (relative to X).

Question:

How can the sets of all dead/live variables be computed for every u?

Idea:

For every edge $k = (u, v)$, define a function $[k]$ which transforms the set of variables which are live at v into the set of variables which are live at u...
Let $\mathbb{L} = 2^{\text{Vars}}$.

For $k = (_ , \text{lab}, _)$, define $\lbrack k \rbrack^\# = \lbrack \text{lab} \rbrack^\#$ by:

\[
\begin{align*}
\lbrack ; \rbrack^\# L &= L \\
\lbrack \text{Pos}(e) \rbrack^\# L &= \lbrack \text{Neg}(e) \rbrack^\# L = L \cup \text{Vars}(e) \\
\lbrack x = e; \rbrack^\# L &= (L \setminus \{x\}) \cup \text{Vars}(e) \\
\lbrack x = M[e]; \rbrack^\# L &= (L \setminus \{x\}) \cup \text{Vars}(e) \\
\lbrack M[e_1] = e_2; \rbrack^\# L &= L \cup \text{Vars}(e_1) \cup \text{Vars}(e_2)
\end{align*}
\]
Let $L = 2^{\text{Vars}}$.

For $k = (_, \text{lab}, _)$, define $[k]^\# = [\text{lab}]^\#$ by:

\[
\begin{align*}
[;]^\# L &= L \\
[\text{Pos}(e)]^\# L &= [\text{Neg}(e)]^\# L = L \cup \text{Vars}(e) \\
[x = e;]^\# L &= (L \setminus \{x\}) \cup \text{Vars}(e) \\
[x = M[e];]^\# L &= (L \setminus \{x\}) \cup \text{Vars}(e) \\
[M[e_1] = e_2;]^\# L &= L \cup \text{Vars}(e_1) \cup \text{Vars}(e_2)
\end{align*}
\]

$[k]^\#$ can again be composed to the effects of $[\pi]^\#$ of paths $\pi = k_1 \ldots k_r$ by:

\[
[\pi]^\# = [k_1]^\# \circ \ldots \circ [k_r]^\#
\]
We verify that these definitions are meaningful :-)
We verify that these definitions are meaningful :-)

\[M[y] = x; \]

\[x = y + 2; \quad y = 5; \quad x = y + 2; \quad M[y] = x; \]
We verify that these definitions are meaningful :-)

\[
M[y] = x; \quad \{x, y\} \quad \emptyset
\]
We verify that these definitions are meaningful :-)

\[
x = y + 2; \quad y = 5; \quad x = y + 2; \quad M[y] = x;
\]
We verify that these definitions are meaningful :-)

\[
x = y + 2; \quad y = 5; \quad x = y + 2; \quad M[y] = x;
\]

\[
\begin{array}{c}
1 \quad 2 \quad 3 \quad 4 \quad 5 \\
\emptyset \quad \{y\} \quad \{x, y\} \quad \emptyset
\end{array}
\]
We verify that these definitions are meaningful :-)
The set of variables which are live at u then is given by:

$$L^*[u] = \bigcup\{[\pi]^\# X \mid \pi : u \rightarrow^* \text{stop}\}$$

... literally:

- The paths start in u :-)
 \[\implies\text{ As partial ordering for } L \text{ we use } \subseteq = \subseteq.\]
- The set of variables which are live at program exit is given by the set X :-)}
Transformation 2:

\[x = e; \quad x \notin \mathcal{L}^*[v] \]

\[x = M[e]; \quad x \notin \mathcal{L}^*[v] \]
Correctness Proof:

\rightarrow Correctness of the effects of edges: If L is the set of variables which are live at the exit of the path π, then $\llbracket \pi \rrbracket \downarrow L$ is the set of variables which are live at the beginning of π :-)

\rightarrow Correctness of the transformation along a path: If the value of a variable is accessed, this variable is necessarily live. The value of dead variables thus is irrelevant :-)

\rightarrow Correctness of the transformation: In any execution of the transformed programs, the live variables always receive the same values :-))

212
Computation of the sets $\mathcal{L}^*[u]$:

(1) Collecting constraints:

\[
\begin{align*}
\mathcal{L}[\text{stop}] & \supseteq X \\
\mathcal{L}[u] & \supseteq [[k]]^\#(\mathcal{L}[v]) \quad k = (u, _, v) \quad \text{edge}
\end{align*}
\]

(2) Solving the constraint system by means of RR iteration.
 Since \mathcal{L} is finite, the iteration will terminate :-)

(3) If the exit is (formally) reachable from every program point, then the smallest solution \mathcal{L} of the constraint system equals \mathcal{L}^* since all $[[k]]^\#$ are distributive :-))
Computation of the sets $\mathcal{L}^*[u]$:

(1) Collecting constraints:

$$\mathcal{L}[\text{stop}] \supseteq X$$
$$\mathcal{L}[u] \supseteq [k]^\dagger (\mathcal{L}[v]) \quad k = (u, _, v) \quad \text{edge}$$

(2) Solving the constraint system by means of RR iteration.

