
The analysis iterates over all edgesonce:

π = {{x}, {x[]} | x ∈ Vars};

forall k = (_, lab, _) do π = [[lab]]♯ π;

where:

[[x = y;]]♯ π = union∗ (π, x, y)

[[x = y[e];]]♯ π = union∗ (π, x, y[])

[[y[e] = x;]]♯ π = union∗ (π, x, y[])

[[lab]]♯ π = π otherwise

387

... in the Simple Example:

y[1] = 7;

x[0] = y;

1
y = new();

2

3

4

0
x = new(); {{x}, {y}, {x[]}, {y[]}}

(0, 1) {{x}, {y}, {x[]}, {y[]}}

(1, 2) {{x}, {y}, {x[]}, {y[]}}

(2, 3) {{x}, {y, x[]} , {y[]}}

(3, 4) {{x}, {y, x[]}, {y[]}}

388

... in the More Complex Example:

r = Null;

Pos(t 6= Null)Neg(t 6= Null)

7

r = h;

3

4

5

6

2
h = t;

1

0

t = t[0];

h[0] = r;

{{h}, {r}, {t}, {h[]}, {t[]}}

(2, 3) { {h, t} , {r}, {h[], t[]} }

(3, 4) { {h, t, h[], t[]} , {r}}

(4, 5) { {h, t, r, h[], t[]} }

(5, 6) {{h, t, r, h[], t[]}}

389

Caveat:

In order to find something, we must assume that variables / addresses
always receive a value before they are accessed.

Complexity:

we have:

O(# edges +#Vars) calls of union∗

O(# edges +#Vars) calls of find

O(#Vars) calls of union

==⇒ We require efficientUnion-Find data-structure :-)

390

Idea:

Represent partition of U as directed forest:

• For u ∈ U a reference F [u] to the father is maintained;

• Roots are elementsu with F [u] = u .

Single trees represent equivalence classes.

Their roots are their representatives ...

391

0 1 2 3 6 74 50 1 2 3 6 74 5

1 1 3 1 4 7 5 7

0

1

3

2

4 7

5

6

→ find (π, u) follows the father references:-)

→ union (π, u1, u2) re-directs the father reference of oneui ...

392

0 1 2 3 6 74 50 1 2 3 6 74 5

1 1 3 1 4 7 5 7

0

1

3

2

4 7

5

6

393

0 1 2 3 6 74 50 1 2 3 6 74 5

0

1

3

2

4

7

1 1 3 1 7 7 5 7

5

6

394

The Costs:

union : O(1) :-)

find : O(depth(π)) :-(

Strategy to Avoid Deep Trees:

• Put thesmallertree below thebigger!

• Use find to compress paths...

395

0 1 2 3 6 74 50 1 2 3 6 74 5

1 1 3 1 4 7 5 7

0

1

3

2

4 7

5

6

396

0 1 2 3 6 74 50 1 2 3 6 74 5

0

1

3

2

4

7

1 1 3 1 7 7 5 7

5

6

397

3

4

7

5

2

60

0 1 2 3 6 74 50 1 2 3 6 74 5

5 1 3 1 7 7 5 3

1

398

3

4

7

5

2

60

0 1 2 3 6 74 50 1 2 3 6 74 5

5 1 3 1 7 7 5 3

1

399

3

4

7

5

2

60

0 1 2 3 6 74 50 1 2 3 6 74 5

5 1 3 1 7 7 5 3

1

400

3

4

7

5

2

60

0 1 2 3 6 74 50 1 2 3 6 74 5

5 1 3 1 7 7 5 3

1

401

3

4

7

5

2

60

0 1 2 3 6 74 50 1 2 3 6 74 5

5 1 3 1 1 7 1 1

1

402

Robert Endre Tarjan, Princeton

403

Note:

• By this data-structure, n union- und m find operations
require time O(n+m · α(n, n))

// α theinverse Ackermann-function :-)

• For our application, we only must modifyunion such that roots
are from Vars whenever possible.

• This modification does not increase the asymptotic run-time. :-)

Summary:

The analysis is extremely fast — but may not find very much.

