Organization

Dates:
- **Lecture:** Monday, 12:30-14:00
 Wednesday, 12:30-14:00
- **Tutorials:** Thursday, 12:30-14:00

Kalmer Apinis: apinis@in.tum.de

Material: slides, recording :-)
- simulator environment

Programmanalyse und Transformation
Springer, 2010
Grades:

- Bonus for homeworks
- Written exam
Proposed Content:

1. Avoiding redundant computations
 → available expressions
 → constant propagation/array-bound checks
 → code motion

2. Replacing expensive with cheaper computations
 → peep hole optimization
 → inlining
 → reduction of strength
 ...

3. Exploiting Hardware

→ Instruction selection
→ Register allocation
→ Scheduling
→ Memory management
0 Introduction

Observation 1: Intuitive programs often are inefficient.

Example:

```c
void swap (int i, int j) {
    int t;
    if (a[i] > a[j]) {
        t = a[j];
        a[j] = a[i];
        a[i] = t;
    }
}
```
Inefficiencies:

- Addresses \(a[i], a[j] \) are computed three times
- Values \(a[i], a[j] \) are loaded twice

Improvement:

- Use a pointer to traverse the array \(a \);
- Store the values of \(a[i], a[j] \)!
void swap (int *p, int *q) {
 int t, ai, aj;
 ai = *p; aj = *q;
 if (ai > aj) {
 t = aj;
 *q = ai;
 *p = t; // t can also be
 // eliminated!
 }
}
Observation 2:

Higher programming languages (even C :-) abstract from hardware and efficiency.

It is up to the compiler to adapt intuitively written program to hardware.

Examples:

... Filling of delay slots;
... Utilization of special instructions;
... Re-organization of memory accesses for better cache behavior;
... Removal of (useless) overflow/range checks.
Observation 3:
Programm-Improvements need not always be correct :-(

Example:

\[y = f() + f(); \quad \implies \quad y = 2 \times f(); \]

Idea: Save second evaluation of \(f() \) ...
Observation 3:

Programm-Improvements need not always be correct :-(

Example:

\[y = f() + f(); \implies y = 2 * f(); \]

Idea: Save the second evaluation of \(f() \) ???

Problem: The second evaluation may return a result different from the first; (e.g., because \(f() \) reads from the input :-)
Consequences:

⇒⇒ Optimizations have assumptions.
⇒⇒ The assumption must be:
 • formalized,
 • checked :-)

⇒⇒ It must be proven that the optimization is correct, i.e., preserves the semantics !!!
Observation 4:

Optimization techniques depend on the programming language:

→ which inefficiencies occur;
→ how analyzable programs are;
→ how difficult/impossible it is to prove correctness ...

Example: Java
Unavoidable Inefficiencies:

* Array-bound checks;
* Dynamic method invocation;
* Bombastic object organization ...

Analyzability:

+ no pointer arithmetic;
+ no pointer into the stack;
− dynamic class loading;
− reflection, exceptions, threads, ...
Correctness proofs:

+ more or less well-defined semantics;
− features, features, features;
− libraries with changing behavior ...
... in this course:

a simple imperative programming language with:

- variables // registers
- $R = e;$ // assignments
- $R = M[e]$; // loads
- $M[e_1] = e_2;$ // stores
- if (e) s_1 else s_2 // conditional branching
- goto L; // no loops :-)

Note:

- For the beginning, we omit procedures :-)
- External procedures are taken into account through a statement $f()$ for an unknown procedure f.
 \Longrightarrow intra-procedural
 \Longrightarrow kind of an intermediate language in which (almost) everything can be translated.

Example: $\text{swap}(())$
0: \[A_1 = A_0 + 1 \times i; \quad // \quad A_0 \equiv \&a \]
1: \[R_1 = M[A_1]; \quad // \quad R_1 \equiv a[i] \]
2: \[A_2 = A_0 + 1 \times j; \]
3: \[R_2 = M[A_2]; \quad // \quad R_2 \equiv a[j] \]
4: \if (R_1 > R_2) \{
5: \quad A_3 = A_0 + 1 \times j; \]
6: \quad t = M[A_3]; \]
7: \quad A_4 = A_0 + 1 \times j; \]
8: \quad A_5 = A_0 + 1 \times i; \]
9: \quad R_3 = M[A_5]; \]
10: \quad M[A_4] = R_3; \]
11: \quad A_6 = A_0 + 1 \times i; \]
12: \quad M[A_6] = t; \}

Optimization 1: \[1 \times R \rightarrow R \]

Optimization 2: Reuse of subexpressions

\begin{align*}
A_1 &= A_5 = A_6 \\
A_2 &= A_3 = A_4 \\
M[A_1] &= M[A_5] \\
M[A_2] &= M[A_3] \\
R_1 &= R_3
\end{align*}
By this, we obtain:

\[A_1 = A_0 + i; \]
\[R_1 = M[A_1]; \]
\[A_2 = A_0 + j; \]
\[R_2 = M[A_2]; \]
\[\text{if } (R_1 > R_2) \{ \]
\[t = R_2; \]
\[M[A_2] = R_1; \]
\[M[A_1] = t; \]
\[\} \]
Optimization 3: Contraction of chains of assignments :-)

Gain:

<table>
<thead>
<tr>
<th></th>
<th>before</th>
<th>after</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>*</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>load</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>store</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>=</td>
<td>6</td>
<td>2</td>
</tr>
</tbody>
</table>
1 Removing superfluous computations

1.1 Repeated computations

Idea:

If the same value is computed repeatedly, then
→ store it after the first computation;
→ replace every further computation through a look-up!

