Helmut Seidl

Program Optimization

TU München

Winter 2011/12

Organization

Dates:	Lecture:	Monday, 12:30-14:00
		Wednesday, 12:30-14:00
	Tutorials:	Thursday, 12:30-14:00
		Kalmer Apinis: apinis@in.tum.de
	Material:	slides, recording :-)
		simulator environment
		Programmanalyse und Transformation
		Springer, 2010

Grades: • Bonus for homeworks

• written exam

Proposed Content:

- 1. Avoiding redundant computations
 - ightarrow available expressions
 - \rightarrow constant propagation/array-bound checks
 - \rightarrow code motion
- 2. Replacing expensive with cheaper computations
 - \rightarrow peep hole optimization
 - \rightarrow inlining

...

 \rightarrow reduction of strength

- 3. Exploiting Hardware
 - \rightarrow Instruction selection
 - \rightarrow Register allocation
 - \rightarrow Scheduling
 - \rightarrow Memory management

0 Introduction

Observation 1: Intuitive programs often are inefficient.

Example:

```
void swap (int i, int j) {
    int t;
    if (a[i] > a[j]) {
        t = a[j];
        a[j] = a[i];
        a[i] = t;
        }
    }
```

Inefficiencies:

- Addresses a[i], a[j] are computed three times :-(
- Values a[i], a[j] are loaded twice :-(

Improvement:

- Use a pointer to traverse the array a;
- store the values of a[i], a[j]!

Observation 2:

Higher programming languages (even C :-) abstract from hardware and efficiency.

It is up to the compiler to adapt intuitively written program to hardware.

Examples:

- ... Filling of delay slots;
- ... Utilization of special instructions;
- ... Re-organization of memory accesses for better cache behavior;
- ... Removal of (useless) overflow/range checks.

Observation 3:

Programm-Improvements need not always be correct :-(

Example:

$$y = f() + f(); \implies y = 2 * f();$$

Idea: Save second evaluation of f () ...

Observation 3:

Programm-Improvements need not always be correct :-(

Example:

 $y = f() + f(); \implies y = 2 * f();$

Idea: Save the second evaluation of f () ???

Problem:The second evaluation may return a result different from the
first; (e.g., because f () reads from the input :-)

Consequences:

- \implies Optimizations have assumptions.
- \implies The assumption must be:
 - formalized,
 - checked :-)
- \implies It must be proven that the optimization is correct, i.e., preserves the semantics !!!

Observation 4:

Optimization techniques depend on the programming language:

- \rightarrow which inefficiencies occur;
- \rightarrow how analyzable programs are;
- \rightarrow how difficult/impossible it is to prove correctness ...

Example: Java

Unavoidable Inefficiencies:

- * Array-bound checks;
- * Dynamic method invocation;
- * Bombastic object organization ...

Analyzability:

- + no pointer arithmetic;
- + no pointer into the stack;
- dynamic class loading;
- reflection, exceptions, threads, ...

Correctness proofs:

- + more or less well-defined semantics;
- features, features, features;
- libraries with changing behavior ...

... in this course:

a simple imperative programming language with:

•	variables	//	regist
•	R = e;	//	assign
	D M[c].	11	looda

- R = M[e]; //
- $M[e_1] = e_2;$ //
- goto L; // no loops :-)

ters nments loads stores • if $(e) s_1$ else s_2 // conditional branching

Note:

- For the beginning, we omit procedures :-)
- External procedures are taken into account through a statement f() for an unknown procedure f.

 \implies intra-procedural

 \implies kind of an intermediate language in which (almost) everything can be translated.

Example: swap()

Optimization 1: $1 * R \implies R$

Optimization 2: Reuse of subexpressions

$$A_1 == A_5 == A_6$$

 $A_2 == A_3 == A_4$

$$M[A_1] == M[A_5]$$
$$M[A_2] == M[A_3]$$

$$R_1 == R_3$$

By this, we obtain:

$$A_{1} = A_{0} + i;$$

$$R_{1} = M[A_{1}];$$

$$A_{2} = A_{0} + j;$$

$$R_{2} = M[A_{2}];$$
if $(R_{1} > R_{2})$ {
$$t = R_{2};$$

$$M[A_{2}] = R_{1};$$

$$M[A_{1}] = t;$$
}

Optimization 3: Contraction of chains of assignments :-)

Gain:

	before	after
+	6	2
*	6	0
load	4	2
store	2	2
>	1	1
—	6	2

1 Removing superfluous computations

1.1 Repeated computations

Idea:

If the same value is computed repeatedly, then

- \rightarrow store it after the first computation;
- \rightarrow replace every further computation through a look-up!
 - \implies Availability of expressions

→ Memoization

Problem: Identify repeated computations!

