The analysis iterates over all edges once:

$$
\begin{aligned}
& \pi=\{\{x\},\{x[]\} \mid x \in \operatorname{Vars}\} ; \\
& \text { forall } \quad k=\left(\left(_{,}, l a b,,_{-}\right) \quad \text { do } \quad \pi=\llbracket l a b \rrbracket^{\sharp} \pi ;\right.
\end{aligned}
$$

where:

$$
\begin{array}{ll}
\llbracket x=y ; \rrbracket \rrbracket^{\sharp} \pi & =\text { union }^{*}(\pi, x, y) \\
\llbracket x=y[e\rceil ; \rrbracket^{\sharp} \pi & =\text { union }^{*}(\pi, x, y[]) \\
\llbracket y[e]=x ; \rrbracket^{\sharp} \pi & =\text { union }^{*}(\pi, x, y[]) \\
\llbracket l a b \rrbracket^{\sharp} \pi & =\pi \quad \text { otherwise }
\end{array}
$$

... in the Simple Example:

	$\{\{x\},\{y\},\{x[]\},\{y[]\}\}$
$(0,1)$	$\{\{x\},\{y\},\{x[]\},\{y[]\}\}$
$(1,2)$	$\{\{x\},\{y\},\{x[]\},\{y[]\}\}$
$(2,3)$	$\{\{x\},\{y, x[]\},\{y[]\}\}$
$(3,4)$	$\{\{x\},\{y, x[]\},\{y[]\}\}$

... in the More Complex Example:

Caveat:

In order to find something, we must assume that variables / addresses always receive a value before they are accessed.

Complexity:

we have:

$$
\begin{array}{lll}
\mathcal{O}(\# \text { edges }+\# \text { Vars }) & \text { calls of } & \text { union* }^{*} \\
\mathcal{O}(\# \text { edges }+\# \text { Vars }) & \text { calls of } & \text { find } \\
\mathcal{O}(\# \text { Vars }) & \text { calls of } & \text { union }
\end{array}
$$

\Longrightarrow We require efficient Union-Find data-structure :-)

Idea:

Represent partition of U as directed forest:

- For $u \in U$ a reference $F[u]$ to the father is maintained;
- Roots are elements u with $F[u]=u$.

Single trees represent equivalence classes.
Their roots are their representatives ...

0	1	2	3	4	5	6	7

1	1	3	1	4	7	5	7

$\rightarrow \quad$ find (π, u) follows the father references $\quad:-)$
$\rightarrow \quad$ union $\left(\pi, u_{1}, u_{2}\right) \quad$ re-directs the father reference of one $\quad u_{i} \ldots$

0	1	2	3	4	5	6	7

1	1	3	1	4	7	5	7

0	1	2	3	4	5	6	7

1	1	3	1	7	7	5	7

The Costs:

$$
\begin{array}{lll}
\text { union } & : \mathcal{O}(1) & :-) \\
\text { find } & : \mathcal{O}(\operatorname{depth}(\pi)) & :-(
\end{array}
$$

Strategy to Avoid Deep Trees:

- Put the smaller tree below the bigger !
- Use find to compress paths ...

0	1	2	3	4	5	6	7

1	1	3	1	4	7	5	7

0	1	2	3	4	5	6	7

1	1	3	1	7	7	5	7

Robert Endre Tarjan, Princeton

Note:

- By this data-structure, n union- und m find operations require time $\mathcal{O}(n+m \cdot \alpha(n, n))$
// α the inverse Ackermann-function :-)
- For our application, we only must modify union such that roots are from Vars whenever possible.
- This modification does not increase the asymptotic run-time. :-)

Summary:

The analysis is extremely fast - but may not find very much.

Background 3: Fixpoint Algorithms

Consider: $\quad x_{i} \sqsupseteq f_{i}\left(x_{1}, \ldots, x_{n}\right), \quad i=1, \ldots, n$

Observation:

RR-Iteration is inefficient:
$\rightarrow \quad$ We require a complete round in order to detect termination
$\rightarrow \quad$ If in some round, the value of just one unknown is changed, then we still re-compute all
$\rightarrow \quad$ The practical run-time depends on the ordering on the variables :-(

Idea:

Worklist Iteration

If an unknown x_{i} changes its value, we re-compute all unknowns which depend on x_{i}. Technically, we require:
$\rightarrow \quad$ the lists $\operatorname{Dep} f_{i}$ of unknowns which are accessed during evaluation of f_{i}. From that, we compute the lists:

$$
I\left[x_{i}\right]=\left\{x_{j} \mid x_{i} \in \operatorname{Dep} f_{j}\right\}
$$

i.e., a list of all x_{j} which depend on the value of x_{i};
\rightarrow the values $D\left[x_{i}\right]$ of the x_{i} where initially $D\left[x_{i}\right]=\perp ;$
\rightarrow a list W of all unknowns whose value must be recomputed ...

