Accelerated Narrowing in the Example:

$$\begin{align*}
&i = 0; \\
&\text{Pos}(i < 42) \\
&\text{Neg}(i < 42) \\
&\text{Neg}(0 \leq i < 42) \\
&\text{Pos}(0 \leq i < 42) \\
&A_1 = A + i; \\
&M[A_1] = i; \\
&i = i + 1;
\end{align*}$$

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th></th>
<th>1</th>
<th></th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>l</td>
<td>u</td>
<td>l</td>
<td>u</td>
<td>l</td>
</tr>
<tr>
<td>0</td>
<td>$-\infty$</td>
<td>$+\infty$</td>
<td>$-\infty$</td>
<td>$+\infty$</td>
<td>$-\infty$</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>$+\infty$</td>
<td>0</td>
<td>$+\infty$</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>$+\infty$</td>
<td>0</td>
<td>41</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>$+\infty$</td>
<td>0</td>
<td>41</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>$+\infty$</td>
<td>0</td>
<td>41</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>$+\infty$</td>
<td>0</td>
<td>41</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>$+\infty$</td>
<td>1</td>
<td>42</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>42</td>
<td>$+\infty$</td>
<td>\bot</td>
<td>\bot</td>
<td>\bot</td>
</tr>
<tr>
<td>8</td>
<td>42</td>
<td>$+\infty$</td>
<td>42</td>
<td>$+\infty$</td>
<td>42</td>
</tr>
</tbody>
</table>
Discussion:

→ Caveat: Widening also returns for non-monotonic f_i a solution. Narrowing is only applicable to monotonic f_i ☹️

→ In the example, accelerated narrowing already returns the optimal result 😃

→ If the operator \sqcap only allows for finitely many improvements of values, we may execute narrowing until stabilization.

→ In case of interval analysis these are at most:

$$\#points \cdot (1 + 2 \cdot \#Vars)$$
1.6 Pointer Analysis

Questions:

→ Are two addresses possibly equal?
→ Are two addresses definitively equal?
1.6 Pointer Analysis

Questions:

→ Are two addresses possibly equal? May Alias

→ Are two addresses definitively equal? Must Alias

⇒⇒⇒ Alias Analysis
The analyses so far without alias information:

(1) **Available Expressions:**

- Extend the set \textit{Expr} of expressions by occurring loads $M[e]$.

- Extend the Effects of Edges:

\[
\begin{align*}
[x = e;] &\# A = (A \cup \{e\}) \setminus \text{Expr}_x \\
[x = M[e];] &\# A = (A \cup \{e, M[e]\}) \setminus \text{Expr}_x \\
[M[e_1] = e_2;] &\# A = (A \cup \{e_1, e_2\}) \setminus \text{Loads}
\end{align*}
\]
(2) Values of Variables:

- Extend the set $Expr$ of expressions by occurring loads $M[e]$.

- Extend the Effects of Edges:

$$[[x = M[e];]]^# V e' = \begin{cases}
\{x\} & \text{if } e' = M[e] \\
\emptyset & \text{if } e' = e \\
V e' \setminus \{x\} & \text{otherwise}
\end{cases}$$

$$[[M[e_1] = e_2;]]^# V e' = \begin{cases}
\emptyset & \text{if } e' \in \{e_1, e_2\} \\
V e' & \text{otherwise}
\end{cases}$$
(3) Constant Propagation:

- Extend the abstract state by an abstract store \(M \)
- Execute accesses to known memory locations!

\[
\begin{align*}
[x = M[e];] &\# (D, M) = \begin{cases}
(D \oplus \{ x \mapsto M a \}, M) & \text{if} \quad [e] \# D = a \sqsubseteq \top \\
(D \oplus \{ x \mapsto \top \}, M) & \text{otherwise} \\
(D, M \oplus \{ a \mapsto [e_2] \# D \}) & \text{if} \quad [e_1] \# D = a \sqsubseteq \top \\
(D, \bot) & \text{otherwise}
\end{cases}
\end{align*}
\]

\[
\begin{align*}
\bot a & = \top \\
(a \in \mathbb{N})
\end{align*}
\]
Problems:

