
2 Replacing Expensive Operations by Cheaper

Ones

2.1 Reduction of Strength

(1) Evaluation of Polynomials

f (x) = an · x
n + an−1 · x

n−1 + . . .+ a1 · x+ a0

Multiplications Additions

naive 1
2
n(n+ 1) n

re-use 2n− 1 n

Horner-Scheme n n

478



Idea:

f (x) = (. . . ((an · x+ an−1) · x+ an−2) . . .) · x+ a0

(2) Tabulation of a polynomial f(x) of degree n :

→ To recompute f(x) for every argumentx is too expensive :-)

→ Luckily, the n-th differences areconstant!!!

479



Example: f(x) = 3x3 − 5x2 + 4x+ 13

n f(n) ∆ ∆2 ∆3

0 13 2 8 18

1 15 10 26

2 25 36

3 61

4 . . .

Here, then-th difference isalways

∆n

h
(f) = n! · an · h

n (h step width)

480



Costs:

• n times evaluation of f ;

• 1
2
· (n− 1) · n subtractions to determine the∆k ;

• n additions for every further value:-)

==⇒

Number of multiplications only depends onn :-))

481



Simple Case: f (x) = a1 · x+ a0

• ... naturally occurs in many numerical loops:-)

• Thefirst differences are already constant:

f (x+ h)− f (x) = a1 · h

• Instead of the sequence: yi = f (x0 + i · h) , i ≥ 0

we compute: y0 = f (x0) , ∆ = a1 · h

yi = yi−1 +∆ , i > 0

482



Example:

for (i = i0; i < n; i = i+ h) {

A = A0 + b · i;

M [A] = . . . ;

}

2

0

1

5

6

3

4

i = i0;

Pos(i < n)Neg(i < n)

A = A0 + b · i;

i = i+ h;

M [A] = . . . ;

483



... or, after loop rotation:

i = i0;

if (i < n) do {

A = A0 + b · i;

M [A] = . . . ;

i = i+ h;

} while (i < n);

2

0

5

6

3

4

1
Pos(i < n)Neg(i < n)

i = i0;

A = A0 + b · i;

i = i+ h;

M [A] = . . . ;

Neg(i < n) Pos(i < n)

484



... and reduction of strength:

i = i0;

if (i < n) {

∆ = b · h;

A = A0 + b · i0;

do {

M [A] = . . . ;

i = i+ h;

A = A+∆;

} while (i < n);

}

2

5

6

3

4

0

1

Neg(i < n) Pos(i < n)

i = i0;

Neg(i < n)

Pos(i < n)

M [A] = . . . ;

i = i+ h;

A = A+∆;

∆ = b · h;

A = A0 + b · i;

485



Warning:

• The values b, h, A0 must not change their values during the loop.

• i, A may be modified at exactly one position in the loop:-(

• One may try to eliminate the variablei altogether:

→ i may not be used else-where.

→ The initialization must be transformed into:
A = A0 + b · i0 .

→ The loop condition i < n must be transformed into:
A < N for N = A0 + b · n .

→ b must always be different fromzero!!!

486



Approach:

Identify

. . . loops;

. . . iteration variables;

. . . constants;

. . . the matching use structures.

487



Loops:

... are identified through the nodev with back edge (_, _, v) :-)

For the sub-graph Gv of the cfg on {w | v ⇒ w}, we define:

Loop[v] = {w | w →∗ v in Gv}

488



Example:

3

2

4

5

0

1

P

0 {0}

1 {0, 1}

2 {0, 1, 2}

3 {0, 1, 2, 3}

4 {0, 1, 2, 3, 4}

5 {0, 1, 5}

489



Example:

3

2

4

0

1

5

P

0 {0}

1 {0, 1}

2 {0, 1, 2}

3 {0, 1, 2, 3}

4 {0, 1, 2, 3, 4}

5 {0, 1, 5}

490



Example:

0

1

2

3

4

5

P

0 {0}

1 {0, 1}

2 {0, 1, 2}

3 {0, 1, 2, 3}

4 {0, 1, 2, 3, 4}

5 {0, 1, 5}

491



We are interested in edges which during each iteration are executed
exactly once:

u

v

This property can be expressed by means of the pre-dominatorrelation...

492



Assume that(u, _, v) is the back edge.

Then edges k = (u1, _, v1) could be selected such that:

• v pre-dominatesu1;

• u1 pre-dominatesv1;

• v1 predominatesu.

493



Assume that(u, _, v) is the back edge.

Then edges k = (u1, _, v1) could be selected such that:

• v pre-dominatesu1;

• u1 pre-dominatesv1;

• v1 predominatesu.

On the level of source programs, this istrivial:

do { s1 . . . sk

} while (e);

The desired assignments must be among thesi :-)

494



Iteration Variable:

i is an iteration variable if the onlydefinitionof i inside the loop occurs
at an edge which separates the body and is of the form:

i = i+ h;

for someloop constant h .

A loop constant is simply a constant (e.g.,42), or slightly more libaral,
an expression which only depends on variables which are not modified
during the loop :-)

495



(3) Differences for Sets

Consider the fixpoint computation:

x = ∅;

for (t = F x; t 6⊆ x; t = F x; )

x = x ∪ t;

If F is distributive, it could be replaced by:

x = ∅;

for (∆ = F x; ∆ 6= ∅; ∆ = (F ∆) \ x; )

x = x ∪∆;

The function F must only be computed for thesmallersets ∆ :-)
semi-naive iteration

496



Instead of the sequence: ∅ ⊆ F (∅) ⊆ F 2 (∅) ⊆ . . .

we compute: ∆1 ∪ ∆2 ∪ . . .

where: ∆i+1 = F (F i(∅))\F i(∅)

= F (∆i)\(∆1 ∪ . . . ∪∆i) with ∆0 = ∅

Assume that the costs ofF x is 1 + #x .

Then the costs may sum up to:

naive 1 + 2 + . . .+ n+ n = 1
2
n(n+ 3)

semi-naive 2n

where n is the cardinality of the result.

==⇒ A linear factor is saved :-)

497



2.2 Peephole Optimization

Idea:

• Slide asmallwindow over the program.

• Optimize agressively inside the window, i.e.,

→ Eliminate redundancies!

→ Replace expensive operations inside the window by cheaper
ones!

498



Examples:

y = M [x]; x = x+ 1; ==⇒ y = M [x++];

// given that there is a specific post-increment instruction:-)

z = y − a+ a; ==⇒ z = y;

// algebraic simplifications :-)

x = x; ==⇒ ;

x = 0; ==⇒ x = x⊕ x;

x = 2 · x; ==⇒ x = x+ x;

499



Important Subproblem: nop-Optimization

v

u

;

lab

v

u

lab

→ If (v1, ;, v) is an edge, v1 has no further out-going edge.

→ Consequently, we can identifyv1 and v :-)

→ The ordering of the identifications does not matter:-))

500



Implementation:

• We construct a function next : Nodes → Nodes with:

next u =

{

next v if (u, ;, v) edge

u otherwise

Warning: This definition is only recursive if there are;-loops
???

• We replace every edge:

(u, lab, v) ==⇒ (u, lab, next v)

... whenever lab 6= ;

• All ;-edges are removed;-)

501



Example:

3

2

4

5

6

1

7

0

;

;

next 1 = 1

next 3 = 4

next 5 = 6

502



Example:

2

4

6

1

7

0

3

5

next 1 = 1

next 3 = 4

next 5 = 6

503



2. Subproblem: Linearization

After optimization, the CFG must again be brought into alinearly
arrangementof instructions :-)

Warning:

Not every linearization is equally efficient!!!

504



Example:

0

1

2

3

4

Pos(e1)Neg(e1)

Pos(e2)

Neg(e2)

0:

1: if (e1) goto 2;

4: halt

2: Rumpf

3: if (e2) goto 4;

goto 1;

Bad: The loop body is jumped into :-(

505



Example:

0

1

2

3

4

Pos(e1)Neg(e1)

Pos(e2)

Neg(e2)

0:

1: if (!e1) goto 4;

2: Rumpf

3: if (!e2) goto 1;

4: halt

goto

// better cache behavior:-)

506



Idea:

• Assign to each node atemperature!

• always jumps to

(1) nodes which have already been handled;

(2) coldernodes.

• Temperature ≈ nesting-depth

For the computation, we use the pre-dominator tree and strongly
connected components ...

507



... in the Example:

0

1

2

3

4

Pos(e1)Neg(e1)

Pos(e2)

Neg(e2)

1

2

3

0

4

The sub-tree with back edge ishotter...

508



... in the Example:

0

1

2

3

4

Pos(e1)Neg(e1)

Pos(e2)

Neg(e2)

1

1

1

0

0

1

2

3

0

4

509



More Complicated Example:

1

2

0

7

3

4

5

6

3

4

5

6

0

1

27

510



More Complicated Example:

1

2

0

7

3

4

5

6

3

4

5

6

0

1

27

511



More Complicated Example:

1

2

0

7

3

4

5

6

2

1

3

4

5

6

0

1

27

Loop[3]

Loop[1]

512



Our definition of Loop implies that (detected) loops are necessarily
nested :-)

Is is also meaningful fordo-while-loops withbreaks ...

1

2

0

3

4

5

0

1

4 532

513



Our definition of Loop implies that (detected) loops are necessarily
nested :-)

Is is also meaningful fordo-while-loops withbreaks ...

1

2

0

3

4

5

0

1

4 532

2

1

514



Summary: The Approach

(1) For every node, determine a temperature;

(2) Pre-order-DFS over the CFG;

→ If an edge leads to a node we already have generated code
for, then we insert a jump.

→ If a node has two successors with different temperature,
then we insert a jump to thecolderof the two.

→ If both successors are equally warm, then it does not matter
;-)

515


