Helmut Seidl

Program Optimization

TU München

Winter 2012/13

Organization

Dates: Lecture: Monday, 14:00-15:30
Wednesday, 8:30-10:00
Tutorials: Tuesday/Wednesday, 10:00-12:00
Kalmer Apinis: apinis@in.tum.de
Material: slides, recording :-)
Moodle
Program Analysis and Transformation
Springer, 2012

Grades: - Bonus for homeworks

- written exam

Proposed Content:

1. Avoiding redundant computations
$\rightarrow \quad$ available expressions
$\rightarrow \quad$ constant propagation/array-bound checks
$\rightarrow \quad$ code motion
2. Replacing expensive with cheaper computations
$\rightarrow \quad$ peep hole optimization
$\rightarrow \quad$ inlining
$\rightarrow \quad$ reduction of strength

3. Exploiting Hardware

$\rightarrow \quad$ Instruction selection
\rightarrow Register allocation
$\rightarrow \quad$ Scheduling
\rightarrow Memory management

0 Introduction

Observation 1: Intuitive programs often are inefficient.

Example:

```
void swap (int i, int j) {
    int t;
    if (a[i] > a[j]) {
        t = a[j];
        a[j] = a[i];
        a[i] = t;
        }
    }
```


Inefficiencies:

- Addresses a[i], a[j] are computed three times
- Values a [i], a[j] are loaded twice

Improvement:

- Use a pointer to traverse the array a;
- store the values of a[i], a[j]!

$$
\begin{aligned}
& \text { void swap (int *p, int *q) \{ } \\
& \text { int } t, a i, ~ a j ; \\
& \text { ai }=\text { *p; aj }=* q \text {; } \\
& \text { if (ai > aj) \{ } \\
& t=a j ; \\
& \text { *q }=\text { ai; } \\
& \text { *p = t; // t can also be } \\
& \text { \} // eliminated! } \\
& \text { \} }
\end{aligned}
$$

Observation 2:

Higher programming languages (even C :-) abstract from hardware and efficiency.

It is up to the compiler to adapt intuitively written program to hardware.

Examples:

... Filling of delay slots;
... Utilization of special instructions;
... Re-organization of memory accesses for better cache behavior;
Removal of (useless) overflow/range checks.

Observation 3:

Programm-Improvements need not always be correct :-(

Example:

$$
y=f()+f() ; \quad \Longrightarrow \quad y=2 * f() ;
$$

Idea:
Save second evaluation of $f() \quad .$.

Observation 3:

Programm-Improvements need not always be correct

Example:

$$
\mathrm{y}=\mathrm{f}()+\mathrm{f}() ; \quad \Longrightarrow \quad \mathrm{y}=2 * \mathrm{f}() ;
$$

Idea: \quad Save the second evaluation of $f() \quad ? ? ?$
Problem: The second evaluation may return a result different from the first; (e.g., because $f()$ reads from the input :-)

Consequences:

$\Longrightarrow \quad$ Optimizations have assumptions.
$\Longrightarrow \quad$ The assumption must be:

- formalized,
- checked :-)
$\Longrightarrow \quad$ It must be proven that the optimization is correct, i.e., preserves the semantics !!!

Observation 4:

Optimization techniques depend on the programming language:
$\rightarrow \quad$ which inefficiencies occur;
\rightarrow how analyzable programs are;
\rightarrow how difficult/impossible it is to prove correctness ...

Example: Java

Unavoidable Inefficiencies:

* Array-bound checks;
* Dynamic method invocation;
* Bombastic object organization ...

Analyzability:

+ no pointer arithmetic;
+ no pointer into the stack;
- dynamic class loading;
- reflection, exceptions, threads, ...

Correctness proofs:
$+\quad$ more or less well-defined semantics;

- features, features, features;
- libraries with changing behavior ...

... in this course:

a simple imperative programming language with:

- variables
- $R=e$;
- $\quad R=M[e] ;$
- $M\left[e_{1}\right]=e_{2}$;
- if $(e) s_{1}$ else s_{2}
- goto L;
registers
assignments
loads
stores
conditional branching
no loops :-)

Note:

- For the beginning, we omit procedures :-)
- External procedures are taken into account through a statement $f()$ for an unknown procedure f.
\Longrightarrow intra-procedural
\Longrightarrow kind of an intermediate language in which (almost) everything can be translated.

Example: swap()

$$
\begin{aligned}
& \text { 0: } \quad A_{1}=A_{0}+1 * i ; \quad / / \quad A_{0}==\& a \\
& \text { 1: } \quad R_{1}=M\left[A_{1}\right] ; \\
& \text { // } \quad R_{1}==a[i] \\
& \text { 2: } \quad A_{2}=A_{0}+1 * j ; \\
& \text { 3: } \quad R_{2}=M\left[A_{2}\right] ; \\
& \text { // } \quad R_{2}==a[j] \\
& \text { 4: if }\left(R_{1}>R_{2}\right) \text { \{ } \\
& \text { 5: } \quad A_{3} \quad=A_{0}+1 * j ; \\
& \text { 6: } \quad t \quad=M\left[A_{3}\right] ; \\
& \text { 7: } \quad A_{4}=A_{0}+1 * j ; \\
& \text { 8: } \quad A_{5}=A_{0}+1 * i \text {; } \\
& \text { 9: } \quad R_{3}=M\left[A_{5}\right] ; \\
& \text { 10: } \quad M\left[A_{4}\right]=R_{3} ; \\
& \text { 11: } \quad A_{6} \quad=A_{0}+1 * i ; \\
& \text { 12: } \quad M\left[A_{6}\right]=t ; \\
& \text { \} }
\end{aligned}
$$

