The Effects of Edges:

$$[\![;]\!]^{\sharp}L = L$$

$$[\![\operatorname{Pos}(e)]\!]^{\sharp}L = [\![\operatorname{Neg}(e)]\!]^{\sharp}L = L \cup Vars(e)$$

$$[\![x = e;]\!]^{\sharp}L = (L \setminus \{x\}) \cup Vars(e)$$

$$[\![x = M[e];]\!]^{\sharp}L = (L \setminus \{x\}) \cup Vars(e)$$

$$[\![M[e_1] = e_2;]\!]^{\sharp}L = L \cup Vars(e_1) \cup Vars(e_2)$$

The Effects of Edges:

```
[\![;]\!]^{\sharp} L = L
[\![\operatorname{Pos}(e)]\!]^{\sharp} L = [\![\operatorname{Neg}(e)]\!]^{\sharp} L = L \cup Vars(e)
[\![x = e;]\!]^{\sharp} L = (L \setminus \{x\}) \cup (x \in L) ? Vars(e) : \emptyset
[\![x = M[e];]\!]^{\sharp} L = (L \setminus \{x\}) \cup (x \in L) ? Vars(e) : \emptyset
[\![M[e_1] = e_2;]\!]^{\sharp} L = L \cup Vars(e_1) \cup Vars(e_2)
```

Note:

- The effects of edges for truely live variables are more complicated than for live variables :-)
- Nonetheless, they are distributive!!

Note:

- The effects of edges for truely live variables are more complicated than for live variables :-)
- Nonetheless, they are distributive !! To see this, consider for $\mathbb{D} = 2^U$, $fy = (u \in y) ? b : \emptyset$ We verify:

```
f(y_1 \cup y_2) = (u \in y_1 \cup y_2)?b:\emptyset
= (u \in y_1 \lor u \in y_2)?b:\emptyset
= (u \in y_1)?b:\emptyset \cup (u \in y_2)?b:\emptyset
= f y_1 \cup f y_2
```

Note:

verify:

- The effects of edges for truely live variables are more complicated than for live variables :-)
- Nonetheless, they are distributive !!

 To see this, consider for $\mathbb{D} = 2^U$, $fy = (u \in y) ? b : \emptyset$ V

$$f(y_1 \cup y_2) = (u \in y_1 \cup y_2)?b:\emptyset$$

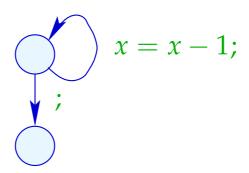
$$= (u \in y_1 \lor u \in y_2)?b:\emptyset$$

$$= (u \in y_1)?b:\emptyset \cup (u \in y_2)?b:\emptyset$$

$$= f y_1 \cup f y_2$$

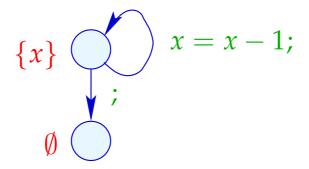
 \Longrightarrow the constraint system yields the MOP :-))

• True liveness detects more superfluous assignments than repeated liveness !!!



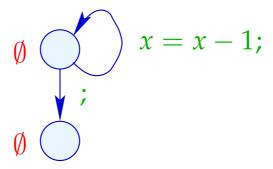
• True liveness detects more superfluous assignments than repeated liveness !!!

Liveness:

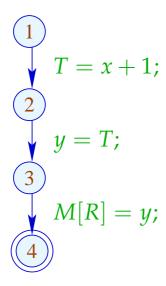


• True liveness detects more superfluous assignments than repeated liveness !!!

True Liveness:

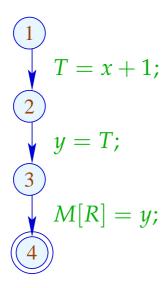


Example:



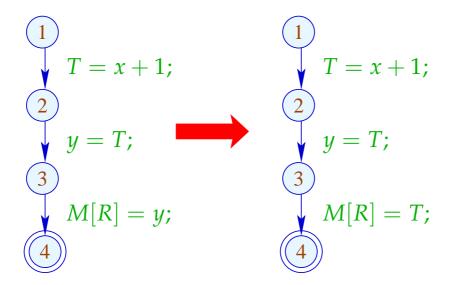
This variable-variable assignment is obviously useless :-(

Example:



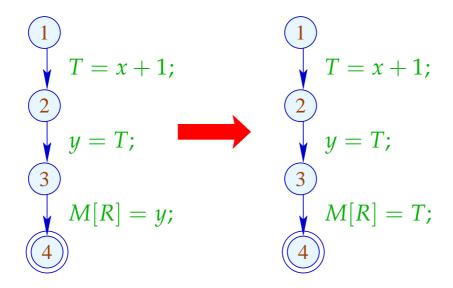
This variable-variable assignment is obviously useless :-(Instead of y, we could also store T:-)

Example:



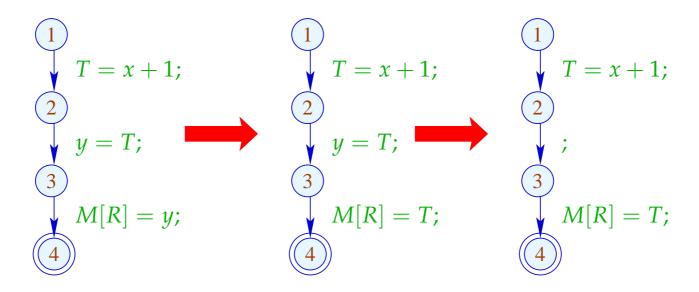
This variable-variable assignment is obviously useless :-(Instead of y, we could also store T :-)

Example:



Advantage: Now, *y* has become dead :-))

Example:



Advantage: Now, *y* has become dead :-))

Idea:

For each expression, we record the variable which currently contains its value :-)

We use: $\mathbb{V} = Expr \rightarrow 2^{Vars}$...

Idea:

For each expression, we record the variable which currently contains its value :-)

We use: $\mathbb{V} = Expr \rightarrow 2^{Vars}$ and define:

$$[\![;]\!]^{\sharp} V = V$$

$$[\![\operatorname{Pos}(e)]\!]^{\sharp} V e' = [\![\operatorname{Neg}(e)]\!]^{\sharp} V e' = \begin{cases} \emptyset & \text{if } e' = e \\ V e' & \text{otherwise} \end{cases}$$

$$[x = c;]^{\sharp} V e' = \begin{cases} (Vc) \cup \{x\} & \text{if } e' = c \\ (Ve') \setminus \{x\} & \text{otherwise} \end{cases}$$

$$[x = y;]^{\sharp} V e = \begin{cases} (Ve) \cup \{x\} & \text{if } y \in Ve \\ (Ve) \setminus \{x\} & \text{otherwise} \end{cases}$$

$$[x = e;]^{\sharp} V e' = \begin{cases} \{x\} & \text{if } e' = e \\ (Ve') \setminus \{x\} & \text{otherwise} \end{cases}$$

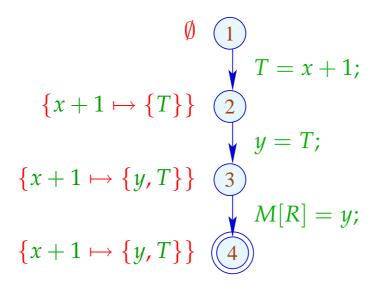
$$[x = M[c];]^{\sharp} V e' = (Ve') \setminus \{x\}$$

$$[x = M[y];]^{\sharp} V e' = (Ve') \setminus \{x\}$$

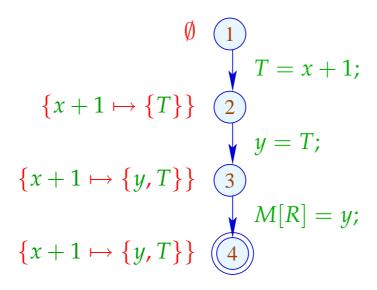
$$[x = M[e];]^{\sharp} V e' = \begin{cases} \emptyset & \text{if } e' = e \\ (Ve') \setminus \{x\} & \text{otherwise} \end{cases}$$

$$// \text{analogously for the diverse stores}$$

In the Example:



In the Example:



- → We propagate information in forward direction :-)
 - At *start*, $V_0 e = \emptyset$ for all e;
- \rightarrow $\sqsubseteq \subseteq \mathbb{V} \times \mathbb{V}$ is defined by:

$$V_1 \sqsubseteq V_2$$
 iff $V_1 e \supseteq V_2 e$ for all e

Observation:

The new effects of edges are distributive:

To show this, we consider the functions:

$$(1) f_1^x V e = (V e) \setminus \{x\}$$

$$(2) f_2^{e,a} V = V \oplus \{e \mapsto a\}\}$$

(3)
$$f_3^{x,y} V e = (y \in V e) ? (V e \cup \{x\}) : ((V e) \setminus \{x\})$$

Obviously, we have:

$$[x = e;]^{\sharp} = f_2^{e,\{x\}} \circ f_1^x$$

$$[x = y;]^{\sharp} = f_3^{x,y}$$

$$[x = M[e];]^{\sharp} = f_2^{e,\emptyset} \circ f_1^x$$

By closure under composition, the assertion follows :-))

(1) For $f V e = (V e) \setminus \{x\}$, we have:

$$f(V_1 \sqcup V_2) e = ((V_1 \sqcup V_2) e) \setminus \{x\}$$

$$= ((V_1 e) \cap (V_2 e)) \setminus \{x\}$$

$$= ((V_1 e) \setminus \{x\}) \cap ((V_2 e) \setminus \{x\})$$

$$= (f V_1 e) \cap (f V_2 e)$$

$$= (f V_1 \sqcup f V_2) e :-)$$

(2) For $f V = V \oplus \{e \mapsto a\}$, we have:

$$f(V_{1} \sqcup V_{2}) e' = ((V_{1} \sqcup V_{2}) \oplus \{e \mapsto a\}) e'$$

$$= (V_{1} \sqcup V_{2}) e'$$

$$= (f V_{1} \sqcup f V_{2}) e' \text{ given that } e \neq e'$$

$$f(V_{1} \sqcup V_{2}) e = ((V_{1} \sqcup V_{2}) \oplus \{e \mapsto a\}) e$$

$$= a$$

$$= ((V_{1} \oplus \{e \mapsto a\}) e) \cap ((V_{2} \oplus \{e \mapsto a\}) e)$$

$$= (f V_{1} \sqcup f V_{2}) e :-)$$

(3) For $f V e = (y \in V e) ? (V e \cup \{x\}) : ((V e) \setminus \{x\})$, we have:

$$f(V_{1} \sqcup V_{2}) e = (((V_{1} \sqcup V_{2}) e) \setminus \{x\}) \cup (y \in (V_{1} \sqcup V_{2}) e) ? \{x\} : \emptyset$$

$$= ((V_{1} e \cap V_{2} e) \setminus \{x\}) \cup (y \in (V_{1} e \cap V_{2} e)) ? \{x\} : \emptyset$$

$$= ((V_{1} e \cap V_{2} e) \setminus \{x\}) \cup$$

$$((y \in V_{1} e) ? \{x\} : \emptyset) \cap ((y \in V_{2} e) ? \{x\} : \emptyset)$$

$$= (((V_{1} e) \setminus \{x\}) \cup (y \in V_{1} e) ? \{x\} : \emptyset) \cap$$

$$(((V_{2} e) \setminus \{x\}) \cup (y \in V_{2} e) ? \{x\} : \emptyset)$$

$$= (f V_{1} \sqcup f V_{2}) e : -)$$

We conclude:

- → Solving the constraint system returns the MOP solution :-)
- \rightarrow Let \mathcal{V} denote this solution.

If $x \in \mathcal{V}[u]e$, then x at u contains the value of e — which we have stored in T_e

 \Longrightarrow

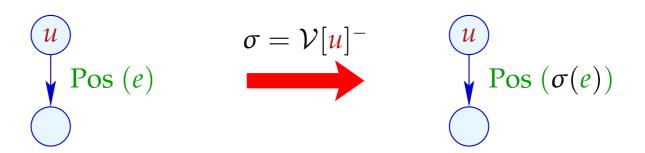
the access to x can be replaced by the access to T_e :-)

For $V \in \mathbb{V}$, let V^- denote the variable substitution with:

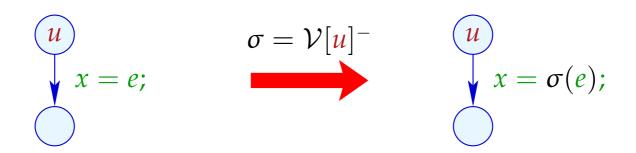
$$V^{-} x = \begin{cases} T_e & \text{if } x \in V e \\ x & \text{otherwise} \end{cases}$$

if $Ve \cap Ve' = \emptyset$ for $e \neq e'$. Otherwise: $V^-x = x$:-)

Transformation 3:



... analogously for edges with Neg(e)



Transformation 3 (cont.):

$$\sigma = \mathcal{V}[u]^{-}$$

$$x = M[e];$$

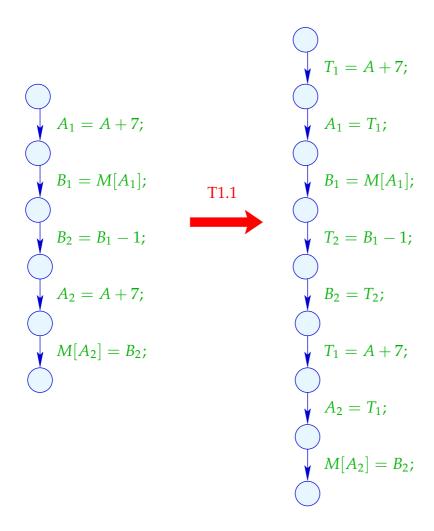
$$x = M[\sigma(e)];$$

$$\sigma = \mathcal{V}[u]^ M[e_1] = e_2;$$
 $M[\sigma(e_1)] = \sigma(e_2);$

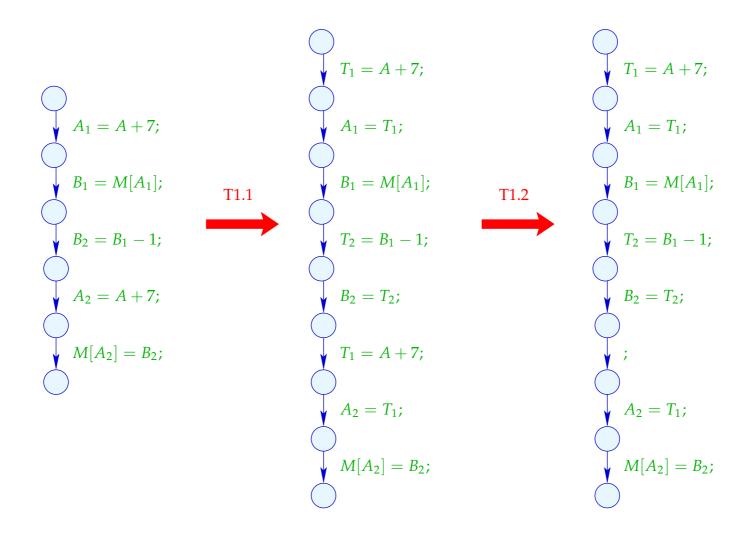
Procedure as a whole:

(1)	Availability of expressions:	T1
	removes arithmetic operationsinserts superfluous moves	
(2)	Values of variables:	T3
	+ creates dead variables	
(3)	(true) liveness of variables:	T2
	+ removes assignments to dead variables	

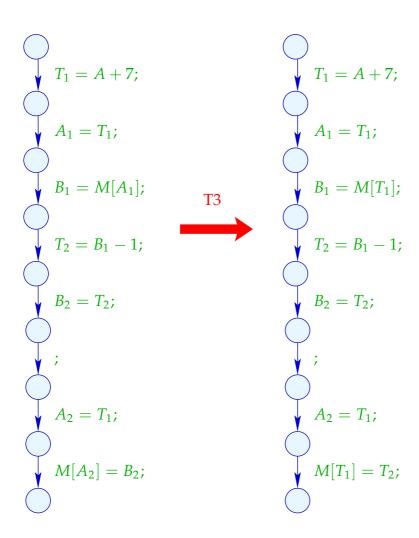
Example: a[7]--;



