
(2) Values of Variables:

• Extend the set Expr of expressions by occurring loadsM [e] .

• Extend the Effects of Edges:

[[x = M [e];]]♯ V e′ =















{x} if e′ = M [e]

∅ if e′ = e

V e′\{x} otherwise

[[M [e1] = e2;]]
♯ V e′ =

{

∅ if e′ ∈ {e1, e2}

V e′ otherwise

362

(3) Constant Propagation:

• Extend the abstract state by an abstract storeM

• Execute accesses to known memory locations!

[[x = M [e];]]♯ (D,M) =















(D ⊕ {x 7→ M a},M) if

[[e]]♯D = a⊏⊤

(D ⊕ {x 7→ ⊤},M) otherwise

[[M [e1] = e2;]]
♯ (D,M) =















(D,M ⊕ {a 7→ [[e2]]
♯D}) if

[[e1]]
♯D = a⊏⊤

(D,⊤) otherwise where

⊤ a = ⊤ (a ∈ N)

363

Problems:

• Addresses are fromN :-(

There areno infinitestrictly ascending chains, but...

• Exact addresses at compile-time arerarelyknown :-(

• At the same program point, typically different addresses are
accessed...

• Storing at anunknownaddress destroys all informationM :-(

==⇒ constant propagation fails:-(

==⇒ memory accesses/pointerskill precision :-(

364

Simplification:

• We consider pointers to the beginning ofblocks A which allow
indexed accessesA[i] :-)

• We ignore well-typedness of the blocks.

• New statements:

x = new(); // allocation of a new block

x = y[e]; // indexed read access to a block

y[e1] = e2; // indexed write access to a block

• Blocks are possibly infinite :-)

• For simplicity, all pointers point to the beginning of a block.

365

Simple Example:

x = new();

y = new();

x[0] = y;

y[1] = 7;
y[1] = 7;

x[0] = y;

1
y = new();

2

3

4

0
x = new();

366

The Semantics:

y

x

367

The Semantics:

y

x
1

0

368

The Semantics:

y

x

0

1

0

1

369

The Semantics:

y

x

0

1

0

1

370

The Semantics:

y

x

7

0

1

0

1

371

More Complex Example:

r = Null;

while (t 6= Null) {

h = t;

t = t[0];

h[0] = r;

r = h;

}

r = Null;

Pos(t 6= Null)Neg(t 6= Null)

7

r = h;

3

4

5

6

2
h = t;

1

0

t = t[0];

h[0] = r;

372

Concrete Semantics:

A store consists of afinite collection of blocks.

After h new-operations we obtain:

Addrh = {ref a | 0 ≤ a < h} // addresses

Valh = Addrh ∪ Z // values

Storeh = (Addrh × N0) → Valh // store

Stateh = (Vars → Valh)× Storeh // states

For simplicity, we set: 0 = Null

373

Let (ρ, µ) ∈ Stateh . Then we obtain for the new edges:

[[x = new();]] (ρ, µ) = (ρ⊕ {x 7→ ref h},

µ⊕ {(ref h, i) 7→ 0 | i ∈ N0})

[[x = y[e];]] (ρ, µ) = (ρ⊕ {x 7→ µ (ρ y, [[e]] ρ)}, µ)

[[y[e1] = e2;]] (ρ, µ) = (ρ, µ⊕ {(ρ y, [[e1]] ρ) 7→ [[e2]] ρ})

374

Caveat:

This semantics istoodetailled in that it computes withabsolute
Addresses. Accordingly, the two programs:

x = new();

y = new();

y = new();

x = new();

arenot considered as equivalent!!?

Possible Solution:

Define equivalence onlyup to permutation of addresses:-)

375

Alias Analysis 1. Idea:

• Distinguishfinitely manyclasses of blocks.

• Collect all addresses of a block into one set!

• Use sets of addresses as abstract values!

==⇒ Points-to-Analysis

Addr♯ = Edges // creation edges

Val♯ = 2Addr
♯

// abstract values

Store♯ = Addr ♯ → Val ♯ // abstract store

State♯ = (Vars → Val ♯)× Store♯ // abstract states

// complete lattice!!!

