Remark:

If $f: \mathbb{D}_1 \to \mathbb{D}_2$ is distributive, then also monotonic :-)

Remark:

If $f: \mathbb{D}_1 \to \mathbb{D}_2$ is distributive, then also monotonic :-)

Obviously: $a \sqsubseteq b$ iff $a \sqcup b = b$.

Remark:

If $f: \mathbb{D}_1 \to \mathbb{D}_2$ is distributive, then also monotonic :-)

Obviously: $a \sqsubseteq b$ iff $a \sqcup b = b$.

From that follows:

$$fb = f(a \sqcup b)$$

$$= fa \sqcup fb$$

$$\Longrightarrow fa \sqsubseteq fb : -)$$

Assumption: all v are reachable from start.

Assumption: all v are reachable from start. Then:

Theorem Kildall 1972

If all effects of edges $[\![k]\!]^\sharp$ are distributive, then: $\mathcal{I}^*[v] = \mathcal{I}[v]$ for all v.

Gary A. Kildall (1942-1994).
Has developed the operating system CP/M and GUIs for PCs.

Assumption: all v are reachable from start. Then:

Theorem Kildall 1972

If all effects of edges $[\![k]\!]^\sharp$ are distributive, then: $\mathcal{I}^*[v] = \mathcal{I}[v]$ for all v.

Assumption: all v are reachable from start. Then:

Theorem Kildall 1972

If all effects of edges $[\![k]\!]^\sharp$ are distributive, then: $\mathcal{I}^*[v] = \mathcal{I}[v]$ for all v.

Proof:

It suffices to prove that \mathcal{I}^* is a solution :-)

For this, we show that \mathcal{I}^* satisfies all constraints :-))

(1) We prove for *start*:

$$\mathcal{I}^*[start] = \bigsqcup\{\llbracket\pi\rrbracket^\sharp d_0 \mid \pi : start \to^* start\}$$

$$\supseteq \llbracket\epsilon\rrbracket^\sharp d_0$$

$$\supseteq d_0 :-)$$

(1) We prove for *start*:

(2) For every $k = (u, _, v)$ we prove:

```
\mathcal{I}^{*}[v] = \bigsqcup\{\llbracket \pi \rrbracket^{\sharp} d_{0} \mid \pi : start \to^{*} v\}
\supseteq \bigsqcup\{\llbracket \pi'k \rrbracket^{\sharp} d_{0} \mid \pi' : start \to^{*} u\}
= \bigsqcup\{\llbracket k \rrbracket^{\sharp} (\llbracket \pi' \rrbracket^{\sharp} d_{0}) \mid \pi' : start \to^{*} u\}
= \llbracket k \rrbracket^{\sharp} (\bigsqcup\{\llbracket \pi' \rrbracket^{\sharp} d_{0} \mid \pi' : start \to^{*} u\})
= \llbracket k \rrbracket^{\sharp} (\mathcal{I}^{*}[u])
since \{\pi' \mid \pi' : start \to^{*} u\} is non-empty :-)
```

Warning:

Reachability of all program points cannot be abandoned!
 Consider:

Warning:

Reachability of all program points cannot be abandoned!
 Consider:

Then:

$$\mathcal{I}[\mathbf{2}] = \operatorname{inc} \mathbf{0} = \mathbf{1}$$

 $\mathcal{I}^*[\mathbf{2}] = \sqcup \emptyset = \mathbf{0}$

Warning:

Reachability of all program points cannot be abandoned!
 Consider:

$$\begin{array}{ccc}
 & \text{inc} \\
 & \text{0} & \\
 & \text{1} & \\
 & \text{2} & \\
\end{array}$$
 where $\mathbb{D} = \mathbb{N} \cup \{\infty\}$

Then:

$$\mathcal{I}[\mathbf{2}] = \operatorname{inc} \mathbf{0} = \mathbf{1}$$
 $\mathcal{I}^*[\mathbf{2}] = \sqcup \emptyset = \mathbf{0}$

• Unreachable program points can always be thrown away :-)

Summary and Application:

→ The effects of edges of the analysis of availability of expressions are distributive:

$$(a \cup (x_1 \cap x_2)) \backslash b = ((a \cup x_1) \cap (a \cup x_2)) \backslash b$$

= $((a \cup x_1) \backslash b) \cap ((a \cup x_2) \backslash b)$

Summary and Application:

→ The effects of edges of the analysis of availability of expressions are distributive:

$$(a \cup (x_1 \cap x_2)) \setminus b = ((a \cup x_1) \cap (a \cup x_2)) \setminus b$$

= $((a \cup x_1) \setminus b) \cap ((a \cup x_2) \setminus b)$

→ If all effects of edges are distributive, then the MOP can be computed by means of the constraint system and RR-iteration. :-)

Summary and Application:

→ The effects of edges of the analysis of availability of expressions are distributive:

$$(a \cup (x_1 \cap x_2)) \backslash b = ((a \cup x_1) \cap (a \cup x_2)) \backslash b$$

= $((a \cup x_1) \backslash b) \cap ((a \cup x_2) \backslash b)$

- → If all effects of edges are distributive, then the MOP can be computed by means of the constraint system and RR-iteration. :-)
- → If not all effects of edges are distributive, then RR-iteration for the constraint system at least returns a safe upper bound to the MOP :-)

1.2 Removing Assignments to Dead Variables

Example:

1:
$$x = y + 2$$
;

$$2: y = 5;$$

$$3: x = y + 3;$$

The value of x at program points 1, 2 is over-written before it can be used.

Therefore, we call the variable x dead at these program points :-)

Note:

- → Assignments to dead variables can be removed ;-)
- → Such inefficiencies may originate from other transformations.

Note:

- \rightarrow Assignments to dead variables can be removed ;-)
- → Such inefficiencies may originate from other transformations.

Formal Definition:

The variable x is called live at u along the path π starting at u relative to a set X of variables either:

if $x \in X$ and π does not contain a definition of x; or:

if π can be decomposed into: $\pi = \pi_1 k \pi_2$ such that:

- k is a use of x; and
- π_1 does not contain a definition of x.

Thereby, the set of all defined or used variables at an edge $k = (_, lab, _)$ is defined by:

lab	used	defined
;	\emptyset	Ø
Pos(e)	Vars (e)	Ø
Neg (e)	Vars (e)	Ø
x = e;	Vars (e)	{ <i>x</i> }
x = M[e];	Vars (e)	{ <i>x</i> }
$M[e_1]=e_2;$	$Vars(e_1) \cup Vars(e_2)$	Ø

A variable x which is not live at u along π (relative to X) is called dead at u along π (relative to X).

Example:

$$x = y + 2; \quad y = 5; \quad x = y + 3;$$

0

1

2

where $X = \emptyset$. Then we observe:

	live	dead
0	{ <i>y</i> }	{ <i>x</i> }
1	Ø	$\{x,y\}$
2	{ <i>y</i> }	{ <i>x</i> }
3	Ø	$\{x,y\}$

The variable x is live at u (relative to X) if x is live at u along some path to the exit (relative to X). Otherwise, x is called dead at u (relative to X).

The variable x is live at u (relative to X) if x is live at u along some path to the exit (relative to X). Otherwise, x is called dead at u (relative to X).

Question:

How can the sets of all dead/live variables be computed for every u???

The variable x is live at u (relative to X) if x is live at u along some path to the exit (relative to X). Otherwise, x is called dead at u (relative to X).

Question:

How can the sets of all dead/live variables be computed for every u???

Idea:

For every edge $k = (u, _, v)$, define a function $[\![k]\!]^{\sharp}$ which transforms the set of variables which are live at v into the set of variables which are live at v...

Let
$$\mathbb{L} = 2^{Vars}$$
.
For $k = (_, lab, _)$, define $[\![k]\!]^{\sharp} = [\![lab]\!]^{\sharp}$ by:

$$[\![;]\!]^{\sharp}L = L$$

$$[\![\operatorname{Pos}(e)]\!]^{\sharp}L = [\![\operatorname{Neg}(e)]\!]^{\sharp}L = L \cup Vars(e)$$

$$[\![x = e;]\!]^{\sharp}L = (L \setminus \{x\}) \cup Vars(e)$$

$$[\![x = M[e];]\!]^{\sharp}L = (L \setminus \{x\}) \cup Vars(e)$$

$$[\![M[e_1] = e_2;]\!]^{\sharp}L = L \cup Vars(e_1) \cup Vars(e_2)$$

Let
$$\mathbb{L} = 2^{Vars}$$
.
For $k = (_, lab, _)$, define $[\![k]\!]^{\sharp} = [\![lab]\!]^{\sharp}$ by:

$$[\![;]\!]^{\sharp}L = L$$

$$[\![Pos(e)]\!]^{\sharp}L = [\![Neg(e)]\!]^{\sharp}L = L \cup Vars(e)$$

$$[\![x = e;]\!]^{\sharp}L = (L \setminus \{x\}) \cup Vars(e)$$

$$[\![x = M[e];]\!]^{\sharp}L = (L \setminus \{x\}) \cup Vars(e)$$

$$[\![M[e_1] = e_2;]\!]^{\sharp}L = L \cup Vars(e_1) \cup Vars(e_2)$$

 $[\![k]\!]^{\sharp}$ can again be composed to the effects of $[\![\pi]\!]^{\sharp}$ of paths $\pi = k_1 \dots k_r$ by:

$$\llbracket \pi
rbracket^{\sharp} = \llbracket k_1
rbracket^{\sharp} \circ \ldots \circ \llbracket k_r
rbracket^{\sharp}$$

$$x = y + 2; \quad y = 5; \quad x = y + 2; \quad M[y] = x;$$

1

2

3

4

5

The set of variables which are live at u then is given by:

$$\mathcal{L}^*[u] = \bigcup \{ \llbracket \pi \rrbracket^{\sharp} X \mid \pi : u \to^* stop \}$$

... literally:

- The paths start in u:-)
 - \implies As partial ordering for \mathbb{L} we use $\sqsubseteq = \subseteq$.
- The set of variables which are live at program exit is given by the set *X*:-)

Transformation 2:

Correctness Proof:

- Correctness of the effects of edges: If L is the set of variables which are live at the exit of the path π , then $[\![\pi]\!]^{\sharp}L$ is the set of variables which are live at the beginning of π :-)
- → Correctness of the transformation along a path: If the value of a variable is accessed, this variable is necessarily live. The value of dead variables thus is irrelevant :-)
- → Correctness of the transformation: In any execution of the transformed programs, the live variables always receive the same values :-))

Computation of the sets $\mathcal{L}^*[u]$:

(1) Collecting constraints:

$$\mathcal{L}[stop] \supseteq X$$
 $\mathcal{L}[u] \supseteq [k]^{\sharp} (\mathcal{L}[v]) \qquad k = (u, _, v) \text{ edge}$

- (2) Solving the constraint system by means of RR iteration. Since \mathbb{L} is finite, the iteration will terminate :-)
- (3) If the exit is (formally) reachable from every program point, then the smallest solution \mathcal{L} of the constraint system equals \mathcal{L}^* since all $[\![k]\!]^\sharp$ are distributive :-))

Computation of the sets $\mathcal{L}^*[u]$:

(1) Collecting constraints:

$$\mathcal{L}[stop] \supseteq X$$
 $\mathcal{L}[u] \supseteq [k]^{\sharp} (\mathcal{L}[v]) \qquad k = (u, _, v) \text{ edge}$

- (2) Solving the constraint system by means of RR iteration. Since \mathbb{L} is finite, the iteration will terminate :-)
- (3) If the exit is (formally) reachable from every program point, then the smallest solution \mathcal{L} of the constraint system equals \mathcal{L}^* since all $[\![k]\!]^\sharp$ are distributive :-))

Warning: The information is propagated backwards !!!

	1	2
7	Ø	
6	$\{y,R\}$	
2	$\{x, y, R\}$	dito
5	$\{x, y, R\}$	
4	$\{x, y, R\}$	
3	$\{x, y, R\}$	
1	$\{x,R\}$	
0	$\{I,R\}$	

Warning:

Re-analyzing the program is inconvenient :-(

Idea: Analyze true liveness!

```
x is called truely live at u along a path \pi (relative to X), either
```

if $x \in X$, π does not contain a definition of x; or

if π can be decomposed into $\pi = \pi_1 k \pi_2$ such that:

- k is a true use of x;
- π_1 does not contain any definition of x.

The set of truely used variables at an edge $k = (_, lab, v)$ is defined as:

lab	truely used	
,	Ø	
Pos(e)	Vars (e)	
Neg(e)	Vars (e)	
x = e;	Vars(e) (*)	
x = M[e];	Vars(e) (*)	
$M[e_1]=e_2;$	$Vars(e_1) \cup Vars(e_2)$	

(*) – given that x is truely live at v:-)