The Algorithm:

$$
\begin{aligned}
& W=\left[x_{1}, \ldots, x_{n}\right] \\
& \text { while }(W \neq[])\{ \\
& \qquad \begin{aligned}
& x_{i}=\text { extract } W \\
& t=f_{i} \text { eval; } \\
& t=D\left[x_{i}\right] \sqcup t ; \\
& \text { if }\left(t \neq D\left[x_{i}\right]\right)\{ \\
& D\left[x_{i}\right]=t ; \\
& W=\text { append } I\left[x_{i}\right] W
\end{aligned} \\
& \qquad\}
\end{aligned}
$$

where: eval $x_{j}=D\left[x_{j}\right]$

Example:

$$
\begin{array}{ll}
x_{1} & \supseteq\{a\} \cup x_{3} \\
x_{2} & \supseteq x_{3} \cap\{a, b\} \\
x_{3} & \supseteq x_{1} \cup\{c\}
\end{array}
$$

	I
x_{1}	$\left\{x_{3}\right\}$
x_{2}	\emptyset
x_{3}	$\left\{x_{1}, x_{2}\right\}$

Example:

$$
\begin{array}{ll}
x_{1} & \supseteq\{a\} \cup x_{3} \\
x_{2} & \supseteq x_{3} \cap\{a, b\} \\
x_{3} & \supseteq x_{1} \cup\{c\}
\end{array}
$$

	I
x_{1}	$\left\{x_{3}\right\}$
x_{2}	\emptyset
x_{3}	$\left\{x_{1}, x_{2}\right\}$

$D\left[x_{1}\right]$	$D\left[x_{2}\right]$	$D\left[x_{3}\right]$	W
\emptyset	\emptyset	\emptyset	x_{1}, x_{2}, x_{3}
$\{a\}$	\emptyset	\emptyset	x_{2}, x_{3}
$\{a\}$	\emptyset	\emptyset	x_{3}
$\{a\}$	\emptyset	$\{a, c\}$	x_{1}, x_{2}
$\{a, c\}$	\emptyset	$\{a, c\}$	x_{3}, x_{2}
$\{a, c\}$	\emptyset	$\{a, c\}$	x_{2}
$\{a, c\}$	$\{a\}$	$\{a, c\}$	[]

Theorem

Let $\quad x_{i} \sqsupseteq f_{i}\left(x_{1}, \ldots, x_{n}\right), \quad i=1, \ldots, n$ denote a constraint system over the complete lattice \mathbb{D} of hight $h>0$.
(1) The algorithm terminates after at most $h \cdot N$ evaluations of right-hand sides where

$$
\left.N=\sum_{i=1}^{n}\left(1+\#\left(\operatorname{Dep} f_{i}\right)\right) \quad / / \quad \text { size of the system } \quad:-\right)
$$

(2) The algorithm returns a solution.

If all f_{i} are monotonic, it returns the least one.

Proof:

Ad (1):

Every unknown x_{i} may change its value at most h times :-)
Each time, the list $I\left[x_{i}\right]$ is added to W.
Thus, the total number of evaluations is:

$$
\begin{aligned}
& \leq n+\sum_{i=1}^{n}\left(h \cdot \#\left(I\left[x_{i}\right]\right)\right) \\
& =n+h \cdot \sum_{i=1}^{n} \#\left(I\left[x_{i}\right]\right) \\
& =n+h \cdot \sum_{i=1}^{n} \#\left(D e p f_{i}\right) \\
& \leq h \cdot \sum_{i=1}^{n}\left(1+\#\left(\operatorname{Dep} f_{i}\right)\right) \\
& =h \cdot N
\end{aligned}
$$

Ad (2):

We only consider the assertion for monotonic f_{i}.
Let $\quad D_{0}$ denote the least solution. We show:

- $\quad D_{0}\left[x_{i}\right] \sqsupseteq D\left[x_{i}\right]$
- $D\left[x_{i}\right] \nexists f_{i}$ eval $\Longrightarrow x_{i} \in W$
(all the time)
(at exit of the loop body)
- On termination, the algo returns a solution :-))

Discussion:

- In the example, fewer evaluations of right-hand sides are required than for RR-iteration :-)
- The algo also works for non-monotonic $\quad f_{i} \quad$:-)
- For monotonic f_{i}, the algo can be simplified:

$$
t=D\left[x_{i}\right] \sqcup t ; \quad \Longrightarrow ;
$$

- In presence of widening, we replace:

$$
t=D\left[x_{i}\right] \sqcup t ; \quad \Longrightarrow \quad t=D\left[x_{i}\right] \sqcup t ;
$$

- In presence of Narrowing, we replace:

$$
t=D\left[x_{i}\right] \sqcup t ; \quad \Longrightarrow \quad t=D\left[x_{i}\right] \sqcap t ;
$$

Warning:

- The algorithm relies on explicit dependencies among the unknowns. So far in our applications, these were obvious. This need not always be the case
- We need some strategy for extract which determines the next unknown to be evaluated.
- It would be ingenious if we always evaluated first and then accessed the result ... :-)
\Longrightarrow recursive evaluation ...

