- (2) Values of Variables:
- Extend the set *Expr* of expressions by occurring loads M[e].
- Extend the Effects of Edges:

$$\llbracket x = M[e]; \rrbracket^{\sharp} V e' = \begin{cases} \{x\} & \text{if } e' = M[e] \\ \emptyset & \text{if } e' = e \\ V e' \setminus \{x\} & \text{otherwise} \end{cases}$$
$$\llbracket M[e_1] = e_2; \rrbracket^{\sharp} V e' = \begin{cases} \emptyset & \text{if } e' \in \{e_1, e_2\} \\ V e' & \text{otherwise} \end{cases}$$

- (3) Constant Propagation:
- Extend the abstract state by an abstract store M
- Execute accesses to known memory locations!

$$\begin{bmatrix} x = M[e]; \end{bmatrix}^{\sharp} (D, M) = \begin{cases} (D \oplus \{x \mapsto M a\}, M) & \text{if} \\ & \llbracket e \rrbracket^{\sharp} D = a \sqsubset \top \\ (D \oplus \{x \mapsto \top\}, M) & \text{otherwise} \end{cases}$$
$$\begin{bmatrix} M[e_1] = e_2; \end{bmatrix}^{\sharp} (D, M) = \begin{cases} (D, M \oplus \{a \mapsto \llbracket e_2 \rrbracket^{\sharp} D\}) & \text{if} \\ & \llbracket e_1 \rrbracket^{\sharp} D = a \sqsubset \top \\ (D, \underline{\top}) & \text{otherwise} & \text{where} \end{cases}$$
$$\underline{\top} a = \top \qquad (a \in \mathbb{N})$$

Problems:

• Addresses are from \mathbb{N} :-(

There are no infinite strictly ascending chains, but ...

- Exact addresses at compile-time are rarely known :-(
- At the same program point, typically different addresses are accessed ...
- Storing at an unknown address destroys all information M :-(
 - \Rightarrow constant propagation fails :-(
- \implies memory accesses/pointers kill precision :-(

Simplification:

- We consider pointers to the beginning of blocks A which allow indexed accesses A[i] :-)
- We ignore well-typedness of the blocks.
- New statements:

 $x = \mathsf{new}();$ //allocation of a new blockx = y[e];//indexed read access to a block $y[e_1] = e_2;$ //indexed write access to a block

- Blocks are possibly infinite :-)
- For simplicity, all pointers point to the beginning of a block.

Simple Example:

$$x = new();$$

 $y = new();$
 $x[0] = y;$
 $y[1] = 7;$

0

$$x = new();$$

1
 $y = new();$
2
 $x[0] = y;$
3
 $y[1] = 7;$
4

More Complex Example:

0 r =Null; $r = \mathsf{Null};$ while $(t \neq \text{Null})$ { $Pos(t \neq Null)$ $Neg(t \neq Null)$ h = t;h = t;t = t[0];3 h[0] = r;t = t[0];r = h; $\oint h[0] = r;$ } 5 v r = h;6

Concrete Semantics:

A store consists of a finite collection of blocks.

After h new-operations we obtain:

For simplicity, we set: 0 =Null

Let $(\rho, \mu) \in State_h$. Then we obtain for the new edges:

$$\begin{bmatrix} x = \mathsf{new}(); \end{bmatrix} (\rho, \mu) = (\rho \oplus \{x \mapsto \mathsf{ref} h\}, \\ \mu \oplus \{(\mathsf{ref} h, i) \mapsto 0 \mid i \in \mathbb{N}_0\}) \\ \begin{bmatrix} x = y[e]; \end{bmatrix} (\rho, \mu) = (\rho \oplus \{x \mapsto \mu (\rho y, \llbracket e \rrbracket \rho)\}, \mu) \\ \llbracket y[e_1] = e_2; \rrbracket (\rho, \mu) = (\rho, \mu \oplus \{(\rho y, \llbracket e_1 \rrbracket \rho) \mapsto \llbracket e_2 \rrbracket \rho\}) \\ \end{bmatrix}$$

Caveat:

This semantics is too detailled in that it computes with absolute Addresses. Accordingly, the two programs:

are not considered as equivalent !!?

Possible Solution:

Define equivalence only up to permutation of addresses :-)

Alias Analysis 1. Idea:

- Distinguish finitely many classes of blocks.
- Collect all addresses of a block into one set!
- Use sets of addresses as abstract values!

 \implies Points-to-Analysis

$$Addr^{\sharp}$$
= $Edges$ //creation edges Val^{\sharp} = $2^{Addr^{\sharp}}$ //abstract values $Store^{\sharp}$ = $Addr^{\sharp} \rightarrow Val^{\sharp}$ //abstract store $State^{\sharp}$ = $(Vars \rightarrow Val^{\sharp}) \times Store^{\sharp}$ //abstract states

complete lattice !!!

