2 Replacing Expensive Oper ations by Cheaper
Ones

2.1 Reduction of Strength

(1) Evaluation of Polynomials

f(@) = ap-2"+ap_ 2" +.. . 4a -z +a

Multiplications | Additions

naive n(n+1) n

re-use 2n — 1 n

Horner-Scheme n n

478

ldea:

(2) Tabulation of a polynomial f(z) of degree n :

— Torecompute f(z) forevery argument istoo expensive :-)

— Luckily, the n-th differences areonstant!!

479

Example: f(x) = 3x3 — 5x? + 4z + 13

ni f(n)| A | A% | A®
01 13 2 8 18
Ly 15 | 10 ||26

21 25 ||36

31 |61

4

Here, then-th difference isalways

AP(f)=nl-a,-h" (h step width

480

Costs:

times evaluation of f;

] n
.(n—1)-n subtractions to determine theA® ;

DO [

e 1 additions for every further value:-)

-))

Number of multiplications only depends om

481

Simple Case: f(x)=a1-x+ ag

e ... naturally occurs in many numerical loops-)

e Thefirst differences are already constant:
fl+h)=f(z)=a-h

o Instead of the sequence: y; = f(zg+i-h), 1 >0
we compute: yo = f(x9), A=ay-h
Vi =Yi-1 + A, >0

482

Example:

for (i =dg;i<mny;i=i+h) { Neg(i < n) Pogi < n)
A:A0+b2,

483

.. or, after loop rotation:

L = 1p; Neg(i < n)
if (i <n) do {

A=Ay+b- 1

M[A] =...;

1 =1+ h;

} while (i < n);

484

.. and reduction of strength:

1 = 1p;
if (1 <n) {
A=1b-h; Neg(i < n)
A= Ao+ b-ip;
do {
M[A] =...;
1 =14 h;
A=A+ A,

} while (i < n);

485

Warning:

e Thevalues b, h, Ay mustnot change their values during the loop.
e 1, A maybe modified at exactly one position in the loop(

e One may try to eliminate the variable. altogether.

— 7 may not be used else-where.

— The initialization must be transformed into:
A=A,+b 1.

— The loop condition < n must be transformed into:
A< N for N=Ay,+b-n.

— b must always be different fromero!!!

486

Approach:

|dentify

loops;

iteration variables;
constants;

the matching use structures.

487

Loops:
... are identified through the nodey with back edge (_, ,v) :-)

For the sub-graph G, ofthe cfgon {w | v = w}, we define:

Looplv] = {w|w —=*v in G,}

488

Example:

(0) P
0 {0}
(i) 1o
@ e 2 {O, 1, 2}
3 {0, 1,2, 3}
9 4 {O, 1,2, 3,4}
y 50 {0,1,5)

489

Example:

(0) P
0 {0}
(1) 1 {01}
e 2 2 {O, 1, 2}
3| {0,1,2,3}
(3 4140,1,2,3,4)
@ 5) {0,1,5}

490

Example:

(0) P
0 {0}
(1) 1 {01}
@/ 5 2| {0,1,2}
31 {0,1,2,3}
(3 4140,1,2,3,4)
@ 5) {0,1,5}

491

We are interested in edges which during each iteration areuded

exactly once:

This property can be expressed by means of the pre-domiredémion...

492

Assume thatu, , v) is the back edge.

Then edges k = (uy, _,v;) could be selected such that:
e v pre-dominates;
e 1, pre-dominates;;

e v; predominates.

493

Assume thatu, , v) is the back edge.

Then edges k = (uy, _,v;) could be selected such that:
e v pre-dominates;
e 1, pre-dominates;;

e v; predominates.

On the level of source programs, thidiisial:

do { S1...S5k
} while (e);

The desired assignments must be among the :-)

494

lteration Variable:

» Is an iteration variable if the onlgiefinitionof ¢ inside the loop occurs
at an edge which separates the body and is of the form:

1 =1+ h;

for someloop constant 7 .

A loop constant is simply a constant (e.g.42), or slightly more libaral,
an expression which only depends on variables which are odifrad
during the loop :-)

495

(3) Differences for Sets

Consider the fixpoint computation:
r =0
for (t=Fux;t L x;|t=Fux;)
r=2xUt;

If F isdistributive it could be replaced by:
r = ();
for (A=Fax;A#Q;|A=(FA)\ x;))
r=xUA;

The function F must only be computed for treemallersets A :-)
semi-naive iteration

496

Instead of the sequence: () C F(0) C F?(0) C
we compute: A U Ay U ...
where: Aiy1 = F(F(0)\F(0)
= F(A)\(AU...UA;) with Ag=0

Assume that the costs of ' = IS 1+ #ux .

Then the costs may sum up to:

naive 1+2+...+n+n = in(n+3)

semi-naive on

where n is the cardinality of the result.

— A linear factor is saved :-)

497

2.2 Peephole Optimization

ldea:

e Slide asmallwindow over the program.

e Optimize agressively inside the window, i.e.,

— Eliminate redundancies!

— Replace expensive operations inside the window by cheaper
ones!

498

Examples:

y=M[x];x=x+1; SN y = Mz++];
// given that there is a specific post-increment instructior)
Z=1Y—a-+a; — 2=
// algebraic simplifications :-)

T =21 — r=x+

499

Important Subproblem: nop-Optimization

lab # lab

— If (v,;,v) lisanedge, v; has no further out-going edge.
— Consequently, we can identifyp; and v :-)

— The ordering of the identifications does not matter))

500

Implementation:

e \We construct a function next : Nodes — Nodes with:

next v if (u,;,v) edge
next u = _
u otherwise

Warning: This definition is only recursive if there are-loops
?2?77?

e We replace every edge:
(u, lab,v) — (u, lab, next v)

... whenever [ab # ;
e All ;-edges are removed;-)

501

Example:

502

next 1
next 3

next 5

Example:

503

next 1
next 3

next 5

2. Subproblem: Linearization

After optimization, the CFG must again be brought intohaarly
arrangemenof instructions :-)

Warning:

Not every linearization is equally efficieht

504

Example:

0:

1. if (e;) goto 2;

4. halt

2: |Rumpf

3. if (es) goto 4
goto 1;

Bad: The loop body is jumped into :-(

505

Example:

if (le;) goto 4;

Rumpf

if ('e5) goto 1;
halt

> M PO

I better cache behavior:-)

506

ldea:

e Assign to each nodetamperaturk

e always jumpsto

(1) nodes which have already been handled,;

(2) coldernodes.

e Temperature ~ nesting-depth

For the computation, we use the pre-dominator tree andgron
connected components ...

507

... Inthe Example:

The sub-tree with back edgehsitter...

508

ol

... Inthe Example:

509

More Complicated Example:

510

More Complicated Example:

511

More Complicated Example:

512

Our definition of Loop implies that (detected) loops are necessarily
nested :-)

Is is also meaningful fodo-while-loops withbreaks ...

« | o3 e
@/

513

Our definition of Loop implies that (detected) loops are necessarily
nested :-)

Is is also meaningful fodo-while-loops withbreaks ...

514

Summary: The Approach

(1) Forevery node, determine a temperature;
(2) Pre-order-DFS over the CFG;
— If an edge leads to a node we already have generated code
for, then we insert a jump.

— If a node has two successors with different temperature,
then we insert a jump to thelderof the two.

— If both successors are equally warm, then it does not matter

=)

515

