3.4 Wrap-Up

We have considered various optimizations for improving hardware utilization.

Arrangement of the Optimizations:

- First, global restructuring of procedures/functions and of loops for better memory behavior ;)
- Then local restructuring for better utilization of the instruction set and the processor parallelism :-)
- Then register allocation and finally,
- Peephole optimization for the final kick ...
<table>
<thead>
<tr>
<th>Procedures:</th>
<th>Tail Recursion + Inlining</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Stack Allocation</td>
</tr>
<tr>
<td>Loops:</td>
<td>Iteration Reordering</td>
</tr>
<tr>
<td></td>
<td>→ if-Distribution</td>
</tr>
<tr>
<td></td>
<td>→ for-Distribution</td>
</tr>
<tr>
<td></td>
<td>Value Caching</td>
</tr>
<tr>
<td>Bodies:</td>
<td>Life-Range Splitting (SSA)</td>
</tr>
<tr>
<td></td>
<td>Instruction Selection</td>
</tr>
<tr>
<td></td>
<td>Instruction Scheduling with</td>
</tr>
<tr>
<td></td>
<td>→ Loop Unrolling</td>
</tr>
<tr>
<td></td>
<td>→ Loop Fusion</td>
</tr>
<tr>
<td>Instructions:</td>
<td>Register Allocation</td>
</tr>
<tr>
<td></td>
<td>Peephole Optimization</td>
</tr>
</tbody>
</table>
4 Optimization of Functional Programs

Example:

\[
\text{let rec } \text{fac} \ x = \begin{cases}
1 & \text{if } x \leq 1 \\
 x \cdot \text{fac} \ (x - 1) & \text{else}
\end{cases}
\]

- There are no basic blocks
- There are no loops
- Virtually all functions are recursive
Strategies for Optimization:

⇒ Improve specific inefficiencies such as:
 - Pattern matching
 - Lazy evaluation (if supported ;-)
 - Indirections — Unboxing / Escape Analysis
 - Intermediate data-structures — Deforestation

⇒ Detect and/or generate loops with basic blocks :-)
 - Tail recursion
 - Inlining
 - let-Floating

Then apply general optimization techniques
... e.g., by translation into C ;-)

780
Warning:

Novel analysis techniques are needed to collect information about functional programs.

Example: Inlining

```haskell
let max (x, y) = if x > y then x else y
let abs z = max (z, −z)
```

As result of the optimization we expect ...
let \(\text{max} (x, y) = \) \(\text{if } x > y \text{ then } x \)
else \(y \)

let \(\text{abs } z = \) let \(x = z \)
in let \(y = -z \)
in \(\text{if } x > y \text{ then } x \)
else \(y \)

Discussion:

For the beginning, \textit{max} is just a name. We must find out which value it takes at run-time

\[\Rightarrow \text{ Value Analysis required} !! \]
Nevin Heintze in the Australian team of the Prolog-Programming-Contest, 1998
The complete picture:
4.1 A Simple Functional Language

For simplicity, we consider:

\[e ::= b \mid (e_1, \ldots, e_k) \mid c \ e_1 \ldots e_k \mid \text{fun} \ x \to e \]
\[\mid (e_1 \ e_2) \mid (\square_1 \ e) \mid (e_1 \ \square_2 \ e_2) \mid \]
\[\text{let } x_1 = e_1 \ \text{in} \ e_0 \mid \]
\[\text{match} \ e_0 \ \text{with} \ p_1 \to e_1 \mid \ldots \mid p_k \to e_k \]

\[p ::= b \mid x \mid c \ x_1 \ldots x_k \mid (x_1, \ldots, x_k) \]

\[t ::= \text{let rec } x_1 = e_1 \ \text{and} \ldots \ \text{and} \ x_k = e_k \ \text{in} \ e \]

where \(b \) is a constant, \(x \) is a variable, \(c \) is a (data-)constructor and \(\square_i \) are \(i \)-ary operators.
Discussion:

- **let rec** only occurs on top-level.
- Functions are always unary. Instead, there are explicit tuples.
- *if*-expressions and case distinction in function definitions is reduced to *match*-expressions.
- In case distinctions, we allow just simple patterns.
 \[\implies\text{Complex patterns must be decomposed} \ldots\]
- **let**-definitions correspond to basic blocks.
- **Type-annotations** at variables, patterns or expressions could provide further useful information
 — which we ignore.
... in the Example:

A definition of \texttt{max} may look as follows:

\begin{verbatim}
let max = fun x -> match x with (x1, x2) -> (
 match x1 < x2
 with True -> x2
 | False -> x1
)
\end{verbatim}
Accordingly, we have for \texttt{abs}:

\begin{verbatim}
let abs = fun x -> let z = (x, -x) in max z
\end{verbatim}

4.2 A Simple Value Analysis

Idea:

For every subexpression \(e \) we collect the set \([e]^\#\) of possible values of \(e \) ...
Let \(V \) denote the set of occurring (classes of) constants, functions as well as applications of constructors and operators. As our lattice, we choose:

\[
V = 2^V
\]

As usual, we put up a constraint system:

1. If \(e \) is a value, i.e., of the form: \(b, c e_1 \ldots e_k, (e_1, \ldots, e_k) \), an operator application or \(\text{fun } x \to e \) we generate the constraint:

\[
\llbracket e \rrbracket \# \supseteq \{ e \}
\]