... in the Simple Example:

$$0 \\ x = new();$$

1
y = new();
2
x[0] = y;
3
y[1] = 7;
4

	x	y	(0,1)
0	Ø	Ø	Ø
1	$\{(0,1)\}$	Ø	Ø
2	$\{(0,1)\}$	$\{(1,2)\}$	Ø
3	$\{(0,1)\}$	$\{(1,2)\}$	$\{(1,2)\}$
4	$\{(0,1)\}$	$\{(1,2)\}$	$\{(1,2)\}$

The Effects of Edges:

$$\begin{split} \llbracket (_,;,_) \rrbracket^{\sharp} (D,M) &= (D,M) \\ \llbracket (_,\operatorname{Pos}(e),_) \rrbracket^{\sharp} (D,M) &= (D,M) \\ \llbracket (_,x=y;,_) \rrbracket^{\sharp} (D,M) &= (D \oplus \{x \mapsto D y\},M) \\ \llbracket (_,x=e;,_) \rrbracket^{\sharp} (D,M) &= (D \oplus \{x \mapsto \emptyset\},M) \quad , \quad e \notin Vars \end{split}$$

$$\begin{split} \llbracket (\mathbf{u}, x = \mathsf{new}();, \mathbf{v}) \rrbracket^{\sharp} (D, M) &= (D \oplus \{x \mapsto \{(\mathbf{u}, \mathbf{v})\}\}, M) \\ \llbracket (_, x = y[e];, _) \rrbracket^{\sharp} (D, M) &= (D \oplus \{x \mapsto \bigcup \{M(f) \mid f \in D y\}\}, M) \\ \llbracket (_, y[e_1] = x;, _) \rrbracket^{\sharp} (D, M) &= (D, M \oplus \{f \mapsto (M f \cup D x) \mid f \in D y\}) \end{split}$$

Caveat:

- The value Null has been ignored. Dereferencing of Null or negative indices are not detected :-(
- Destructive updates are only possible for variables, not for blocks in storage!

 \implies no information, if not all block entries are initialized before use :-((

• The effects now depend on the edge itself.

The analysis cannot be proven correct w.r.t. the reference semantics :-(

In order to prove correctness, we first instrument the concrete semantics with extra information which records where a block has been created. •••

- We compute possible points-to information.
- From that, we can extract may-alias information.
- The analysis can be rather expensive without finding very much :-(
- Separate information for each program point can perhaps be abandoned ??

Alias Analysis 2. Idea:

Compute for each variable and address a value which safely approximates the values at every program point simultaneously !

... in the Simple Example:

$$0 \\ x = new();$$

$$1 \\ y = new();$$

$$2 \\ x[0] = y;$$

$$3 \\ y[1] = 7;$$

$$4$$

x	$\{(0,1)\}$
y	$\{(1,2)\}$
(0 ,1)	$\{(1,2)\}$
(1,2)	Ø

Each edge (u, lab, v) gives rise to constraints:

lab		Constraint
x = y;	$\mathcal{P}[x] \supseteq$	$\mathcal{P}[y]$
$x = \operatorname{new}();$	$\mathcal{P}[x] \supseteq$	$\{(u,v)\}$
x = y[e];	$\mathcal{P}[x] \supseteq$	$\bigcup \{ \mathcal{P}[f] \mid f \in \mathcal{P}[y] \}$
$y[e_1] = x;$	$\mathcal{P}[f] \supseteq$	$(f \in \mathcal{P}[y]) ? \mathcal{P}[x] : \emptyset$
		for all $f \in Addr^{\sharp}$

Other edges have no effect :-)

Discussion:

- The resulting constraint system has size $O(k \cdot n)$ for k abstract addresses and n edges :-(
- The number of necessary iterations is O(k(k + # Vars)) ...
- The computed information is perhaps still too zu precise !!?
- In order to prove correctness of a solution $s^{\sharp} \in States^{\sharp}$ we show:

Alias Analysis 3. Idea:

Determine one equivalence relation \equiv on variables x and memory accesses y[] with $s_1 \equiv s_2$ whenever s_1, s_2 may contain the same address at some u_1, u_2

... in the Simple Example:

 $0 \\ x = new(); \\1 \\ y = new(); \\2 \\ x[0] = y; \\3 \\ y[1] = 7; \\4 \end{bmatrix} \equiv \{ \{x\}, \\\{y, x[]\}, \\\{y[]\}\}$

Discussion:

- \rightarrow We compute a single information fo the whole program.
- → The computation of this information maintains partitions $\pi = \{P_1, \dots, P_m\}$:-)
- → Individual sets P_i are identified by means of representatives $p_i \in P_i$.
- \rightarrow The operations on a partition π are:

find (π, p) = p_i if $p \in P_i$ // returns the representative union (π, p_{i_1}, p_{i_2}) = $\{P_{i_1} \cup P_{i_2}\} \cup \{P_j \mid i_1 \neq j \neq i_2\}$ // unions the represented classes

- → If $x_1, x_2 \in Vars$ are equivalent, then also $x_1[]$ and $x_2[]$ must be equivalent :-)
- → If $P_i \cap Vars \neq \emptyset$, then we choose $p_i \in Vars$. Then we can apply union recursively: