1.2 Removing Assignments to Dead Variables

Example:

1 : \(x = y + 2; \)

2 : \(y = 5; \)

3 : \(x = y + 3; \)

The value of \(x \) at program points 1, 2 is over-written before it can be used.

Therefore, we call the variable \(x \) dead at these program points \(:-) \)
Note:

→ Assignments to dead variables can be removed ;-
→ Such inefficiencies may originate from other transformations.
Note:

→ Assignments to dead variables can be removed ;-)
→ Such inefficiencies may originate from other transformations.

Formal Definition:

The variable \(x \) is called live at \(u \) along the path \(\pi \) starting at \(u \) relative to a set \(X \) of variables either:

if \(x \in X \) and \(\pi \) does not contain a definition of \(x \); or:

if \(\pi \) can be decomposed into: \(\pi = \pi_1 k \pi_2 \) such that:

• \(k \) is a use of \(x \); and
• \(\pi_1 \) does not contain a definition of \(x \).
Thereby, the set of all defined or used variables at an edge \(k = (_, \text{lab}, _) \) is defined by:

<table>
<thead>
<tr>
<th>lab</th>
<th>used</th>
<th>defined</th>
</tr>
</thead>
<tbody>
<tr>
<td>;</td>
<td>\emptyset</td>
<td>\emptyset</td>
</tr>
<tr>
<td>\text{Pos}(e)</td>
<td>\text{Vars}(e)</td>
<td>\emptyset</td>
</tr>
<tr>
<td>\text{Neg}(e)</td>
<td>\text{Vars}(e)</td>
<td>\emptyset</td>
</tr>
<tr>
<td>\text{x = e;}</td>
<td>\text{Vars}(e)</td>
<td>{x}</td>
</tr>
<tr>
<td>\text{x = M[e];}</td>
<td>\text{Vars}(e)</td>
<td>{x}</td>
</tr>
<tr>
<td>\text{M[e] = e}_2;</td>
<td>\text{Vars}(e_1) \cup \text{Vars}(e_2)</td>
<td>\emptyset</td>
</tr>
</tbody>
</table>
A variable \(x \) which is not live at \(u \) along \(\pi \) (relative to \(X \)) is called \textbf{dead} at \(u \) along \(\pi \) (relative to \(X \)).

\textbf{Example:}

\[
\begin{align*}
 x &= y + 2; \quad y = 5; \quad x &= y + 3; \\
 0 &\rightarrow 1 \rightarrow 2 \rightarrow 3
\end{align*}
\]

where \(X = \emptyset \). Then we observe:

<table>
<thead>
<tr>
<th></th>
<th>live</th>
<th>dead</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>({y})</td>
<td>({x})</td>
</tr>
<tr>
<td>1</td>
<td>(\emptyset)</td>
<td>({x, y})</td>
</tr>
<tr>
<td>2</td>
<td>({y})</td>
<td>({x})</td>
</tr>
<tr>
<td>3</td>
<td>(\emptyset)</td>
<td>({x, y})</td>
</tr>
</tbody>
</table>
The variable x is live at u (relative to X) if x is live at u along some path to the exit (relative to X). Otherwise, x is called dead at u (relative to X).
The variable x is live at u (relative to X) if x is live at u along some path to the exit (relative to X). Otherwise, x is called dead at u (relative to X).

Question:

How can the sets of all dead/live variables be computed for every u?
The variable x is live at u (relative to X) if x is live at u along some path to the exit (relative to X). Otherwise, x is called dead at u (relative to X).

Question:

How can the sets of all dead/live variables be computed for every u???

Idea:

For every edge $k = (u, _, v)$, define a function $[k]^{\#}$ which transforms the set of variables which are live at v into the set of variables which are live at u ...
Let $\mathbb{L} = 2^{\text{Vars}}$.

For $k = (_ , \text{lab} , _)$, define $[k]^\# = [\text{lab}]^\#$ by:

\[
\begin{align*}
[;]^\# L &= L \\
[\text{Pos}(e)]^\# L &= [\text{Neg}(e)]^\# L = L \cup \text{Vars}(e) \\
[x = e;]^\# L &= (L \setminus \{x\}) \cup \text{Vars}(e) \\
[x = M[e];]^\# L &= (L \setminus \{x\}) \cup \text{Vars}(e) \\
[M[e_1] = e_2;]^\# L &= L \cup \text{Vars}(e_1) \cup \text{Vars}(e_2)
\end{align*}
\]
Let \(L = 2^{\text{Vars}} \).