376

... in the Simple Example:

y[1] = 7;

x[0] = y;

1
y = new();

2

3

4

0
x = new();

x y (0, 1)

0 ∅ ∅ ∅

1 {(0, 1)} ∅ ∅

2 {(0, 1)} {(1, 2)} ∅

3 {(0, 1)} {(1, 2)} {(1, 2)}

4 {(0, 1)} {(1, 2)} {(1, 2)}

377

The Effects of Edges:

[[(_, ;, _)]]♯ (D,M) = (D,M)

[[(_,Pos(e), _)]]♯ (D,M) = (D,M)

[[(_, x = y;, _)]]♯ (D,M) = (D ⊕ {x 7→ D y},M)

[[(_, x = e;, _)]]♯ (D,M) = (D ⊕ {x 7→ ∅},M) , e 6∈ Vars

[[(u, x = new();, v)]]♯ (D,M) = (D ⊕ {x 7→ {(u, v)}},M)

[[(_, x = y[e];, _)]]♯ (D,M) = (D ⊕ {x 7→
⋃

{M(f) | f ∈ Dy}},M)

[[(_, y[e1] = x;, _)]]♯ (D,M) = (D,M ⊕ {f 7→ (M f ∪Dx) | f ∈ Dy})

378

Caveat:

• The value Null has been ignored. Dereferencing ofNull or
negative indices are not detected:-(

• Destructive updatesare only possible for variables, not for blocks in
storage!

==⇒ no information, if not all block entries are initialized before
use :-((

• The effects now depend on the edge itself.

The analysis cannot be proven correct w.r.t. the reference semantics
:-(

In order to prove correctness, we firstinstrumentthe concrete
semantics with extra information which records where a block has
been created.

379

• ...

• We computepossiblepoints-to information.

• From that, we can extractmay-aliasinformation.

• The analysis can be rather expensive — without finding very much
:-(

• Separate information for each program point can perhaps be
abandoned??

380

Alias Analysis 2. Idea:

Compute for each variable and address a value which safely approximates
the values at every program point simultaneously!

... in the Simple Example:

y[1] = 7;

x[0] = y;

1
y = new();

2

3

4

0
x = new();

x {(0, 1)}

y {(1, 2)}

(0, 1) {(1, 2)}

(1, 2) ∅

381

Each edge (u, lab, v) gives rise to constraints:

lab Constraint

x = y; P [x] ⊇ P [y]

x = new(); P [x] ⊇ {(u, v)}

x = y[e]; P [x] ⊇
⋃

{P [f] | f ∈ P [y]}

y[e1] = x; P [f] ⊇ (f ∈ P [y]) ?P [x] : ∅

for all f ∈ Addr ♯

Other edges have no effect:-)

382

Discussion:

• The resulting constraint system has sizeO(k · n) for k

abstract addresses andn edges :-(

• The number of necessary iterations isO(k(̇k +#Vars)) ...

• The computed information is perhaps still toozu precise!!?

• In order to prove correctness of a solutions♯ ∈ States♯ we show:

s s1

s♯

[[k]]

∆ ∆

383

Alias Analysis 3. Idea:

Determineoneequivalence relation ≡ on variables x and memory
accesses y[] with s1 ≡ s2 whenever s1, s2 may contain the
same address atsome u1, u2

... in the Simple Example:

y[1] = 7;

x[0] = y;

1
y = new();

2

3

4

0
x = new();

≡ = {{x},

{y, x[]},

{y[]}}

384

Discussion:

→ We compute asingle informationfo the whole program.

→ The computation of this information maintainspartitions
π = {P1, . . . , Pm} :-)

→ Individual sets Pi are identified by means ofrepresentatives
pi ∈ Pi.

→ The operations on a partitionπ are:

find (π, p) = pi if p ∈ Pi

// returns the representative

union (π, pi1, pi2) = {Pi1 ∪ Pi2} ∪ {Pj | i1 6= j 6= i2}

// unions the represented classes

385

→ If x1, x2 ∈ Vars are equivalent, then alsox1[] and x2[]

must be equivalent :-)

→ If Pi ∩ Vars 6= ∅ , then we choose pi ∈ Vars . Then we can
apply union recursively:

union
∗ (π, q1, q2) = let pi1 = find (π, q1)

pi2 = find (π, q2)

in if pi1 == pi2 then π

else let π = union (π, pi1, pi2)

in if pi1, pi2 ∈ Vars then

union
∗ (π, pi1[], pi2[])

386

