2 Replacing Expensive Operations by Cheaper Ones

- 2.1 Reduction of Strength
- (1) Evaluation of Polynomials

$$f(x) = a_n \cdot x^n + a_{n-1} \cdot x^{n-1} + \ldots + a_1 \cdot x + a_0$$

	Multiplications	Additions
naive	$\frac{1}{2}n(n+1)$	n
re-use	2n - 1	n
Horner-Scheme	n	n

Idea:

$$f(x) = (\dots ((a_n \cdot x + a_{n-1}) \cdot x + a_{n-2}) \dots) \cdot x + a_0$$

(2) Tabulation of a polynomial f(x) of degree n:

- \rightarrow To recompute f(x) for every argument x is too expensive :-)
- \rightarrow Luckily, the *n*-th differences are constant !!!

 $f(x) = 3x^3 - 5x^2 + 4x + 13$

Here, the *n*-th difference is always

$$\Delta_h^n(f) = n! \cdot a_n \cdot h^n \qquad (h \text{ step width})$$

Costs:

- n times evaluation of f;
- $\frac{1}{2} \cdot (n-1) \cdot n$ subtractions to determine the Δ^k ;
- n additions for every further value :-)

Number of multiplications only depends on n :-))

Simple Case:
$$f(x) = a_1 \cdot x + a_0$$

- ... naturally occurs in many numerical loops :-)
- The first differences are already constant:

$$f(x+h) - f(x) = a_1 \cdot h$$

• Instead of the sequence: $y_i = f(x_0 + i \cdot h), i \ge 0$ we compute: $y_0 = f(x_0), \Delta = a_1 \cdot h$

$$y_i = y_{i-1} + \Delta \,, \quad i > 0$$

for
$$(i = i_0; i < n; i = i + h)$$
 {
 $A = A_0 + b \cdot i;$
 $M[A] = ...;$
}
Neg $(i < n)$
 $A = A_0 + b \cdot i;$
 $M[A] = ...;$
 $M[A] = ...;$
 $M[A] = ...;$
 $M[A] = ...;$
 $M[A] = ...;$

... or, after loop rotation:

$$i = i_{0};$$

$$i = i_{0};$$

$$i = i_{0};$$

$$M[a] = ...;$$

$$i = i + h;$$

$$i = i + h;$$

$$i = i + h;$$

$$M[a] = ...;$$

$$M[a] =$$

... and reduction of strength:

$$\begin{array}{c} i = i_{0}; \\ \text{if } (i < n) \ \{ \\ \Delta = b \cdot h; \\ A = A_{0} + b \cdot i_{0}; \\ \text{do } \{ \\ M[A] = \dots; \\ i = i + h; \\ A = A + \Delta; \\ \} \text{ while } (i < n); \end{array} \right) \text{Neg}(i < n) \\ \begin{array}{c} 0 \\ i = i_{0}; \\ 1 \\ \text{Pos}(i < n) \\ \Delta = b \cdot h; \\ A = A_{0} + b \cdot i; \\ 2 \\ M[A] = \dots; \\ 3 \\ i = i + h; \\ 4 \\ A = A + \Delta; \\ 5 \\ \text{Neg}(i < n) \\ \text{Pos}(i < n) \end{array}$$

Warning:

- The values b, h, A_0 must not change their values during the loop.
- i, A may be modified at exactly one position in the loop :-(
- One may try to eliminate the variable i altogether :
 - \rightarrow *i* may not be used else-where.
 - → The initialization must be transformed into: $A = A_0 + b \cdot i_0$.
 - → The loop condition i < n must be transformed into: A < N for $N = A_0 + b \cdot n$.
 - \rightarrow b must always be different from zero !!!

Approach:

Identify

- ... loops;
- ... iteration variables;
- ... constants;
- ... the matching use structures.

Loops:

... are identified through the node v with back edge $(_, _, v)$:-)

For the sub-graph G_v of the cfg on $\{w \mid v \Rightarrow w\}$, we define: $\mathsf{Loop}[v] = \{w \mid w \to^* v \text{ in } G_v\}$

	\mathcal{P}
0	{0}
1	$\{0,1\}$
2	$\{0,1,2\}$
3	$\{0, 1, 2, 3\}$
4	$\{0, 1, 2, 3, 4\}$
5	$\{0,1,5\}$

	${\cal P}$
0	{0}
1	$\{0,1\}$
2	$\{0,1,2\}$
3	$\{0, 1, 2, 3\}$
4	$\{0, 1, 2, 3, 4\}$
5	$\overline{\{0,1,5\}}$

	${\cal P}$
0	{0}
1	$\{0,1\}$
2	$\{0,1,2\}$
3	$\{0, 1, 2, 3\}$
4	$\{0, 1, 2, 3, 4\}$
5	$\overline{\{0,1,5\}}$

We are interested in edges which during each iteration are executed exactly once:

This property can be expressed by means of the pre-dominator relation ...

Assume that $(u, _, v)$ is the back edge.

Then edges $k = (u_1, _, v_1)$ could be selected such that:

- v pre-dominates u_1 ;
- u_1 pre-dominates v_1 ;
- v_1 predominates u.

Assume that $(u, _, v)$ is the back edge.

Then edges $k = (u_1, _, v_1)$ could be selected such that:

- v pre-dominates u_1 ;
- u_1 pre-dominates v_1 ;
- v_1 predominates u.

On the level of source programs, this is trivial:

do {
$$s_1 \dots s_k$$

} while (e) ;

The desired assignments must be among the s_i :-)

Iteration Variable:

i is an iteration variable if the only definition of i inside the loop occurs at an edge which separates the body and is of the form:

i = i + h;

for some loop constant h.

A loop constant is simply a constant (e.g., 42), or slightly more libaral, an expression which only depends on variables which are not modified during the loop :-)

(3) Differences for Sets

Consider the fixpoint computation:

$$x = \emptyset;$$

for $(t = F x; t \not\subseteq x; t = F x;)$
 $x = x \cup t;$

If F is distributive, it could be replaced by:

$$\begin{aligned} x &= \emptyset; \\ \text{for } (\Delta = F \, x; \Delta \neq \emptyset; \Delta = (F \, \Delta) \setminus x;) \\ x &= x \cup \Delta; \end{aligned}$$

The function F must only be computed for the smaller sets Δ :-) semi-naive iteration

Instead of the sequence: $\emptyset \subseteq F(\emptyset) \subseteq F^2(\emptyset) \subseteq \dots$ we compute: $\Delta_1 \cup \Delta_2 \cup \dots$ where: $\Delta_{i+1} = F(F^i(\emptyset)) \setminus F^i(\emptyset)$ $= F(\Delta_i) \setminus (\Delta_1 \cup \dots \cup \Delta_i)$ with $\Delta_0 = \emptyset$

Assume that the costs of F x is 1 + # x.

Then the costs may sum up to:

naive	$1+2+\ldots+n+n$	_	$\frac{1}{2}n(n+3)$
semi-naive			2n

where n is the cardinality of the result.

 \implies A linear factor is saved :-)

2.2 Peephole Optimization

Idea:

- Slide a small window over the program.
- Optimize agressively inside the window, i.e.,
 - \rightarrow Eliminate redundancies!
 - → Replace expensive operations inside the window by cheaper ones!

 $y = M[x]; x = x + 1; \implies y = M[x++];$ // given that there is a specific post-increment instruction :-) $z = y - a + a; \implies z = y;$ // algebraic simplifications :-) $x = x; \implies ;$ $x = x; \implies ;$ $x = 0; \implies x = x \oplus x;$ $x = 2 \cdot x; \implies x = x + x;$

Important Subproblem: *nop*-Optimization

If $(v_1, ;, v)$ is an edge, v_1 has no further out-going edge. \rightarrow

- Consequently, we can identify v_1 and v :-) \rightarrow
- The ordering of the identifications does not matter :-)) \rightarrow

Implementation:

• We construct a function $next : Nodes \rightarrow Nodes$ with:

next
$$u = \begin{cases} next v & \text{if } (u, ;, v) \text{ edge} \\ u & \text{otherwise} \end{cases}$$

Warning: This definition is only recursive if there are ;-loops ???

• We replace every edge:

$$(u, lab, v) \implies (u, lab, next v)$$

... whenever $lab \neq ;$

• All ;-edges are removed ;-)

next 1	=	1
next 3	=	4
next 5	=	6

next 1	=	1
next 3	=	4
next 5	—	6

2. Subproblem: Linearization

After optimization, the CFG must again be brought into a linearly arrangement of instructions :-)

Warning:

Not every linearization is equally efficient !!!

0:

- 1: if (e_1) goto 2;
- 4: halt
- 2: Rumpf
- 3: if (e_2) goto 4; goto 1;

Bad: The loop body is jumped into :-(

- 0:
- 1: if $(!e_1)$ goto 4;
- 2: Rumpf
- 3: if $(!e_2)$ goto 1;
- 4: halt

// better cache behavior :-)

Idea:

- Assign to each node a temperature!
- always jumps to
 - (1) nodes which have already been handled;
 - (2) colder nodes.
- Temperature \approx nesting-depth

For the computation, we use the pre-dominator tree and strongly connected components ...

... in the Example:

The sub-tree with back edge is hotter ...

... in the Example:

More Complicated Example:

More Complicated Example:

More Complicated Example:

Our definition of Loop implies that (detected) loops are necessarily nested :-)

Is is also meaningful for do-while-loops with breaks ...

Our definition of Loop implies that (detected) loops are necessarily nested :-)

Is is also meaningful for do-while-loops with breaks ...

Summary: The Approach

- (1) For every node, determine a temperature;
- (2) Pre-order-DFS over the CFG;
 - \rightarrow If an edge leads to a node we already have generated code for, then we insert a jump.
 - \rightarrow If a node has two successors with different temperature, then we insert a jump to the colder of the two.
 - \rightarrow If both successors are equally warm, then it does not matter ;-)