2.3 **Procedures**

We extend our mini-programming language by procedures without parameters and procedure calls.

For that, we introduce a new statement:

f();

Every procedure f has a definition:

 $f() \{ stmt^* \}$

Additionally, we distinguish between global and local variables. Program execution starts with the call of a procedure main ().

Example:

int a , ret;	$f\left(ight)$ {
$main()$ {	int b ;
a = 3;	if $(a \leq 1)$ {ret = 1; goto exit; }
f();	b = a;
M[17] = ret;	a = b - 1;
ret = 0;	f();
}	$ret = b \cdot ret;$
	exit :
	}

Such programs can be represented by a set of CFGs: one for each procedure ...

... in the Example:

 $f\left(
ight)$ main() 5 0 $\operatorname{Pos}\left(\boldsymbol{a}\leq 1\right)$ Neg ($a \le 1$) a = 3;10 f();b = a;2 $M[17] = \mathsf{ret};$ a = b - 1;ret = 1;3 ret = 0;f();ret = b * ret;

In order to optimize such programs, we require an extended operational semantics ;-)

Program executions are no longer paths, but forests:

The function [[.]] is extended to computation forests: w: $[w]: (Vars \to \mathbb{Z}) \times (\mathbb{N} \to \mathbb{Z}) \to (Vars \to \mathbb{Z}) \times (\mathbb{N} \to \mathbb{Z})$ For a call k = (u, f();, v) we must:

• determine the initial values for the locals:

enter
$$\rho = \{x \mapsto 0 \mid x \in Locals\} \oplus (\rho|_{Globals})$$

• ... combine the new values for the globals with the old values for the locals:

combine
$$(\rho_1, \rho_2) = (\rho_1|_{Locals}) \oplus (\rho_2|_{Globals})$$

• ... evaluate the computation forest inbetween:

$$\begin{bmatrix} k & \langle w \rangle \end{bmatrix} (\rho, \mu) = \text{let } (\rho_1, \mu_1) = \llbracket w \rrbracket \text{ (enter } \rho, \mu)$$

in (combine $(\rho, \rho_1), \mu_1$)

Warning:

- In general, $\llbracket w \rrbracket$ is only partially defined :-)
- Dedicated global/local variables a_i, b_i , ret can be used to simulate specific calling conventions.
- The standard operational semantics relies on configurations which maintain a call stack.
- Computation forests are better suited for the construction of analyses and correctness proofs :-)
- It is an awkward (but useful) exercise to prove the equivalence of the two approaches ...

Configurations:

configuration	 $stack \times store$
store	 globals $\times (\mathbb{N} \to \mathbb{Z})$
globals	 $(Globals \to \mathbb{Z})$
stack	 $frame \cdot frame^*$
frame	 $point \times locals$
locals	 $(Locals \to \mathbb{Z})$

A *frame* specifies the local state of computation inside a procedure call :-)

The leftmost frame corresponds to the current call.

Computation steps refer to the current call :-) The novel kinds of steps:

call
$$k = (u, f(); v)$$
 :
 $((u, \rho)) \cdot \sigma, \langle \gamma, \mu \rangle) \implies ((u_f, \{x \to 0 \mid x \in Locals\}) \cdot (v, \rho)) \cdot \sigma, \langle \gamma, \mu \rangle)$
 u_f entry point of f

return:

$$((r_f, _) \cdot \sigma, \langle \gamma, \mu \rangle) \implies (\sigma, \langle \gamma, \mu \rangle)$$

 r_f return point of f

5	$b \mapsto 0$
2	

5	$b \mapsto 0$
9	$b \mapsto 3$
2	

7	$b \mapsto 2$
9	$b \mapsto 3$
2	

5	$b \mapsto 0$
9	$b\mapsto 2$
9	$b \mapsto 3$
2	

11	$b \mapsto 0$
9	$b \mapsto 2$
9	$b \mapsto 3$
2	

9	$b \mapsto 2$
9	$b \mapsto 3$
2	

11	$b \mapsto 2$
9	$b \mapsto 3$
2	

9	$b \mapsto 3$
2	

11	$b \mapsto 3$
2	

This operational semantics is quite realistic :-)

Costs for a Procedure Call:

Before entering the body: • Creating a stack frame;

- assigning of the parameters;
- Saving the registers;
- Saving the return address;
- Jump to the body.

At procedure exit: • Freeing the stack frame.

- Restoring the registers.
- Passing of the result.
- Return behind the call.

 \implies ... quite expensive !!!

1. Idea: Inlining

Copy the procedure body at every call site !!!

Example:

... yields:

$$abs () \{ a_2 = -a_1; \\ if (a_1 < a_2) \{ ret = a_2; goto _exit; \} \\ ret = a_1; \\ _exit : \\ \}$$

Problems:

- The copied block may modify the locals of the calling procedure ???
- More general: Multiple use of local variable names may lead to errors.
- Multiple calls of a procedure may lead to code duplication :-((
- How can we handle recursion ???

Detection of Recursion:

We construct the call-graph of the program.

In the Examples:

Call-Graph:

- The nodes are the procedures.
- An edge connexts g with h, whenever the body of g contains a call of h.

Strategies for Inlining:

- Just copy nur leaf-procedures, i.e., procedures without further calls
 :-)
- Copy all non-recursive procedures!

... here, we consider just leaf-procedures ;-)

Transformation 9:

Note:

- The Nop-edge can be eliminated if the *stop*-node of f has no out-going edges ...
- The x_f are the copies of the locals of the procedure f.
- According to our semantics of procedure calls, these must be initialized with 0 :-)

2. Idea: Elimination of Tail Recursion

After the procedure call, nothing in the body remains to be done.

→ We may directly jump to the beginning :-)

... after having reset the locals to 0.

... this yields in the Example:

$$\begin{array}{ll} f \ () \ \{ & \mbox{int } b; \\ _f: & \mbox{if } (a_2 \leq 1) \ \{ \ \mbox{ret} = a_1; \ \mbox{goto } _exit; \ \} \\ & \ b = a_1 \cdot a_2; \\ & \ a_2 = a_2 - 1; \\ & \ a_1 = b; \\ & \ b = 0; \ \ \mbox{goto } _f; \\ \\ _exit : \\ \end{array}$$

// It works, since we have ruled out references to variables!

Transformation 11:

Warning:

- → This optimization is crucial for programming languages without iteration constructs !!!
- \rightarrow Duplication of code is not necessary :-)
- \rightarrow No variable renaming is necessary :-)
- → The optimization may also be profitable for non-recursive tail calls
 :-)
- \rightarrow The corresponding code may contain jumps from the body of one procedure into the body of another ???