1.8 Application: Loop-invariant Code

Example:

$$
\begin{gathered}
\text { for }(i=0 ; i<n ; i++) \\
a[i]=b+3
\end{gathered}
$$

The expression $b+3$ is recomputed in every iteration $:-($
// This should be avoided :-)

The Control-flow Graph:

Warning: $\quad T=b+3 ; \quad$ may not be placed before the loop :

\Longrightarrow There is no decent place for $T=b+3$;

Idea:
Transform into a do-while-loop ...

... now there is a place for $T=e ; \quad:-)$

Application of T5 (PRE) :

	\mathcal{A}	\mathcal{B}
0	\emptyset	\emptyset
1	\emptyset	\emptyset
2	\emptyset	$\{b+3\}$
3	$\{b+3\}$	\emptyset
4	$\{b+3\}$	\emptyset
5	$\{b+3\}$	\emptyset
6	$\{b+3\}$	\emptyset
6	\emptyset	\emptyset
7	\emptyset	\emptyset

Application of T5 (PRE) :

	\mathcal{A}	\mathcal{B}
0	\emptyset	\emptyset
1	\emptyset	\emptyset
2	\emptyset	$\{b+3\}$
3	$\{b+3\}$	\emptyset
4	$\{b+3\}$	\emptyset
5	$\{b+3\}$	\emptyset
6	$\{b+3\}$	\emptyset
6	\emptyset	\emptyset
7	\emptyset	\emptyset

Conclusion:

- Elimination of partial redundancies may move loop-invariant code out of the loop :-))
- This only works properly for do-while-loops
- To optimize other loops, we transform them into do-while-loops before-hand:

$$
\begin{aligned}
\text { while }(b) \text { stmt } & \Longrightarrow \quad \text { if }(b) \\
& \\
& \\
& \text { do stmt } \\
& \\
& \Longrightarrow \quad \text { Loop Rote }(b) \text {; }
\end{aligned}
$$

Problem:

If we do not have the source program at hand, we must re-construct potential loop headers ;-)
$\Longrightarrow \quad$ Pre-dominators
u pre-dominates v, if every path π : start $\rightarrow^{*} v$ contains u. We write: $u \Rightarrow v$.
$" \Rightarrow " \quad$ is reflexive, transitive and anti-symmetric $\quad:-)$

Computation:

We collect the nodes along paths by means of the analysis:

$$
\begin{gathered}
\mathbb{P}=2^{\text {Nodes }}, \quad \sqsubseteq=\supseteq \\
\llbracket(-,-, v) \rrbracket^{\sharp} P=P \cup\{v\}
\end{gathered}
$$

Then the set $\mathcal{P}[v]$ of pre-dominators is given by:

$$
\mathcal{P}[v]=\bigcap\left\{\llbracket \pi \rrbracket^{\sharp}\{\text { start }\} \mid \pi: \text { start } \rightarrow^{*} v\right\}
$$

Since $\llbracket k \rrbracket^{\sharp}$ are distributive, the $\mathcal{P}[v]$ can computed by means of fixpoint iteration :-)

Example:

	\mathcal{P}
0	$\{0\}$
1	$\{0,1\}$
2	$\{0,1,2\}$
3	$\{0,1,2,3\}$
4	$\{0,1,2,3,4\}$
5	$\{0,1,5\}$

The partial ordering $" \Rightarrow$ " in the example:

	\mathcal{P}
0	$\{0\}$
1	$\{0,1\}$
2	$\{0,1,2\}$
3	$\{0,1,2,3\}$
4	$\{0,1,2,3,4\}$
5	$\{0,1,5\}$

Apparently, the result is a tree :-)
In fact, we have:

Theorem:

Every node v has at most one immediate pre-dominator.

Proof:

Assume:
there are $u_{1} \neq u_{2}$ which immediately pre-dominate v.
If $u_{1} \Rightarrow u_{2}$ then u_{1} not immediate.
Consequently, u_{1}, u_{2} are incomparable :-)

Now for every $\pi:$ start $\rightarrow^{*} v$:

$$
\begin{array}{ll}
\pi=\pi_{1} \pi_{2} \quad \text { with } \quad & \pi_{1}: \text { start } \rightarrow^{*} u_{1} \\
& \pi_{2}: u_{1} \rightarrow^{*} v
\end{array}
$$

If, however, u_{1}, u_{2} are incomparable, then there is path: start $\rightarrow^{*} v$ avoiding u_{2} :

Now for every $\pi:$ start $\rightarrow^{*} v$:

$$
\begin{array}{ll}
\pi=\pi_{1} \pi_{2} \quad \text { with } \quad & \pi_{1}: \text { start } \rightarrow^{*} u_{1} \\
& \pi_{2}: u_{1} \rightarrow^{*} v
\end{array}
$$

If, however, u_{1}, u_{2} are incomparable, then there is path: start $\rightarrow^{*} v$ avoiding u_{2} :

Observation:

The loop head of a while-loop pre-dominates every node in the body.

