Transformation 1.1:

We provide novel registers T_e as storage for the e:

$\text{Pos}(e) = x = e;\quad \text{Neg}(e) = x = T_e;$

$\text{Pos}(T_e) = x = e;\quad \text{Neg}(T_e) = x = T_e;$
... analogously for \(R = M[e]; \) and \(M[e_1] = e_2; \).

Transformation 1.2:

If \(e \) is available at program point \(u \), then \(e \) need not be re-evaluated:

\[
\begin{align*}
T_e &= e; \\
\end{align*}
\]

We replace the assignment with \textit{Nop} :-)

\(u \)
Example:

\[x = y + 3; \]
\[x = 7; \]
\[z = y + 3; \]
Example:

\[x = y + 3; \]
\[x = 7; \]
\[z = y + 3; \]
Example:

\[x = y + 3; \]
\[x = 7; \]
\[z = y + 3; \]
\[T = y + 3; \]
\[\{y + 3\} \]
Example:

\[x = y + 3; \]
\[x = 7; \]
\[z = y + 3; \]
Correctness: (Idea)

Transformation 1.1 preserves the semantics and $A[u]$ for all program points $u \ :-)$

Assume $\pi : start \rightarrow^* u$ is the path taken by a computation.
If $e \in A[u]$, then also $e \in [\pi]^\# \emptyset$.

Therefore, π can be decomposed into:

with the following properties:
• The expression e is evaluated at the edge k;
• The expression e is not removed from the set of available expressions at any edge in π_2, i.e., no variable of e receives a new value :-}
• The expression e is evaluated at the edge k;
• The expression e is not removed from the set of available expressions at any edge in π_2, i.e., no variable of e receives a new value :-)

\[\implies\]

The register T_e contains the value of e whenever u is reached :-))
Warning:

Transformation 1.1 is only meaningful for assignments $x = e$; where:

$\rightarrow e \not\in Vars$;

\rightarrow the evaluation of e is non-trivial \:-}
Warning:

Transformation 1.1 is only meaningful for assignments \(x = e \); where:

\[\rightarrow x \not\in Vars(e); \]
\[\rightarrow e \not\in Vars; \]
\[\rightarrow \text{the evaluation of } e \text{ is non-trivial} \quad :- \}

Which leaves us with the following question ...
Question:

How do we compute $A[u]$ for every program point u?
Question:

How can we compute \(A[u] \) for every program point \(u \)??

We collect all restrictions to the values of \(A[u] \) into a system of constraints:

\[
\begin{align*}
A[start] & \subseteq \emptyset \\
A[v] & \subseteq [k]^{\#} (A[u]) \quad k = (u, _, v) \quad \text{edge}
\end{align*}
\]
Wanted:

- a maximally **large** solution
- an algorithm which computes this

Example:

```
0

y = 1;

1

Neg(\(x > 1\))  Pos(\(x > 1\))

5

2

y = x * y;

3

x = x - 1;

4
```
Wanted:

- a maximally large solution (??)
- an algorithm which computes this :-)

Example:

$$\begin{align*}
0 & \quad y = 1; \\
1 & \quad \text{Neg}(x > 1) \quad \text{Pos}(x > 1) \\
2 & \quad y = x \times y; \\
3 & \quad x = x - 1; \\
4 & \\
5 & \quad A[0] \subseteq \emptyset
\end{align*}$$
Wanted:

• a maximally large solution (??)
• an algorithm which computes this :-)

Example:

\[1 \]
\[y = 1; \]
\[\text{Neg}(x > 1) \]
\[\text{Pos}(x > 1) \]
\[2 \]
\[y = x \times y; \]
\[3 \]
\[x = x - 1; \]
\[4 \]
\[0 \]
\[\text{A}[0] \subseteq \emptyset \]
\[\text{A}[1] \subseteq (\text{A}[0] \cup \{1\}) \setminus \text{Expr}_y \]
\[\text{A}[1] \subseteq \text{A}[4] \]
Wanted:

- a maximally large solution
- an algorithm which computes this

Example:

\begin{align*}
A[0] & \subseteq \emptyset \\
A[1] & \subseteq (A[0] \cup \{1\}) \setminus Expr_y \\
\end{align*}

\begin{align*}
0 & \quad y = 1; \\
1 & \quad \text{Neg}(x > 1) \quad \text{Pos}(x > 1) \quad y = x \ast y; \\
2 & \quad x = x - 1; \\
3 & \\
4 & \\
5 & \text{Neg}(x > 1)
\end{align*}
Wanted:

- a maximally large solution
- an algorithm which computes this

Example:

\[
\begin{align*}
A[0] &\subseteq \emptyset \\
A[1] &\subseteq (A[0] \cup \{1\}) \setminus Expr_y \\
\end{align*}
\]
Wanted:

- a maximally large solution (??)
- an algorithm which computes this :-)

Example:

\[
\begin{align*}
A[0] & \subseteq \emptyset \\
A[1] & \subseteq (A[0] \cup \{1\}) \setminus Expr_y \\
\end{align*}
\]
Wanted:

- a maximally large solution (??)
- an algorithm which computes this :-)

Example:
Wanted:

- a maximally large solution (??)
- an algorithm which computes this :-)

Example:

Solution:

\[A[0] = \emptyset \]
\[A[1] = \{1\} \]
\[A[2] = \{1, x > 1\} \]
\[A[3] = \{1, x > 1\} \]
\[A[4] = \{1\} \]
\[A[5] = \{1, x > 1\} \]
Observation:

- The possible values for $A[u]$ form a complete lattice:

$$\mathbb{D} = 2^{Expr} \quad \text{with} \quad B_1 \sqsubseteq B_2 \quad \iff \quad B_1 \supseteq B_2$$
Observation:

- The possible values for $A[u]$ form a complete lattice:

$$\mathbb{D} = 2^{Expr} \quad \text{with} \quad B_1 \sqsubseteq B_2 \quad \text{iff} \quad B_1 \supseteq B_2$$

- The functions $\lbrack k \rbrack^\#: \mathbb{D} \rightarrow \mathbb{D}$ are monotonic, i.e.,

$$\lbrack k \rbrack^\#(B_1) \sqsubseteq \lbrack k \rbrack^\#(B_2) \quad \text{iff} \quad B_1 \sqsubseteq B_2$$
Background 2: Complete Lattices

A set \mathbb{D} together with a relation $\subseteq \subseteq \mathbb{D} \times \mathbb{D}$ is a partial order if for all $a, b, c \in \mathbb{D}$,

- reflexivity: $a \subseteq a$
- anti-symmetry: $a \subseteq b \land b \subseteq a \implies a = b$
- transitivity: $a \subseteq b \land b \subseteq c \implies a \subseteq c$

Examples:

1. $\mathbb{D} = 2^{\{a, b, c\}}$ with the relation “\subseteq”:

```
      a, b, c
     /  \
    /    \
  a, b  a, c
   /  \
  /    \
a    b, c
      /
     /  \
    /    \
   a    b
      /  \
     /    \
   /      \
  a
```
2. \(\mathbb{Z} \) with the relation “=”:

\[
\cdots \cdots -2 \quad -1 \quad 0 \quad 1 \quad 2 \quad \cdots
\]

3. \(\mathbb{Z} \) with the relation “≤”:

![Diagram for Z with ≤]

4. \(\mathbb{Z}_\perp = \mathbb{Z} \cup \{\perp\} \) with the ordering:

\[
\cdots \cdots -2 \quad -1 \quad 0 \quad 1 \quad 2 \quad \cdots
\]
$d \in D$ is called upper bound for $X \subseteq D$ if

$$x \sqsubseteq d \quad \text{for all } x \in X$$
$d \in \mathbb{D}$ is called upper bound for $X \subseteq \mathbb{D}$ if

$$x \sqsubseteq d \quad \text{for all } x \in X$$

d is called least upper bound (lub) if

1. d is an upper bound and
2. $d \sqsubseteq y$ for every upper bound y of X.
\(d \in \mathbb{D} \) is called \textbf{upper bound} for \(X \subseteq \mathbb{D} \) if
\[
x \sqsubseteq d \quad \text{for all} \quad x \in X
\]

\(d \) is called \textbf{least upper bound (lub)} if
1. \(d \) is an upper bound and
2. \(d \sqsubseteq y \) for every upper bound \(y \) of \(X \).

\textbf{Caveat:}

- \(\{0, 2, 4, \ldots\} \subseteq \mathbb{Z} \) has \textbf{no} upper bound!
- \(\{0, 2, 4\} \subseteq \mathbb{Z} \) has the upper bounds \(4, 5, 6, \ldots \)
A complete lattice (cl) \mathbb{D} is a partial ordering where every subset $X \subseteq \mathbb{D}$ has a least upper bound $\bigcup X \in \mathbb{D}$.

Note:

Every complete lattice has

\rightarrow a least element $\bot = \bigcup \emptyset \in \mathbb{D}$;
\rightarrow a greatest element $\top = \bigcup \mathbb{D} \in \mathbb{D}$.

Examples:

1. $\mathcal{D} = 2^{\{a,b,c\}}$ is a cl :-)

2. $\mathcal{D} = \mathbb{Z}$ with “=” is not.

