Proof:

Ad (1):

Every unknown x_i may change its value at most h times $:-)$. Each time, the list $I[x_i]$ is added to W.

Thus, the total number of evaluations is:

$$\leq n + \sum_{i=1}^{n} (h \cdot \#(I[x_i]))$$

$$= n + h \cdot \sum_{i=1}^{n} \#(I[x_i])$$

$$= n + h \cdot \sum_{i=1}^{n} \#(Dep f_i)$$

$$\leq h \cdot \sum_{i=1}^{n} (1 + \#(Dep f_i))$$

$$= h \cdot N$$
Ad (2):

We only consider the assertion for monotonic f_i.

Let D_0 denote the least solution. We show:

- $D_0[x_i] \supseteq D[x_i]$ (all the time)
- $D[x_i] \not\supseteq f_i\text{eval} \implies x_i \in W$ (at exit of the loop body)
- On termination, the algo returns a solution :-)
Discussion:

- In the example, fewer evaluations of right-hand sides are required than for RR-iteration.
- The algo also works for non-monotonic f_i.
- For monotonic f_i, the algo can be simplified:

 $$t = D[x_i] \sqcup t; \quad \Rightarrow \quad ;$$

- In presence of widening, we replace:

 $$t = D[x_i] \sqcup t; \quad \Rightarrow \quad t = D[x_i] \sqcup t;$$

- In presence of Narrowing, we replace:

 $$t = D[x_i] \sqcup t; \quad \Rightarrow \quad t = D[x_i] \sqcap t;$$
Warning:

- The algorithm relies on explicit dependencies among the unknowns. So far in our applications, these were obvious. This need not always be the case :-(

- We need some strategy for extract which determines the next unknown to be evaluated.

- It would be ingenious if we always evaluated first and then accessed the result ... :-)

 ⇒ recursive evaluation ...
Idea:

→ If during evaluation of f_i, an unknown x_j is accessed, x_j is first solved recursively. Then x_i is added to $I[x_j]$:-)

\[
\text{eval } x_i \ x_j = \text{solve } x_j;
\]
\[
I[x_j] = I[x_j] \cup \{x_i\};
\]
\[
D[x_j];
\]

→ In order to prevent recursion to descend infinitely, a set Stable of unknown is maintained for which solve just looks up their values :-)

Initially, $\text{Stable} = \emptyset$...
The Function \texttt{solve}:

\[
\text{solve } x_i = \begin{cases}
(x_i \not\in \textit{Stable}) & \{ \\
\textit{Stable} = \textit{Stable} \cup \{x_i\}; \\
t = f_i(\text{eval } x_i); \\
t = D[x_i] \sqcup t; \\
\text{if } (t \neq D[x_i]) & \{ \\
W = I[x_i]; \quad I[x_i] = \emptyset; \\
D[x_i] = t; \\
\textit{Stable} = \textit{Stable} \setminus W; \\
\text{app } \texttt{solve } W;
\end{cases}
\]
Helmut Seidl, TU München ;-)
Example:

Consider our standard example:

\[
\begin{align*}
 x_1 & \supseteq \{a\} \cup x_3 \\
 x_2 & \supseteq x_3 \cap \{a, b\} \\
 x_3 & \supseteq x_1 \cup \{c\}
\end{align*}
\]

A trace of the fixpoint algorithm then looks as follows:
\begin{align*}
\text{solve } x_2 & \quad \text{eval } x_2 x_3 & \quad \text{solve } x_3 \\
\text{eval } x_3 x_1 & \quad \text{solve } x_1 & \quad \text{eval } x_1 x_3 & \quad \text{solve } x_3 \\
\text{stable!} & \quad I[x_3] = \{x_1\} & \Rightarrow & \emptyset \\
D[x_1] = \{a\} \\
I[x_1] = \{x_3\} & \Rightarrow & \{a\} \\
D[x_3] = \{a, c\} & \quad I[x_3] = \emptyset \\
\text{solve } x_1 & \quad \text{eval } x_1 x_3 & \quad \text{solve } x_3 \\
\text{stable!} & \quad I[x_3] = \{x_1\} & \Rightarrow & \{a, c\} \\
D[x_1] = \{a, c\} & \quad I[x_1] = \emptyset \\
\text{solve } x_3 & \quad \text{eval } x_3 x_1 & \quad \text{solve } x_1 \\
\text{stable!} & \quad I[x_1] = \{x_3\} & \Rightarrow & \{a, c\} \\
\text{ok} & \quad I[x_3] = \{x_1, x_2\} & \Rightarrow & \{a, c\} \\
D[x_2] = \{a\}
\end{align*}
Evaluation starts with an interesting unknown \(x_i \) (e.g., the value at \(\text{stop} \))

