1.2 Removing Assignments to Dead Variables

Example:

1:
$$x = y + 2;$$

$$2: y = 5;$$

$$3: x = y + 3;$$

The value of x at program points 1, 2 is over-written before it can be used.

Therefore, we call the variable x dead at these program points :-)

- \rightarrow Assignments to dead variables can be removed ;-)
- \rightarrow Such inefficiencies may originate from other transformations.

- \rightarrow Assignments to dead variables can be removed ;-)
- \rightarrow Such inefficiencies may originate from other transformations.

Formal Definition:

The variable x is called live at u along the path π starting at u relative to a set X of variables either:

if $x \in X$ and π does not contain a definition of x; or:

if π can be decomposed into: $\pi = \pi_1 k \pi_2$ such that:

- k is a use of x; and
- π_1 does not contain a definition of x.

Thereby, the set of all defined or used variables at an edge $k = (_, lab, _)$ is defined by:

lab	used	defined
;	Ø	Ø
Pos(e)	$Vars\left(e\right)$	Ø
Neg(e)	$Vars\left(e\right)$	Ø
x = e;	$Vars\left(e\right)$	$\{x\}$
x = M[e];	$Vars\left(e\right)$	$\{x\}$
$M[e_1] = e_2;$	$Vars\left(e_{1}\right)\cup\ Vars\left(e_{2}\right)$	Ø

A variable x which is not live at u along π (relative to X) is called dead at u along π (relative to X).

Example:

where $X = \emptyset$. Then we observe:

	live	dead
0	<i>{y}</i>	{ <i>x</i> }
1	Ø	$\{x,y\}$
2	{ <i>y</i> }	$\{x\}$
3	Ø	$\{x,y\}$

The variable x is live at u (relative to X) if x is live at u along some path to the exit (relative to X). Otherwise, x is called dead at u (relative to X).

The variable x is live at u (relative to X) if x is live at u along some path to the exit (relative to X). Otherwise, x is called dead at u (relative to X).

Question:

How can the sets of all dead/live variables be computed for every u???

The variable x is live at u (relative to X) if x is live at u along some path to the exit (relative to X). Otherwise, x is called dead at u (relative to X).

Question:

How can the sets of all dead/live variables be computed for every u???

Idea:

For every edge $k = (u, _, v)$, define a function $[\![k]\!]^\sharp$ which transforms the set of variables which are live at v into the set of variables which are live at v...

Let
$$\mathbb{L} = 2^{Vars}$$
.

For
$$\mathbf{k} = (\underline{\ }, lab, \underline{\ })$$
, define $[\![\mathbf{k}]\!]^{\sharp} = [\![lab]\!]^{\sharp}$ by:

$$[\![;]\!]^{\sharp} L = L$$

$$[\![\operatorname{Pos}(e)]\!]^{\sharp} L = [\![\operatorname{Neg}(e)]\!]^{\sharp} L = L \cup Vars(e)$$

$$[\![x = e;]\!]^{\sharp} L = (L \setminus \{x\}) \cup Vars(e)$$

$$[\![x = M[e];]\!]^{\sharp} L = (L \setminus \{x\}) \cup Vars(e)$$

$$[\![M[e_1] = e_2;]\!]^{\sharp} L = L \cup Vars(e_1) \cup Vars(e_2)$$

Let
$$\mathbb{L} = 2^{Vars}$$
.

For
$$k = (\underline{\ }, lab, \underline{\ })$$
, define $[\![k]\!]^{\sharp} = [\![lab]\!]^{\sharp}$ by:

$$[\![:]\!]^{\sharp} L = L$$

$$[\![\operatorname{Pos}(e)]\!]^{\sharp} L = [\![\operatorname{Neg}(e)]\!]^{\sharp} L = L \cup Vars(e)$$

$$[\![x = e;]\!]^{\sharp} L = (L \setminus \{x\}) \cup Vars(e)$$

$$[\![x = M[e];]\!]^{\sharp} L = (L \setminus \{x\}) \cup Vars(e)$$

$$[\![M[e_1] = e_2;]\!]^{\sharp} L = L \cup Vars(e_1) \cup Vars(e_2)$$

 $[\![k]\!]^{\sharp}$ can again be composed to the effects of $[\![\pi]\!]^{\sharp}$ of paths $\pi = k_1 \dots k_r$ by:

$$\llbracket \pi \rrbracket^{\sharp} = \llbracket k_1 \rrbracket^{\sharp} \circ \ldots \circ \llbracket k_r \rrbracket^{\sharp}$$

$$x = y + 2; \quad y = 5; \quad x = y + 2; \quad M[y] = x;$$

1

2

3

4

5

The set of variables which are live at u then is given by:

$$\mathcal{L}^*[u] = \bigcup \{ \llbracket \pi \rrbracket^{\sharp} X \mid \pi : u \to^* stop \}$$

... literally:

- The paths start in u:-)
 - \longrightarrow As partial ordering for \mathbb{L} we use $\sqsubseteq = \subseteq$.
- The set of variables which are live at program exit is given by the set X:-)

Transformation 2:

Correctness Proof:

- \rightarrow Correctness of the effects of edges: If L is the set of variables which are live at the exit of the path π , then $[\![\pi]\!]^{\sharp}L$ is the set of variables which are live at the beginning of π :-)
- → Correctness of the transformation along a path: If the value of a variable is accessed, this variable is necessarily live. The value of dead variables thus is irrelevant :-)
- → Correctness of the transformation: In any execution of the transformed programs, the live variables always receive the same values :-))

