
2.3 Procedures

We extend our mini-programming language by procedures without
parameters and procedure calls.

For that, we introduce a new statement:

f();

Every procedure f has a definition:

f () { stmt∗ }

Additionally, we distinguish betweenglobalandlocal variables.

Program execution starts with the call of a proceduremain () .

516

Example:

int a, ret;

main () {

a = 3;

f();

M [17] = ret;

ret = 0;

}

f () {

int b;

if (a ≤ 1) {ret = 1; goto exit; }

b = a;

a = b− 1;

f();

ret = b · ret;

exit :

}

Such programs can be represented by asetof CFGs: one for each
procedure...

517

... in the Example:

0

2

1

3

4

5

6

7

8

9

10

11

main()

a = 3;

f();

M [17] = ret;

ret = 0;

ret = 1;

f ()

Neg(a ≤ 1) Pos(a ≤ 1)

b = a;

ret = b ∗ ret;

f();

a = b− 1;

518

In order to optimize such programs, we require an extended operational
semantics ;-)

Program executions are no longerpaths, but forests:

f();

g1(); g2();

519

... in the Example:

43210

9 118765

9 118765

5 10 11

f()

f()

f()

520

The function [[.]] is extended to computation forests:w :

[[w]] : (Vars → Z)× (N → Z) → (Vars → Z)× (N → Z)

For a call k = (u, f();, v) we must:

• determine the initial values for the locals:

enter ρ = {x 7→ 0 | x ∈ Locals} ⊕ (ρ|Globals)

• ... combine the new values for the globals with the old valuesfor the
locals:

combine (ρ1, ρ2) = (ρ1|Locals)⊕ (ρ2|Globals)

• ... evaluate the computation forest inbetween:

[[k 〈w〉]] (ρ, µ) = let (ρ1, µ1) = [[w]] (enter ρ, µ)

in (combine (ρ, ρ1), µ1)

521

Warning:

• In general, [[w]] is only partially defined :-)

• Dedicated global/local variablesai, bi, ret can be used to
simulate specific calling conventions.

• Thestandardoperational semantics relies on configurations which
maintain acall stack.

• Computation forests are better suited for the constructionof
analyses and correctness proofs:-)

• It is an awkward (but useful) exercise to prove the equivalence of
the two approaches ...

522

Configurations:

configuration == stack × store

store == globals × (N → Z)

globals == (Globals → Z)

stack == frame · frame∗

frame == point × locals

locals == (Locals → Z)

A frame specifies the local state of computation inside a procedure
call :-)

Theleftmostframe corresponds to the current call.

523

Computation steps refer to the current call:-)

The novel kinds of steps:

call k = (u, f ();, v) :

((u, ρ) · σ, 〈γ, µ〉) =⇒ ((uf , {x → 0 | x ∈ Locals}) · (v, ρ) · σ, 〈γ, µ〉)

uf entry point of f

return:

((rf , _) · σ, 〈γ, µ〉) =⇒ (σ, 〈γ, µ〉)

rf return point of f

524

The call stack explicitly implements the DFS traversal through the
computation forest :-)

... in the Example:

1

525

The call stack explicitly implements the DFS traversal through the
computation forest :-)

... in the Example:

2

5 b 7→ 0

526

The call stack explicitly implements the DFS traversal through the
computation forest :-)

... in the Example:

2

7 b 7→ 3

527

The call stack explicitly implements the DFS traversal through the
computation forest :-)

... in the Example:

2

5

9 b 7→ 3

b 7→ 0

528

The call stack explicitly implements the DFS traversal through the
computation forest :-)

... in the Example:

2

9

7

b 7→ 3

b 7→ 2

529

The call stack explicitly implements the DFS traversal through the
computation forest :-)

... in the Example:

2

5

9

9 b 7→ 3

b 7→ 2

b 7→ 0

530

The call stack explicitly implements the DFS traversal through the
computation forest :-)

... in the Example:

2

9

9

11

b 7→ 2

b 7→ 3

b 7→ 0

531

The call stack explicitly implements the DFS traversal through the
computation forest :-)

... in the Example:

2

9

9

b 7→ 3

b 7→ 2

532

The call stack explicitly implements the DFS traversal through the
computation forest :-)

... in the Example:

2

9

11

b 7→ 3

b 7→ 2

533

The call stack explicitly implements the DFS traversal through the
computation forest :-)

... in the Example:

2

9 b 7→ 3

534

The call stack explicitly implements the DFS traversal through the
computation forest :-)

... in the Example:

2

11 b 7→ 3

535

The call stack explicitly implements the DFS traversal through the
computation forest :-)

... in the Example:

2

536

This operational semantics is quiterealistic :-)

Costs for a Procedure Call:

Before entering the body: • Creating a stack frame;

• assigning of the parameters;

• Saving the registers;

• Saving the return address;

• Jump to the body.

At procedure exit: • Freeing the stack frame.

• Restoring the registers.

• Passing of the result.

• Return behind the call.

==⇒ ... quite expensive !!!

537

1. Idea: Inlining

Copy the procedure body at every call site!!!

Example:

abs () {

a2 = −a1;

max ();

}

max () {

if (a1 < a2) { ret = a2; goto _exit ; }

ret = a1;

_exit :

}

538

... yields:

abs () {

a2 = −a1;

if (a1 < a2) { ret = a2; goto _exit ; }

ret = a1;

_exit :

}

539

Problems:

• The copied block may modify the locals of the calling procedure
???

• More general: Multiple use of local variable names may lead to
errors.

• Multiple calls of a procedure may lead to code duplication:-((

• How can we handlerecursion???

540

Detection of Recursion:

We construct thecall-graphof the program.

In the Examples:

main f

abs max

541

Call-Graph:

• The nodes are the procedures.

• An edge connexts g with h , whenever the body of g
contains a call of h .

Strategies for Inlining:

• Just copy nurleaf-procedures, i.e., procedures without further calls
:-)

• Copy all non-recursive procedures!

... here, we consider just leaf-procedures;-)

542

Transformation 9:

u

v

v

u

xf = 0; (x ∈ Locals)

;

f();

copy
of f

543

Note:

• TheNop-edge can be eliminated if thestop-node of f has no
out-going edges ...

• The xf are the copies of the locals of the proceduref .

• According to our semantics of procedure calls, these must be
initialized with 0 :-)

544

2. Idea: Elimination of Tail Recursion

f () { int b;

if (a2 ≤ 1) { ret = a1; goto _exit ; }

b = a1 · a2;

a2 = a2 − 1;

a1 = b;

f ();

_exit :

}

After the procedure call, nothing in the body remains to be done.

==⇒ We maydirectly jump to the beginning :-)

... after having reset the locals to 0.

545

... this yields in the Example:

f () { int b;

_f : if (a2 ≤ 1) { ret = a1; goto _exit ; }

b = a1 · a2;

a2 = a2 − 1;

a1 = b;

b = 0; goto _f ;

_exit :

}

// It works, since we have ruled outreferences to variables!

546

Transformation 11:

v

u

f() :v

u

f();

f() :

x = 0; (x ∈ Locals)

547

Warning:

→ This optimization is crucial for programming languages without
iteration constructs!!!

→ Duplication of code is not necessary:-)

→ No variable renaming is necessary:-)

→ The optimization may also be profitable for non-recursive tail calls
:-)

→ The corresponding code may contain jumps from the body of one
procedure into the body of another???

548