404

Background 3: Fixpoint Algorithms

Consider: xi ⊒ fi (x1, . . . , xn) , i = 1, . . . , n

Observation:

RR-Iteration isinefficient:

→ We require a complete round in order to detect termination:-(

→ If in some round, the value of just one unknown is changed, then
we still re-compute all :-(

→ The practical run-time depends on the ordering on the variables
:-(

405

Idea: Worklist Iteration

If an unknown xi changes its value, we re-compute all unknowns
which depend on xi . Technically, we require:

→ the lists Dep fi of unknowns which are accessed during
evaluation of fi. From that, we compute the lists:

I[xi] = {xj | xi ∈ Dep fj}

i.e., a list of all xj which depend on the value ofxi ;

→ the values D[xi] of the xi where initially D[xi] = ⊥ ;

→ a list W of all unknowns whose value must be recomputed ...

406

The Algorithm:

W = [x1, . . . , xn];

while (W 6= []) {

xi = extractW ;

t = fi eval;

t = D[xi] ⊔ t;

if (t 6= D[xi]) {

D[xi] = t;

W = append I[xi] W ;

}

}

where : eval xj = D[xj]

407

Example:

x1 ⊇ {a} ∪ x3

x2 ⊇ x3 ∩ {a, b}

x3 ⊇ x1 ∪ {c}

I

x1 {x3}

x2 ∅

x3 {x1, x2}

D[x1] D[x2] D[x3] W

∅ ∅ ∅ x1 , x2, x3

{a} ∅ ∅ x2 , x3

{a} ∅ ∅ x3

{a} ∅ {a, c} x1 , x2

{a, c} ∅ {a, c} x3 , x2

{a, c} ∅ {a, c} x2

{a, c} {a} {a, c} ∅

408

Example:

x1 ⊇ {a} ∪ x3

x2 ⊇ x3 ∩ {a, b}

x3 ⊇ x1 ∪ {c}

I

x1 {x3}

x2 ∅

x3 {x1, x2}

D[x1] D[x2] D[x3] W

∅ ∅ ∅ x1 , x2, x3

{a} ∅ ∅ x2 , x3

{a} ∅ ∅ x3

{a} ∅ {a, c} x1 , x2

{a, c} ∅ {a, c} x3 , x2

{a, c} ∅ {a, c} x2

{a, c} {a} {a, c} []

409

Theorem

Let xi ⊒ fi (x1, . . . , xn) , i = 1, . . . , n denote a constraint system
over the complete latticeD of hight h > 0 .

(1) The algorithm terminates after at mosth ·N evaluations of
right-hand sides where

N =
n∑

i=1

(1 + # (Dep fi)) // size of the system :-)

(2) The algorithm returns a solution.
If all fi are monotonic, it returns the least one.

410

Proof:

Ad (1):

Every unknown xi may change its value at mosth times :-)

Each time, the list I[xi] is added to W .

Thus, the total number of evaluations is:

≤ n+
∑n

i=1(h ·#(I[xi]))

= n+ h ·
∑n

i=1#(I[xi])

= n+ h ·
∑n

i=1#(Dep fi)

≤ h ·
∑n

i=1(1 + # (Dep fi))

= h ·N

411

Ad (2):

We only consider the assertion for monotonicfi .

Let D0 denote the least solution. We show:

• D0[xi] ⊒ D[xi] (all the time)

• D[xi] 6⊒ fi eval ==⇒ xi ∈ W (at exit of the loop body)

• On termination, the algo returns a solution:-))

412

Discussion:

• In the example, fewer evaluations of right-hand sides are required
than for RR-iteration :-)

• The algo also works for non-monotonicfi :-)

• For monotonic fi, the algo can be simplified:

t = D[xi] ⊔ t; ==⇒ ;

• In presence ofwidening, we replace:

t = D[xi] ⊔ t; ==⇒ t = D[xi]⊔– t;

• In presence ofNarrowing, we replace:

t = D[xi] ⊔ t; ==⇒ t = D[xi]⊓– t;

413

Warning:

• The algorithm relies on explicit dependencies among the unknowns.

