1.8 Application: Loop-invariant Code

Example:

for
$$(i = 0; i < n; i++)$$

 $a[i] = b + 3;$

//The expression b+3 is recomputed in every iteration :-(//This should be avoided :-)

The Control-flow Graph:

Warning: T = b + 3; may not be placed before the loop :

There is no decent place for T = b + 3; :-(

Idea:

Transform into a

do-while-loop ...

... now there is a place for T = e; :-)

Application of T5 (PRE):

	\mathcal{A}	${\mathcal B}$
0	Ø	Ø
1	Ø	Ø
2	Ø	$\{b+3\}$
3	$\{b+3\}$	Ø
4	$\{b+3\}$	Ø
5	$\{b+3\}$	Ø
6	$\{b+3\}$	Ø
6	Ø	Ø
7	Ø	Ø

Application of T5 (PRE):

	\mathcal{A}	${\cal B}$
0	Ø	Ø
1	Ø	Ø
2	Ø	$\{b+3\}$
3	$\{b+3\}$	Ø
4	$\{b+3\}$	Ø
5	$\{b+3\}$	Ø
6	$\{b+3\}$	Ø
6	Ø	Ø
7	Ø	Ø

Conclusion:

- Elimination of partial redundancies may move loop-invariant code out of the loop :-))
- This only works properly for do-while-loops :-(
- To optimize other loops, we transform them into **do-while**-loops before-hand:

while $(b) stmt \implies if (b)$ do stmtwhile (b);

Problem:

If we do not have the source program at hand, we must re-construct potential loop headers ;-)

u pre-dominates *v*, if every path $\pi : start \to^* v$ contains *u*. We write: $u \Rightarrow v$.

" \Rightarrow " is reflexive, transitive and anti-symmetric :-)

Computation:

We collect the nodes along paths by means of the analysis:

$$\mathbb{P} = 2^{Nodes} , \qquad \subseteq = \supseteq$$
$$[(_,_,v)]^{\sharp} P = P \cup \{v\}$$

Then the set $\mathcal{P}[v]$ of pre-dominators is given by:

$$\mathcal{P}[v] = \bigcap \{ \llbracket \pi \rrbracket^{\sharp} \{ start \} \mid \pi : start \to^{*} v \}$$

Since $[\![k]\!]^{\sharp}$ are distributive, the $\mathcal{P}[v]$ can computed by means of fixpoint iteration :-)

Example:

The partial ordering " \Rightarrow " in the example:

Apparently, the result is a tree :-) In fact, we have:

Theorem:

Every node v has at most one immediate pre-dominator.

Proof:

Assume:

there are $u_1 \neq u_2$ which immediately pre-dominate v.

If $u_1 \Rightarrow u_2$ then u_1 not immediate.

Consequently, u_1, u_2 are incomparable :-)

Now for every $\pi : start \rightarrow^* v :$

$$\pi = \pi_1 \pi_2$$
 with $\pi_1 : start \to^* u_1$
 $\pi_2 : u_1 \to^* v$

If, however, u_1, u_2 are incomparable, then there is path: $start \rightarrow^* v$ avoiding u_2 :

Now for every $\pi : start \rightarrow^* v :$

$$\pi = \pi_1 \ \pi_2$$
 with $\pi_1 : start \to^* u_1$
 $\pi_2 : u_1 \to^* v$

If, however, u_1, u_2 are incomparable, then there is path: $start \rightarrow^* v$ avoiding u_2 :

Observation:

The loop head of a while-loop pre-dominates every node in the body.

A back edge from the exit u to the loop head v can be identified through

 $v \in \mathcal{P}[u]$

:-)

Accordingly, we define:

Transformation 6:

We duplicate the entry check to all back edges :-)

Warning:

There are unusual loops which cannot be rotated:

... but also common ones which cannot be rotated:

Here, the complete block between back edge and conditional jump should be duplicated :-(

... but also common ones which cannot be rotated:

Here, the complete block between back edge and conditional jump should be duplicated :-(

... but also common ones which cannot be rotated:

Here, the complete block between back edge and conditional jump should be duplicated :-(

1.9 Eliminating Partially Dead Code

Example:

x + 1 need only be computed along one path ;-(

Idea:

Problem:

- The definition x = e; (x ∉ Vars_e) may only be moved to an edge where e is safe ;-)
- The definition must still be available for uses of x;-)

We define an analysis which maximally delays computations:

$$\llbracket x = e; \rrbracket^{\sharp} D = \begin{cases} D \setminus (Use_e \cup Def_x) \cup \{x = e;\} & \text{if } x \notin Vars_e \\ D \setminus (Use_e \cup Def_x) & \text{if } x \in Vars_e \end{cases}$$

... where:

$$Use_e = \{y = e'; | y \in Vars_e\}$$
$$Def_x = \{y = e'; | y \equiv x \lor x \in Vars_{e'}\}$$

... where:

$$Use_e = \{y = e'; | y \in Vars_e\}$$
$$Def_x = \{y = e'; | y \equiv x \lor x \in Vars_{e'}\}$$

For the remaining edges, we define:

$$\begin{bmatrix} x = M[e]; \end{bmatrix}^{\sharp} D = D \setminus (Use_e \cup Def_x)$$
$$\begin{bmatrix} M[e_1] = e_2; \end{bmatrix}^{\sharp} D = D \setminus (Use_{e_1} \cup Use_{e_2})$$
$$\begin{bmatrix} \mathsf{Pos}(e) \end{bmatrix}^{\sharp} D = \llbracket \mathsf{Neg}(e) \end{bmatrix}^{\sharp} D = D \setminus Use_e$$

Warning:

We may move y = e; beyond a join only if y = e; can be delayed along all joining edges:

Here, T = x + 1; cannot be moved beyond 1 !!!