Then automatically all unknowns are evaluated which influence \(x_i \) :-)

The number of evaluations is often smaller than during worklist iteration ;-)

The algorithm is more complex but does not rely on pre-computation of variable dependencies :-)

It also works if variable dependencies during iteration change !!!

\[\text{====> interprocedural analysis} \]
1.7 Eliminating Partial Redundancies

Example:

\[x = M[a]; \]

\[y_1 = x + 1; \]

\[y_2 = x + 1; \]

\[M[x] = y_1 + y_2; \]

// \(x + 1 \) is evaluated on every path ... \\
// on one path, however, even twice :-(

421
Goal:

\[x = M[a]; \]
\[y_1 = x + 1; \]
\[y_2 = x + 1; \]
\[M[x] = y_1 + y_2; \]

\[T = x + 1; \]
\[y_1 = T; \]
\[M[x] = y_1 + T; \]
Idea:

(1) Insert assignments $T_e = e$; such that e is available at all points where the value of e is required.

(2) Thereby spare program points where e either is already available or will definitely be computed in future.

Expressions with the latter property are called very busy.

(3) Replace the original evaluations of e by accesses to the variable T_e.

\Rightarrow we require a novel analysis :-))
An expression e is called **busy** along a path π, if the expression e is evaluated before any of the variables $x \in Vars(e)$ is overwritten.

// backward analysis!

e is called **very busy** at u, if e is busy along every path $\pi : u \rightarrow^* stop$.
An expression e is called **busy** along a path π, if the expression e is evaluated before any of the variables $x \in Vars(e)$ is overwritten.

// backward analysis!

e is called **very busy** at u, if e is busy along every path $\pi : u \rightarrow^* \text{stop}$.

Accordingly, we require:

$$B[u] = \bigcap \{[[\pi]]^{\#} \emptyset \mid \pi : u \rightarrow^* \text{stop} \}$$

where for $\pi = k_1 \ldots k_m$:

$$[[\pi]]^{\#} = [[k_1]]^{\#} \circ \ldots \circ [[k_m]]^{\#}$$
Our complete lattice is given by:

\[\mathcal{B} = 2^{\text{Expr} \setminus \text{Vars}} \quad \text{with} \quad \subseteq = \supseteq \]

The effect \([k]^\#\) of an edge \(k = (u, \text{lab}, v) \) only depends on \(\text{lab} \), i.e., \([k]^\# = [\text{lab}]^\#\) where:

\[
\begin{align*}
[;]^\# B &= B \\
[\text{Pos}(e)]^\# B &= [\text{Neg}(e)]^\# B &= B \cup \{e\} \\
[x = e;]^\# B &= (B \setminus \text{Expr}_x) \cup \{e\} \\
[x = M[e];]^\# B &= (B \setminus \text{Expr}_x) \cup \{e\} \\
[M[e_1] = e_2;]^\# B &= B \cup \{e_1, e_2\}
\end{align*}
\]
These effects are all **distributive**. Thus, the least solution of the constraint system yields precisely the MOP — given that *stop* is reachable from every program point :-(

Example:

\[x = M[a]; \]
\[y_1 = x + 1; \]
\[y_2 = x + 1; \]
\[M[x] = y_1 + y_2; \]
A point u is called safe for e, if $e \in \mathcal{A}[u] \cup \mathcal{B}[u]$, i.e., e is either available or very busy.

Idea:

- We insert computations of e such that e becomes available at all safe program points :-)
- We insert $T_e = e$; after every edge (u, lab, v) with

 $$e \in \mathcal{B}[v] \setminus \llbracket lab \rrbracket_{\mathcal{A}}(\mathcal{A}[u] \cup \mathcal{B}[u])$$
Transformation 5.1:

\[T_e = e; \quad (e \in B[v] \setminus \llbracket lab \rrbracket_A (A[u] \cup B[u])) \]

\[T_e = e; \quad (e \in B[v]) \]
Transformation 5.2:

\[u \quad x = e; \quad \rightarrow \quad u \quad x = T_e; \]

// analogously for the other uses of \(e \)
// at old edges of the program.
Bernhard Steffen, Dortmund