So far in our applications, these wereobvious. This need not always
be the case :-(

• We need somestrategyfor extract which determines the next
unknown to be evaluated.

• It would be ingenious if we always evaluatedfirst and then accessed
the result ... :-)

==⇒ recursive evaluation...

414

Idea:

→ If during evaluation of fi , an unknown xj is accessed, xj

is first solved recursively. Thenxi is added to I[xj] :-)

eval xi xj = solve xj;

I[xj] = I[xj] ∪ {xi};

D[xj];

→ In order to prevent recursion to descend infinitely, a setStable

of unknown is maintained for whichsolve just looks up their
values :-)

Initially, Stable = ∅ ...

415

The Function solve :

solve xi = if (xi 6∈ Stable) {

Stable = Stable ∪ {xi};

t = fi (eval xi);

t = D[xi] ⊔ t;

if (t 6= D[xi]) {

W = I[xi]; I[xi] = ∅;

D[xi] = t;

Stable = Stable\W ;

app solve W ;

}

}

416

Helmut Seidl, TU München ;-)

417

Example:

Consider our standard example:

x1 ⊇ {a} ∪ x3

x2 ⊇ x3 ∩ {a, b}

x3 ⊇ x1 ∪ {c}

A trace of the fixpoint algorithm then looks as follows:

418

solve x2 eval x2 x3 solve x3 eval x3 x1 solve x1 eval x1 x3 solve x3

stable!

I[x3] = {x1}

⇒ ∅

D[x1] = {a}

I[x1] = {x3}

⇒ {a}

D[x3] = {a, c}

I[x3] = ∅

solve x1 eval x1 x3 solve x3

stable!

I[x3] = {x1}

⇒ {a, c}

D[x1] = {a, c}

I[x1] = ∅

solve x3 eval x3 x1 solve x1

stable!

I[x1] = {x3}

⇒ {a, c}

ok

I[x3] = {x1, x2}

⇒ {a, c}

D[x2] = {a}

419

→ Evaluation starts with aninterestingunknown xi (e.g., the
value at stop)

→ Thenautomaticallyall unknowns are evaluated which influence
xi :-)

→ The number of evaluations is often smaller than during worklist
iteration ;-)

→ The algorithm is more complex but does not rely on
pre-computationof variable dependencies:-))

→ It also works if variable dependencies during iterationchange!!!

==⇒ interprocedural analysis

420

1.7 Eliminating Partial Redundancies

Example:

1

0

3

7

6

5

2 4

x = M [a]; y1 = x+ 1;

y2 = x+ 1;

M [x] = y1 + y2;

// x+ 1 is evaluated on every path...

// on one path, however, even twice:-(

421

Goal:

1

0

3

7

6

5

2 4

1

0

3

7

6

5

2 4

y1 = x+ 1;

y2 = x+ 1;

x = M [a];

M [x] = y1 + y2;

T = x+ 1;x = M [a];

M [x] = y1 + T ;

T = x+ 1;

;

y1 = T ;

422

Idea:

(1) Insert assignmentsTe = e; such thate is available at all points
where the value ofe is required.

(2) Thereby spare program points wheree either is alreadyavailable
or will definitely be computedin future.

Expressions with the latter property are calledvery busy.

(3) Replace the original evaluations ofe by accesses to the variableTe.

==⇒ we require a novel analysis:-))

423

An expression e is calledbusyalong a path π , if the expression e

is evaluated before any of the variablesx ∈ Vars(e) is overwritten.

// backward analysis!

e is calledvery busyat u , if e is busy along every path
π : u →∗ stop .

424

An expression e is calledbusyalong a path π , if the expression e

is evaluated before any of the variablesx ∈ Vars(e) is overwriten.

// backward analysis!

e is calledvery busyat u , if e is busy along every path
π : u →∗ stop .

Accordingly, we require:

B[u] =
⋂

{[[π]]♯ ∅ | π : u →∗ stop}

where for π = k1 . . . km :

[[π]]♯ = [[k1]]
♯ ◦ . . . ◦ [[km]]

♯

425

Our complete lattice is given by:

B = 2Expr\Vars with ⊑ = ⊇

The effect [[k]]♯ of an edge k = (u, lab, v) only depends on lab ,
i.e., [[k]]♯ = [[lab]]♯ where:

[[;]]♯B = B

[[Pos(e)]]♯B = [[Neg(e)]]♯B = B ∪ {e}

[[x = e;]]♯B = (B\Exprx) ∪ {e}

[[x = M [e];]]♯ B = (B\Exprx) ∪ {e}

[[M [e1] = e2;]]
♯B = B ∪ {e1, e2}

426

These effects are alldistributive. Thus, the least solution of the constraint
system yields precisely the MOP — given thatstop is reachable from
every program point :-)

Example:

1

0

3

7

6

5

2 4

x = M [a]; y1 = x+ 1;

y2 = x+ 1;

M [x] = y1 + y2;

7 ∅

6 {y1 + y2}

5 {x+ 1}

4 {x+ 1}

3 {x+ 1}

2 {x+ 1}

1 ∅

0 ∅

427

A point u is calledsafefor e , if e ∈ A[u] ∪ B[u] , i.e., e is
either available or very busy.

Idea:

• We insert computations ofe such that e becomes available at
all safe program points :-)

• We insertTe = e; after every edge(u, lab, v) with

e ∈ B[v]\[[lab]]♯A(A[u] ∪ B[u])

428

Transformation 5.1:

v

u

v v

v

u

lab

Te = e; (e ∈ B[v])

Te = e;

lab

(e ∈ B[v]\[[lab]]♯A (A[u] ∪ B[u]))

429

Transformation 5.2:

uu

x = e; x = Te;

// analogously for the other uses ofe

// at old edges of the program.

430

Bernhard Steffen, Dortmund Jens Knoop, Wien

431

In the Example:

1

0

3

7

6

5

2 4

x = M [a]; y1 = x+ 1;

y2 = x+ 1;

M [x] = y1 + y2;

A B

0 ∅ ∅

1 ∅ ∅

2 ∅ {x+ 1}

3 ∅ {x+ 1}

4 {x+ 1} {x+ 1}

5 ∅ {x+ 1}

6 {x+ 1} {y1 + y2}

7 {x+ 1, y1 + y2} ∅

432

In the Example:

1

0

3

7

6

5

2 4

x = M [a]; y1 = x+ 1;

y2 = x+ 1;

M [x] = y1 + y2;

A B

0 ∅ ∅

1 ∅ ∅

2 ∅ {x+ 1}

3 ∅ {x+ 1}

4 {x+ 1} {x+ 1}

5 ∅ {x+ 1}

6 {x+ 1} {y1 + y2}

7 {x+ 1, y1 + y2} ∅

433

Im Example:

0

2

1

3

4

7

6

5

x = M [a];

T = x+ 1;

T = x+ 1;

y1 = T ;

y2 = T ;

M [x] = y1 + y2;

A B

0 ∅ ∅

1 ∅ ∅

2 ∅ {x+ 1}

3 ∅ {x+ 1}

4 {x+ 1} {x+ 1}

5 ∅ {x+ 1}

6 {x+ 1} {y1 + y2}

7 {x+ 1, y1 + y2} ∅

434

Correctness:

Let π denote a path reachingv after which a computation of an
edge with e follows.

Then there is a maximal suffix ofπ such that for every edge
k = (u, lab, u′) in the suffix:

e ∈ [[lab]]♯A(A[u] ∪ B[u])

B

v

A ∨B A ∨B A ∨BA ∨B

435

Correctness:

Let π denote a path reachingv after which a computation of an
edge with e follows.

Then there is a maximal suffix ofπ such that for every edge
k = (u, lab, u′) in the suffix:

e ∈ [[lab]]♯A(A[u] ∪ B[u])

In particular, no variable in e receives a new value:-)

Then Te = e; is inserted before the suffix :-))

T = e;

A A A A A

v

436

We conclude:

• Whenever the value of e is required, e is available :-)

==⇒ correctnessof the transformation

• Every T = e; which is inserted into a path corresponds to ane
which is replaced with T :-))

==⇒ non-degradationof the efficiency

437