For \(k = (_, \text{lab}, _) \), define \([k]^{\#} = [\text{lab}]^{\#}\) by:

\[
\begin{align*}
[;]^{\#} L & = L \\
[\text{Pos}(e)]^{\#} L & = [\text{Neg}(e)]^{\#} L = L \cup \text{Vars}(e) \\
[x = e;]^{\#} L & = (L \setminus \{x\}) \cup \text{Vars}(e) \\
[x = M[e];]^{\#} L & = (L \setminus \{x\}) \cup \text{Vars}(e) \\
[M[e_1] = e_2;]^{\#} L & = L \cup \text{Vars}(e_1) \cup \text{Vars}(e_2)
\end{align*}
\]

\([k]^{\#}\) can again be composed to the effects of \([\pi]^{\#}\) of paths \(\pi = k_1 \ldots k_r\) by:

\[
[\pi]^{\#} = [k_1]^{\#} \circ \ldots \circ [k_r]^{\#}
\]
We verify that these definitions are meaningful :)
We verify that these definitions are meaningful :-)
We verify that these definitions are meaningful :-)}
We verify that these definitions are meaningful :-)

\[x = y + 2; \quad y = 5; \quad x = y + 2; \quad M[y] = x; \]

1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5

\{y\} \rightarrow \{x, y\} \rightarrow \emptyset
We verify that these definitions are meaningful :-)

\[x = y + 2; \quad y = 5; \quad x = y + 2; \quad M[y] = x; \]

1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5

\emptyset \rightarrow \{y\} \rightarrow \{x, y\} \rightarrow \emptyset
We verify that these definitions are meaningful :-)

\[M[y] = x; \]

\[
\begin{align*}
1 & \quad \{y\} \\
2 & \quad \emptyset \\
3 & \quad \{y\} \\
4 & \quad \{x, y\} \\
5 & \quad \emptyset
\end{align*}
\]
The set of variables which are live at \(u \) then is given by:

\[
\mathcal{L}^*[u] = \bigcup \{ \llbracket \pi \rrbracket^\#X \mid \pi : u \rightarrow^* \text{stop} \}
\]

... literally:

- The paths start in \(u \) :-)
- As partial ordering for \(\llbracket \) we use \(\sqsubseteq = \subseteq \).
- The set of variables which are live at program exit is given by the set \(X \) :-)}
Transformation 2:

\[x = e; \quad x \notin L^*[v] \quad ; \]

\[x = M[e]; \quad x \notin L^*[v] \quad ; \]
Correctness Proof:

→ Correctness of the effects of edges: If L is the set of variables which are live at the exit of the path π, then $[\pi]_{\#} L$ is the set of variables which are live at the beginning of π :-)

→ Correctness of the transformation along a path: If the value of a variable is accessed, this variable is necessarily live. The value of dead variables thus is irrelevant :-)

→ Correctness of the transformation: In any execution of the transformed programs, the live variables always receive the same values :-))
Computation of the sets $L^*[u]$:

(1) Collecting constraints:

$$L[\text{stop}] \supseteq X$$

$$L[u] \supseteq [k]^\# (L[v]) \quad k = (u, _, v) \quad \text{edge}$$

(2) Solving the constraint system by means of RR iteration.

Since L is finite, the iteration will terminate :-)

(3) If the exit is (formally) reachable from every program point, then the smallest solution L of the constraint system equals L^* since all $[k]^\#$ are distributive :-))
Computation of the sets $\mathcal{L}^*[u]$:

(1) Collecting constraints:

\[
\mathcal{L}[\text{stop}] \supseteq X \\
\mathcal{L}[u] \supseteq [k]^\# (\mathcal{L}[v]) \quad k = (u, _, v) \quad \text{edge}
\]

(2) Solving the constraint system by means of RR iteration.