- Addresses are from $\mathbb{N} :-(

 There are no infinite strictly ascending chains, but ...
- Exact addresses at compile-time are rarely known :-(
- At the same program point, typically different addresses are accessed ...
- Storing at an unknown address destroys all information $M :-(

\implies constant propagation fails :-(

\implies memory accesses/pointers kill precision :-(

364
Simplification:

- We consider pointers to the beginning of blocks A which allow indexed accesses $A[i]$:-)
- We ignore well-typedness of the blocks.
- New statements:

 $$x = \text{new}(); \quad // \quad \text{allocation of a new block}$$
 $$x = y[e]; \quad // \quad \text{indexed read access to a block}$$
 $$y[e_1] = e_2; \quad // \quad \text{indexed write access to a block}$$
- Blocks are possibly infinite :-)
- For simplicity, all pointers point to the beginning of a block.
Simple Example:

\[\begin{align*}
 x & = \text{new}(); \\
 y & = \text{new}(); \\
 x[0] & = y; \\
 y[1] & = 7;
\end{align*} \]
The Semantics:
The Semantics:
The Semantics:
The Semantics:
The Semantics:
More Complex Example:

```
r = Null;
while (t ≠ Null) {
    h = t;
    t = t[0];
    h[0] = r;
    r = h;
}
```
Concrete Semantics:

A store consists of a finite collection of blocks.

After \(h \) new-operations we obtain:

\[
\begin{align*}
\text{Addr}_h &= \{ \text{ref} \ a \mid 0 \leq a < h \} \quad \text{// addresses} \\
\text{Val}_h &= \text{Addr}_h \cup \mathbb{Z} \quad \text{// values} \\
\text{Store}_h &= (\text{Addr}_h \times \mathbb{N}_0) \rightarrow \text{Val}_h \quad \text{// store} \\
\text{State}_h &= (\text{Vars} \rightarrow \text{Val}_h) \times \text{Store}_h \quad \text{// states}
\end{align*}
\]

For simplicity, we set: \(0 = \text{Null} \)
Let \((\rho, \mu) \in \text{State}_h\). Then we obtain for the new edges:

\[
\begin{align*}
[x = \text{new}()] (\rho, \mu) &= (\rho \oplus \{ x \mapsto \text{ref } h \}, \\
& \quad \mu \oplus \{ (\text{ref } h, i) \mapsto 0 \mid i \in \mathbb{N}_0 \}) \\
[x = y[e];] (\rho, \mu) &= (\rho \oplus \{ x \mapsto \mu (\rho y, [e] \rho) \}, \mu) \\
[y[e_1] = e_2;] (\rho, \mu) &= (\rho, \mu \oplus \{ (\rho y, [e_1] \rho) \mapsto [e_2] \rho \})
\end{align*}
\]
Caveat:

This semantics is too detailed in that it computes with absolute Addresses. Accordingly, the two programs:

\[
\begin{align*}
x &= \text{new}(); \\
y &= \text{new}(); \\
y &= \text{new}(); \\
x &= \text{new}();
\end{align*}
\]

are not considered as equivalent !?!

Possible Solution:

Define equivalence only up to permutation of addresses :-)
Alias Analysis

1. Idea:

- Distinguish finitely many classes of blocks.
- Collect all addresses of a block into one set!
- Use sets of addresses as abstract values!

⇒ Points-to-Analysis

\[
\begin{align*}
\text{Addr}^# &= \text{Edges} & \text{// creation edges} \\
\text{Val}^# &= 2^{\text{Addr}^#} & \text{// abstract values} \\
\text{Store}^# &= \text{Addr}^# \to \text{Val}^# & \text{// abstract store} \\
\text{State}^# &= (\text{Vars} \to \text{Val}^#) \times \text{Store}^# & \text{// abstract states} \\
\end{align*}
\]

// complete lattice !!!
... in the Simple Example:

```java
y[1] = 7;
x[0] = y;
y = new();
x = new();
```

<table>
<thead>
<tr>
<th></th>
<th>x</th>
<th>y</th>
<th>$(0, 1)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>∅</td>
<td>∅</td>
<td>∅</td>
</tr>
<tr>
<td>1</td>
<td>${(0, 1)}$</td>
<td>∅</td>
<td>∅</td>
</tr>
<tr>
<td>2</td>
<td>${(0, 1)}$</td>
<td>${(1, 2)}$</td>
<td>∅</td>
</tr>
<tr>
<td>3</td>
<td>${(0, 1)}$</td>
<td>${(1, 2)}$</td>
<td>${(1, 2)}$</td>
</tr>
<tr>
<td>4</td>
<td>${(0, 1)}$</td>
<td>${(1, 2)}$</td>
<td>${(1, 2)}$</td>
</tr>
</tbody>
</table>
The Effects of Edges:

\[
\begin{align*}
\llbracket (_, ;, _) \rrbracket^\# (D, M) &= (D, M) \\
\llbracket (_, \text{Pos}(e), _) \rrbracket^\# (D, M) &= (D, M) \\
\llbracket (_, x = y; , _) \rrbracket^\# (D, M) &= (D \oplus \{ x \mapsto D y \}, M) \\
\llbracket (_, x = e; , _) \rrbracket^\# (D, M) &= (D \oplus \{ x \mapsto \emptyset \}, M) , \quad e \notin Vars \\
\llbracket (u, x = \text{new}(); , v) \rrbracket^\# (D, M) &= (D \oplus \{ x \mapsto \{ (u, v) \} \}, M) \\
\llbracket (_, x = y[e]; , _) \rrbracket^\# (D, M) &= (D \oplus \{ x \mapsto \bigcup \{ M(f) \mid f \in D y \} \}, M) \\
\llbracket (_, y[e_1] = x; , _) \rrbracket^\# (D, M) &= (D, M \oplus \{ f \mapsto (M f \cup D x) \mid f \in D y \})
\end{align*}
\]
Caveat:

- The value `Null` has been ignored. Dereferencing of `Null` or negative indices are not detected :-(
- **Destructive updates** are only possible for variables, not for blocks in storage!

 no information, if not all block entries are initialized before use :-((
- The effects now depend on the edge itself.

The analysis cannot be proven correct w.r.t. the reference semantics :-(

In order to prove correctness, we first **instrument** the concrete semantics with extra information which records where a block has been created.
• We compute possible points-to information.
• From that, we can extract may-alias information.
• The analysis can be rather expensive — without finding very much
 :-(
• Separate information for each program point can perhaps be
 abandoned ??
Alias Analysis

2. Idea:

Compute for each variable and address a value which safely approximates the values at every program point simultaneously!

... in the Simple Example:

```
0
  x = new();

1
  y = new();

2
  x[0] = y;

3
  y[1] = 7;

4
```

<table>
<thead>
<tr>
<th>x</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td></td>
</tr>
<tr>
<td>(0, 1)</td>
<td>{ (0, 1) }</td>
</tr>
<tr>
<td>(1, 2)</td>
<td>{ (1, 2) }</td>
</tr>
<tr>
<td>(0, 1)</td>
<td>{ (1, 2) }</td>
</tr>
<tr>
<td>(1, 2)</td>
<td>∅</td>
</tr>
</tbody>
</table>
Each edge \((u, \text{lab}, v)\) gives rise to constraints:

<table>
<thead>
<tr>
<th>lab</th>
<th>Constraint</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x = y;)</td>
<td>(\mathcal{P}[x] \supseteq \mathcal{P}[y])</td>
</tr>
<tr>
<td>(x = \text{new}();)</td>
<td>(\mathcal{P}[x] \supseteq {(u, v)})</td>
</tr>
<tr>
<td>(x = y[e];)</td>
<td>(\mathcal{P}[x] \supseteq \bigcup{\mathcal{P}[f] \mid f \in \mathcal{P}[y]})</td>
</tr>
<tr>
<td>(y[e_1] = x;)</td>
<td>(\mathcal{P}[f] \supseteq (f \in \mathcal{P}[y]) \Rightarrow \mathcal{P}[x] : \emptyset) for all (f \in \text{Addr}^#)</td>
</tr>
</tbody>
</table>

Other edges have no effect \(:-)\)
Discussion:

- The resulting constraint system has size $O(k \cdot n)$ for k abstract addresses and n edges :-(
- The number of necessary iterations is $O(k + \# Vars)$...
- The computed information is perhaps still too zu precise !?
- In order to prove correctness of a solution $s^\# \in States^\#$ we show: