
1.8 Application: Loop-invariant Code

Example:

for (i = 0; i < n; i++)

a[i] = b+ 3;

// The expression b+ 3 is recomputed in every iteration:-(

// This should be avoided:-)

438



The Control-flow Graph:

3

2

4

5

7

6

0

1

i = 0;

Neg(i < n) Pos(i < n)

y = b+ 3;

A1 = A+ i;

i = i+ 1;

M [A1] = y;

439



Warning: T = b+ 3; may not be placedbeforethe loop:

3

4

5

7

6

2

1

0

i = 0;

Neg(i < n) Pos(i < n)

A1 = A+ i;

i = i+ 1;

T = b+ 3;

y = T ;

M [A1] = y;

==⇒ There is nodecentplace for T = b+ 3; :-(

440



Idea: Transform into a do-while-loop ...

3

2

4

5

0

1

i = 0;

67

Pos(i < n)

A1 = A+ i;

i = i+ 1;

Neg(i < n)

Neg(i < n) Pos(i < n)

y = b+ 3;

M [A1] = y;

441



... now there is a place for T = e; :-)

3

2

4

5

67

0

1

i = 0;

A1 = A+ i;

i = i+ 1;

Neg(i < n) Pos(i < n)

Neg(i < n)

Pos(i < n)

T = b+ 3;

y = T ;

M [A1] = y;

442



Application of T5 (PRE) :

3

2

4

5

0

1

i = 0;

67

Pos(i < n)

A1 = A+ i;

i = i+ 1;

Neg(i < n)

Neg(i < n) Pos(i < n)

y = b+ 3;

M [A1] = y;

A B

0 ∅ ∅

1 ∅ ∅

2 ∅ {b+ 3}

3 {b+ 3} ∅

4 {b+ 3} ∅

5 {b+ 3} ∅

6 {b+ 3} ∅

7 ∅ ∅

443



Application of T5 (PRE) :

3

2

4

5

0

1

i = 0;

67

Pos(i < n)

A1 = A+ i;

i = i+ 1;

Neg(i < n)

Neg(i < n) Pos(i < n)

y = b+ 3;

M [A1] = y;

A B

0 ∅ ∅

1 ∅ ∅

2 ∅ {b+ 3}

3 {b+ 3} ∅

4 {b+ 3} ∅

5 {b+ 3} ∅

6 {b+ 3} ∅

7 ∅ ∅

444



Conclusion:

• Elimination of partial redundancies may move loop-invariant code
out of the loop :-))

• This only works properly for do-while-loops :-(

• To optimize other loops, we transform them intodo-while-loops
before-hand:

while (b) stmt ==⇒ if (b)

do stmt

while (b);

==⇒ Loop Rotation

445



Problem:

If we do not have the source program at hand, we must re-construct
potential loop headers;-)

==⇒ Pre-dominators

u pre-dominates v , if every path π : start →∗ v contains u. We
write: u ⇒ v .

“⇒” is reflexive, transitive and anti-symmetric :-)

446



Computation:

We collect the nodes along paths by means of the analysis:

P = 2Nodes , ⊑ = ⊇

[[(_, _, v)]]♯ P = P ∪ {v}

Then the set P [v] of pre-dominators is given by:

P [v] =
⋂

{[[π]]♯ {start} | π : start →∗ v}

447



Since [[k]]♯ are distributive, the P [v] can computed by means of
fixpoint iteration :-)

Example:

3

2

4

5

0

1

P

0 {0}

1 {0, 1}

2 {0, 1, 2}

3 {0, 1, 2, 3}

4 {0, 1, 2, 3, 4}

5 {0, 1, 5}

448



The partial ordering “⇒” in the example:

3

2

4

0

1

5

P

0 {0}

1 {0, 1}

2 {0, 1, 2}

3 {0, 1, 2, 3}

4 {0, 1, 2, 3, 4}

5 {0, 1, 5}

449



Apparently, the result is atree :-)

In fact, we have:

Theorem:

Every node v has at most one immediate pre-dominator.

Proof:

Assume:

there are u1 6= u2 which immediately pre-dominatev.

If u1 ⇒ u2 then u1 not immediate.

Consequently, u1, u2 are incomparable :-)

450



Now for every π : start →∗ v :

π = π1 π2 with π1 : start →
∗ u1

π2 : u1 →
∗ v

If, however, u1, u2 are incomparable, then there is path:start →∗ v

avoiding u2 :

start u1

u2
u2

v

451



Now for every π : start →∗ v :

π = π1 π2 with π1 : start →
∗ u1

π2 : u1 →
∗ v

If, however, u1, u2 are incomparable, then there is path:start →∗ v

avoiding u2 :

start u1

u2u2

v

452



Observation:

The loop head of awhile-loop pre-dominates every node in the body.

A back edge from the exit u to the loop head v can be identified
through

v ∈ P [u]

:-)

Accordingly, we define:

453



Transformation 6:

u

v

uu2 u2

lab

Pos(e)Neg(e)
v

lab

Pos(e)Neg(e)

Neg(e) Pos(e)

u2, v ∈ P [u]

u1 6∈ P [u]

u1 u1

We duplicate the entry check to all back edges:-)

454



... in the Example:

3

2

4

5

7

0

1

i = 0;

6

Neg(i < n) Pos(i < n)

A1 = A+ i;

i = i+ 1;

y = b+ 3;

M [A1] = y;

455



... in the Example:

3

2

4

5

7

0

1

i = 0;

6

Neg(i < n) Pos(i < n)

A1 = A+ i;

0, 1

0, 1, 2

0, 1, 2, 3, 4

0, 1, 2, 3

0, 1, 7

0

0, 1, 2, 3, 4, 5

0, 1, 2, 3, 4, 5, 6
i = i+ 1;

y = b+ 3;

M [A1] = y;

456



... in the Example:

3

2

4

5

7

0

1

i = 0;

6

Neg(i < n) Pos(i < n)

A1 = A+ i;

0, 1

0, 1, 2

0, 1, 2, 3, 4

0, 1, 2, 3

0, 1, 7

0

0, 1, 2, 3, 4, 5

0, 1, 2, 3, 4, 5, 6
i = i+ 1;

M [A1] = y;

y = b+ 3;

457



... in the Example:

3

2

4

5

7

0

1

i = 0;

6

Neg(i < n) Pos(i < n)

y = b+ 3;

A1 = A+ i;

0, 1

0, 1, 2

0, 1, 2, 3, 4

0, 1, 2, 3

0, 1, 7

0

0, 1, 2, 3, 4, 5

0, 1, 2, 3, 4, 5, 6
i = i+ 1;

Pos(i < n)Neg(i < n)

M [A1] = y;

458



Warning:

There areunusualloops which cannot be rotated:

3

2

0

4

1

3

2

0

1

4

Pre-dominators:

459



... but alsocommon oneswhich cannot be rotated:

3

2

4

5

0

1

3

2

4

0

1

5

Here, the complete block between back edge and conditional jump should
be duplicated :-(

460



... but alsocommon oneswhich cannot be rotated:

3

2

4

5

0

1

3

2

4

0

1

5

Here, the complete block between back edge and conditional jump should
be duplicated :-(

461



... but alsocommon oneswhich cannot be rotated:

3

2

4

5

0

1

5

3

2

4

1

0

Here, the complete block between back edge and conditional jump should
be duplicated :-(

462



1.9 Eliminating Partially Dead Code

Example:
0

1

2

3

4

T = x+ 1;

M [x] = T ;

x+ 1 need only be computed along one path;-(

463



Idea:

0

1

2

3

4

0

1

2

3

4

T = x+ 1;

M [x] = T ; M [x] = T ;

T = x+ 1;

464



Problem:

• The definition x = e; (x 6∈ Varse) may only be moved to an
edge where e is safe ;-)

• The definition must still be available for uses ofx ;-)

==⇒

We define an analysis which maximally delays computations:

[[;]]♯D = D

[[x = e;]]♯ D =

{

D\(Usee ∪ Def x) ∪ {x = e;} if x 6∈ Varse

D\(Usee ∪ Def x) if x ∈ Varse

465



... where:

Usee = {y = e′; | y ∈ Varse}

Def x = {y = e′; | y ≡ x ∨ x ∈ Varse′}

466



... where:

Usee = {y = e′; | y ∈ Varse}

Def x = {y = e′; | y ≡ x ∨ x ∈ Varse′}

For the remaining edges, we define:

[[x = M [e];]]♯D = D\(Usee ∪ Def x)

[[M [e1] = e2;]]
♯D = D\(Usee1 ∪ Usee2)

[[Pos(e)]]♯D = [[Neg(e)]]♯D = D\Usee

467



Warning:

We may move y = e; beyond a join only if y = e; can be delayed
along all joining edges:

0

1

2

3

4

T = x+ 1;

x = M [T ];

Here, T = x+ 1; cannot be moved beyond1 !!!

468



We conclude:

• The partial ordering of the lattice for delayability is given by “⊇”.

• At program start: D0 = ∅.

Therefore, the setsD[u] of at u delayable assignments can
be computed by solving a system of constraints.

• We delay only assignmentsa where a a has the same effect
as a alone.

• The extra insertions render the original assignments as assignments
to dead variables...

469



Transformation 7:

v

u

lab lab

v

u

a ∈ D[u]\[[lab]]♯(D[u])

a ∈ [[lab]]♯(D[u])\D[v]

470



v1 v2

uu

v1 v2

Pos(e)Neg(e)

u

Pos(e)Neg(e)

a ∈ D[u]\[[Pos(e)]]♯(D[u])

a ∈ [[Neg(e)]]♯(D[u])\D[v1] a ∈ [[Pos(e)]]♯(D[u])\D[v2]

Note:

Transformation T7 is only meaningful, if we subsequently eliminate
assignments to dead variables by means of transformationT2 :-)

In the example, the partially dead code is eliminated:

471



0

1

2

3

4

T = x+ 1;

M [x] = T ;

D

0 ∅

1 {T = x+ 1;}

2 {T = x+ 1;}

3 ∅

4 ∅

472



0

1

4

2

3

M [x] = T ;

T = x+ 1;T = x+ 1;

T = x+ 1;
D

0 ∅

1 {T = x+ 1;}

2 {T = x+ 1;}

3 ∅

4 ∅

473



0

1

4

2

3

M [x] = T ;

T = x+ 1;

;

;

L

0 {x}

1 {x}

2 {x}

2′ {x, T}

3 ∅

4 ∅

474



Remarks:

• After T7 , all original assignments y = e; with y 6∈ Varse are
assignments to dead variables and thus can always be eliminated
:-)

• By this, it can be proven that the transformation is guaranteed to be
non-degradating efficiency of the code:-))

• Similar to the elimination of partial redundancies, the
transformation can be repeated:-}

475



Conclusion:

→ The design of ameaningfuloptimization is non-trivial.

→ Many transformations are advantageous only in connection with
other optimizations :-)

→ Theorderingof applied optimizations matters!!

→ Some optimizations can be iterated!!!

476



... a meaningful ordering:

T4 Constant Propagation

Interval Analysis

Alias Analysis

T6 Loop Rotation

T1, T3, T2 Available Expressions

T2 Dead Variables

T7, T2 Partially Dead Code

T5, T3, T2 Partially Redundant Code

477


