The analysis iterates over all edgasce

m =} {zl]} | v € Varsk
forall k= (_,lab, ) do m = [lab]*m;

where:

[z = y;]* = union” (m,x,y)
[+ = ylel:]*m = union® (m,z,y[])
[yle] = :]Fm = union® (m,z,y[])
lab]* = 7 otherwise
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... Inthe Simple Example:

H{ah vy 7]
H{ah vy 7]
H{ah vy 7]

et

oAy ol

I3 w3}
I3 w3}
I3 w3}

1, o]y

Ay

Ayl
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... Inthe More Complex Example:

WAk rb At AL S
(2,3) | ALty (LRl 3
3, 4) | (Ut ALt A
(4,5) st Wt )y
(5,6) Whtyrs it}
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Caveat:

In order to find something, we must assume that variablesréadds
always receive a value before they are accessed.

Complexity:

we have:
O(# edges + # Vars)  calls of union”
O(# edges + # Vars)  calls of find
O(# Vars) calls of union

—— We require efficientUnion-Find data-structure :-)
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ldea:

Represent partition of U as directed forest:

e For uweU areference Flu| tothe fatheris maintained,

e Roots are elementsu  with  Flu] = u .

Single trees represent equivalence classes.

Their roots are their representatives ...
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()
GGl

—  find (w,u) follows the father references:-)

— union (7, uy, us) re-directs the father reference of one, ...
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0|1/ 2 3 4|5| 6| 7

1113 1| 4| 7| 5 7
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0|1/ 2 3 4|5| 6| 7

1113 1) 7| 7] 5 7
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The Costs:

Strategy to Avoid Deep Trees:

e Putthesmallertree below thévigger!

e Use find to compress paths.
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0|1/ 2 3 4|5| 6| 7

1113 1| 4| 7| 5 7
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0|1/ 2 3 4|5| 6| 7

1113 1) 7| 7] 5 7
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0|1 2|3/ 4|5| 6|7
5| 13| 1| 7| 7| 5 3




0|1 2|3/ 4|5| 6|7
5| 13| 1| 7| 7| 5 3
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)

0|1 2|3/ 4|5| 6|7
5| 13| 1| 7| 7| 5 3







0|1/ 2 3 4|5| 6| 7
5|13 1] 1] 7] 1] 1




Robert Endre Tarjan, Princeton
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Note:

e By this data-structure, »n union- und m find operations
require time O(n +m - «a(n,n))
// « theinverse Ackermann-function:-)

e For our application, we only must modifyunion such that roots
are from Vars whenever possible.

e This modification does not increase the asymptotic run-time

Summary:

The analysis is extremely fast — but may not find very much.
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Background 3: Fixpoint Algorithms

Consider: v, 3 fi(xy,...,x,), i=1,...,n

Observation:

RR-Iteration isnefficient

—  We require a complete round in order to detect terminatiof

— Ifin some round, the value of just one unknown is changed the
we still re-compute all :-(

—  The practical run-time depends on the ordering on the vigsab

-~(
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ldea: Worklist Iteration

If an unknown z; changes its value, we re-compute all unknowns
which depend on z; . Technically we require:

—  thelists Dep f; of unknowns which are accessed during
evaluation of f;. From that, we compute the lists:

[[QZL] — {Ij | €T; € D€p f]}
l.e., alistofall z; which depend on the value ofz; ;

—  thevalues Dlz;| ofthe z; whereinitially Dlz;| = 1;

— alist W of all unknowns whose value must be recomputed ...
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The Algorithm:

W =z, ..., 2]
while (17 7 | ) {
x; = extract W;
t = f;eval;
t = Dz Ut
if (t# Dlzi]) {
Dlz;] = t;
4% = append [|x;| W;
}
}
where : eval x; = Dlz;]
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Example:

=
U

{a} Uxs
T3 M {a, b}
I U {C}

S
U

&
U

I1 {333}

I3 {$17$2}
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Example:

ry 2 {a}Uxs
) 2 T3 M {CL, b}
X3 2 U {C}
1
x1 | {xs}
i) (b
xs | {1, 22}

Dlx1] | D|xs] | D]xs] W

0 0 0 T1 ], To, T3
{a} ) 0 T |, T3
{a} ) 0 T3
{a} 0 | {a,c} T, o
{fa,c} | 0 |{a,c} T3], To
{fa,c} | 0 |{a,c} To

14, ¢}

14}

14, ¢}
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Theorem

Let z; J fi(x1,...,2,), i=1,...,n denotea constraint system
over the complete latticelD of hight - > 0.