Example:

$$z = 1;$$

$$y = M[17];$$

$$A: x_1 = y+z;$$

$$\dots$$

$$B: x_2 = y+z;$$

Note:

- B is a repeated computation of the value of y + z, if:
- (1) A is always executed before B; and

(2) y and z at B have the same values as at A :-)

- \rightarrow an operational semantics :-)
- \rightarrow a method which identifies at least some repeated computations ...

Background 1: An Operational Semantics

we choose a small-step operational approach.

Programs are represented as control-flow graphs.

In the example:

start

$$A_1 = A_0 + 1 * i;$$

 $R_1 = M[A_1];$
 $A_2 = A_0 + 1 * j;$
 $R_2 = M[A_2];$
Neg $(R_1 > R_2)$
stop
 $A_3 = A_0 + 1 * j;$

Thereby, represent:

vertex	program point
start	programm start
stop	program exit
edge	step of computation

Thereby, represent:

vertex	program point
start	programm start
stop	program exit
edge	step of computation

Edge Labelings:

Test :	Pos (e) or Neg (e)
Assignment :	R = e;
Load :	R = M[e];
Store :	$M[e_1] = e_2;$
Nop :	•

Computations follow paths.

Computations transform the current state

$$s = (\rho, \mu)$$

where:

$\rho: Vars \to \mathbf{int}$	contents of registers
$\mu:\mathbb{N} ightarrow\mathbf{int}$	contents of storage

Every edge k = (u, lab, v) defines a partial transformation

$$\llbracket k \rrbracket = \llbracket lab \rrbracket$$

of the state:

$$\llbracket; \rrbracket(\rho, \mu) = (\rho, \mu)$$

$$\begin{bmatrix} \operatorname{Pos}(e) \end{bmatrix} (\rho, \mu) &= (\rho, \mu) & \text{if } \llbracket e \rrbracket \rho \neq 0 \\ \begin{bmatrix} \operatorname{Neg}(e) \end{bmatrix} (\rho, \mu) &= (\rho, \mu) & \text{if } \llbracket e \rrbracket \rho = 0 \\ \end{bmatrix}$$

$$\llbracket; \rrbracket(\rho, \mu) = (\rho, \mu)$$

$$\begin{bmatrix} \operatorname{Pos}(e) \end{bmatrix}(\rho, \mu) &= (\rho, \mu) & \text{if } \llbracket e \rrbracket \rho \neq 0 \\ \begin{bmatrix} \operatorname{Neg}(e) \end{bmatrix}(\rho, \mu) &= (\rho, \mu) & \text{if } \llbracket e \rrbracket \rho = 0 \\ \end{bmatrix}$$

// [e] : evaluation of the expression e, e.g.

//
$$[x + y] \{x \mapsto 7, y \mapsto -1\} = 6$$

// $[!(x == 4)] \{x \mapsto 5\} = 1$

$$\llbracket; \rrbracket(\rho, \mu) = (\rho, \mu)$$

$$\begin{bmatrix} \operatorname{Pos}\left(e\right) \end{bmatrix} (\rho, \mu) &= (\rho, \mu) & \text{if } \begin{bmatrix} e \end{bmatrix} \rho \neq 0 \\ \begin{bmatrix} \operatorname{Neg}\left(e\right) \end{bmatrix} (\rho, \mu) &= (\rho, \mu) & \text{if } \llbracket e \end{bmatrix} \rho = 0 \end{aligned}$$

// [e] : evaluation of the expression e, e.g.

//
$$[x + y] \{x \mapsto 7, y \mapsto -1\} = 6$$

// $[!(x == 4)] \{x \mapsto 5\} = 1$

$$\llbracket R = e; \rrbracket(\rho, \mu) = \left(\rho \oplus \{ R \mapsto \llbracket e \rrbracket \rho \}, \mu \right)$$

// where " \oplus " modifies a mapping at a given argument

$$[R = M[e];] (\rho, \mu) = (\rho \oplus \{R \mapsto \mu([e]] \rho)\}, \mu)$$
$$[M[e_1] = e_2;] (\rho, \mu) = (\rho, \mu \oplus \{[e_1]] \rho \mapsto [[e_2]] \rho\})$$

Example:

$$[x = x + 1;]] (\{x \mapsto 5\}, \mu) = (\rho, \mu)$$
 where:

$$\rho = \{x \mapsto 5\} \oplus \{x \mapsto [[x+1]]] \{x \mapsto 5\}\}$$
$$= \{x \mapsto 5\} \oplus \{x \mapsto 6\}$$
$$= \{x \mapsto 6\}$$

A path $\pi = k_1 k_2 \dots k_m$ is a computation for the state s if: $s \in def([[k_m]] \circ \dots \circ [[k_1]])$

The result of the computation is:

$$\llbracket \pi \rrbracket \mathbf{s} = (\llbracket k_m \rrbracket \circ \ldots \circ \llbracket k_1 \rrbracket) \mathbf{s}$$

Application:

Assume that we have computed the value of x + y at program point u:

We perform a computation along path π and reach v where we evaluate again x + y ...

