Helmut Seidl

Program Optimization

TU München

Winter 2012/13

Organization

Dates: Lecture: Monday, 14:00-15:30

Wednesday, 8:30-10:00

Tutorials: Tuesday/Wednesday, 10:00-12:00

Kalmer Apinis: apinis@in.tum.de

Material: slides, recording :-)

Moodle

Program Analysis and Transformation

Springer, 2012

Grades: • Bonus for homeworks

• written exam

Proposed Content:

- 1. Avoiding redundant computations
 - \rightarrow available expressions
 - → constant propagation/array-bound checks
 - \rightarrow code motion
- 2. Replacing expensive with cheaper computations
 - ightarrow peep hole optimization
 - \rightarrow inlining
 - \rightarrow reduction of strength

• • •

3. Exploiting Hardware

- \rightarrow Instruction selection
- \rightarrow Register allocation
- \rightarrow Scheduling
- \rightarrow Memory management

0 Introduction

Observation 1: Intuitive programs often are inefficient.

Example:

```
void swap (int i, int j) {
   int t;
   if (a[i] > a[j]) {
       t = a[j];
       a[j] = a[i];
       a[i] = t;
   }
}
```

Inefficiencies:

- Addresses a[i], a[j] are computed three times :-(
- Values a[i], a[j] are loaded twice :-(

Improvement:

- Use a pointer to traverse the array a;
- store the values of a[i], a[j]!

Observation 2:

Higher programming languages (even C :-) abstract from hardware and efficiency.

It is up to the compiler to adapt intuitively written program to hardware.

Examples:

- ... Filling of delay slots;
- ... Utilization of special instructions;
- ... Re-organization of memory accesses for better cache behavior;
- ... Removal of (useless) overflow/range checks.

Observation 3:

Programm-Improvements need not always be correct :-(

Example:

$$y = f() + f();$$
 \implies $y = 2 * f();$

Idea: Save second evaluation of f() ...

Observation 3:

Programm-Improvements need not always be correct :-(

Example:

$$y = f() + f();$$
 \implies $y = 2 * f();$

Idea: Save the second evaluation of f () ???

Problem: The second evaluation may return a result different from the first; (e.g., because f () reads from the input :-)

Consequences:

- Optimizations have assumptions.
- \Longrightarrow The assumption must be:
 - formalized,
 - checked :-)
- It must be proven that the optimization is correct, i.e., preserves the semantics !!!

Observation 4:

Optimization techniques depend on the programming language:

- \rightarrow which inefficiencies occur;
- \rightarrow how analyzable programs are;
- \rightarrow how difficult/impossible it is to prove correctness ...

Example: Java

Unavoidable Inefficiencies:

- * Array-bound checks;
- * Dynamic method invocation;
- * Bombastic object organization ...

Analyzability:

- + no pointer arithmetic;
- + no pointer into the stack;
- dynamic class loading;
- reflection, exceptions, threads, ...

Correctness proofs:

- + more or less well-defined semantics;
- features, features;
- libraries with changing behavior ...

... in this course:

a simple imperative programming language with:

```
variables // registers
R = e; // assignments
R = M[e]; // loads
M[e_1] = e_2; // stores
if (e) s_1 else s_2 // conditional branching
goto L; // no loops :-)
```

Note:

- For the beginning, we omit procedures :-)
- External procedures are taken into account through a statement f() for an unknown procedure f.
 - ⇒ intra-procedural
 - kind of an intermediate language in which (almost) everything can be translated.

Example: swap()

```
0: A_1 = A_0 + 1 * i;  // A_0 == \& a
1: R_1 = M[A_1]; // R_1 == a[i]
2: A_2 = A_0 + 1 * j;
3: R_2 = M[A_2]; 	 // R_2 == a[j]
4: if (R_1 > R_2) {
   A_3 = A_0 + 1 * j;
5:
   t = M[A_3];
6:
  A_4 = A_0 + 1 * j;
7:
    A_5 = A_0 + 1 * i;
8:
        R_3 = M[A_5];
9:
        M[A_4] = R_3;
10:
   A_6 = A_0 + 1 * i;
11:
12:
        M[A_6] = t;
```

Optimization 1: $1*R \implies R$

$$1*R \implies R$$

Optimization 2: Reuse of subexpressions

$$A_1 === A_5 === A_6$$

$$A_2 == A_3 == A_4$$

$$M[A_1] == M[A_5]$$

$$M[A_2] == M[A_3]$$

$$R_1 == R_3$$

By this, we obtain:

```
A_{1} = A_{0} + i;
R_{1} = M[A_{1}];
A_{2} = A_{0} + j;
R_{2} = M[A_{2}];
if (R_{1} > R_{2}) {
t = R_{2};
M[A_{2}] = R_{1};
M[A_{1}] = t;
}
```

Optimization 3: Contraction of chains of assignments :-)

Gain:

	before	after
+	6	2
*	6	0
load	4	2
store	2	2
>	1	1
=	6	2

1 Removing superfluous computations

1.1 Repeated computations

Idea:

If the same value is computed repeatedly, then

- → store it after the first computation;
- → replace every further computation through a look-up!
 - → Availability of expressions
 - → Memoization

Problem: Identify repeated computations!

Example:

$$z = 1;$$

$$y = M[17];$$

$$A: x_1 = y+z;$$

$$\vdots$$

$$B: x_2 = y+z;$$

Note:

B is a repeated computation of the value of y+z, if:

- (1) A is always executed before B; and
- (2) y and z at B have the same values as at A:-)

→ We need:

- \rightarrow an operational semantics :-)
- \rightarrow a method which identifies at least some repeated computations ...

Background 1: An Operational Semantics

we choose a small-step operational approach.

Programs are represented as control-flow graphs.

In the example:

Thereby, represent:

vertex	program point
start	programm start
stop	program exit
edge	step of computation

Thereby, represent:

vertex	program point
start	programm start
stop	program exit
edge	step of computation

Edge Labelings:

Test: Pos (e) or Neg (e)

Assignment: R = e;

Load: R = M[e];

Store: $M[e_1] = e_2;$

Nop: ;

Computations follow paths.

Computations transform the current state

$$s = (\rho, \mu)$$

where:

$\rho: Vars \to \mathbf{int}$	contents of registers
$\mu: \mathbb{N} o \mathbf{int}$	contents of storage

Every edge k = (u, lab, v) defines a partial transformation

$$[\![k]\!] = [\![lab]\!]$$

of the state:

$$[\![;]\!](\rho,\mu) \qquad = (\rho,\mu)$$

$$[\![\operatorname{Pos}(e)]\!](\rho,\mu) = (\rho,\mu)$$

$$[\![\operatorname{Neg}(e)]\!](\rho,\mu) = (\rho,\mu)$$

if
$$[e] \rho \neq 0$$

if
$$\llbracket e \rrbracket \rho = 0$$

$$[\![;]\!](\rho,\mu) = (\rho,\mu)$$

$$[\![\operatorname{Pos}(e)]\!](\rho,\mu) = (\rho,\mu) \quad \text{if } [\![e]\!] \rho \neq 0$$

- // $\llbracket e \rrbracket$: evaluation of the expression e, e.g.
- $// [x+y] \{x \mapsto 7, y \mapsto -1\} = 6$
- $// [!(x == 4)] \{x \mapsto 5\} = 1$

$$[\![;]\!](\rho,\mu) \qquad = (\rho,\mu)$$

$$[\![\operatorname{Pos}(e)]\!](\rho,\mu) = (\rho,\mu)$$
 if $[\![e]\!]\rho \neq 0$

- // $\llbracket e \rrbracket$: evaluation of the expression e, e.g.
- $// [x+y] \{x \mapsto 7, y \mapsto -1\} = 6$
- $// \quad [\![!(x == 4)]\!] \{x \mapsto 5\} = 1$

$$[\![R=e;]\!] (\rho,\mu) = (\rho \oplus \{R \mapsto [\![e]\!] \rho\},\mu)$$

// where "\(\operatorname{'}\)" modifies a mapping at a given argument