1.8 Application: Loop-invariant Code

Example:

for (i = 0;i < n;i++)
ali] = b+ 3;

// The expression b + 3 is recomputed in every iteration:-(
// This should be avoided:-)

438

The Control-flow Graph:

439

Warning: 7 =5+ 3; may not be placetieforethe loop:

—— There is nadecentplace for 7T'=0b0+3;

440

ldea: Transform into a do-while-loop ...

441

...nowthereisaplacefor T'=¢; :-)

442

Applicationof T5 (PRE):

443

J O O Ot = w NN = O

=S S|~

{b+ 3}
{b+ 3}
{b+ 3}
{b+ 3}

SR ST S S S ==Y [l

Applicationof T5 (PRE):

444

J O O Ot = w NN = O

=S S|~

{b+ 3}
{b+ 3}
{b+ 3}
{b+ 3}

SR ST S S S ==Y [l

Conclusion:

e Elimination of partial redundancies may move loop-invarieode
out of the loop :-))

e This only works properly for do-while-loops :-(

e To optimize other loops, we transform them intado-while-loops
before-hand:

while (b) stmt —— if (b)
do stmt
while (b);

— Loop Rotation

445

Problem:

If we do not have the source program at hand, we must re-cmtstr
potential loop headers;-)

— Pre-dominators

uw pre-dominates v , if every path = : start —* v contains u. We
write: u = v.

“=" Is reflexive, transitive and anti-symmetric:-)

446

Computation:

We collect the nodes along paths by means of the analysis:

]P):2N0d€8 C — O

) p— =

(v P = PU{v}

Then the set P|v] of pre-dominators is given by:

Plv] = ﬂ{[[ﬂ]]ﬂ {start} | m: start —* v}

447

Since [k]* are distributive, the P[v] can computed by means of
fixpoint iteration :-)

Example:
(0) P
0 10}
(1) RS
@ %) 21 {0,1,2}
3| {0,1,2,3}
(3 414{0,1,2,3,4}
; 50 {0,1,5)

448

The partial ordering =" inthe example:

© P
0 {0}
(L 1l {01}
(5) 2 21 {0,1,2}
31 {0,1,2,3}
® 11{0,1,2,3,4}
(4) 50 {0,1,5}

449

Apparently, the result is iee :-)

In fact, we have:

Theorem:

Every node v has at most one immediate pre-dominator.

Proof:

Assume:

there are wu; # u, which immediately pre-dominatev.
If w, = uy, then w«; notimmediate.

Consequently, u,,u, are incomparable :-)

450

Now for every = : start —* v .

T = T 9 with T ¢ start —* uy
Tyt U — U

If, however, u;,u, areincomparable, then there is pathstart —* v
avoiding wus :

451

Now for every = : start —* v .

T = T Ty with 1 : start —* uy
To T Uy —* v

If, however, u.,u, areincomparable, then there is pathstart —* v
avoiding wus :

452

Observation:

The loop head of avhile-loop pre-dominates every node in the body.

A back edge from the exit« to the loop head v can be identified
through
v € Pluj

Accordingly, we define:

453

Transformation 6:

N P Pl P
eg 0s(e u%v e Pl] eg(e) 0s(e
Neg(e) Pos(e ?

We duplicate the entry check to all back edges)

454

... Inthe Example:

455

... Inthe Example:

0,1,2,3,4,5,6

456

... Inthe Example:

0,1,2,3,4,5,6

457

... Inthe Example:

458

Warning:

There arainusualoops which cannot be rotated:

Q Pre-dominators: @

459

... but alsaccommon onesvhich cannot be rotated:
O (0)
0 @

& ©
3 (3
A (4)

Here, the complete block between back edge and conditiongd ghould
be duplicated :-(

460

... but alsaccommon onesvhich cannot be rotated:
O (0)
T @

®& ©
3 (3
A (4)

Here, the complete block between back edge and conditiongd ghould
be duplicated :-(

461

... but alsocommon onesvhich cannot be rotated:

& ; @.e

4 O~@

Here, the complete block between back edge and conditiongd ghould
be duplicated :-(

462

1.9 Eliminating Partially Dead Code

Example:

x4+ 1 need only be computed along one path(

463

ldea:

464

Problem:

e The definition = =¢; (z & Vars.) may only be moved to an
edge where ¢ Issafe ;-)

e The definition must still be available for uses of ;-)

—

We define an analysis which maximally delays computations:

[JF D = D

[=e]fD = {D\(USQGUDGJ[:::)U{IG;} if o ¢ Vars,

D\ (Use. U Def) if x¢e Vars,

465

... where:

Use. = {y=2¢;|ye Vars.}
Def, = {y=¢€;|ly=axVare Vars.}

466

... where:

Use. = {y=2¢;|ye Vars.}
Def, = {y=¢€;|ly=axVare Vars.}

For the remaining edges, we define:

[v = Me|;]*D = D\(Use.U Def)
[Mle)] = e] D = D\(Use., U Use.,)
[Pos(e)]* D = [Neg(e)]*D = D\Use.

