The analysis iterates over all edgasce

m =} {zl]} | v € Varsk
forall k= (_,lab,) do m = [lab]*m;

where:

[z = y;]* = union” (m,x,y)
[+ = ylel:]*m = union® (m,z,y[])
[yle] = :]Fm = union® (m,z,y[])
lab]* = 7 otherwise

387

... Inthe Simple Example:

H{ah vy 7]
H{ah vy 7]
H{ah vy 7]

et

oAy ol

I3 w3}
I3 w3}
I3 w3}

1, o]y

Ay

Ayl

388

... Inthe More Complex Example:

WAk rb At AL S
(2,3) | ALty (LRl 3
3, 4) | (Ut ALt A
(4,5) st Wt)y
(5,6) Whtyrs it}

389

Caveat:

In order to find something, we must assume that variablesréadds
always receive a value before they are accessed.

Complexity:

we have:
O(# edges + # Vars) calls of union”
O(# edges + # Vars) calls of find
O(# Vars) calls of union

—— We require efficientUnion-Find data-structure :-)

390

ldea:

Represent partition of U as directed forest:

e For uweU areference Flu| tothe fatheris maintained,

e Roots are elementsu with Flu] = u .

Single trees represent equivalence classes.

Their roots are their representatives ...

391

©
()
GGl

— find (w,u) follows the father references:-)

— union (7, uy, us) re-directs the father reference of one, ...

392

0|1/ 2 3 4|5| 6| 7

1113 1| 4| 7| 5 7

393

0|1/ 2 3 4|5| 6| 7

1113 1) 7| 7] 5 7

394

The Costs:

Strategy to Avoid Deep Trees:

e Putthesmallertree below thévigger!

e Use find to compress paths.

395

0|1/ 2 3 4|5| 6| 7

1113 1| 4| 7| 5 7

396

0|1/ 2 3 4|5| 6| 7

1113 1) 7| 7] 5 7

397

0|1 2|3/ 4|5| 6|7
5| 13| 1| 7| 7| 5 3

0|1 2|3/ 4|5| 6|7
5| 13| 1| 7| 7| 5 3

399

%

)

0|1 2|3/ 4|5| 6|7
5| 13| 1| 7| 7| 5 3

0|1/ 2 3 4|5| 6| 7
5|13 1] 1] 7] 1] 1

Robert Endre Tarjan, Princeton

403

Note:

e By this data-structure, »n union- und m find operations
require time O(n +m - «a(n,n))
// « theinverse Ackermann-function:-)

e For our application, we only must modifyunion such that roots
are from Vars whenever possible.

e This modification does not increase the asymptotic run-time

Summary:

The analysis is extremely fast — but may not find very much.

404

Background 3: Fixpoint Algorithms

Consider: v, 3 fi(xy,...,x,), i=1,...,n

Observation:

RR-Iteration isnefficient

— We require a complete round in order to detect terminatiof

— Ifin some round, the value of just one unknown is changed the
we still re-compute all :-(

— The practical run-time depends on the ordering on the vigsab

-~(

405

ldea: Worklist Iteration

If an unknown z; changes its value, we re-compute all unknowns
which depend on z; . Technically we require:

— thelists Dep f; of unknowns which are accessed during
evaluation of f;. From that, we compute the lists:

[[QZL] — {Ij | €T; € D€p f]}
l.e., alistofall z; which depend on the value ofz; ;

— thevalues Dlz;| ofthe z; whereinitially Dlz;| = 1;

— alist W of all unknowns whose value must be recomputed ...

406

The Algorithm:

W =z, ..., 2]
while (17 7 |) {
x; = extract W;
t = f;eval;
t = Dz Ut
if (t# Dlzi]) {
Dlz;] = t;
4% = append [|x;| W;
}
}
where : eval x; = Dlz;]

407

Example:

=
U

{a} Uxs
T3 M {a, b}
I U {C}

S
U

&
U

I1 {333}

I3 {$17$2}

408

Example:

ry 2 {a}Uxs
) 2 T3 M {CL, b}
X3 2 U {C}
1
x1 | {xs}
i) (b
xs | {1, 22}

Dlx1] | D|xs] | D]xs] W

0 0 0 T1], To, T3
{a}) 0 T |, T3
{a}) 0 T3
{a} 0 | {a,c} T, o
{fa,c} | 0 |{a,c} T3], To
{fa,c} | 0 |{a,c} To

14, ¢}

14}

14, ¢}

409

Theorem

Let z; J fi(x1,...,2,), i=1,...,n denotea constraint system
over the complete latticelD of hight - > 0.