Idea:

$\rightarrow \quad$ If during evaluation of f_{i}, an unknown x_{j} is accessed, x_{j} is first solved recursively. Then $\quad x_{i}$ is added to $\left.I\left[x_{j}\right] \quad:-\right)$

$$
\begin{aligned}
\text { eval } x_{i} x_{j}= & \text { solve } x_{j} ; \\
& I\left[x_{j}\right]=I\left[x_{j}\right] \cup\left\{x_{i}\right\} ; \\
& D\left[x_{j}\right]
\end{aligned}
$$

$\rightarrow \quad$ In order to prevent recursion to descend infinitely, a set Stable of unknown is maintained for which solve just looks up their values :-)

Initially, \quad Stable $=\emptyset \ldots$

The Function solve :

$$
\begin{aligned}
& \text { solve } x_{i}=\text { if }\left(x_{i} \notin \text { Stable }\right)\{ \\
& \qquad \begin{array}{c}
\text { Stable }=\text { Stable } \cup\left\{x_{i}\right\} ; \\
t=f_{i}\left(\text { eval } x_{i}\right) ; \\
t=D\left[x_{i}\right] \sqcup t ; \\
\text { if }\left(t \neq D\left[x_{i}\right]\right)\{ \\
W=I\left[x_{i}\right] ; \quad I\left[x_{i}\right]=\emptyset ; \\
D\left[x_{i}\right]=t ; \\
\text { Stable }=\text { Stable } \backslash W ; \\
\text { app solve } W
\end{array} \\
& \}
\end{aligned}
$$

Helmut Seidl, TU München ;-)

Example:

Consider our standard example:

$$
\begin{array}{ll}
x_{1} & \supseteq\{a\} \cup x_{3} \\
x_{2} & \supseteq x_{3} \cap\{a, b\} \\
x_{3} & \supseteq x_{1} \cup\{c\}
\end{array}
$$

A trace of the fixpoint algorithm then looks as follows:

$$
I\left[x_{3}\right]=\left\{x_{1}\right\}
$$

$$
\Rightarrow \quad \emptyset
$$

$$
D\left[x_{1}\right]=\{a\}
$$

$$
I\left[x_{1}\right]=\left\{x_{3}\right\}
$$

$$
\Rightarrow \quad\{a\}
$$

$$
\begin{aligned}
& \hline D\left[x_{3}\right]=\{a, c\} \\
& I\left[x_{3}\right]=\emptyset
\end{aligned}
$$

$$
\text { solve } x_{1}
$$

$$
\text { eval } x_{1} x_{3}
$$

$$
\text { solve } x_{3}
$$

stable!

$$
I\left[x_{3}\right]=\left\{x_{1}\right\}
$$

$$
\Rightarrow \quad\{a, c\}
$$

$$
D\left[x_{1}\right]=\{a, c\}
$$

$$
I\left[x_{1}\right]=\emptyset
$$

$$
\text { solve } x_{3}
$$

$$
\text { eval } x_{3} x_{1}
$$

$$
I\left[x_{1}\right]=\left\{x_{3}\right\}
$$

$$
\Rightarrow \quad\{a, c\}
$$

$$
\begin{aligned}
& I\left[x_{3}\right]=\left\{x_{1}, x_{2}\right\} \\
& \Rightarrow \quad\{a, c\}
\end{aligned}
$$

$$
D\left[x_{2}\right]=\{a\}
$$

$\rightarrow \quad$ Evaluation starts with an interesting unknown $\quad x_{i} \quad$ (e.g., the value at stop)
$\rightarrow \quad$ Then automatically all unknowns are evaluated which influence $x_{i} \quad$:-)
$\rightarrow \quad$ The number of evaluations is often smaller than during worklist iteration ;-)
$\rightarrow \quad$ The algorithm is more complex but does not rely on pre-computation of variable dependencies :-))
$\rightarrow \quad$ It also works if variable dependencies during iteration change !!!

$$
\Longrightarrow \quad \text { interprocedural analysis }
$$

1.7 Eliminating Partial Redundancies

Example:

//
$x+1$ is evaluated on every path ...
// on one path, however, even twice

Goal:

Idea:

(1) Insert assignments $T_{e}=e$; such that e is available at all points where the value of e is required.
(2) Thereby spare program points where e either is already available or will definitely be computed in future.