3. $\mathcal{D} = \mathbb{Z}$ with “≤” is neither.

4. $\mathcal{D} = \mathbb{Z}_\bot$ is also not :-(

5. With an extra element \top, we obtain the flat lattice

\[
\mathbb{Z}_\top = \mathbb{Z} \cup \{\bot, \top\}
\]
We have:

Theorem:

If \(\mathbb{D} \) is a complete lattice, then every subset \(X \subseteq \mathbb{D} \) has a greatest lower bound \(\bigcap X \).
We have:

Theorem:

If \mathbb{D} is a complete lattice, then every subset $X \subseteq \mathbb{D}$ has a greatest lower bound $\cap X$.

Proof:

Construct $U = \{u \in \mathbb{D} \mid \forall x \in X : u \sqsubseteq x\}$.

// the set of all lower bounds of X :-}
We have:

Theorem:

If \mathbb{D} is a complete lattice, then every subset $X \subseteq \mathbb{D}$ has a greatest lower bound $\cap X$.

Proof:

Construct $U = \{ u \in \mathbb{D} \mid \forall x \in X : u \sqsubseteq x \}$.
// the set of all lower bounds of X

Set:

$g := \bigcup U$

Claim:

$g = \cap X$
(1) g is a lower bound of X:

Assume $x \in X$. Then:

$u \subseteq x$ for all $u \in U$

$\implies x$ is an upper bound of U

$\implies g \subseteq x$ \[:-) \]
(1) \(g \) is a **lower bound** of \(X \):

Assume \(x \in X \). Then:

\[
\begin{align*}
\forall u \subseteq x \quad & \text{for all } u \in U \\
\implies x \text{ is an upper bound of } U \\
\implies g \subseteq x \quad & \text{:-)}
\end{align*}
\]

(2) \(g \) is the **greatest lower bound** of \(X \):

Assume \(u \) is a lower bound of \(X \). Then:

\[
\begin{align*}
u \in U \\
\implies u \subseteq g \quad & \text{:-))}
\end{align*}
\]
We are looking for solutions for systems of constraints of the form:

\[x_i \preceq f_i(x_1, \ldots, x_n) \]

\((*)\)
We are looking for solutions for systems of constraints of the form:

\[x_i \sqsupseteq f_i(x_1, \ldots, x_n) \quad (*) \]

where:

<table>
<thead>
<tr>
<th>(x_i)</th>
<th>unknown</th>
<th>here: (A[u])</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\mathbb{D})</td>
<td>values</td>
<td>here: (2^{Expr})</td>
</tr>
<tr>
<td>(\subseteq \subseteq \mathbb{D} \times \mathbb{D})</td>
<td>ordering relation</td>
<td>here: (\supseteq)</td>
</tr>
<tr>
<td>(f_i: \mathbb{D}^n \rightarrow \mathbb{D})</td>
<td>constraint</td>
<td>here: (...)</td>
</tr>
</tbody>
</table>
We are looking for solutions for systems of constraints of the form:

\[x_i \sqsupseteq f_i(x_1, \ldots, x_n) \quad (\ast) \]

where:

\(x_i \)	unknown here: \(A[u] \)
\(\mathbb{D} \)	values here: \(2^{Expr} \)
\(\sqsubseteq \subseteq \mathbb{D} \times \mathbb{D} \)	ordering relation here: \(\supseteq \)
\(f_i: \mathbb{D}^n \rightarrow \mathbb{D} \)	constraint here: \(\ldots \)

Constraint for \(A[v] \) \((v \neq \text{start})\):

\[A[v] \subseteq \bigcap\{[[k]]^\#(A[u]) \mid k = (u, _, v) \text{ edge} \} \]
We are looking for solutions for systems of constraints of the form:

\[
x_i \sqsupseteq f_i(x_1, \ldots, x_n)
\]

(*)

where:

\(x_i\)	unknown	here: \(A[u]\)
\(D\)	values	here: \(2^{Expr}\)
\(\sqsubseteq \sqsubseteq D \times D\)	ordering relation	here: \(\supseteq\)
\(f_i: D^n \to D\)	constraint	here: \(\ldots\)

Constraint for \(A[v]\) \((v \neq \text{start})\):

\[
A[v] \subseteq \bigcap \{ [[k]^\#(A[u]) \mid k = (u, _, v) \text{ edge} \}
\]

Because:

\[
x \sqsupseteq d_1 \land \ldots \land x \sqsupseteq d_k \ iff \ x \sqsupseteq \bigcup \{d_1, \ldots, d_k\} \quad :-)
\]