We conclude:

- The partial ordering of the lattice for delayability is given by " \supseteq ".
- At program start: $D_0 = \emptyset$.

Therefore, the sets $\mathcal{D}[u]$ of at u delayable assignments can be computed by solving a system of constraints.

- We delay only assignments *a* where *a a* has the same effect as *a* alone.
- The extra insertions render the original assignments as assignments to dead variables ...

Transformation 7:

Note:

Transformation T7 is only meaningful, if we subsequently eliminate assignments to dead variables by means of transformation T2 :-) In the example, the partially dead code is eliminated:

	\mathcal{D}	
0	Ø	
1	$\{T = x + 1;\}$	
2	$\{T = x + 1;\}$	
3	Ø	
4	Ø	

	${\cal D}$
0	Ø
1	$\{T = x + 1;\}$
2	$\{T = x + 1;\}$
3	Ø
4	Ø

	\mathcal{L}	
0	$\{x\}$	
1	$\{x\}$	
2	$\{x\}$	
2'	$\{x,T\}$	
3	Ø	
4	Ø	

Remarks:

- After T7, all original assignments y = e; with y ∉ Vars_e are assignments to dead variables and thus can always be eliminated :-)
- By this, it can be proven that the transformation is guaranteed to be non-degradating efficiency of the code :-))
- Similar to the elimination of partial redundancies, the transformation can be repeated :-}

Conclusion:

- \rightarrow The design of a meaningful optimization is non-trivial.
- \rightarrow Many transformations are advantageous only in connection with other optimizations :-)
- \rightarrow The ordering of applied optimizations matters !!
- \rightarrow Some optimizations can be iterated !!!

... a meaningful ordering:

T4	Constant Propagation	
	Interval Analysis	
	Alias Analysis	
T6	Loop Rotation	
T1, T3, T2	Available Expressions	
T2	Dead Variables	
T7, T2	Partially Dead Code	
T5, T3, T2	Partially Redundant Code	

2 Replacing Expensive Operations by Cheaper Ones

- 2.1 Reduction of Strength
- (1) Evaluation of Polynomials

$$f(x) = a_n \cdot x^n + a_{n-1} \cdot x^{n-1} + \ldots + a_1 \cdot x + a_0$$

	Multiplications	Additions
naive	$\frac{1}{2}n(n+1)$	n
re-use	2n - 1	n
Horner-Scheme	n	n

Idea:

$$f(x) = (\dots ((a_n \cdot x + a_{n-1}) \cdot x + a_{n-2}) \dots) \cdot x + a_0$$

(2) Tabulation of a polynomial f(x) of degree n:

- \rightarrow To recompute f(x) for every argument x is too expensive :-)
- \rightarrow Luckily, the *n*-th differences are constant !!!

 $f(x) = 3x^3 - 5x^2 + 4x + 13$

Here, the *n*-th difference is always

$$\Delta_h^n(f) = n! \cdot a_n \cdot h^n \qquad (h \text{ step width})$$

Costs:

- n times evaluation of f;
- $\frac{1}{2} \cdot (n-1) \cdot n$ subtractions to determine the Δ^k ;
- n additions for every further value :-)

Number of multiplications only depends on n :-))

Simple Case:
$$f(x) = a_1 \cdot x + a_0$$

- ... naturally occurs in many numerical loops :-)
- The first differences are already constant:

$$f(x+h) - f(x) = a_1 \cdot h$$

• Instead of the sequence: $y_i = f(x_0 + i \cdot h), i \ge 0$ we compute: $y_0 = f(x_0), \Delta = a_1 \cdot h$

$$y_i = y_{i-1} + \Delta \,, \quad i > 0$$

Example:

for
$$(i = i_0; i < n; i = i + h)$$
 {
 $A = A_0 + b \cdot i;$
 $M[A] = ...;$
}
Neg $(i < n)$
 $A = A_0 + b \cdot i;$
 $M[A] = ...;$
 $M[A] = ...;$
 $M[A] = ...;$
 $M[A] = ...;$
 $M[A] = ...;$

... or, after loop rotation:

$$i = i_{0};$$

$$i = i_{0};$$

$$i = i_{0};$$

$$M[a] = ...;$$

$$i = i + h;$$

$$i = i + h;$$

$$i = i + h;$$

$$M[a] = ...;$$

$$M[a] =$$

... and reduction of strength:

$$\begin{array}{c} i = i_{0}; \\ \text{if } (i < n) \ \{ \\ \Delta = b \cdot h; \\ A = A_{0} + b \cdot i_{0}; \\ \text{do } \{ \\ M[A] = \dots; \\ i = i + h; \\ A = A + \Delta; \\ \} \text{ while } (i < n); \end{array} \right) \text{Neg}(i < n) \\ \begin{array}{c} 0 \\ i = i_{0}; \\ 1 \\ \text{Pos}(i < n) \\ \Delta = b \cdot h; \\ A = A_{0} + b \cdot i; \\ 2 \\ M[A] = \dots; \\ 3 \\ i = i + h; \\ 4 \\ A = A + \Delta; \\ 5 \\ \text{Neg}(i < n) \\ \text{Pos}(i < n) \end{array}$$

Warning:

- The values b, h, A_0 must not change their values during the loop.
- i, A may be modified at exactly one position in the loop :-(
- One may try to eliminate the variable i altogether :
 - \rightarrow *i* may not be used else-where.
 - → The initialization must be transformed into: $A = A_0 + b \cdot i_0$.
 - → The loop condition i < n must be transformed into: A < N for $N = A_0 + b \cdot n$.
 - \rightarrow b must always be different from zero !!!