Since \mathcal{L} is finite, the iteration will terminate :-)

(3) If the exit is (formally) reachable from every program point, then the smallest solution \mathcal{L} of the constraint system equals \mathcal{L}^* since all $[k]^\dagger$ are distributive :-))

Warning: The information is propagated backwards !!!
Example:

\[x = M[I]; \]
\[y = 1; \]
\[M[R] = y; \]
\[Pos(x > 1) \]
\[Neg(x > 1) \]

\[
\begin{align*}
\mathcal{L}[0] & \supseteq (\mathcal{L}[1]\{x\}) \cup \{I\} \\
\mathcal{L}[1] & \supseteq \mathcal{L}[2]\{y\} \\
\mathcal{L}[2] & \supseteq (\mathcal{L}[6]\{x\}) \cup (\mathcal{L}[3]\{x\}) \\
\mathcal{L}[3] & \supseteq (\mathcal{L}[4]\{y\}) \cup \{x, y\} \\
\mathcal{L}[4] & \supseteq (\mathcal{L}[5]\{x\}) \cup \{x\} \\
\mathcal{L}[5] & \supseteq \mathcal{L}[2] \\
\mathcal{L}[6] & \supseteq \mathcal{L}[7] \cup \{y, R\} \\
\mathcal{L}[7] & \supseteq \emptyset
\end{align*}
\]
Example:

\[
x = M[I]; \\
y = 1; \\
M[R] = y;
\]

\[
\text{Neg}(x > 1) \\
\text{Pos}(x > 1)
\]

\[
\begin{array}{c|c|c}
1 & 2 \\
\hline
7 & \emptyset & \text{dito} \\
6 & \{y, R\} & \\
5 & \{x, y, R\} & \\
4 & \{x, y, R\} & \\
3 & \{x, y, R\} & \\
2 & \{x, y, R\} & \\
1 & \{x, R\} & \\
0 & \{I, R\} & \\
\end{array}
\]
The left-hand side of no assignment is dead :-)

Warning:

Removal of assignments to dead variables may kill further variables:

```
x = y + 1;
z = 2 * x;
M[R] = y;
∅
```
The left-hand side of no assignment is **dead** :-)

Warning:

Removal of assignments to dead variables may kill further variables:

\[
\begin{align*}
1 & : x = y + 1; \\
2 & : z = 2 \times x; \\
3 & : y, R \\
4 & : M[R] = y; \\
\emptyset &
\end{align*}
\]
The left-hand side of no assignment is **dead** :-)

Warning:

Removal of assignments to dead variables may kill further variables:

1. $x = y + 1$
2. x, y, R
3. $M[R] = y$
4. $∅$
The left-hand side of no assignment is **dead** :-(

Warning:

Removal of assignments to dead variables may kill further variables:

1. \(y, R\)

 \(x = y + 1;\)

2. \(x, y, R\)

 \(z = 2 * x;\)

3. \(y, R\)

 \(M[R] = y;\)

4. \(\emptyset\)
The left-hand side of no assignment is **dead** :-)

Warning:

Removal of assignments to dead variables may kill further variables:

```plaintext
x = y + 1;
z = 2 * x;
M[R] = y;
```

```plaintext
x = y + 1;
M[R] = y;
```
The left-hand side of no assignment is dead :-)

Warning:

Removal of assignments to dead variables may kill further variables:
The left-hand side of no assignment is **dead** :-)

Warning:
Removal of assignments to dead variables may kill further variables:

\[
\begin{align*}
1 & \quad y, R \\
2 & \quad x = y + 1; \\
3 & \quad x, y, R \\
4 & \quad z = 2 \times x; \\
1 & \quad y, R \\
2 & \quad y, R \\
3 & \quad M[R] = y; \\
4 & \quad \emptyset \\
1 & \quad y, R \\
2 & \quad y, R \\
3 & \quad M[R] = y; \\
4 & \quad \emptyset \\
1 & \quad y, R \\
2 & \quad y, R \\
3 & \quad M[R] = y; \\
4 & \quad \emptyset
\end{align*}
\]
Re-analyzing the program is inconvenient :-(

Idea: Analyze true liveness!

x is called truely live at u along a path π (relative to X), either

if $x \in X$, π does not contain a definition of x; or

if π can be decomposed into $\pi = \pi_1 k \pi_2$ such that:

- k is a true use of x ;
- π_1 does not contain any definition of x.

The set of truely used variables at an edge \(k = (_ , \text{lab} , v) \) is defined as:

<table>
<thead>
<tr>
<th>(\text{lab})</th>
<th>truely used</th>
</tr>
</thead>
<tbody>
<tr>
<td>(;)</td>
<td>(\emptyset)</td>
</tr>
<tr>
<td>(\text{Pos} (e))</td>
<td>(\text{Vars} (e))</td>
</tr>
<tr>
<td>(\text{Neg} (e))</td>
<td>(\text{Vars} (e))</td>
</tr>
<tr>
<td>(x = e;)</td>
<td>(\text{Vars} (e)) ((*))</td>
</tr>
<tr>
<td>(x = M[e];)</td>
<td>(\text{Vars} (e)) ((*))</td>
</tr>
<tr>
<td>(M[e_1] = e_2;)</td>
<td>(\text{Vars} (e_1) \cup \text{Vars} (e_2))</td>
</tr>
</tbody>
</table>

\((*) \) – given that \(x \) is truely live at \(v \) \(:-) \)
Example:

1

\[x = y + 1; \]

2

\[z = 2 \ast x; \]

3

\[M[R] = y; \]

4

\[\emptyset \]
Example:

1. $x = y + 1$;
2. $z = 2 \times x$;
3. y, R
 - $M[R] = y$;
4. \emptyset
Example:

1

\[x = y + 1; \]

2

\[y, R \]

\[z = 2 \times x; \]

3

\[y, R \]

\[M[R] = y; \]

4

\[\emptyset \]
Example:

1. y, R

2. $x = y + 1$

3. $z = 2 \times x$

4. $M[R] = y$

\emptyset
Example:

\[x = y + 1; \]
\[z = 2 \times x; \]
\[M[R] = y; \]
\[\emptyset \]