Jens Knoop, Wien
In the Example:

\[x = M[a]; \]
\[y_1 = x + 1; \]
\[y_2 = x + 1; \]
\[M[x] = y_1 + y_2; \]

<table>
<thead>
<tr>
<th></th>
<th>(A)</th>
<th>(B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(\emptyset)</td>
<td>(\emptyset)</td>
</tr>
<tr>
<td>1</td>
<td>(\emptyset)</td>
<td>(\emptyset)</td>
</tr>
<tr>
<td>2</td>
<td>(\emptyset)</td>
<td>({ x + 1 })</td>
</tr>
<tr>
<td>3</td>
<td>(\emptyset)</td>
<td>({ x + 1 })</td>
</tr>
<tr>
<td>4</td>
<td>({ x + 1 })</td>
<td>({ x + 1 })</td>
</tr>
<tr>
<td>5</td>
<td>(\emptyset)</td>
<td>({ x + 1 })</td>
</tr>
<tr>
<td>6</td>
<td>({ x + 1 })</td>
<td>({ y_1 + y_2 })</td>
</tr>
<tr>
<td>7</td>
<td>({ x + 1, y_1 + y_2 })</td>
<td>(\emptyset)</td>
</tr>
</tbody>
</table>
In the Example:

\(x = M[a];\)

\(y_1 = x + 1;\)

\(y_2 = x + 1;\)

\(M[x] = y_1 + y_2;\)

<table>
<thead>
<tr>
<th></th>
<th>(A)</th>
<th>(B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(\emptyset)</td>
<td>(\emptyset)</td>
</tr>
<tr>
<td>1</td>
<td>(\emptyset)</td>
<td>(\emptyset)</td>
</tr>
<tr>
<td>2</td>
<td>(\emptyset)</td>
<td>({x + 1})</td>
</tr>
<tr>
<td>3</td>
<td>(\emptyset)</td>
<td>({x + 1})</td>
</tr>
<tr>
<td>4</td>
<td>({x + 1})</td>
<td>({x + 1})</td>
</tr>
<tr>
<td>5</td>
<td>(\emptyset)</td>
<td>({x + 1})</td>
</tr>
<tr>
<td>6</td>
<td>({x + 1})</td>
<td>({y_1 + y_2})</td>
</tr>
<tr>
<td>7</td>
<td>({x + 1})</td>
<td>(\emptyset)</td>
</tr>
</tbody>
</table>
Im Example:

\[T = x + 1; \]

\[y_1 = T; \]

\[y_2 = T; \]

\[M[x] = y_1 + y_2; \]

<table>
<thead>
<tr>
<th></th>
<th>(A)</th>
<th>(B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(\emptyset)</td>
<td>(\emptyset)</td>
</tr>
<tr>
<td>1</td>
<td>(\emptyset)</td>
<td>(\emptyset)</td>
</tr>
<tr>
<td>2</td>
<td>(\emptyset)</td>
<td>({ x + 1 })</td>
</tr>
<tr>
<td>3</td>
<td>(\emptyset)</td>
<td>({ x + 1 })</td>
</tr>
<tr>
<td>4</td>
<td>({ x + 1 })</td>
<td>({ x + 1 })</td>
</tr>
<tr>
<td>5</td>
<td>(\emptyset)</td>
<td>({ x + 1 })</td>
</tr>
<tr>
<td>6</td>
<td>({ x + 1 })</td>
<td>({ y_1 + y_2 })</td>
</tr>
<tr>
<td>7</td>
<td>({ x + 1 })</td>
<td>(\emptyset)</td>
</tr>
</tbody>
</table>
Correctness:

Let π denote a path reaching v after which a computation of an edge with e follows.

Then there is a maximal suffix of π such that for every edge $k = (u, lab, u')$ in the suffix:

$$e \in [lab]^\sharp_{A}(A[u] \cup B[u])$$
Correctness:

Let π denote a path reaching v after which a computation of an edge with e follows.

Then there is a maximal suffix of π such that for every edge $k = (u, lab, u')$ in the suffix:

$$e \in [\beta]_{i,\Delta}(A[u] \cup B[u])$$

In particular, no variable in e receives a new value \ :-: \\ Then $T_e = e;$ is inserted before the suffix \ :-:)}
We conclude:

- Whenever the value of e is required, e is available $:-)\Rightarrow$ correctness of the transformation

- Every $T = e$; which is inserted into a path corresponds to an e which is replaced with T. $:-))\Rightarrow$ non-degradation of the efficiency