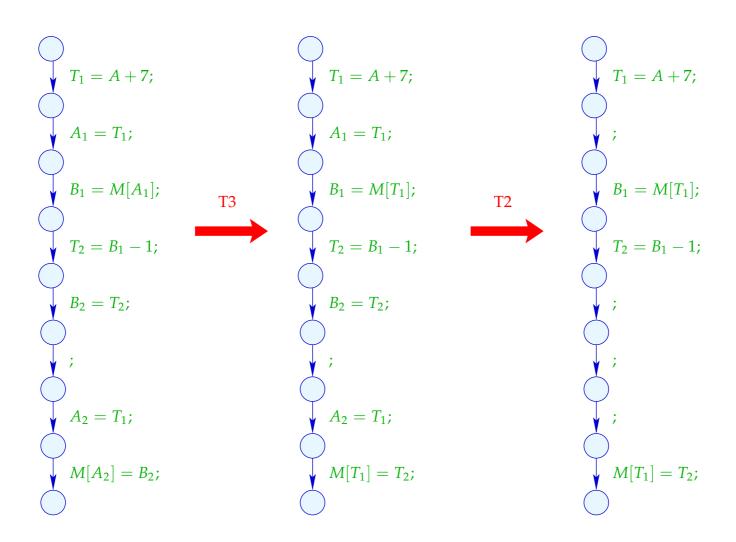
Example: a[7]--;



Example (cont.): a[7]--;



Example (cont.): a[7]--;



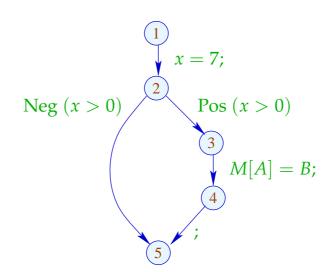
1.4 Constant Propagation

Idea:

Execute as much of the code at compile-time as possible!

Example:

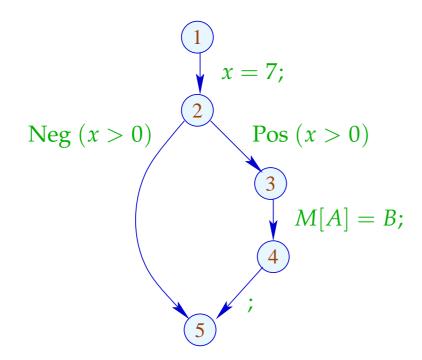
$$x=7;$$
if $(x>0)$
 $M[A]=B;$



Obviously, x has always the value 7:-)

Thus, the memory access is always executed :-))

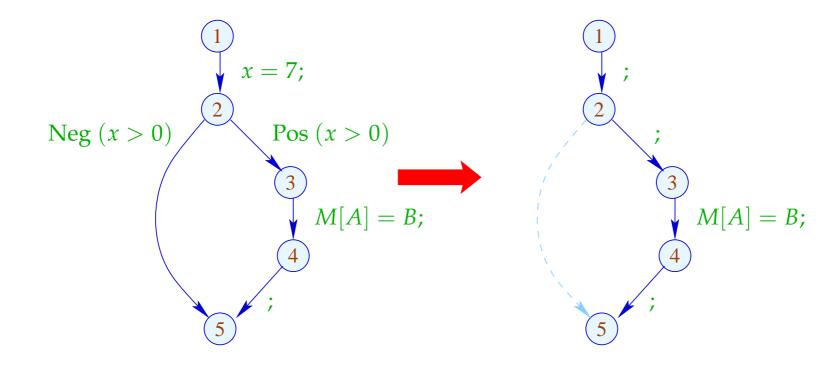
Goal:



Obviously, x has always the value 7 :-)

Thus, the memory access is always executed :-))

Goal:



Generalization: Partial Evaluation

Neil D. Jones, DIKU, Kopenhagen