The analysis iterates over all edges once:

$$\pi = \{ \{x\}, \{x[\]\} \mid x \in Vars \};$$
forall $k = (_, lab, _)$ do $\pi = [\![lab]\!]^{\sharp} \pi;$

where:

$$[x = y;]^{\sharp} \pi = \operatorname{union}^{*}(\pi, x, y)$$

$$[x = y[e];]^{\sharp} \pi = \operatorname{union}^{*}(\pi, x, y[])$$

$$[y[e] = x;]^{\sharp} \pi = \operatorname{union}^{*}(\pi, x, y[])$$

$$[lab]^{\sharp} \pi = \pi \quad \text{otherwise}$$

... in the Simple Example:

0

$$x = new();$$

1
 $y = new();$
2
 $x[0] = y;$
3
 $y[1] = 7;$
4

... in the More Complex Example:

Caveat:

In order to find something, we must assume that variables / addresses always receive a value before they are accessed.

Complexity:

we have:

$\mathcal{O}(\# edges + \# Vars)$	calls of	union*
$\mathcal{O}(\# edges + \# Vars)$	calls of	find
$\mathcal{O}(\# Vars)$	calls of	union

We require efficient Union-Find data-structure :-)

Idea:

Represent partition of U as directed forest:

- For $u \in U$ a reference F[u] to the father is maintained;
- Roots are elements u with F[u] = u.

Single trees represent equivalence classes.

Their roots are their representatives ...

 $\rightarrow \quad \text{find} (\pi, u) \quad \text{follows the father references} :-) \\ \rightarrow \quad \text{union} (\pi, u_1, u_2) \quad \text{re-directs the father reference of one} \quad u_i \dots$

The Costs:

union	•	$\mathcal{O}(1)$:-)
find	•	$\mathcal{O}(depth(\pi))$:-(

Strategy to Avoid Deep Trees:

- Put the smaller tree below the bigger !
- Use find to compress paths ...

0	1	2	3	4	5	6	7
5	1	3	1	7	7	5	3

0	1	2	3	4	5	6	7
5	1	3	1	7	7	5	3

0	1	2	3	4	5	6	7
5	1	3	1	7	7	5	3

0	1	2	3	4	5	6	7
5	1	3	1	1	7	1	1

Robert Endre Tarjan, Princeton

Note:

• By this data-structure, n union- und m find operations require time $O(n + m \cdot \alpha(n, n))$

// α the inverse Ackermann-function :-)

- For our application, we only must modify union such that roots are from *Vars* whenever possible.
- This modification does not increase the asymptotic run-time. :-)

Summary:

The analysis is extremely fast — but may not find very much.

Background 3: Fixpoint Algorithms

Consider: $x_i \supseteq f_i(x_1, \ldots, x_n), \quad i = 1, \ldots, n$

Observation:

RR-Iteration is inefficient:

- \rightarrow We require a complete round in order to detect termination :-(
- \rightarrow If in some round, the value of just one unknown is changed, then we still re-compute all :-(
- \rightarrow The practical run-time depends on the ordering on the variables :-(

Idea:

Worklist Iteration

If an unknown x_i changes its value, we re-compute all unknowns which depend on x_i . Technically, we require:

 \rightarrow the lists $Dep f_i$ of unknowns which are accessed during evaluation of f_i . From that, we compute the lists:

 $I[x_i] = \{x_j \mid x_i \in Dep \ f_j\}$

i.e., a list of all x_j which depend on the value of x_i ;

- \rightarrow the values $D[x_i]$ of the x_i where initially $D[x_i] = \bot$;
- \rightarrow a list W of all unknowns whose value must be recomputed ...

The Algorithm:

 $W = [x_1, \ldots, x_n];$ while $(W \neq [])$ { $x_i = \operatorname{extract} W;$ $t = f_i \operatorname{eval};$ $t \quad = \quad D[x_i] \sqcup t;$ if $(t \neq D[x_i])$ { $D[x_i] = t;$ $W = \text{append } I[\mathbf{x_i}] W;$ } } where : $eval x_j = D[x_j]$

Example:

$$x_1 \supseteq \{a\} \cup x_3$$
$$x_2 \supseteq x_3 \cap \{a, b\}$$
$$x_3 \supseteq x_1 \cup \{c\}$$

Example:

x_1	\supseteq	$\{a\} \cup x_3$
x_2	\supseteq	$x_3 \cap \{a, b\}$
x_3	\supseteq	$x_1 \cup \{c\}$

$D[x_1]$	$D[x_2]$	$D[x_3]$	W
Ø	Ø	Ø	x_1, x_2, x_3
{ a }	Ø	Ø	x_2, x_3
{ a }	Ø	Ø	x_3
{ a }	Ø	$\{a, c\}$	x_1, x_2
{ <i>a</i> , <i>c</i> }	Ø	$\{a, c\}$	x_3, x_2
$\{a, c\}$	Ø	$\{a, c\}$	x_2
$\{a, c\}$	{ a }	$\{a, c\}$	[]

Theorem

Let $x_i \supseteq f_i(x_1, \ldots, x_n)$, $i = 1, \ldots, n$ denote a constraint system over the complete lattice \mathbb{D} of hight h > 0.