⇒ Availability of expressions
⇒ Memoization
Problem: Identify repeated computations!

Example:

\[z = 1; \]
\[y = M[17]; \]
\[A: \quad x_1 = y + z; \]
\[\quad \ldots \]
\[B: \quad x_2 = y + z; \]
Note:

B is a repeated computation of the value of $y + z$, if:

1. A is always executed before B; and
2. y and z at B have the same values as at A.

We need:

→ an operational semantics

→ a method which identifies at least some repeated computations...
Background 1: An Operational Semantics

we choose a **small-step** operational approach.

Programs are represented as **control-flow graphs**.

In the example:

\[A_1 = A_0 + 1 \times i; \]
\[R_1 = M[A_1]; \]
\[A_2 = A_0 + 1 \times j; \]
\[R_2 = M[A_2]; \]
\[\text{Neg (} R_1 > R_2 \text{)} \]
\[\text{Pos (} R_1 > R_2 \text{)} \]
\[A_3 = A_0 + 1 \times j; \]
Thereby, represent:

<table>
<thead>
<tr>
<th>vertex</th>
<th>program point</th>
</tr>
</thead>
<tbody>
<tr>
<td>start</td>
<td>programm start</td>
</tr>
<tr>
<td>stop</td>
<td>program exit</td>
</tr>
<tr>
<td>edge</td>
<td>step of computation</td>
</tr>
</tbody>
</table>

Edge Labelings:
- Test : Pos (e) or Neg (e)
- Assignment : $R = e$
- Load : $R = M[e]$
- Store : $M[e_1] = e_2$
- Nop : $; _26$
Thereby, represent:

<table>
<thead>
<tr>
<th>vertex</th>
<th>program point</th>
</tr>
</thead>
<tbody>
<tr>
<td>start</td>
<td>programm start</td>
</tr>
<tr>
<td>stop</td>
<td>program exit</td>
</tr>
<tr>
<td>edge</td>
<td>step of computation</td>
</tr>
</tbody>
</table>

Edge Labelings:

- **Test**: Pos \((e)\) or Neg \((-e)\)
- **Assignment**: \(R = e\);
- **Load**: \(R = M[e]\);
- **Store**: \(M[e_1] = e_2\);
- **Nop**: ;

27
Computations follow paths.

Computations transform the current state

\[s = (\rho, \mu) \]

where:

| \(\rho : \text{Vars} \rightarrow \text{int} \) | contents of registers |
| \(\mu : \mathbb{N} \rightarrow \text{int} \) | contents of storage |

Every edge \(k = (u, lab, v) \) defines a partial transformation

\[[k] = [lab] \]

of the state:
\[(;) (\rho, \mu) = (\rho, \mu) \]

\[[\text{Pos} (e)] (\rho, \mu) = (\rho, \mu) \quad \text{if } [e] \rho \neq 0 \]

\[[\text{Neg} (e)] (\rho, \mu) = (\rho, \mu) \quad \text{if } [e] \rho = 0 \]
\[
[;] (\rho, \mu) = (\rho, \mu)
\]

\[
[\text{Pos } (e)] (\rho, \mu) = (\rho, \mu) \quad \text{if } [e] \rho \neq 0
\]

\[
[\text{Neg } (e)] (\rho, \mu) = (\rho, \mu) \quad \text{if } [e] \rho = 0
\]

// [e] : evaluation of the expression e, e.g.

// [x + y] \{ x \mapsto 7, y \mapsto -1 \} = 6

// [!(x == 4)] \{ x \mapsto 5 \} = 1
\[[;](\rho, \mu) = (\rho, \mu) \]

\[[\text{Pos}(e)](\rho, \mu) = (\rho, \mu) \text{ if } [e] \rho \neq 0 \]
\[[\text{Neg}(e)](\rho, \mu) = (\rho, \mu) \text{ if } [e] \rho = 0 \]

// \[[e] \): evaluation of the expression e, e.g.

// \[[x + y]\{x \mapsto 7, y \mapsto -1\} = 6 \]
// \[![x == 4]\{x \mapsto 5\} = 1 \]

\[[R = e;](\rho, \mu) = (\rho \oplus \{R \mapsto [e] \rho\}, \mu) \]

// where “\(\oplus\)” modifies a mapping at a given argument
\[[R = M[e];] (\rho, \mu) = (\rho \oplus \{R \mapsto \mu([e] \rho)\}, \mu) \]

\[[M[e_1] = e_2;] (\rho, \mu) = (\rho, \mu \oplus \{[e_1] \rho \mapsto [e_2] \rho\}) \]

Example:

\[[x = x + 1;] (\{x \mapsto 5\}, \mu) = (\rho, \mu) \quad \text{where:} \]

\begin{align*}
\rho &= \{x \mapsto 5\} \oplus \{x \mapsto [x + 1] \{x \mapsto 5\}\} \\
 &= \{x \mapsto 5\} \oplus \{x \mapsto 6\} \\
 &= \{x \mapsto 6\}
\end{align*}
A path $\pi = k_1 k_2 \ldots k_m$ is a computation for the state s if:

$$s \in \text{def} \left([k_m] \circ \ldots \circ [k_1]\right)$$

The result of the computation is:

$$[\pi] s = \left([k_m] \circ \ldots \circ [k_1]\right) s$$

Application:

Assume that we have computed the value of $x + y$ at program point u:

$$x + y$$

We perform a computation along path π and reach v where we evaluate again $x + y$...
Idea:

If \(x \) and \(y \) have not been modified in \(\pi \), then evaluation of \(x + y \) at \(v \) must return the same value as evaluation at \(u \) :-)

We can check this property at every edge in \(\pi \) :-}
Idea:

If x and y have not been modified in π, then evaluation of $x + y$ at v must return the same value as evaluation at u :-)

We can check this property at every edge in π :-}

More generally:

Assume that the values of the expressions $A = \{e_1, \ldots, e_r\}$ are available at u.
Idea:

If x and y have not been modified in π, then evaluation of $x + y$ at v must return the same value as evaluation at u :-) We can check this property at every edge in π :-}

More generally:

Assume that the values of the expressions $A = \{e_1, \ldots, e_r\}$ are available at u.

Every edge k transforms this set into a set $[k]^{\#} A$ of expressions whose values are available after execution of k ...
... which transformations can be composed to the effect of a path \(\pi = k_1 \ldots k_r \):

\[
[\pi]^{\#} = [k_r]^{\#} \circ \ldots \circ [k_1]^{\#}
\]
... which transformations can be composed to the effect of a path \(\pi = k_1 \ldots k_r \):

\[
[\pi]^\# = [k_r]^\# \circ \ldots \circ [k_1]^\#
\]

The effect \([k]^\#\) of an edge \(k = (u, \text{lab}, v) \) only depends on the label \(\text{lab} \), i.e., \([k]^\# = [\text{lab}]^\#\)
... which transformations can be composed to the effect of a path
\(\pi = k_1 \ldots k_r \):

\[
[\pi]# = [k_r]# \circ \ldots \circ [k_1]#
\]

The effect \([k]#\) of an edge \(k = (u, lab, v)\) only depends on the label \(lab\), i.e.,
\([k]# = [lab]#\) where:

\[
[;]# A = A
\]

\[
[Pos(e)]# A = [Neg(e)]# A = A \cup \{e\}
\]

\[
[x = e;]# A = (A \cup \{e\})\setminus Expr_x \quad \text{where}
\]

\(Expr_x\) all expressions which contain \(x\)
\[[x = M[e];] \# A \quad = \quad (A \cup \{e\}) \setminus \text{Expr}_x \]
\[[M[e_1] = e_2;] \# A \quad = \quad A \cup \{e_1, e_2\} \]
\[x = M[e]; \] # A = (A \cup \{e\}) \setminus \text{Expr}_x \\
[M[e_1] = e_2;] # A = A \cup \{e_1, e_2\}

By that, every path can be analyzed \:-)

A given program may admit several paths \:-(

For any given input, another path may be chosen \:-((
\[[x = M[e];] A = (A \cup \{e\}) \setminus Expr_x \]
\[[M[e_1] = e_2;] A = A \cup \{e_1, e_2\} \]

By that, every path can be analyzed

A given program may admit several paths

For any given input, another path may be chosen

We require the set:

\[\mathcal{A}[v] = \bigcap \{[[\pi]] \setminus \emptyset \mid \pi : start \to^* v \} \]
Concretely:

→ We consider all paths π which reach v.

→ For every path π, we determine the set of expressions which are available along π.

→ Initially at program start, nothing is available :-)

→ We compute the intersection \implies safe information
Concretely:

→ We consider all paths \(\pi \) which reach \(v \).
→ For every path \(\pi \), we determine the set of expressions which are available along \(\pi \).
→ Initially at program start, nothing is available :-)
→ We compute the intersection \(\implies \) safe information

How do we exploit this information ???
Transformation 1.1:

We provide novel registers T_e as storage for the e:

\[
\begin{align*}
 u &\xrightarrow{x = e;} v \\
 u &\xrightarrow{T_e = e;} v \\
\end{align*}
\]