Since \mathbb{L} is finite, the iteration will terminate :-(

(3) If the exit is (formally) reachable from every program point, then the smallest solution \mathcal{L} of the constraint system equals \mathcal{L}^* since all $[k]^\#$ are distributive :-(

Caveat: The information is propagated backwards !!!
Example:

\[x = M[I]; \]
\[y = 1; \]

Pos\((x > 1) \)

Neg\((x > 1) \)

\[M[R] = y; \]

\[y = x \ast y; \]
\[x = x - 1; \]

\[\mathcal{L}[0] \supseteq (\mathcal{L}[1] \setminus \{x\}) \cup \{I\} \]
\[\mathcal{L}[1] \supseteq \mathcal{L}[2] \setminus \{y\} \]
\[\mathcal{L}[2] \supseteq (\mathcal{L}[6] \cup \{x\}) \cup (\mathcal{L}[3] \cup \{x\}) \]
\[\mathcal{L}[3] \supseteq (\mathcal{L}[4] \setminus \{y\}) \cup \{x, y\} \]
\[\mathcal{L}[4] \supseteq (\mathcal{L}[5] \setminus \{x\}) \cup \{x\} \]
\[\mathcal{L}[5] \supseteq \mathcal{L}[2] \]
\[\mathcal{L}[6] \supseteq \mathcal{L}[7] \cup \{y, R\} \]
\[\mathcal{L}[7] \supseteq \emptyset \]
Example:

\[x = M[I]; \]

\[y = 1; \]

\[M[R] = y; \]

\[y = x \ast y; \]

\[x = x - 1; \]

\[\text{Neg}(x > 1) \]

\[\text{Pos}(x > 1) \]

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>\emptyset</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>{y, R}</td>
<td>dito</td>
</tr>
<tr>
<td>5</td>
<td>{x, y, R}</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>{x, y, R}</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>{x, y, R}</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>{x, R}</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>{I, R}</td>
<td></td>
</tr>
</tbody>
</table>
The left-hand side of no assignment is dead :-)

Caveat:

Removal of assignments to dead variables may kill further variables:

1.
 \[x = y + 1; \]

2.
 \[z = 2 \times x; \]

3.
 \[M[R] = y; \]

4.
 \[\emptyset \]
The left-hand side of no assignment is dead :-)

Caveat:

Removal of assignments to dead variables may kill further variables:

1. \(x = y + 1; \)
2. \(z = 2 \ast x; \)
3. \(y, R \)
 \[M[R] = y; \]
4. \(\emptyset \)
The left-hand side of no assignment is dead :-)

Caveat:

Removal of assignments to dead variables may kill further variables:

1. \(x = y + 1; \)
2. \(x, y, R \)
3. \(z = 2 \times x; \)
4. \(y, R \)
5. \(M[R] = y; \)
6. \(\emptyset \)
The left-hand side of no assignment is **dead** :-)

Caveat:

Removal of assignments to dead variables may kill further variables:

```
1  y, R
   x = y + 1;
```

```
2  x, y, R
   z = 2 * x;
```

```
3  y, R
   M[R] = y;
```

```
4  ∅
```
The left-hand side of no assignment is dead :-)

Caveat:

Removal of assignments to dead variables may kill further variables:

```
x = y + 1;
z = 2 * x;
M[R] = y;
```
The left-hand side of no assignment is dead :-)

Caveat:

Removal of assignments to dead variables may kill further variables:

1. y, R
 2. $x = y + 1;$
 3. x, y, R
 4. $z = 2 \times x;$
 5. y, R
 6. $M[R] = y;$
 7. \emptyset

8. y, R
 9. $x = y + 1;$
 10. y, R
 11. $;$
 12. y, R
 13. $M[R] = y;$
 14. \emptyset
The left-hand side of no assignment is dead :-)

Caveat:

Removal of assignments to dead variables may kill further variables:

1. y, R
2. $x = y + 1$;
3. x, y, R
4. $z = 2 \times x$;
5. y, R
6. $M[R] = y$;
7. \emptyset

1. y, R
2. $x = y + 1$;
3. y, R
4. $M[R] = y$;
5. \emptyset

1. y, R
2. $x = y + 1$;
3. y, R
4. $M[R] = y$;
5. \emptyset
Re-analyzing the program is inconvenient :-(

Idea: Analyze true liveness!

x is called truely live at u along a path π (relative to X), either if $x \in X$, π does not contain a definition of x; or if π can be decomposed into $\pi = \pi_1 k \pi_2$ such that:

- k is a true use of x;
- π_1 does not contain any definition of x.
The set of truely used variables at an edge \(k = (_, \text{lab}, v) \) is defined as:

