2 Replacing Expensive Operations by Cheaper Ones

2.1 Reduction of Strength

(1) Evaluation of Polynomials

$$
f(x)=a_{n} \cdot x^{n}+a_{n-1} \cdot x^{n-1}+\ldots+a_{1} \cdot x+a_{0}
$$

	Multiplications	Additions
naive	$\frac{1}{2} n(n+1)$	n
re-use	$2 n-1$	n
Horner-Scheme	n	n

Idea:

$$
f(x)=\left(\ldots\left(\left(a_{n} \cdot x+a_{n-1}\right) \cdot x+a_{n-2}\right) \ldots\right) \cdot x+a_{0}
$$

(2) Tabulation of a polynomial $f(x)$ of degree n :
\rightarrow To recompute $f(x)$ for every argument x is too expensive :-)
$\rightarrow \quad$ Luckily, the n-th differences are constant !!!

Example: $\quad f(x)=3 x^{3}-5 x^{2}+4 x+13$

n	$f(n)$	Δ	Δ^{2}	Δ^{3}
0	13	2	8	$\boxed{18}$
1	15	10	26	
2	25	$\boxed{36}$		
3	61			
4	\ldots			

Here, the n-th difference is always

$$
\Delta_{h}^{n}(f)=n!\cdot a_{n} \cdot h^{n} \quad(h \text { step width })
$$

Costs:

- n times evaluation of f;
- $\frac{1}{2} \cdot(n-1) \cdot n \quad$ subtractions to determine the Δ^{k};
- n additions for every further value :-)

Number of multiplications only depends on $n \quad:-)$)

Simple Case: $\quad f(x)=a_{1} \cdot x+a_{0}$

- ... naturally occurs in many numerical loops :-)
- The first differences are already constant:

$$
f(x+h)-f(x)=a_{1} \cdot h
$$

- Instead of the sequence: $\quad y_{i}=f\left(x_{0}+i \cdot h\right), \quad i \geq 0$
we compute:

$$
\begin{aligned}
& y_{0}=f\left(x_{0}\right), \quad \Delta=a_{1} \cdot h \\
& y_{i}=y_{i-1}+\Delta, \quad i>0
\end{aligned}
$$

Example:

... or, after loop rotation:

$$
\begin{aligned}
& i=i_{0} ; \\
& \text { if }(i<n) \text { do }\{ \\
& \qquad \begin{aligned}
A=A_{0}+b \cdot i ; \\
M[A]=\ldots ; \\
i=i+h ;
\end{aligned} \\
& \qquad \text { while }(i<n) ;
\end{aligned}
$$

... and reduction of strength:

$$
\begin{aligned}
& i=i_{0} ; \\
& \text { if }(i<n) \text { \{ } \\
& \Delta=b \cdot h ; \\
& A=A_{0}+b \cdot i_{0} ; \\
& \text { do \{ } \\
& M[A]=\ldots ; \\
& i=i+h ; \\
& A=A+\Delta ; \\
& \} \text { while }(i<n) \text {; }
\end{aligned}
$$

Warning:

- The values b, h, A_{0} must not change their values during the loop.
- $\quad i, A$ may be modified at exactly one position in the loop
- One may try to eliminate the variable i altogether :
$\rightarrow \quad i \quad$ may not be used else-where.
$\rightarrow \quad$ The initialization must be transformed into:

$$
A=A_{0}+b \cdot i_{0}
$$

$\rightarrow \quad$ The loop condition $\quad i<n$ must be transformed into:
$A<N \quad$ for $\quad N=A_{0}+b \cdot n$.
$\rightarrow \quad b \quad$ must always be different from zero !!!

Approach:

Identify
loops;
iteration variables;
constants;
the matching use structures.

Loops:

\ldots are identified through the node v with back edge $\left.\left({ }_{-},{ }_{-}, v\right) \quad:-\right)$

For the sub-graph G_{v} of the cfg on $\quad\{w \mid v \Rightarrow w\}$, we define:

$$
\operatorname{Loop}[v]=\left\{w \mid w \rightarrow^{*} v \text { in } G_{v}\right\}
$$

Example:

	\mathcal{P}
0	$\{0\}$
1	$\{0,1\}$
2	$\{0,1,2\}$
3	$\{0,1,2,3\}$
4	$\{0,1,2,3,4\}$
5	$\{0,1,5\}$

Example:

	\mathcal{P}
0	$\{0\}$
1	$\{0,1\}$
2	$\{0,1,2\}$
3	$\{0,1,2,3\}$
4	$\{0,1,2,3,4\}$
5	$\{0,1,5\}$

Example:

	\mathcal{P}
0	$\{0\}$
1	$\{0,1\}$
2	$\{0,1,2\}$
3	$\{0,1,2,3\}$
4	$\{0,1,2,3,4\}$
5	$\{0,1,5\}$

We are interested in edges which during each iteration are executed exactly once:

This property can be expressed by means of the pre-dominator relation ...

Assume that $\left(u,_{-}, v\right)$ is the back edge.
Then edges $k=\left(u_{1},{ }_{-}, v_{1}\right) \quad$ could be selected such that:

- v pre-dominates u_{1};
- u_{1} pre-dominates v_{1};
- v_{1} predominates u.

Assume that $\left(u,_{-}, v\right)$ is the back edge.
Then edges $k=\left(u_{1},{ }_{-}, v_{1}\right) \quad$ could be selected such that:

- v pre-dominates u_{1};
- u_{1} pre-dominates v_{1};
- v_{1} predominates u.

