Values of Variables:

(2)

e Extendthe set Expr

e Extend the Effects of Edges:

[v = Mlel PV e

[Mlei] = ex;]PV €

of expressions by occurring loadsV/ [¢] .

362

{x} if ¢ = Mle
0 if ¢ =e¢

| Ve\{z} otherwise

(@ If 6/ c {61,62}

| V¢ otherwise

(3) Constant Propagation:

e Extend the abstract state by an abstract staré

e Execute accesses to known memory locations!

(D@ {x— Mal, M) if

[« = Mle}J (D, M) = { [(JfD=acT

(Do {r— T} M) otherwise

(D, M @ {a [e.]*!D}) if

[Mlei] = ex]* (D, M) =« [P D=aC T
(D, 1) otherwise where
Ta = T (a € N)

363

Problems:

e Addresses are fromN -(
There areno infinite strictly ascending chains, but
e Exact addresses at compile-time amezlyknown :-(

e Atthe same program point, typically different addresses ar
accessed.

e Storing at arunknownaddress destroys all informationM :-(

—— constant propagation fails:-(

—— memory accesses/pointead precision :-(

364

Simplification:

e \We consider pointers to the beginningbcks A which allow
indexed accessesAl|i| :-)

e \We ignore well-typedness of the blocks.

° New statements:

r=new(); // allocation of a new block
r = ylel; // indexed read access to a block
yler] = es; // indexed write access to a block

e Blocks are possibly infinite :-)

e For simplicity, all pointers point to the beginning of a bioc

365

Simple Example:

366

The Semantics:

367

The Semantics:

368

The Semantics:

369

The Semantics:

370

The Semantics:

371

More Complex Example:

r = Null;
while (¢ # Null) { Neg(t # Null)
h=t;
t = t[0];
h[0] = r;
r=h;

372

Concrete Semantics:

A store consists of &nite collection of blocks.

After h new-operations we obtain:

Addr, = {refa|0<a<h} // addresses
Val, = Addr,UZ // values
Sore, = (Addr, x Ng) — Valy, // store
Sate, = (Vars — Valy) x Storey, // states

For simplicity, we set:. 0 = Null

373

Let (p,u) € Statey, . Then we obtain for the new edges:

[z =new():] (p,n) = (p&{z > refh},
u@ {(ref hyi) = 0 i € Nob)

[z =ylel:] (o) = (p@{r—=pnlpy,lelp)}, 1)
[yled] = exs] (o) = (pop® {(py, [e:] p) = [e2] p})

374

Caveat:

This semantics ioo detailled in that it computes withbsolute
Addresses. Accordingly, the two programs:

x = new(); y = new();
y = new(); r = new();

arenotconsidered as equivalen?

Possible Solution:

Define equivalence onlyp to permutation of addresses-)

375

Alias Analysis 1. ldea:

e Distinguishfinitely manyclasses of blocks.

e Collect all addresses of a block into one set!

e Use sets of addresses as abstract values!

—— Points-to-Analysis

Addrf = Fdges

val _ 9Addrt

Sore? = Addr* — Val*

Sated = (Vars — Val*) x Store®

// complete lattice!!

376

//
//
//
//

creation edges
abstract values
abstract store

abstract states

... Inthe Simple Example:

et Wi et

/N /N N

— AN N

PN e R e R S N

(- —

N——" N—"

— =

et N et N et

~—~ ~~

AN AN AN

=D = « -

— =

N— N

— N

et N e Bl e Wi et

/N N N /N

—— == =

x:@:c/”ﬁ/

o o o O

N— N~ N~

— N

O —~ N o <A
~]

D .

2 = s
(@) @)

c c I I

377

The Effects of Edges:

M)

(D,
(D, M)

(D® {x— Dy}, M)

(D@ {x— 0}, M) : e & Vars
(D@7 = 1w, 0)}), M)

(D& {x—=U{M(f)|feDy}t}, M)
(D,Me{f=MfUDz)|feDy})

378

Caveat:

e Thevalue Null has been ignored. Dereferencing dfiull or
negative indices are not detected(

e Destructive updateare only possible for variables, not for blocks in
storage!

—— no Information, if not all block entries are initialized loeé
use -((

e The effects now depend on the edge itself.
The analysis cannot be proven correct w.r.t. the referemcmstics
=
In order to prove correctness, we fingstrumentthe concrete

semantics with extra information which records where albloas
been created.

379

We computegoossiblepoints-to information.

From that, we can extractay-aliasinformation.

The analysis can be rather expensive — without finding verghmu
=

Separate information for each program point can perhaps be
abandone@?

380

Alias Analysis 2. ldea:

Compute for each variable and address a value which safplpamates
the values at every program point simultaneously

... Inthe Simple Example:

381

Each edge (u, lab,v) gives rise to constraints:

lab Constraint

T =Y Plz] 2 Py

v =new(); | Plz] 2 {(u,v)}

v=uylel: | Plz] 2 WPl S € P}

yled] =a; | Plf] 2 (feP)?P[x] : 0
forall f e Addr?

Other edges have no effect-)

382

Discussion:

e The resulting constraint system has siz€ (% -n) for &
abstract addresses and edges :-(

e The number of necessary iterations i&) (L (/ + # Vars)) ...
e The computed information is perhaps still too precisd!?

e Inorder to prove correctness of a solution” € States* we show:

[¥]

383

Alias Analysis 3. Idea:

Determineoneequivalence relation = on variables » and memory
accessesy|| with s;=s, whenever s;,s, may contain the
same address abme uq, us

... Inthe Simple Example:

= {{=},
{y, 2]},
{yl1}}

384

Discussion:

1

We compute &ingle informatiorfo the whole program.

The computation of this information maintaipartitions
W:{Pl,...,Pm} :')

Individual sets P, are identified by means ofpresentatives
pi € .

The operations on a partitionr are:

find (m, p) = p; if pe P,
// returns the representative

union (Wapilvp’iz) — {Pll U PLQ} U {PJ | t #] 7£ ZQ}
// unions the represented classes

385

If 21,2, € Vars are equivalent, then alsor;|| and x5]]
must be equivalent :-)

If P,N Vars # (), then we choose p;, € Vars . Then we can
apply union recursively:

union® (m,q1,q2) = let p;, = find (7, q1)
pi, = find(m,q)
in if p;, ==p;, then 7

else let m = union (m, p;,, Pi,)

in if p;,, pi, € Vars then
union™ (7, pi, | |, Dio|])

386