(1) The algorithm terminates after at most - V' evaluations of
right-hand sides where

N — i(l + # (Dep 1)) //  size of the system :-)

(2) The algorithm returns a solution.
Ifall f; are monotonic, it returns the least one.
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Proof:

Ad (1):

Every unknown z; may change its value at most: times :-)
Each time, the list /|x;] isaddedto 1V .

Thus, the total number of evaluations is:

n+ > (b # (zi]))
n+he 3 # Uz)])
n+h-y i #(Dep fi)
h- 3 imi(L+# (Dep fi))
h-N

IA
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Ad (2):

We only consider the assertion for monotonig; .

Let D, denote the least solution. We show:

e Dylz;] 3 Dz (all the time)
o Dlx;| 2 fieval — z; €W (at exit of the loop body)
e On termination, the algo returns a solution))
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Discussion:

e Inthe example, fewer evaluations of right-hand sides ayeired
than for RR-iteration :-)

e The algo also works for non-monotonicf; :-)

e For monotonic f;, the algo can be simplified:

t=Dlz;]Ut;| = [}

e In presence ofvidening we replace:

t=Dlz;]Ut;) —= |t = Dlx;]Ut;

e In presence oflarrowing we replace:

t=Dlx;]Ut;) == |t = Dlx;|Ft;
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Warning:

e The algorithm relies on explicit dependencies among theowks.

So far in our applications, these wegkvious This need not always
be the case :-(

e We need somsetrategyfor extract which determines the next
unknown to be evaluated.

e Itwould be ingenious if we always evaluati$t and then accessed
the result ... :-)

— recursive evaluation.
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ldea:

—  If during evaluation of f; , an unknown z; Is accessed, z;
Is first solved recursively. Thenz; isaddedto [|x;] :-)

eval z; z; = solvexzy;
] = Il Ui
Dlz;l;
In order to prevent recursion to descend infinitely, a s&Bble
of unknown is maintained for whichsolve just looks up their

values :-)
Initially, Stable =0 ...
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The Function solve :

solve z; = if (x; &€ Stable) {
Stable = Stable U {x;};
t = f,L (eval LUL),

t = Dlx;] Ut;

if (¢ # Dlai]) {
W =1lxz;|; Ilx;] = 0;
Dlz;] =¢;
Stable = Stable\W
app solve W;

}
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Helmut Seidl, TU Minchen ;-)
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Example:

Consider our standard example:

=
U

{a} U I3
T3 M {CL, b}
r1 U{c}

S
U

&
U

A trace of the fixpoint algorithm then looks as follows:
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solve xo eval o x3 solve x3 eval 3 x1 solve x1 eval 1 x3 solve x3

stable!
Izs] = {z1}
= 0
Dlz1] = {a}
Iz] = {z3}
= {a}
Dlxs] = {a, c}
Ixzs] =0
solve x1 eval x1 =3 solve x3
stable!
Izs] = {z1}
= {a,c}
D[z1] = {a, c}
I[z1] =0
solve x3 eval 3 1 solve x1
stable!
Izy] = {=s}
= {a,c}
ok

Izs] = {z1,z2}
= {a,c}

Dlxz] = {a}
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Evaluation starts with amterestingunknown z; (e.g., the
value at stop)

Thenautomaticallyall unknowns are evaluated which influence
X; :-)

The number of evaluations is often smaller than during wstrkl
iteration ;-)

The algorithm is more complex but does not rely on
pre-computatiorof variable dependencies)

It also works if variable dependencies during iteratttiange!!!