467

Warning:

We may move y = e; beyond ajoinonlyif y =e¢; can be delayed
along all joining edges:

Here, 7= a2+ 1; cannot be moved beyondl !!

468

We conclude:

e The partial ordering of the lattice for delayabillity is givey “O”.
e Atprogram start: Dy = (.

Therefore, the setsD|u| ofat « delayable assignments can
be computed by solving a system of constraints.

e We delay only assignmentse where « a has the same effect
as « alone.

e The extra insertions render the original assignments agrassnts
to dead variables.

469

Transformation 7:

a € D[u]\[lab]*(D[u])

ilab # lab

a € [lab]*(Dlu))\ D]

470

a € D[u]\[Pos(e)]*(Dlu])

Neg(e))/@\\POS(G) Neg(e) Pos(e)

D) (2)
@ € [Neg ()] (Du)\D[v1] @ € [Pos()](D[u))\D[v2]

Note:

Transformation T7 is only meaningful, if we subsequently eliminate
assignments to dead variables by means of transformaticn :-)

In the example, the partially dead code is eliminated:

471

{T=x+1;}
{T'=2+1;}

= o N = O

472

0 0
T—111: L {T =x+1;}

21 {T"'=2+1;}

3 0

4 0

473

L
0 {z}
1| {x}
2 | {z}
21 {x, T}
30 0
41 0

474

Remarks:

e After 77, alloriginal assignments y = ¢; with y € Vars, are
assignments to dead variables and thus can always be diaaina

-)
e By this, it can be proven that the transformation is guaexhte be
non-degradating efficiency of the code-))

e Similar to the elimination of partial redundancies, the
transformation can be repeated}

475

Conclusion:

— The design of aneaningfuloptimization is non-trivial.

— Many transformations are advantageous only in connectitn w
other optimizations :-)

— Theorderingof applied optimizations matteis

— Some optimizations can be iterated

476

... a meaningful ordering:

T4 Constant Propagation
Interval Analysis

Alias Analysis

T6 Loop Rotation

T1, T3, T2 | Available Expressions

T2 Dead Variables

T7, T2 Partially Dead Code

\] 4

15, T3, T2 | Partially Redundant Codg

ar7

2 Replacing Expensive Oper ations by Cheaper
Ones

2.1 Reduction of Strength

(1) Evaluation of Polynomials

f(@) = ap-2"+ap_ 2" +.. . 4a -z +a

Multiplications | Additions

naive n(n+1) n

re-use 2n — 1 n

Horner-Scheme n n

478

ldea:

(2) Tabulation of a polynomial f(z) of degree n :

— Torecompute f(z) forevery argument istoo expensive :-)

— Luckily, the n-th differences areonstant!!

479

Example: f(x) = 3x3 — 5x? + 4z + 13

ni f(n)| A | A% | A®
01 13 2 8 18
Ly 15 | 10 ||26

21 25 ||36

31 |61

4

Here, then-th difference isalways

AP(f)=nl-a,-h" (h step width

480

Costs:

times evaluation of f;

] n
.(n—1)-n subtractions to determine theA® ;

DO [

e 1 additions for every further value:-)

-))

Number of multiplications only depends om

481

Simple Case: f(x)=a1-x+ ag

e ... naturally occurs in many numerical loops-)

e Thefirst differences are already constant:
fl+h)=f(z)=a-h

o Instead of the sequence: y; = f(zg+i-h), 1 >0
we compute: yo = f(x9), A=ay-h
Vi =Yi-1 + A, >0

482

Example:

for (i =dg;i<mny;i=i+h) { Neg(i < n) Pogi < n)
A:A0+b2,

483

.. or, after loop rotation:

L = 1p; Neg(i < n)
if (i <n) do {

A=Ay+b- 1

M[A] =...;

1 =1+ h;

} while (i < n);

484

.. and reduction of strength:

1 = 1p;
if (1 <n) {
A=1b-h; Neg(i < n)
A= Ao+ b-ip;
do {
M[A] =...;
1 =14 h;
A=A+ A,

} while (i < n);

485

Warning:

e Thevalues b, h, Ay mustnot change their values during the loop.
e 1, A maybe modified at exactly one position in the loop(

e One may try to eliminate the variable. altogether.

— 7 may not be used else-where.

— The initialization must be transformed into:
A=A,+b 1.

— The loop condition < n must be transformed into:
A< N for N=Ay,+b-n.

— b must always be different fromero!!!

486