Idea:

If x and y have not been modified in π , then evaluation of x + y at v must return the same value as evaluation at u :-)

We can check this property at every edge in π :-}

Idea:

If x and y have not been modified in π , then evaluation of x + y at v must return the same value as evaluation at u :-)

We can check this property at every edge in π :-}

More generally:

Assume that the values of the expressions $A = \{e_1, \dots, e_r\}$ are available at u.

Idea:

If x and y have not been modified in π , then evaluation of x + y at v must return the same value as evaluation at u :-)

We can check this property at every edge in π :-}

More generally:

Assume that the values of the expressions $A = \{e_1, \ldots, e_r\}$ are available at u.

Every edge k transforms this set into a set $[k]^{\sharp} A$ of expressions whose values are available after execution of k...

... which transformations can be composed to the effect of a path $\pi = k_1 \dots k_r$:

$$\llbracket \pi
rbracket^{\sharp} = \llbracket k_r
rbracket^{\sharp} \circ \ldots \circ \llbracket k_1
rbracket^{\sharp}$$

... which transformations can be composed to the effect of a path $\pi = k_1 \dots k_r$: $[\![\pi]\!]^{\sharp} = [\![k_r]\!]^{\sharp} \circ \dots \circ [\![k_1]\!]^{\sharp}$

The effect $[\![k]\!]^{\sharp}$ of an edge k = (u, lab, v) only depends on the label *lab*, i.e., $[\![k]\!]^{\sharp} = [\![lab]\!]^{\sharp}$

... which transformations can be composed to the effect of a path $\pi = k_1 \dots k_r$: $[\![\pi]\!]^{\sharp} = [\![k_r]\!]^{\sharp} \circ \dots \circ [\![k_1]\!]^{\sharp}$

The effect $[\![k]\!]^{\sharp}$ of an edge k = (u, lab, v) only depends on the label *lab*, i.e., $[\![k]\!]^{\sharp} = [\![lab]\!]^{\sharp}$ where:

$$\begin{split} \llbracket \vdots \rrbracket^{\sharp} A &= A \\ \llbracket Pos(e) \rrbracket^{\sharp} A &= \llbracket Neg(e) \rrbracket^{\sharp} A &= A \cup \{e\} \\ \llbracket x = e : \rrbracket^{\sharp} A &= (A \cup \{e\}) \setminus Expr_x & \text{where} \\ Expr_x \text{ all expressions which contain } x \end{split}$$

$$[x = M[e];]^{\sharp} A = (A \cup \{e\}) \setminus Expr_{x}$$
$$[M[e_{1}] = e_{2};]^{\sharp} A = A \cup \{e_{1}, e_{2}\}$$

$$\llbracket x = M[e]; \rrbracket^{\sharp} A = (A \cup \{e\}) \setminus Expr_x$$
$$\llbracket M[e_1] = e_2; \rrbracket^{\sharp} A = A \cup \{e_1, e_2\}$$

By that, every path can be analyzed :-) A given program may admit several paths :-(For any given input, another path may be chosen :-((

$$\llbracket x = M[e]; \rrbracket^{\sharp} A = (A \cup \{e\}) \setminus Expr_x$$
$$\llbracket M[e_1] = e_2; \rrbracket^{\sharp} A = A \cup \{e_1, e_2\}$$

By that, every path can be analyzed :-) A given program may admit several paths :-(For any given input, another path may be chosen :-((

 \Rightarrow We require the set:

 $\mathcal{A}[v] = \bigcap \{ \llbracket \pi \rrbracket^{\sharp} \emptyset \mid \pi : start \to^{*} v \}$

Concretely:

- \rightarrow We consider all paths π which reach v.
- \rightarrow For every path π , we determine the set of expressions which are available along π .
- \rightarrow Initially at program start, nothing is available :-)
- \rightarrow We compute the intersection \implies safe information

Concretely:

- \rightarrow We consider all paths π which reach v.
- \rightarrow For every path π , we determine the set of expressions which are available along π .
- \rightarrow Initially at program start, nothing is available :-)
- \rightarrow We compute the intersection \implies safe information

How do we exploit this information ???

Transformation 1.1:

We provide novel registers T_e as storage for the e:

