Helmut Seidl

Program Optimization

TU MiUnchen
Winter 2012/13

Organization

Dates:

Lecture:

Tutorials:

Material:

Monday, 14:00-15:30

Wednesday, 8:30-10:00
Tuesday/Wednesday, 10:00-12:00
Kalmer Apinis:api ni s@ n. t um de
slides,recording :-)

Moodle

Program Analysis and Transformation
Springer, 2012

Grades: e Bonus for homeworks
e Written exam

Proposed Content:

1. Avoiding redundant computations

— available expressions
— constant propagation/array-bound checks

— code motion

2. Replacing expensive with cheaper computations
— peep hole optimization
— Inlining

— reduction of strength

3. Exploiting Hardware

%

RN

Instruction selection
Register allocation
Scheduling

Memory management

0 Introduction

Observation 1: Intuitive programsoftenare inefficient.

Example:
void swap (int i, int j) {

Int t;

i (afi] > a[j]) {
t =al[j];
a[]] = al[i];
a[i] =t;
}

Inefficiencies:

e Addresses|i],a[]] are computed three times:-(

e \Valuesa[i],a[]] areloaded twice :-(

Improvement:

e Use a pointer to traverse the array

e storethevaluesd[i],a[]]!

void swap (int *p, int *q) {
int t, ai, aj;

al = *p; a] = *q;
if (ai > aj) {
t = a;
*q = al;
xp = t; // t can al so be
} /1 elimnated!

Observation 2:

Higher programming languages (evén-) abstract from hardware and
efficiency.

It is up to the compiler to adapttuitively written program to hardware.

Examples:

Filling of delay slots;
Utilization of special instructions;
Re-organization of memory accesses for better cache @ahavi

Removal of (useless) overflow/range checks.

Observation 3:

Programmhkmprovementseed not always be correct:-(

Example:

y =1() +1(); — Yy =2 1();

ldea: Save second evaluation ©f)

10

Observation 3:

ProgrammHbnprovementsieed not always be correct-(

Example:

y =1() +1(); — Yy =2 1();

ldea: Save the second evaluationfaf) 2?72

Problem: The second evaluation may return a result different from the
first; (e.g., becauske() reads from the input :-)

11

Consequences:

Optimizations havessumptions

—
—> Theassumptiormust be:

e formalized,
e checked :-)

—> It must be proven that the optimizationasrreci i.e., preserves
thesemanticd!!

12

Observation 4:

Optimization techniques depend on thregramming language

— which inefficiencies occur;
— how analyzable programs are;

— how difficult/impossible it is to prove correctness ...

Example: Java

13

Unavoidable Inefficiencies:

x Array-bound checks;
x Dynamic method invocation;

x Bombastic object organization ...
Analyzability:

+ no pointer arithmetic;
-+ no pointer into the stack;

— dynamic class loading;

— reflection, exceptions, threads, ...

14

Correctness proofs:

4+ more or less well-defined semantics:
— features, features, features;

— libraries with changing behavior ...

15

... In this course:

a simpleimperativeprogramming language with:

e Variables
o R=c¢;
o R=Mle|;

o Mley| = es;
o if(e) s else s,

e (oto L;

//
//
//
//
//
//

16

registers
assignments

loads

stores

conditional branching
no loops :-)

Note:

e For the beginning, we omit procedures-)

e External procedures are taken into account through a statefit) for
an unknown procedurg.

—— Intra-procedural

—— kind of an intermediate language in which (almost) evenghi
can be translated.

Example: swap()

17

© 00 I D T R W N R O
AN
w

o — o
=& s
S

Ag+ 1 %x1;

18

AQ == &a
Rl == CL[Z]
Ry == alj]

Optimization 1. xR —— R

Optimization 2: Reuse of subexpressions

Ay == A5 == Aq
Ay == A3 == A,

19

By this, we obtain:

Ay = Ao+
R, = MJ[A];
Ay = Ao+ J;
Ry = M[As];
if (R > Rs) {
¢ —
M[A)] =
M4y =

20

Optimization 3: Contraction of chains of assignments-)

Gain:

before | after

+ 6 2
* 6 0)
load 4 2
store 2 2
> 1 1
6 2

21

1 Removing superfluous computations

1.1 Repeated computations
ldea:

If the same value is computedpeatedlythen
— storeit after the first computation;

— replace every further computation througloak-up

—— Availability of expressions

—— Memoization

22

Problem: Identify repeated computations!

Example:
z = 1
y = M17];
A: T = |y+ 2|

23

Note:

B Is arepeated computation of the valuewpf- z |, if:

(1) AisalwaysexecutedheforeB; and

(2) y andz at B have the same values asAt :-)

—— \We need:

— an operational semantics:-)
— amethod which identifies at leasimerepeated computations ...

24

Background 1. An Operational Semantics

we choose amall-stepoperational approach.
Programs are representedcastrol-flow graphs

In the example:

= Ao+ 1%x1
= M[A,]
Ay = Ag + 1%
Ry = M[A2];
Neg(R: > R2) Pos(R1 > R2)

Az = Ao + 1 *3;

25

Thereby, represent:

vertex | program point

start programm start

stop program exit

edge | step of computation

26

Thereby, represent:

vertex

program point

start

programm start

stop

program exit

edge

step of computation

Edge Labelings:

Test:

Pos(e) or Neg(e)

Assignment: R =e;

Load :
Store:
Nop :

R = Mlel;
M eq] = es;

)

27

Computations followpaths

Computations transform the curresitite

s=(p, 1)

where:

p: Vars — int | contents of registers

p: N — int contents of storage

Everyedgek = (u, lab, v) defines gartial transformation

k] = [lab]

of the state:

28

(p, 1)

/N N
~ o
= =
~—"

29

//

//
//

= (o)
) = (o) f [e] p # 0
(0;1) = (p 1) if [e] p=0
le] : evaluationof the expression, e.g.

[t +y]{x—T,y— -1} =6

['(z ==4)][{z — 5} =1

30

[1 (o,) = (p, 1)

s
D o
Oq 05
—_
)
S =
N
= =
I |
N N
= =
N——
iy —h
/4
() Q)
e =
D
| e
(@) o

/| le] : evaluationof the expression, e.g.

/) [x+yl{z—T,y— -1} =6
/| Do =— D] a5} = 1

[R=e](p,n) = (pD{R= [e]p}|, 1)

// where ‘©" modifies a mapping at a given argument

31