2. If \(e \equiv (e_1 \ e_2) \) and \(f \equiv \text{fun } x \to e' \), then

\[
\llbracket e \rrbracket \# \supseteq (f \in \llbracket e_1 \rrbracket \#) \ ? \llbracket e' \rrbracket \# : \emptyset
\]

\[
\llbracket x \rrbracket \# \supseteq (f \in \llbracket e_1 \rrbracket \#) \ ? \llbracket e_2 \rrbracket \# : \emptyset
\]

...
• If \(e \equiv \text{let } x_1 = e_1 \text{ in } e_0 \), then we generate:

\[
\begin{align*}
[x_1]# & \supset [e_1]# \\
[e]# & \supset [e_0]#
\end{align*}
\]

• Analogously for \(t \equiv \text{letrec } x_1 = e_1 \ldots x_k = e_k \text{ in } e_0 \):

\[
\begin{align*}
[x_i]# & \supset [e_i]# \\
[t]# & \supset [e_0]#
\end{align*}
\]
int-values returned by operators are described by the unevaluated expression;

Operator applications might return Boolean values or other basic values. Therefore, we do replace tests for basic values by non-deterministic choice ...

Assume $e \equiv \text{match } e_0 \text{ with } p_1 \rightarrow e_1 \mid \ldots \mid p_k \rightarrow e_k$. Then we generate for $p_i \equiv b$ (basic value),

$$[e]^{\#} \supseteq [e_i]^{\#} : \emptyset$$

...
If $p_i \equiv c\, y_1 \ldots y_k$ and $v \equiv c\, e'_1 \ldots e'_k$ is a value, then

$$\begin{align*}
[e] &\supset (v \in [e_0]) \triangleright [e_i] : \emptyset \\
[y_j] &\supset (v \in [e_0]) \triangleright [e'_j] : \emptyset
\end{align*}$$

If $p_i \equiv (y_1, \ldots, y_k)$ and $v \equiv (e'_1, \ldots, e'_k)$ is a value, then

$$\begin{align*}
[e] &\supset (v \in [e_0]) \triangleright [e_i] : \emptyset \\
[y_j] &\supset (v \in [e_0]) \triangleright [e'_j] : \emptyset
\end{align*}$$

If $p_i \equiv y$, then

$$\begin{align*}
[e] &\supset [e_i] \\
[y] &\supset [e_0]
\end{align*}$$
Example The **append**-Function

Consider the concatenation of two lists. In **Ocaml**, we would write:

```ocaml
let rec app = fun x → match x with
  | [] → fun y → y
  | h :: t → fun y → h :: app t y

in app [1; 2] [3]
```

The analysis then results in:

<table>
<thead>
<tr>
<th>Expression</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>([\text{app}]^#)</td>
<td>{\text{fun} x → \text{match} \ldots}</td>
</tr>
<tr>
<td>([x]^#)</td>
<td>{[1; 2], [2], []}</td>
</tr>
<tr>
<td>([\text{match} \ldots]^#)</td>
<td>{\text{fun} y → y, \text{fun} y → h :: app \ldots}</td>
</tr>
<tr>
<td>([y]^#)</td>
<td>{[3]}</td>
</tr>
</tbody>
</table>

...
Values $c e_1 \ldots e_k$, (e_1, \ldots, e_k) or operator applications $e_1 \square e_2$
now are interpreted as recursive calls $c [e_1]^{\#} \ldots [e_k]^{\#}$, $([e_1]^{\#}, \ldots, [e_k]^{\#})$
or $[e_1]^{\#} \square [e_2]^{\#}$, respectively.

\implies regular tree grammar
... in the Example:

We obtain for \(A = [[\text{app}\ t\ y]]^\# \):

\[
\begin{align*}
A & \rightarrow [3] \mid [[h]]^\# :: A \\
[[h]]^\# & \rightarrow 1 \mid 2
\end{align*}
\]

Let \(\mathcal{L}(e) \) denote the set of terms derivable from \([[e]]^\# \) w.r.t. the regular tree grammar. Thus, e.g.,

\[
\begin{align*}
\mathcal{L}(h) & = \{1, 2\} \\
\mathcal{L}(\text{app}\ t\ y) & = \{[a_1; \ldots, a_r; 3] \mid r \geq 0, a_i \in \{1, 2\}\}
\end{align*}
\]
4.3 An Operational Semantics

Idea:

We construct a Big-Step operational semantics which evaluates expressions w.r.t. an environment :-)

Values are of the form:

\[v ::= b \mid c \, v_1 \ldots c_k \mid (v_1, \ldots, v_k) \mid (\text{fun } x \rightarrow e, \eta) \]

Examples for Values:

\[
\begin{align*}
\text{c 1} \\
[1; 2] &= :: 1 \quad (:: 2 \quad []) \\
(\text{fun } x \rightarrow x::y, \{y \mapsto [5]\})
\end{align*}
\]
Expressions are evaluated w.r.t. an environment \(\eta : \text{Vars} \rightarrow \text{Values} \).

The Big-Step operational semantics provides rules to infer the value to which an expression is evaluated w.r.t. a given environment, i.e., deals with statements of the form:

\[
(e, \eta) \Rightarrow v
\]

Values:

\[
(b, \eta) \Rightarrow b
\]

\[
(\text{fun } x \rightarrow e, \eta) \Rightarrow (\text{fun } x \rightarrow e, \eta)
\]

\[
(e_1, \eta) \Rightarrow v_1 \ldots (e_k, \eta) \Rightarrow v_k
\]

\[
(c e_1 \ldots e_k, \eta) \Rightarrow c v_1 \ldots v_k
\]

Operator applications are treated analogously!