A back edge from the exit u to the loop head v can be identified through

$$
v \in \mathcal{P}[u]
$$

:-)

Accordingly, we define:

Transformation 6:

We duplicate the entry check to all back edges :-)
... in the Example:

... in the Example:

... in the Example:

... in the Example:

Warning:

There are unusual loops which cannot be rotated:

Pre-dominators:

... but also common ones which cannot be rotated:

Here, the complete block between back edge and conditional jump should be duplicated :-(
... but also common ones which cannot be rotated:

Here, the complete block between back edge and conditional jump should be duplicated :-(
... but also common ones which cannot be rotated:

Here, the complete block between back edge and conditional jump should be duplicated :-(

1.9 Eliminating Partially Dead Code

Example:

$x+1$ need only be computed along one path
;-(

Idea:

Problem:

- The definition $x=e ; \quad\left(x \notin \operatorname{Vars}_{e}\right)$ may only be moved to an edge where e is safe ;-)
- The definition must still be available for uses of $x \quad$;-)

We define an analysis which maximally delays computations:

$$
\begin{aligned}
& \llbracket ; \sharp D=D \\
& \llbracket x=e ; \rrbracket^{\sharp} D= \begin{cases}D \backslash\left(\operatorname{Use}_{e} \cup D e f_{x}\right) \cup\{x=e ;\} & \text { if } x \notin \text { Vars }_{e} \\
D \backslash\left(\operatorname{Use}_{e} \cup D e f_{x}\right) & \text { if } x \in \text { Vars }_{e}\end{cases}
\end{aligned}
$$

... where:

$$
\begin{aligned}
\text { Use }_{e} & =\left\{y=e^{\prime} ; \mid y \in \text { Vars }_{e}\right\} \\
\text { Def }_{x} & =\left\{y=e^{\prime} ; \mid y \equiv x \vee x \in \text { Vars }_{e^{\prime}}\right\}
\end{aligned}
$$

... where:

$$
\begin{aligned}
\text { Use }_{e} & =\left\{y=e^{\prime} ; \mid y \in \text { Vars }_{e}\right\} \\
\text { Def }_{x} & =\left\{y=e^{\prime} ; \mid y \equiv x \vee x \in \text { Vars }_{e^{\prime}}\right\}
\end{aligned}
$$

For the remaining edges, we define:

$$
\begin{array}{ll}
\llbracket x=M[e] ; \rrbracket^{\sharp} D & =D \backslash\left(U s e_{e} \cup D e f_{x}\right) \\
\llbracket M\left[e_{1}\right]=e_{2} ; \rrbracket^{\sharp} D & =D \backslash\left({\left.U s e_{e_{1}} \cup U s e_{e_{2}}\right)}^{\llbracket \operatorname{Pos}(e) \rrbracket^{\sharp} D}\right.
\end{array}=\llbracket \operatorname{Neg}(e) \rrbracket^{\sharp} D=D \backslash U s e_{e} .
$$

Warning:

We may move $y=e ; \quad$ beyond a join only if $\quad y=e ; \quad$ can be delayed along all joining edges:

Here, $\quad T=x+1 ; \quad$ cannot be moved beyond 1 !!!

We conclude:

- The partial ordering of the lattice for delayability is given by " \supseteq ".
- At program start: $D_{0}=\emptyset$.

Therefore, the sets $\mathcal{D}[u]$ of at u delayable assignments can be computed by solving a system of constraints.

- We delay only assignments a where $a a$ has the same effect as a alone.
- The extra insertions render the original assignments as assignments to dead variables ...

Transformation 7:

Note:

Transformation T7 is only meaningful, if we subsequently eliminate assignments to dead variables by means of transformation \quad T2 :-)

In the example, the partially dead code is eliminated:

	\mathcal{D}
0	\emptyset
1	$\{T=x+1 ;\}$
2	$\{T=x+1 ;\}$
3	\emptyset
4	\emptyset

	\mathcal{D}
0	\emptyset
1	$\{T=x+1 ;\}$
2	$\{T=x+1 ;\}$
3	\emptyset
4	\emptyset

	\mathcal{L}
0	$\{x\}$
1	$\{x\}$
2	$\{x\}$
2^{\prime}	$\{x, T\}$
3	\emptyset
4	\emptyset