Optimization 1:

Optimization 2: Reuse of subexpressions

$$
\begin{aligned}
& A_{1}=A_{5}==A_{6} \\
& A_{2}==A_{3}==A_{4}
\end{aligned}
$$

$$
\begin{aligned}
& M\left[A_{1}\right]==M\left[A_{5}\right] \\
& M\left[A_{2}\right]==M\left[A_{3}\right]
\end{aligned}
$$

$$
R_{1}==R_{3}
$$

By this, we obtain:

$$
\begin{aligned}
& A_{1}=A_{0}+i ; \\
& R_{1}=M\left[A_{1}\right] ; \\
& A_{2}= A_{0}+j ; \\
& R_{2}= M\left[A_{2}\right] ; \\
& \text { if }\left(R_{1}>R_{2}\right)\{ \\
& t=R_{2} ; \\
& M\left[A_{2}\right]= \\
&=R_{1} ; \\
& M\left[A_{1}\right]= \\
&\}
\end{aligned}
$$

Optimization 3: Contraction of chains of assignments :-)

Gain:

	before	after
+	6	2
$*$	6	0
load	4	2
store	2	2
$>$	1	1
$=$	6	2

1 Removing superfluous computations

1.1 Repeated computations

Idea:

If the same value is computed repeatedly, then
$\rightarrow \quad$ store it after the first computation;
\rightarrow replace every further computation through a look-up!
$\Longrightarrow \quad$ Availability of expressions
\Longrightarrow Memoization

Problem: Identify repeated computations!

Example:

$$
\begin{aligned}
z= & 1 ; \\
y= & M[17] ; \\
A: \quad x_{1}= & y+z ; \\
& \cdots \\
B: \quad x_{2}= & y+z ;
\end{aligned}
$$

Note:

B is a repeated computation of the value of $y+z$, if:
(1) A is always executed before B; and
(2) y and z at B have the same values as at $A \quad:-)$
\Longrightarrow We need:
$\rightarrow \quad$ an operational semantics :-)
\rightarrow a method which identifies at least some repeated computations ...

Background 1: An Operational Semantics

we choose a small-step operational approach.
Programs are represented as control-flow graphs.
In the example:

Thereby, represent:

vertex	program point
start	programm start
stop	program exit
edge	step of computation

Thereby, represent:

vertex	program point
start	programm start
stop	program exit
edge	step of computation

Edge Labelings:
Test: $\quad \operatorname{Pos}(e)$ or $\mathrm{Neg}(e)$
Assignment : $\quad R=e$;
Load : $\quad R=M[e]$;
Store : $\quad M\left[e_{1}\right]=e_{2}$;
Nop :

Computations follow paths.
Computations transform the current state

$$
s=(\rho, \mu)
$$

where:

$\rho:$ Vars \rightarrow int	contents of registers
$\mu: \mathbb{N} \rightarrow$ int	contents of storage

Every edge $k=(u, l a b, v)$ defines a partial transformation

$$
\llbracket k \rrbracket=\llbracket l a b \rrbracket
$$

of the state:

$$
\llbracket ; \rrbracket(\rho, \mu) \quad=\quad(\rho, \mu)
$$

$$
\llbracket \operatorname{Pos}(e) \rrbracket(\rho, \mu)=(\rho, \mu)
$$

$$
\llbracket \operatorname{Neg}(e) \rrbracket(\rho, \mu)=(\rho, \mu)
$$

if $\llbracket e \rrbracket \rho \neq 0$
if $\llbracket e \rrbracket \rho=0$

$$
\begin{array}{lll}
\llbracket ; \rrbracket(\rho, \mu) & =(\rho, \mu) & \\
\llbracket \operatorname{Pos}(e) \rrbracket(\rho, \mu) & =(\rho, \mu) & \\
\text { if } \llbracket e \rrbracket \rho \neq 0 \\
\llbracket \operatorname{Neg}(e) \rrbracket(\rho, \mu) & =(\rho, \mu) & \\
\text { if } \llbracket e \rrbracket \rho=0
\end{array}
$$

$/ / \llbracket e \rrbracket: \quad$ evaluation of the expression e, e.g.
// $\llbracket x+y \rrbracket\{x \mapsto 7, y \mapsto-1\}=6$
// $\llbracket!(x==4) \rrbracket\{x \mapsto 5\}=1$

$$
\begin{array}{lll}
\llbracket ; \rrbracket(\rho, \mu) & =(\rho, \mu) & \\
\llbracket \operatorname{Pos}(e) \rrbracket(\rho, \mu) & =(\rho, \mu) & \\
\text { if } \llbracket e \rrbracket \rho \neq 0 \\
\llbracket \operatorname{Neg}(e) \rrbracket(\rho, \mu) & =(\rho, \mu) & \\
\text { if } \llbracket e \rrbracket \rho=0
\end{array}
$$

$/ / \llbracket e \rrbracket: \quad$ evaluation of the expression e, e.g.
// $\quad \llbracket x+y \rrbracket\{x \mapsto 7, y \mapsto-1\}=6$
// $\llbracket!(x==4) \rrbracket\{x \mapsto 5\}=1$

$$
\llbracket R=e ; \rrbracket(\rho, \mu)=(\rho \oplus\{R \mapsto \llbracket e \rrbracket \rho\}, \mu)
$$

where " \oplus " modifies a mapping at a given argument