Computation of the sets $\mathcal{L}^*[u]$:

(1) Collecting constraints:

$$\mathcal{L}[stop] \supseteq X$$
 $\mathcal{L}[u] \supseteq [k]^{\sharp} (\mathcal{L}[v]) \qquad k = (u, _, v) \text{ edge}$

- (2) Solving the constraint system by means of RR iteration. Since \mathbb{L} is finite, the iteration will terminate :-)
- (3) If the exit is (formally) reachable from every program point, then the smallest solution \mathcal{L} of the constraint system equals \mathcal{L}^* since all $[\![k]\!]^\sharp$ are distributive :-))

Computation of the sets $\mathcal{L}^*[u]$:

(1) Collecting constraints:

$$\mathcal{L}[stop] \supseteq X$$
 $\mathcal{L}[u] \supseteq [k]^{\sharp} (\mathcal{L}[v]) \qquad k = (u, _, v) \text{ edge}$

- (2) Solving the constraint system by means of RR iteration. Since \mathbb{L} is finite, the iteration will terminate :-)
- (3) If the exit is (formally) reachable from every program point, then the smallest solution \mathcal{L} of the constraint system equals \mathcal{L}^* since all $[\![k]\!]^\sharp$ are distributive :-))

Caveat: The information is propagated backwards !!!

	1	2
7	Ø	
6	$\{y,R\}$	
2	$\{x, y, R\}$	dito
5	$\{x,y,R\}$	
4	$\{x,y,R\}$	
3	$\{x,y,R\}$	
1	$\{x,R\}$	
0	$\{I,R\}$	

Caveat:

Caveat:

Caveat:

Caveat:

Caveat:

Caveat:

Caveat:

Re-analyzing the program is inconvenient :-(

Idea: Analyze true liveness!

- x is called truely live at u along a path π (relative to X), either
- if $x \in X$, π does not contain a definition of x; or
- if π can be decomposed into $\pi = \pi_1 k \pi_2$ such that:
 - k is a true use of x;
- π_1 does not contain any definition of x.

The set of truely used variables at an edge $k = (\underline{\ }, lab, \underline{\ }v)$ is defined as:

lab	truely used	
;	\emptyset	
Pos(e)	$Vars\left(e\right)$	
Neg(e)	$Vars\left(e\right)$	
x = e;	$Vars\left(e\right) \qquad (*)$	
x = M[e];	$Vars\left(e\right) \qquad {\color{red}(*)}$	
$M[e_1] = e_2;$	$Vars(e_1) \cup Vars(e_2)$	

(*) – given that x is truely live at v:-)

The Effects of Edges:

$$[\![:]\!]^{\sharp} L = L$$

$$[\![\operatorname{Pos}(e)]\!]^{\sharp} L = [\![\operatorname{Neg}(e)]\!]^{\sharp} L = L \cup Vars(e)$$

$$[\![x = e;]\!]^{\sharp} L = (L \setminus \{x\}) \cup Vars(e)$$

$$[\![x = M[e];]\!]^{\sharp} L = (L \setminus \{x\}) \cup Vars(e)$$

$$[\![M[e_1] = e_2;]\!]^{\sharp} L = L \cup Vars(e_1) \cup Vars(e_2)$$

The Effects of Edges:

$$[\![;]\!]^{\sharp} L = L$$

$$[\![\operatorname{Pos}(e)]\!]^{\sharp} L = [\![\operatorname{Neg}(e)]\!]^{\sharp} L = L \cup Vars(e)$$

$$[\![x = e ;]\!]^{\sharp} L = (L \setminus \{x\}) \cup (x \in L) ? Vars(e) : \emptyset$$

$$[\![x = M[e] ;]\!]^{\sharp} L = (L \setminus \{x\}) \cup (x \in L) ? Vars(e) : \emptyset$$

$$[\![M[e_1] = e_2 ;]\!]^{\sharp} L = L \cup Vars(e_1) \cup Vars(e_2)$$

- The effects of edges for truely live variables are more complicated than for live variables :-)
- Nonetheless, they are distributive!!

- The effects of edges for truely live variables are more complicated than for live variables :-)
- Nonetheless, they are distributive !!

To see this, consider for $\mathbb{D}=2^U$, $fy=(u\in y)?b:\emptyset$ We verify:

$$f(y_1 \cup y_2) = (u \in y_1 \cup y_2)?b: \emptyset$$

$$= (u \in y_1 \lor u \in y_2)?b: \emptyset$$

$$= (u \in y_1)?b: \emptyset \cup (u \in y_2)?b: \emptyset$$

$$= f y_1 \cup f y_2$$

- The effects of edges for truely live variables are more complicated than for live variables :-)
- Nonetheless, they are distributive !!

To see this, consider for $\mathbb{D}=2^U$, $fy=(u\in y)?b:\emptyset$ We verify:

$$f(y_1 \cup y_2) = (u \in y_1 \cup y_2)?b: \emptyset$$

$$= (u \in y_1 \lor u \in y_2)?b: \emptyset$$

$$= (u \in y_1)?b: \emptyset \cup (u \in y_2)?b: \emptyset$$

$$= f y_1 \cup f y_2$$

⇒ the constraint system yields the MOP :-))

• True liveness detects more superfluous assignments than repeated liveness !!!

• True liveness detects more superfluous assignments than repeated liveness !!!

Liveness:

• True liveness detects more superfluous assignments than repeated liveness!!!

True Liveness:

