
Helmut Seidl

Program Optimization

TU München

Winter 2011/12

1

Organization

Dates: Lecture: Monday, 12:30-14:00

Wednesday, 12:30-14:00

Tutorials: Thursday, 12:30-14:00

Kalmer Apinis:apinis@in.tum.de

Material: slides,recording :-)

simulator environment

Programmanalyse und Transformation

Springer, 2010

2

Grades: • Bonus for homeworks

• written exam

3

Proposed Content:

1. Avoiding redundant computations

→ available expressions

→ constant propagation/array-bound checks

→ code motion

2. Replacing expensive with cheaper computations

→ peep hole optimization

→ inlining

→ reduction of strength

...

4

3. Exploiting Hardware

→ Instruction selection

→ Register allocation

→ Scheduling

→ Memory management

5

0 Introduction

Observation 1: Intuitive programsoftenare inefficient.

Example:
void swap (int i, int j) {

int t;

if (a[i] > a[j]) {

t = a[j];

a[j] = a[i];

a[i] = t;

}

}

6

Inefficiencies:

• Addressesa[i], a[j] are computed three times:-(

• Valuesa[i], a[j] are loaded twice :-(

Improvement:

• Use a pointer to traverse the arraya;

• store the values ofa[i], a[j]!

7

void swap (int *p, int *q) {

int t, ai, aj;

ai = *p; aj = *q;

if (ai > aj) {

t = aj;

*q = ai;

*p = t; // t can also be

} // eliminated!

}

8

Observation 2:

Higher programming languages (evenC :-) abstract from hardware and
efficiency.

It is up to the compiler to adaptintuitively written program to hardware.

Examples:

. . . Filling of delay slots;

. . . Utilization of special instructions;

. . . Re-organization of memory accesses for better cache behavior;

. . . Removal of (useless) overflow/range checks.

9

Observation 3:

Programm-Improvementsneed not always be correct:-(

Example:

y = f() + f(); ==⇒ y = 2 * f();

Idea: Save second evaluation off() ...

Problem: The second evaluation may return a result different from the
first; (e.g., becausef() reads from the input :-)

10

Observation 3:

Programm-Improvementsneed not always be correct:-(

Example:

y = f() + f(); ==⇒ y = 2 * f();

Idea: Save the second evaluation off() ???

Problem: The second evaluation may return a result different from the
first; (e.g., becausef() reads from the input :-)

11

Consequences:

=⇒ Optimizations haveassumptions.

=⇒ Theassumptionmust be:

• formalized,

• checked :-)

=⇒ It must be proven that the optimization iscorrect, i.e., preserves
thesemantics!!!

12

Observation 4:

Optimization techniques depend on theprogramming language:

→ which inefficiencies occur;

→ how analyzable programs are;

→ how difficult/impossible it is to prove correctness ...

Example: Java

13

Unavoidable Inefficiencies:

∗ Array-bound checks;

∗ Dynamic method invocation;

∗ Bombastic object organization ...

Analyzability:

+ no pointer arithmetic;

+ no pointer into the stack;

− dynamic class loading;

− reflection, exceptions, threads, ...

14

Correctness proofs:

+ more or less well-defined semantics;

− features, features, features;

− libraries with changing behavior ...

15

... in this course:

a simpleimperativeprogramming language with:

• variables // registers

• R = e; // assignments

• R = M [e]; // loads

• M [e1] = e2; // stores

• if (e) s1 else s2 // conditional branching

• goto L; // no loops :-)

16

Note:

• For the beginning, we omit procedures:-)

• External procedures are taken into account through a statementf() for
an unknown proceduref .

==⇒ intra-procedural

==⇒ kind of an intermediate language in which (almost) everything
can be translated.

Example: swap()

17

0 : A1 = A0 + 1 ∗ i; // A0 == &a

1 : R1 = M [A1]; // R1 == a[i]

2 : A2 = A0 + 1 ∗ j;

3 : R2 = M [A2]; // R2 == a[j]

4 : if (R1 > R2) {

5 : A3 = A0 + 1 ∗ j;

6 : t = M [A3];

7 : A4 = A0 + 1 ∗ j;

8 : A5 = A0 + 1 ∗ i;

9 : R3 = M [A5];

10 : M [A4] = R3;

11 : A6 = A0 + 1 ∗ i;

12 : M [A6] = t;

}

18

Optimization 1: 1 ∗R ==⇒ R

Optimization 2: Reuse of subexpressions

A1 == A5 == A6

A2 == A3 == A4

M [A1] == M [A5]

M [A2] == M [A3]

R1 == R3

19

By this, we obtain:

A1 = A0 + i;

R1 = M [A1];

A2 = A0 + j;

R2 = M [A2];

if (R1 > R2) {

t = R2;

M [A2] = R1;

M [A1] = t;

}

20

Optimization 3: Contraction of chains of assignments:-)

Gain:

before after

+ 6 2

∗ 6 0

load 4 2

store 2 2

> 1 1

= 6 2

21

1 Removing superfluous computations

1.1 Repeated computations

Idea:

If the same value is computedrepeatedly, then

→ storeit after the first computation;

→ replace every further computation through alook-up!

==⇒ Availability of expressions

==⇒ Memoization

22

Problem: Identify repeated computations!

Example:

z = 1;

y = M [17];

A : x1 = y + z ;

. . .

B : x2 = y + z ;

23

Note:

B is a repeated computation of the value ofy + z , if:

(1) A is alwaysexecutedbeforeB; and

(2) y andz atB have the same values as atA :-)

==⇒ We need:

→ an operational semantics:-)

→ a method which identifies at leastsomerepeated computations ...

24

Background 1: An Operational Semantics

we choose asmall-stepoperational approach.

Programs are represented ascontrol-flow graphs.

In the example:
start

stop

A1 = A0 + 1 ∗ i;

R1 = M [A1];

A2 = A0 + 1 ∗ j;

R2 = M [A2];

A3 = A0 + 1 ∗ j;

Pos(R1 > R2)Neg(R1 > R2)

25

Thereby, represent:

vertex program point

start programm start

stop program exit

edge step of computation

Edge Labelings:

Test : Pos(e) or Neg(e)

Assignment : R = e;

Load : R = M [e];

Store : M [e1] = e2;

Nop : ;

26

Thereby, represent:

vertex program point

start programm start

stop program exit

edge step of computation

Edge Labelings:

Test : Pos(e) or Neg(e)

Assignment: R = e;

Load : R = M [e];

Store : M [e1] = e2;

Nop : ;

27

Computations followpaths.

Computations transform the currentstate

s = (ρ, µ)

where:

ρ : Vars → int contents of registers

µ : N → int contents of storage

Everyedgek = (u, lab, v) defines apartial transformation

[[k]] = [[lab]]

of the state:

28

[[;]] (ρ, µ) = (ρ, µ)

[[Pos (e)]] (ρ, µ) = (ρ, µ) if [[e]] ρ 6= 0

[[Neg (e)]] (ρ, µ) = (ρ, µ) if [[e]] ρ = 0

// [[e]] : evaluation of the expressione, z.B.

// [[x+ y]] {x 7→ 7, y 7→ −1} = 6

// [[!(x == 4)]] {x 7→ 5} = 1

[[R = e;]] (ρ, µ) = (ρ⊕ {R 7→ [[e]] ρ} , mu)

// where “⊕” modifies a mapping at a given argument

29

[[;]] (ρ, µ) = (ρ, µ)

[[Pos (e)]] (ρ, µ) = (ρ, µ) if [[e]] ρ 6= 0

[[Neg (e)]] (ρ, µ) = (ρ, µ) if [[e]] ρ = 0

// [[e]] : evaluationof the expressione, e.g.

// [[x+ y]] {x 7→ 7, y 7→ −1} = 6

// [[!(x == 4)]] {x 7→ 5} = 1

[[R = e;]] (ρ, µ) = (ρ⊕ {R 7→ [[e]] ρ} , µ)

// where “⊕” modifies a mapping at a given argument

30

[[;]] (ρ, µ) = (ρ, µ)

[[Pos (e)]] (ρ, µ) = (ρ, µ) if [[e]] ρ 6= 0

[[Neg (e)]] (ρ, µ) = (ρ, µ) if [[e]] ρ = 0

// [[e]] : evaluationof the expressione, e.g.

// [[x+ y]] {x 7→ 7, y 7→ −1} = 6

// [[!(x == 4)]] {x 7→ 5} = 1

[[R = e;]] (ρ, µ) = (ρ⊕ {R 7→ [[e]] ρ} , µ)

// where “⊕” modifies a mapping at a given argument

31

[[R = M [e];]] (ρ, µ) = (ρ⊕ {R 7→ µ([[e]] ρ))} , µ)

[[M [e1] = e2;]] (ρ, µ) = (ρ, µ⊕ {[[e1]] ρ 7→ [[e2]] ρ})

Example:

[[x = x+ 1;]] ({x 7→ 5}, µ) = (ρ, µ) where:

ρ = {x 7→ 5} ⊕ {x 7→ [[x+ 1]] {x 7→ 5}}

= {x 7→ 5} ⊕ {x 7→ 6}

= {x 7→ 6}

32

A path π = k1k2 . . . km is acomputationfor the states if:

s ∈ def ([[km]] ◦ . . . ◦ [[k1]])

Theresultof the computation is:

[[π]] s = ([[km]] ◦ . . . ◦ [[k1]]) s

Application:

Assume that we have computed the value ofx+ y at program pointu:

u v
x+y

π

We perform a computation along pathπ and reachv where we evaluate
againx+ y ...