On the level of source programs, this is trivial:

$$
\begin{aligned}
& \text { do }\left\{s_{1} \ldots s_{k}\right. \\
& \} \text { while }(e) \text {; }
\end{aligned}
$$

The desired assignments must be among the s_{i} :-)

Iteration Variable:

i is an iteration variable if the only definition of i inside the loop occurs at an edge which separates the body and is of the form:

$$
i=i+h ;
$$

for some loop constant h.

A loop constant is simply a constant (e.g., 42), or slightly more libaral, an expression which only depends on variables which are not modified during the loop :-)

(3) Differences for Sets

Consider the fixpoint computation:

$$
\begin{aligned}
& x=\emptyset ; \\
& \text { for } \quad(t=F x ; t \nsubseteq x ; t=F x ;) \\
& \quad x=x \cup t ;
\end{aligned}
$$

If F is distributive, it could be replaced by:

$$
\begin{aligned}
& x=\emptyset ; \\
& \text { for }(\Delta=F x ; \Delta \neq \emptyset ; \Delta=(F \Delta) \backslash x ;) \\
& x=x \cup \Delta ;
\end{aligned}
$$

The function F must only be computed for the smaller sets $\Delta \quad:-$) semi-naive iteration

Instead of the sequence: $\emptyset \subseteq F(\emptyset) \subseteq F^{2}(\emptyset) \subseteq \ldots$
we compute: $\quad \Delta_{1} \cup \Delta_{2} \cup \ldots$
where:

$$
\begin{aligned}
\Delta_{i+1} & =F\left(F^{i}(\emptyset)\right) \backslash F^{i}(\emptyset) \\
& =F\left(\Delta_{i}\right) \backslash\left(\Delta_{1} \cup \ldots \cup \Delta_{i}\right) \quad \text { with } \Delta_{0}=\emptyset
\end{aligned}
$$

Assume that the costs of $F x$ is $1+\# x$.
Then the costs may sum up to:

naive	$1+2+\ldots+n+n$	$=$	$\frac{1}{2} n(n+3)$
semi-naive		$2 n$	

where n is the cardinality of the result.
$\Longrightarrow \quad$ A linear factor is saved :-)

2.2 Peephole Optimization

Idea:

- Slide a small window over the program.
- Optimize agressively inside the window, i.e.,
$\rightarrow \quad$ Eliminate redundancies!
$\rightarrow \quad$ Replace expensive operations inside the window by cheaper ones!

Examples:

$$
y=M[x] ; x=x+1 ; \quad \Longrightarrow \quad y=M[x++] ;
$$

// given that there is a specific post-increment instruction :-)

$$
z=y-a+a ; \quad \Longrightarrow \quad z=y
$$

algebraic simplifications :-)

$$
\begin{array}{lll}
x=x ; & \Longrightarrow & ; \\
x=0 ; & \Longrightarrow & x=x \oplus x ; \\
x=2 \cdot x ; & \Longrightarrow & x=x+x ;
\end{array}
$$

Important Subproblem:

 nop-Optimization
\rightarrow If $\quad\left(v_{1}, ; v\right)$ is an edge, $\quad v_{1}$ has no further out-going edge.
\rightarrow Consequently, we can identify v_{1} and $\left.v \quad:-\right)$
$\rightarrow \quad$ The ordering of the identifications does not matter $:-)$)

Implementation:

- We construct a function next : Nodes \rightarrow Nodes with:

$$
\text { next } u= \begin{cases}\text { next } v & \text { if }(u, ; v) \quad \text { edge } \\ u & \text { otherwise }\end{cases}
$$

Warning: This definition is only recursive if there are ;-loops ???

- We replace every edge:

$$
\begin{gathered}
(u, l a b, v) \Longrightarrow(u, l a b, \text { next } v) \\
\ldots \text { whenever } l a b \neq ;
\end{gathered}
$$

- All ;-edges are removed ;-)

Example:

$$
\begin{aligned}
& \text { next } 1=1 \\
& \text { next } 3=4 \\
& \text { next } 5=6
\end{aligned}
$$

Example:

$$
\begin{aligned}
& \text { next } 1=1 \\
& \text { next } 3=4 \\
& \text { next } 5=6
\end{aligned}
$$

2. Subproblem: Linearization

After optimization, the CFG must again be brought into a linearly arrangement of instructions :-)

Warning:
Not every linearization is equally efficient !!!

Example:

Bad: The loop body is jumped into

Example:

// better cache behavior :-)

Idea:

- Assign to each node a temperature!
- always jumps to
(1) nodes which have already been handled;
(2) colder nodes.
- Temperature \approx nesting-depth

For the computation, we use the pre-dominator tree and strongly connected components ...

... in the Example:

The sub-tree with back edge is hotter ...

... in the Example:

More Complicated Example:

More Complicated Example:

More Complicated Example:

Our definition of Loop implies that (detected) loops are necessarily nested :-)

Is is also meaningful for do-while-loops with breaks ...

Our definition of Loop implies that (detected) loops are necessarily nested :-)

Is is also meaningful for do-while-loops with breaks ...

Summary: The Approach

(1) For every node, determine a temperature;
(2) Pre-order-DFS over the CFG;
$\rightarrow \quad$ If an edge leads to a node we already have generated code for, then we insert a jump.
$\rightarrow \quad$ If a node has two successors with different temperature, then we insert a jump to the colder of the two.
$\rightarrow \quad$ If both successors are equally warm, then it does not matter ;-)