(1) The algorithm terminates after at most $h \cdot N$ evaluations of right-hand sides where

$$N = \sum_{i=1}^{n} (1 + \# (\underline{Dep f_i})) \qquad // \text{ size of the system :-)}$$

(2) The algorithm returns a solution. If all f_i are monotonic, it returns the least one.

Proof:

Ad (1):

Every unknown x_i may change its value at most h times :-) Each time, the list $I[x_i]$ is added to W. Thus, the total number of evaluations is:

$$\leq n + \sum_{i=1}^{n} (h \cdot \# (I[x_i]))$$

$$= n + h \cdot \sum_{i=1}^{n} \# (I[x_i])$$

$$= n + h \cdot \sum_{i=1}^{n} \# (Dep f_i)$$

$$\leq h \cdot \sum_{i=1}^{n} (1 + \# (Dep f_i))$$

$$= h \cdot N$$

Ad (2):

We only consider the assertion for monotonic f_i .

Let D_0 denote the least solution. We show:

- $D_0[x_i] \supseteq D[x_i]$ (all the time)
- $D[x_i] \not\supseteq f_i \text{ eval} \implies x_i \in W$ (at exit of the loop body)
- On termination, the algo returns a solution :-))

Discussion:

- In the example, fewer evaluations of right-hand sides are required than for RR-iteration :-)
- The algo also works for non-monotonic f_i :-)
- For monotonic f_i , the algo can be simplified:

$$t = D[x_i] \sqcup t; \quad \Longrightarrow \quad ;$$

• In presence of widening, we replace:

$$t = D[x_i] \sqcup t; \implies t = D[x_i] \sqcup t;$$

• In presence of Narrowing, we replace:

$$t = D[x_i] \sqcup t; \implies t = D[x_i] \sqcap t;$$

Warning:

- The algorithm relies on explicit dependencies among the unknowns.
 So far in our applications, these were obvious. This need not always be the case :-(
- We need some strategy for extract which determines the next unknown to be evaluated.
- It would be ingenious if we always evaluated first and then accessed the result ... :-)

recursive evaluation ...

Idea:

 \rightarrow If during evaluation of f_i , an unknown x_j is accessed, x_j is first solved recursively. Then x_i is added to $I[x_j]$:-)

eval
$$x_i x_j$$
 = solve x_j ;
 $I[x_j] = I[x_j] \cup \{x_i\};$
 $D[x_j];$

→ In order to prevent recursion to descend infinitely, a set *Stable* of unknown is maintained for which solve just looks up their values :-)

Initially, $Stable = \emptyset \dots$

The Function solve :

solve x_i = if $(x_i \notin Stable)$ { $Stable = Stable \cup \{x_i\};$ $t = f_i (\text{eval } x_i);$ $t = D[x_i] \sqcup t;$ if $(t \neq D[x_i])$ { $W = I[x_i]; \quad I[x_i] = \emptyset;$ $D[x_i] = t;$ $Stable = Stable \setminus W;$ app solve W; } }

Helmut Seidl, TU München ;-)

Example:

Consider our standard example:

 $\begin{array}{rcl} x_1 &\supseteq & \{a\} \cup x_3 \\ x_2 &\supseteq & x_3 \cap \{a,b\} \\ x_3 &\supseteq & x_1 \cup \{c\} \end{array}$

A trace of the fixpoint algorithm then looks as follows:

solve
$$x_2$$
 eval $x_2 x_3$ solve x_3 eval $x_3 x_1$ solve x_1 eval $x_1 x_3$ solve x_3 stable!

$$I[x_3] = \{x_1\}$$

$$\Rightarrow \emptyset$$

$$D[x_1] = \{a\}$$

$$D[x_1] = \{a\}$$

$$D[x_1] = \{a,c\}$$

$$I[x_3] = \emptyset$$
solve x_1 eval $x_1 x_3$ solve x_3
stable!

$$I[x_3] = \{x_1\}$$

$$\Rightarrow \{a,c\}$$

$$D[x_1] = \{a,c\}$$

$$I[x_1] = \emptyset$$
solve x_3 eval $x_3 x_1$ solve x_1
stable!