(1) The algorithm terminates after at most - V' evaluations of
right-hand sides where

N — i(l + # (Dep 1)) // size of the system :-)

(2) The algorithm returns a solution.
Ifall f; are monotonic, it returns the least one.

410

Proof:

Ad (1):

Every unknown z; may change its value at most: times :-)
Each time, the list /|x;] isaddedto 1V .

Thus, the total number of evaluations is:

n+ > (b # (zi]))
n+he 3 # Uz)])
n+h-y i #(Dep fi)
h- 3 imi(L+# (Dep fi))
h-N

IA

411

Ad (2):

We only consider the assertion for monotonig; .

Let D, denote the least solution. We show:

e Dylz;] 3 Dz (all the time)
o Dlx;| 2 fieval — z; €W (at exit of the loop body)
e On termination, the algo returns a solution))

412

Discussion:

e Inthe example, fewer evaluations of right-hand sides ayeired
than for RR-iteration :-)

e The algo also works for non-monotonicf; :-)

e For monotonic f;, the algo can be simplified:

t=Dlz;]Ut;| = [}

e In presence ofvidening we replace:

t=Dlz;]Ut;) —= |t = Dlx;]Ut;

e In presence oflarrowing we replace:

t=Dlx;]Ut;) == |t = Dlx;|Ft;

413

Warning:

e The algorithm relies on explicit dependencies among theowks.

So far in our applications, these wegkvious This need not always
be the case :-(

e We need somsetrategyfor extract which determines the next
unknown to be evaluated.

e Itwould be ingenious if we always evaluati$t and then accessed
the result ... :-)

— recursive evaluation.

414

ldea:

— If during evaluation of f; , an unknown z; Is accessed, z;
Is first solved recursively. Thenz; isaddedto [|x;] :-)

eval z; z; = solvexzy;
] = Il Ui
Dlz;l;
In order to prevent recursion to descend infinitely, a s&Bble
of unknown is maintained for whichsolve just looks up their

values :-)
Initially, Stable =0 ...

415

The Function solve :

solve z; = if (x; &€ Stable) {
Stable = Stable U {x;};
t = f,L (eval LUL),

t = Dlx;] Ut;

if (¢ # Dlai]) {
W =1lxz;|; Ilx;] = 0;
Dlz;] =¢;
Stable = Stable\W
app solve W;

}

416

Helmut Seidl, TU Minchen ;-)

417

Example:

Consider our standard example:

=
U

{a} U I3
T3 M {CL, b}
r1 U{c}

S
U

&
U

A trace of the fixpoint algorithm then looks as follows:

418

solve xo eval o x3 solve x3 eval 3 x1 solve x1 eval 1 x3 solve x3

stable!
Izs] = {z1}
= 0
Dlz1] = {a}
Iz] = {z3}
= {a}
Dlxs] = {a, c}
Ixzs] =0
solve x1 eval x1 =3 solve x3
stable!
Izs] = {z1}
= {a,c}
D[z1] = {a, c}
I[z1] =0
solve x3 eval 3 1 solve x1
stable!
Izy] = {=s}
= {a,c}
ok

Izs] = {z1,z2}
= {a,c}

Dlxz] = {a}

419

Evaluation starts with amterestingunknown z; (e.g., the
value at stop)

Thenautomaticallyall unknowns are evaluated which influence
X; :-)

The number of evaluations is often smaller than during wstrkl
iteration ;-)

The algorithm is more complex but does not rely on
pre-computatiorof variable dependencies)

It also works if variable dependencies during iteratttiange!!!

— Interprocedural analysis

420

1.7 Eliminating Partial Redundancies

Example:

// r+ 1 is evaluated on every path...
// onone path, however, even twice-(

421

Goal:

422

ldea:

(1)

(2)

(3)

Insert assignments. = ¢; such that is available at all points
where the value of is required.

Thereby spare program points whereither is alreadyvailable
or will definitely be computeth future.

Expressions with the latter property are caledy busy
Replace the original evaluations©by accesses to the variable

B we require a novel analysis:-))

423

An expression ¢ Is calledbusyalong a path =, if the expression ¢
IS evaluated before any of the variables € Vars(e) is overwritten.

// backward analysis!

e Is calledvery busyat u,if e Is busy along every path
mu—" stop .

424

An expression ¢ Is calledbusyalong a path =, if the expression ¢
IS evaluated before any of the variables € Vars(e) is overwriten.

// backward analysis!

e Is calledvery busyat u,if e Is busy along every path
mu—" stop .

Accordingly, we require:

Blu| = ﬂ{ﬂ’ﬂ]]ﬂ 0| 7:u—"stop}

where for 7#=k;... Lk, :

425

Our complete lattice is given by:

B — 2Ea:p7“\Va7’s with E _ 2

The effect [k]* ofanedge k = (u,lab,v) only depends on lab,
i.e., [k]* = [lab]* where:

BipE = B

[Pos(e)]* B = [Neg(e)]* B = BU{e}
z=¢e]'B = (B\Ezpr,) U{c}

v =Ml[e[[PB = (B\Ezpr,)U{c}

(Mle)] =ex]* B = BU{ey, e}

426

These effects are dallistributive Thus, the least solution of the constraint
system yields precisely the MOP — given thatp is reachable from
every program point :-)

Example:

{y1 +ya}
{z+1}
{z+1}
{z+1}
{z+1}

O || W | &0 O |

427

A point « is calledsafefor e,if ee€ Alu]UB[u|,ie., e s
either available or very busy.

ldea:

e We insert computations ofe such that ¢ becomes available at
all safe program points :-)

e Weinsert], = ¢; after every edgéu, lab, v) with
e € Bo\[laby(Alu] U Blu))

428

Transformation 5.1:

ilab ——> lab

T, =e; (e € B\[lab]’ (Afu] UBu)))

\@ T.=¢e; (e €B[v])

429

Transformation 5.2:

// analogously for the other uses of

// at old edges of the program.

430

Bernhard Steffen, Dortmund Jens Knoop, Wien

431

In the Example:

A B
0) 0
1 0 0
2 0 {x + 1}
3 0 {z+1}
4 {x + 1} {z + 1}
5 0 {z+1}
6 {z+1} {y1 + 2}
T {z+ 1,5 + 1} 0

432

In the Example:

A B
0) 0
1 0 0
2 0 {x +1}
3 0 {z+1}
4 {x + 1} {z + 1}
5 0 {z +1}
6 {z+1} {y1 + 2}
T {z+ 1,5 + 1} 0

433

Im Example:

A B
1o 0 0
1 0 0
2 0 {x +1}
3 0 {z+1}
4 {x + 1} {z + 1}
5 0 {z +1}
6 {z+1} {y1 + 2}
T {z+ 1,5 + 1} 0

434

Correctness:

Let =« denote a path reachingy after which a computation of an
edge with ¢ follows.

Then there is a maximal suffix ofr such that for every edge
k = (u,lab,u") inthe suffix:

e € [lab]*(Alu] U Blu))

AVvB AVB AvB AVB B

O—0O~0~-0~0~®

435

Correctness:

Let =« denote a path reachingy after which a computation of an
edge with ¢ follows.

Then there is a maximal suffix ofr such that for every edge
k = (u,lab,u") inthe suffix:

e € [lab]*(Alu] U Blu))

In particular, no variable in ¢ receives a new value:-)

Then 7, =e¢; Isinserted before the suffix :-))

R

436

We conclude:

e Whenever the value ofe isrequired, ¢ is available :-)

= correctnes®f the transformation

e Every T = e;which isinserted into a path corresponds to an
which is replaced with 7T -))

— non-degradationf the efficiency

437