— Interprocedural analysis
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1.7 Eliminating Partial Redundancies

Example:

// r+ 1 is evaluated on every path...
// onone path, however, even twice-(
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Goal:
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ldea:

(1)

(2)

(3)

Insert assignments. = ¢; such that is available at all points
where the value of is required.

Thereby spare program points whereither is alreadyvailable
or will definitely be computeth future.

Expressions with the latter property are caledy busy
Replace the original evaluations©by accesses to the variable

B we require a novel analysis:-))
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An expression ¢ Is calledbusyalong a path =, if the expression ¢
IS evaluated before any of the variables € Vars(e) is overwritten.

// backward analysis!

e Is calledvery busyat u,if e Is busy along every path
mu—" stop .
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An expression ¢ Is calledbusyalong a path =, if the expression ¢
IS evaluated before any of the variables € Vars(e) is overwriten.

// backward analysis!

e Is calledvery busyat u,if e Is busy along every path
mu—" stop .

Accordingly, we require:

Blu| = ﬂ{ﬂ’ﬂ]]ﬂ 0| 7:u—"stop}

where for 7#=k;... Lk, :
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Our complete lattice is given by:

B — 2Ea:p7“\Va7’s with E _ 2

The effect [k]* ofanedge k = (u,lab,v) only depends on lab,
i.e., [k]* = [lab]* where:

BipE = B

[Pos(e)]* B = [Neg(e)]* B = BU{e}
z=¢e]'B = (B\Ezpr,) U{c}

v =Ml[e[[PB = (B\Ezpr,)U{c}

(Mle)] =ex]* B = BU{ey, e}
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These effects are dallistributive Thus, the least solution of the constraint
system yields precisely the MOP — given thatp is reachable from
every program point :-)

Example:

{y1 +ya}
{z+1}
{z+1}
{z+1}
{z+1}

O || W | &0 O |
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A point « is calledsafefor e,if ee€ Alu]UB[u|,ie., e s
either available or very busy.

ldea:

e We insert computations ofe such that ¢ becomes available at
all safe program points :-)

e Weinsert], = ¢; after every edgéu, lab, v) with
e € Bo\[laby(Alu] U Blu))
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Transformation 5.1:

ilab ——> lab

T, =e; (e € B\[lab]’ (Afu] UBu)))

\@ T.=¢e; (e €B[v])
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Transformation 5.2:

// analogously for the other uses of

// at old edges of the program.
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Bernhard Steffen, Dortmund Jens Knoop, Wien
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In the Example:

A B
0 ) 0
1 0 0
2 0 {x + 1}
3 0 {z+1}
4 {x + 1} {z + 1}
5 0 {z+1}
6 {z+1} {y1 + 2}
T {z+ 1,5 + 1} 0
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In the Example:

A B
0 ) 0
1 0 0
2 0 {x +1}
3 0 {z+1}
4 {x + 1} {z + 1}
5 0 {z +1}
6 {z+1} {y1 + 2}
T {z+ 1,5 + 1} 0
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Im Example:

A B
1o 0 0
1 0 0
2 0 {x +1}
3 0 {z+1}
4 {x + 1} {z + 1}
5 0 {z +1}
6 {z+1} {y1 + 2}
T {z+ 1,5 + 1} 0
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Correctness:

Let =« denote a path reachingy after which a computation of an
edge with ¢ follows.

Then there is a maximal suffix ofr such that for every edge
k = (u,lab,u") inthe suffix:

e € [lab]*(Alu] U Blu))

AVvB AVB AvB AVB B

O—0O~0~-0~0~®
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Correctness:

Let =« denote a path reachingy after which a computation of an
edge with ¢ follows.

Then there is a maximal suffix ofr such that for every edge
k = (u,lab,u") inthe suffix:

e € [lab]*(Alu] U Blu))

In particular, no variable in ¢ receives a new value:-)

Then 7, =e¢; Isinserted before the suffix :-))

R
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We conclude:

e Whenever the value ofe isrequired, ¢ is available :-)

= correctnes®f the transformation

e Every T = e;which isinserted into a path corresponds to an
which is replaced with 7T -))

— non-degradationf the efficiency
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