Expressions with the latter property are called very busy.
(3) Replace the original evaluations of e by accesses to the variable T_{e}.
$\Longrightarrow \quad$ we require a novel analysis :-))

An expression e is called busy along a path π, if the expression e is evaluated before any of the variables $x \in \operatorname{Vars}(e)$ is overwritten.
// backward analysis!
e is called very busy at u, if e is busy along every path $\pi: u \rightarrow^{*}$ stop .

An expression e is called busy along a path π, if the expression is evaluated before any of the variables $x \in \operatorname{Vars}(e) \quad$ is overwriten.

// backward analysis!

e is called very busy at u, if e is busy along every path $\pi: u \rightarrow^{*}$ stop .

Accordingly, we require:

$$
\mathcal{B}[u]=\bigcap\left\{\llbracket \pi \rrbracket^{\sharp} \emptyset \mid \pi: u \rightarrow^{*} \text { stop }\right\}
$$

where for $\pi=k_{1} \ldots k_{m}$:

$$
\llbracket \pi \rrbracket^{\sharp}=\llbracket k_{1} \rrbracket^{\sharp} \circ \ldots \circ \llbracket k_{m} \rrbracket^{\sharp}
$$

Our complete lattice is given by:

$$
\mathbb{B}=2^{\text {Expr } \backslash \text { Vars }} \quad \text { with } \sqsubseteq=\supseteq
$$

The effect $\llbracket k \rrbracket^{\sharp}$ of an edge $k=(u, l a b, v)$ only depends on $l a b$, i.e., $\quad \llbracket k \rrbracket^{\sharp}=\llbracket l a b \rrbracket^{\sharp} \quad$ where:

$$
\begin{array}{ll}
\llbracket ; \rrbracket^{\sharp} B & =B \\
\llbracket \operatorname{Pos}(e) \rrbracket^{\sharp} B & =\llbracket N e g(e) \rrbracket^{\sharp} B \quad=B \cup\{e\} \\
\llbracket x=e ; \rrbracket^{\sharp} B & =\left(B \backslash E x p r_{x}\right) \cup\{e\} \\
\llbracket x=M[e\rceil ; \rrbracket^{\sharp} B & =\left(B \backslash E x p r_{x}\right) \cup\{e\} \\
\llbracket M\left[e_{1}\right]=e_{2} ; \rrbracket^{\sharp} B & =B \cup\left\{e_{1}, e_{2}\right\}
\end{array}
$$

These effects are all distributive. Thus, the least solution of the constraint system yields precisely the MOP — given that stop is reachable from every program point :-)

Example:

7	\emptyset
6	$\left\{y_{1}+y_{2}\right\}$
5	$\{x+1\}$
4	$\{x+1\}$
3	$\{x+1\}$
2	$\{x+1\}$
1	\emptyset
0	\emptyset

A point $\quad u$ is called safe for $\quad e$, if $\quad e \in \mathcal{A}[u] \cup \mathcal{B}[u]$, i.e., $\quad e \quad$ is either available or very busy.

Idea:

- We insert computations of e such that e becomes available at all safe program points :-)
- We insert $T_{e}=e$; after every edge $(u, l a b, v)$ with

$$
e \in \mathcal{B}[v] \backslash \llbracket l a b \rrbracket_{\mathcal{A}}^{\sharp}(\mathcal{A}[u] \cup \mathcal{B}[u])
$$

Transformation 5.1:

Transformation 5.2:

analogously for the other uses of at old edges of the program.

Bernhard Steffen, Dortmund

Jens Knoop, Wien

In the Example:

In the Example:

Im Example:

Correctness:

Let π denote a path reaching v after which a computation of an edge with e follows.

Then there is a maximal suffix of π such that for every edge $k=\left(u, l a b, u^{\prime}\right) \quad$ in the suffix:

$$
e \in \llbracket l a b \rrbracket_{\mathcal{A}}^{\sharp}(\mathcal{A}[u] \cup \mathcal{B}[u])
$$

Correctness:

Let π denote a path reaching v after which a computation of an edge with $\quad e$ follows.

Then there is a maximal suffix of π such that for every edge $k=\left(u, l a b, u^{\prime}\right) \quad$ in the suffix:

$$
e \in \llbracket l a b \rrbracket_{\mathcal{A}}^{\sharp}(\mathcal{A}[u] \cup \mathcal{B}[u])
$$

In particular, no variable in e receives a new value :-)
Then $T_{e}=e ; \quad$ is inserted before the suffix $\left.\quad:-\right)$)

We conclude:

- Whenever the value of e is required, e is available :-) \Longrightarrow correctness of the transformation
- Every $T=e$; which is inserted into a path corresponds to an which is replaced with $T \quad:-)$)
\Longrightarrow non-degradation of the efficiency