Remarks:

- After $T 7$, all original assignments $y=e ; \quad$ with $y \notin \operatorname{Vars}_{e}$ are assignments to dead variables and thus can always be eliminated :-)
- By this, it can be proven that the transformation is guaranteed to be non-degradating efficiency of the code :-))
- Similar to the elimination of partial redundancies, the transformation can be repeated :-\}

Conclusion:

$\rightarrow \quad$ The design of a meaningful optimization is non-trivial.
$\rightarrow \quad$ Many transformations are advantageous only in connection with other optimizations :-)
$\rightarrow \quad$ The ordering of applied optimizations matters !!
$\rightarrow \quad$ Some optimizations can be iterated !!!
... a meaningful ordering:

T4	Constant Propagation Interval Analysis Alias Analysis
T6	Loop Rotation
T1, T3, T2	Available Expressions
T2	Dead Variables
T7, T2	Partially Dead Code
T5, T3, T2	Partially Redundant Code

2 Replacing Expensive Operations by Cheaper Ones

2.1 Reduction of Strength

(1) Evaluation of Polynomials

$$
f(x)=a_{n} \cdot x^{n}+a_{n-1} \cdot x^{n-1}+\ldots+a_{1} \cdot x+a_{0}
$$

	Multiplications	Additions
naive	$\frac{1}{2} n(n+1)$	n
re-use	$2 n-1$	n
Horner-Scheme	n	n

Idea:

$$
f(x)=\left(\ldots\left(\left(a_{n} \cdot x+a_{n-1}\right) \cdot x+a_{n-2}\right) \ldots\right) \cdot x+a_{0}
$$

(2) Tabulation of a polynomial $f(x)$ of degree n :
\rightarrow To recompute $f(x)$ for every argument x is too expensive :-)
$\rightarrow \quad$ Luckily, the n-th differences are constant !!!

Example: $\quad f(x)=3 x^{3}-5 x^{2}+4 x+13$

n	$f(n)$	Δ	Δ^{2}	Δ^{3}
0	13	2	8	$\boxed{18}$
1	15	10	26	
2	25	$\boxed{36}$		
3	61			
4	\ldots			

Here, the n-th difference is always

$$
\Delta_{h}^{n}(f)=n!\cdot a_{n} \cdot h^{n} \quad(h \text { step width })
$$

Costs:

- n times evaluation of f;
- $\frac{1}{2} \cdot(n-1) \cdot n \quad$ subtractions to determine the Δ^{k};
- n additions for every further value :-)

Number of multiplications only depends on $n \quad:-)$)

Simple Case: $\quad f(x)=a_{1} \cdot x+a_{0}$

- ... naturally occurs in many numerical loops :-)
- The first differences are already constant:

$$
f(x+h)-f(x)=a_{1} \cdot h
$$

- Instead of the sequence: $\quad y_{i}=f\left(x_{0}+i \cdot h\right), \quad i \geq 0$
we compute:

$$
\begin{aligned}
& y_{0}=f\left(x_{0}\right), \quad \Delta=a_{1} \cdot h \\
& y_{i}=y_{i-1}+\Delta, \quad i>0
\end{aligned}
$$

Example:

... or, after loop rotation:

$$
\begin{aligned}
& i=i_{0} ; \\
& \text { if }(i<n) \text { do }\{ \\
& \qquad \begin{aligned}
A=A_{0}+b \cdot i ; \\
M[A]=\ldots ; \\
i=i+h ;
\end{aligned} \\
& \qquad \text { while }(i<n) ;
\end{aligned}
$$

... and reduction of strength:

$$
\begin{aligned}
& i=i_{0} ; \\
& \text { if }(i<n) \text { \{ } \\
& \Delta=b \cdot h ; \\
& A=A_{0}+b \cdot i_{0} ; \\
& \text { do \{ } \\
& M[A]=\ldots ; \\
& i=i+h ; \\
& A=A+\Delta ; \\
& \} \text { while }(i<n) \text {; }
\end{aligned}
$$

Warning:

- The values b, h, A_{0} must not change their values during the loop.
- $\quad i, A$ may be modified at exactly one position in the loop
- One may try to eliminate the variable i altogether :
$\rightarrow \quad i \quad$ may not be used else-where.
$\rightarrow \quad$ The initialization must be transformed into:

$$
A=A_{0}+b \cdot i_{0}
$$

$\rightarrow \quad$ The loop condition $\quad i<n$ must be transformed into:
$A<N \quad$ for $\quad N=A_{0}+b \cdot n$.
$\rightarrow \quad b \quad$ must always be different from zero !!!