33

Idea:

If x andy have not been modified inπ, then evaluation ofx+ y at v must
return the same value as evaluation atu :-)

We can check this property at every edge inπ :-}

More generally:

Assume that the values of the expressionsA = {e1, . . . , er} are available
atu.

Every edgek transforms this set into a set [[k]]♯A of expressions
whose values are available after execution ofk ...

34

Idea:

If x andy have not been modified inπ, then evaluation ofx+ y at v must
return the same value as evaluation atu :-)

We can check this property at every edge inπ :-}

More generally:

Assume that the values of the expressionsA = {e1, . . . , er} are available
atu.

Every edgek transforms this set into a set [[k]]♯A of expressions
whose values are available after execution ofk ...

35

Idea:

If x andy have not been modified inπ, then evaluation ofx+ y at v must
return the same value as evaluation atu :-)

We can check this property at every edge inπ :-}

More generally:

Assume that the values of the expressionsA = {e1, . . . , er} are available
atu.

Every edgek transforms this set into a set [[k]]♯A of expressions
whose values are availableafterexecution ofk ...

36

... which transformations can be composed to theeffectof a path
π = k1 . . . kr:

[[π]]♯ = [[kr]]
♯ ◦ . . . ◦ [[k1]]

♯

The effect [[k]]♯ of an edge k = (u, lab, v) only depends on the
label lab, i.e., [[k]]♯ = [[lab]]♯ where:

[[;]]♯ A = A

[[Pos(e)]]♯A = [[Neg(e)]]♯A = A ∪ {e}

[[x = e;]]♯A = (A ∪ {e})\ itExprx where

Exprx all expressions which containx

37

... which transformations can be composed to theeffectof a path
π = k1 . . . kr:

[[π]]♯ = [[kr]]
♯ ◦ . . . ◦ [[k1]]

♯

The effect [[k]]♯ of an edge k = (u, lab, v) only depends on the
label lab, i.e., [[k]]♯ = [[lab]]♯ where:

[[;]]♯ A = A

[[Pos(e)]]♯A = [[Neg(e)]]♯A = A ∪ {e}

[[x = e;]]♯A = (A ∪ {e})\Exprx where

Exprx all expressions which containx

38

... which transformations can be composed to theeffectof a path
π = k1 . . . kr:

[[π]]♯ = [[kr]]
♯ ◦ . . . ◦ [[k1]]

♯

The effect [[k]]♯ of an edge k = (u, lab, v) only depends on the
label lab, i.e., [[k]]♯ = [[lab]]♯ where:

[[;]]♯A = A

[[Pos(e)]]♯A = [[Neg(e)]]♯A = A ∪ {e}

[[x = e;]]♯A = (A ∪ {e})\Exprx where

Exprx all expressions which containx

39

[[x = M [e];]]♯ A = (A ∪ {e})\Exprx

[[M [e1] = e2;]]
♯A = A ∪ {e1, e2}

40

[[x = M [e];]]♯ A = (A ∪ {e})\Exprx

[[M [e1] = e2;]]
♯A = A ∪ {e1, e2}

By that,every pathcan be analyzed :-)

A given program may admitseveral paths :-(

For any given input, another path may be chosen:-((

41

[[x = M [e];]]♯ A = (A ∪ {e})\Exprx

[[M [e1] = e2;]]
♯A = A ∪ {e1, e2}

By that,every pathcan be analyzed :-)

A given program may admitseveral paths :-(

For any given input, another path may be chosen:-((

==⇒ We require the set:

A[v] =
⋂

{[[π]]♯∅ | π : start →∗ v}

42

Concretely:

→ We considerall pathsπ which reachv.

→ For every pathπ, we determine the set of expressions which are
available alongπ.

→ Initially at program start,nothingis available :-)

→ We compute theintersection ==⇒ safe information

How do we exploit this information ???

43

Concretely:

→ We considerall pathsπ which reachv.

→ For every pathπ, we determine the set of expressions which are
available alongπ.

→ Initially at program start,nothingis available :-)

→ We compute theintersection ==⇒ safe information

How do we exploit this information???

44

Transformation 1.1:

We provide novel registersTe asstoragefor thee:

v

u

v

u

Te = e;

x = Te;

x = e;

45