<table>
<thead>
<tr>
<th>lab</th>
<th>truely used</th>
</tr>
</thead>
<tbody>
<tr>
<td>;</td>
<td>(\emptyset)</td>
</tr>
<tr>
<td>Pos (e)</td>
<td>(Vars(e))</td>
</tr>
<tr>
<td>Neg (e)</td>
<td>(Vars(e))</td>
</tr>
<tr>
<td>(x = e;)</td>
<td>(Vars(e)) ((*))</td>
</tr>
<tr>
<td>(x = M[e];)</td>
<td>(Vars(e)) ((*))</td>
</tr>
<tr>
<td>(M[e_1] = e_2;)</td>
<td>(Vars(e_1) \cup Vars(e_2))</td>
</tr>
</tbody>
</table>

\((*) \) – given that \(x \) is truely live at \(v \) :-)

226
Example:

\[x = y + 1; \]
\[z = 2 \times x; \]
\[M[R] = y; \]
\[\emptyset \]
Example:

1. \[x = y + 1; \]
2. \[z = 2 \times x; \]
3. \[y, R \]
4. \[M[R] = y; \]
5. \[\emptyset \]
Example:

1

\[x = y + 1; \]

2

\[y, R \]

3

\[z = 2 \ast x; \]

4

\[y, R \]

\[M[R] = y; \]

\[\emptyset \]
Example:

1. y, R
 - $x = y + 1$;

2. y, R
 - $z = 2 \times x$;

3. y, R
 - $M[R] = y$;

4. \emptyset
Example:

\[x = y + 1; \]
\[z = 2 \times x; \]
\[M[R] = y; \]
\[\emptyset \]
The Effects of Edges:

\[
\begin{align*}
[;] \# L &= L \\
[\text{Pos}(e)] \# L &= [\text{Neg}(e)] \# L = L \cup \text{Vars}(e) \\
[x = e;] \# L &= (L \setminus \{x\}) \cup \text{Vars}(e) \\
x = M[e];] \# L &= (L \setminus \{x\}) \cup \text{Vars}(e_1) \\
M[e_1] = e_2;] \# L &= L \cup \text{Vars}(e_1) \cup \text{Vars}(e_2)
\end{align*}
\]
The Effects of Edges:

\[
\begin{align*}
\text{[;]}\# L &= L \\
\text{[Pos}(e)\text{]}\# L &= [\text{Neg}(e)]\# L = L \cup \text{Vars}(e) \\
\text{[}x = e;\text{]}\# L &= (L\setminus\{x\}) \cup (x \in L) \ ? \ \text{Vars}(e) : \emptyset \\
\text{[}x = M[e];\text{]}\# L &= (L\setminus\{x\}) \cup (x \in L) \ ? \ \text{Vars}(e) : \emptyset \\
\text{[}M[e_1] = e_2;\text{]}\# L &= L \cup \text{Vars}(e_1) \cup \text{Vars}(e_2)
\end{align*}
\]
Note:

- The effects of edges for truely live variables are more complicated than for live variables :-)
- Nonetheless, they are distributive !!
Note:

- The effects of edges for truely live variables are more complicated than for live variables :-)
- Nonetheless, they are distributive !!

To see this, consider for $\mathbb{D} = 2^U$, $f_y = (u \in y) \ ? b : \emptyset$. We verify:

$$f (y_1 \cup y_2) = (u \in y_1 \cup y_2) \ ? b : \emptyset$$

$$= (u \in y_1 \lor u \in y_2) \ ? b : \emptyset$$

$$= (u \in y_1) \ ? b : \emptyset \cup (u \in y_2) \ ? b : \emptyset$$

$$= f y_1 \cup f y_2$$
Note:

- The effects of edges for truly live variables are more complicated than for live variables :-)
- Nonetheless, they are distributive !!

To see this, consider for $\mathbb{D} = 2^U$, $f(y) = (u \in y) \land b : \emptyset$. We verify:

\[
f(y_1 \cup y_2) = (u \in y_1 \cup y_2) \land b : \emptyset \\
= (u \in y_1 \lor u \in y_2) \land b : \emptyset \\
= (u \in y_1) \land b : \emptyset \lor (u \in y_2) \land b : \emptyset \\
= f(y_1) \lor f(y_2)
\]

\[\implies\text{ the constraint system yields the MOP } :-(.)\]
- True liveness detects more superfluous assignments than repeated liveness !!!
True liveness detects *more* superfluous assignments than repeated liveness !!!

Liveness:

$$\{x\} \quad x = x - 1; \quad \emptyset$$
• True liveness detects more superfluous assignments than repeated liveness !!!

True Liveness:

\[x = x - 1; \]