$$I[x_1] = \{x_3\}$$

$$\Rightarrow \{a,c\}$$

$$I[x_3] = \{x_1,x_2\}$$

$$\Rightarrow \{a,c\}$$

$$D[x_2] = \{a\}$$

- \rightarrow Evaluation starts with an interesting unknown x_i (e.g., the value at *stop*)
- \rightarrow Then automatically all unknowns are evaluated which influence x_i :-)
- \rightarrow The number of evaluations is often smaller than during worklist iteration ;-)
- $\rightarrow \qquad \text{The algorithm is more complex but does not rely on} \\ \text{pre-computation of variable dependencies :-))}$
- \rightarrow It also works if variable dependencies during iteration change !!!

 \implies interprocedural analysis

1.7 Eliminating Partial Redundancies

Example:

// x+1 is evaluated on every path ...
// on one path, however, even twice :-(

Goal:

Idea:

- (1) Insert assignments $T_e = e$; such that e is available at all points where the value of e is required.
- (2) Thereby spare program points where *e* either is already available or will definitely be computed in future.
 Expressions with the latter property are called very busy.
- (3) Replace the original evaluations of e by accesses to the variable T_e .

we require a novel analysis :-))

An expression e is called busy along a path π , if the expression e is evaluated before any of the variables $x \in Vars(e)$ is overwritten.

// backward analysis!

e is called very busy at *u*, if *e* is busy along every path $\pi: u \to^* stop$.

An expression e is called busy along a path π , if the expression e is evaluated before any of the variables $x \in Vars(e)$ is overwriten.

// backward analysis!

e is called very busy at *u*, if *e* is busy along every path $\pi: u \to^* stop$.

Accordingly, we require:

$$\mathcal{B}[u] = \bigcap \{ \llbracket \pi \rrbracket^{\sharp} \emptyset \mid \pi : u \to^{*} stop \}$$

where for $\pi = k_1 \dots k_m$:

$$\llbracket \pi \rrbracket^{\sharp} = \llbracket k_1 \rrbracket^{\sharp} \circ \ldots \circ \llbracket k_m \rrbracket^{\sharp}$$

Our complete lattice is given by:

$$\mathbb{B} = 2^{Expr \setminus Vars} \qquad \text{with} \quad \sqsubseteq = \supseteq$$

The effect $[\![k]\!]^{\sharp}$ of an edge k = (u, lab, v) only depends on lab, i.e., $[\![k]\!]^{\sharp} = [\![lab]\!]^{\sharp}$ where:

These effects are all distributive. Thus, the least solution of the constraint system yields precisely the MOP — given that *stop* is reachable from every program point :-)

Ø

 $\{y_1+y_2\}$

 ${x+1}$

 $\{x+1\}$

 ${x+1}$

 ${x+1}$

Ø

(

Example:

A point u is called safe for e, if $e \in \mathcal{A}[u] \cup \mathcal{B}[u]$, i.e., e is either available or very busy.

Idea:

- We insert computations of *e* such that *e* becomes available at all safe program points :-)
- We insert $T_e = e$; after every edge (u, lab, v) with

 $e \in \mathcal{B}[\boldsymbol{v}] \setminus \llbracket lab \rrbracket^{\sharp}_{\mathcal{A}}(\mathcal{A}[\boldsymbol{u}] \cup \mathcal{B}[\boldsymbol{u}])$

Transformation 5.1:

Transformation 5.2:

Bernhard Steffen, Dortmund

Jens Knoop, Wien

In the Example:

In the Example:

Im Example:

Correctness:

Let π denote a path reaching v after which a computation of an edge with e follows.

Then there is a maximal suffix of π such that for every edge k = (u, lab, u') in the suffix:

 $e \in \llbracket lab \rrbracket_{\mathcal{A}}^{\sharp}(\mathcal{A}[\underline{u}] \cup \mathcal{B}[\underline{u}])$

Correctness:

Let π denote a path reaching v after which a computation of an edge with e follows.

Then there is a maximal suffix of π such that for every edge k = (u, lab, u') in the suffix:

 $e \in \llbracket lab \rrbracket^{\sharp}_{\mathcal{A}}(\mathcal{A}[\underline{u}] \cup \mathcal{B}[\underline{u}])$

In particular, no variable in e receives a new value :-) Then $T_e = e$; is inserted before the suffix :-))

We conclude:

- Whenever the value of e is required, e is available :-) \implies correctness of the transformation
- Every T = e; which is inserted into a path corresponds to an e which is replaced with T :-))

 \implies non-degradation of the efficiency