2.3 Procedures

We extend our mini-programming language by proceduresourith
parameters and procedure calls.

For that, we introduce a new statement:

fO;

Every procedure f has a definition:
J O A stmt™ }

Additionally, we distinguish betweemiobalandlocal variables.

Program execution starts with the call of a proceduneain () .

516

Example:

int a, ret; 0 A
main () { int b;
a = 3; if (a <1){ret =1;goto exit; }
10 b= a;
M17] = ret; a=>b-—1;
ret = 0; 10;
} ret = b - ret;
exit :
}

Such programs can be represented bgi@f CFGs: one for each
procedure..

517

... Inthe Example:

main() S0
© (5)
a=3: Neg(a < 1) Pos(a < 1)
(il) (6) 10
f0); b= a;
(2 @
M17] = ret; a=>b—1; ret = 1;
(3 (&
ret = 0; £0);
@ ®

ret = b x ret;

@

518

In order to optimize such programs, we require an extendedatipnal
semantics ;-)

Program executions are no longeaths butforests

519

... In the Example:

520

The function [.] is extended to computation forestsuw :
[w] : (Vars - Z) x (N —Z) — (Vars - Z) x (N — Z)

Foracall &= (u, f();,v) we must:

e determine the initial values for the locals:

enter p = {x — 0 | x € Locals} ® (p| ciobais)

e ... combine the new values for the globals with the old vafoeghe
locals:

combine (p1, p2) = (01| Locais) @ (P2 Globais)

e ... evaluate the computation forest inbetween:

[k (w)] (p,p) = let (p1, 1) = [w] (enter p, p)
in (combine (p, p1), 1)

521

Warning:

e Ingeneral, [w] isonly partially defined :-)

e Dedicated global/local variablesu;, b,, ret can be used to
simulate specific calling conventions.

e Thestandarcperational semantics relies on configurations which
maintain acall stack

e Computation forests are better suited for the construcifon
analyses and correctness proofs)

e Itis an awkward (but useful) exercise to prove the equivadanf
the two approaches ...

522

Configurations:

configuration =— stack X store
store — globals x (N — 7Z)
globals — (Globals — 7Z)
stack — frame - frame”
frame — pownt X locals
locals — (Locals — 7))

A frame specifies the local state of computation inside a procedure
call :-)

Theleftmostframe corresponds to the current call.

523

Computation steps refer to the current cail)

The novel kinds of steps:

o) — ((up{r =0 € Locals}) - (v, p)

us entry point of f

call k= (u,f();v)

((u,p)

return:

((va_) " 0, </77 :u>) — (07 <77 ,LL>)

T'f

return point of f

524

-0, (7, 1)

The call stack explicitly implements the DFS traversal tigio the
computation forest :-)

... In the Example:

525

The call stack explicitly implements the DFS traversal tigio the
computation forest :-)

... In the Example:

5| b—0

526

The call stack explicitly implements the DFS traversal tigio the
computation forest :-)

... In the Example:

71 b— 3

527

The call stack explicitly implements the DFS traversal tigio the
computation forest :-)

... In the Example:

5| b—0

9| b— 3

528

The call stack explicitly implements the DFS traversal tigio the
computation forest :-)

... In the Example:

9| b— 3

529

The call stack explicitly implements the DFS traversal tigio the
computation forest :-)

... In the Example:

b— 0

br— 2

b— 3

N ||| © ||| © ||| O1

530

The call stack explicitly implements the DFS traversal tigio the
computation forest :-)

... In the Example:

11| b— 0

9| b— 3

531

The call stack explicitly implements the DFS traversal tigio the
computation forest :-)

... In the Example:

9| b— 3

532

The call stack explicitly implements the DFS traversal tigio the
computation forest :-)

... In the Example:

11| b+— 2

9| b— 3

533

The call stack explicitly implements the DFS traversal tigio the
computation forest :-)

... In the Example:

9| b— 3

534

The call stack explicitly implements the DFS traversal tigio the
computation forest :-)

... In the Example:

11| b— 3

535

The call stack explicitly implements the DFS traversal tigio the
computation forest :-)

... In the Example:

536

This operational semantics is qurealistic :-)

Costs for a Procedure Call:

Before enteringthebody: e Creating a stack frame;
e assigning of the parameters;
e Saving the registers;
e Saving the return address;
e Jump to the body.
At procedureexit: e Freeing the stack frame.
e Restoring the registers.
e Passing of the result.
e Return behind the call.

—— ... quite expensive !

537

1. Idea:

Inlining

Copy the procedure body at every call dite

Example:

abs () {

g = —daq,

maz ();

538

) { ret =ay; goto cuwit; }

... yields:

abs () {

g = —daq,

if (a1 <a) { ret =as; goto ewil; }

ret = aq;

_exit :

}

539

Problems:

e The copied block may modify the locals of the calling proaedu
2?7

e More general: Multiple use of local variable names may lead t
errors.

e Multiple calls of a procedure may lead to code duplicatian((
e How can we handlescursion???

540

Detection of Recursion:

We construct theall-graphof the program.

In the Examples:

(main)

abs

541

Call-Graph:

e The nodes are the procedures.

e Anedge connexts ¢ with /A, whenever the body of ¢
contains a call of £ .

Strategies for Inlining:
e Just copy nufeafprocedures, i.e., procedures without further calls
-)

e Copy all non-recursive procedures!

... here, we consider just leaf-procedures)

542

Transformation 9:

?f();

Q)

AN

?xf =0; (z € Locals)

copy
of f

543

Note:

e TheNop-edge can be eliminated if tl#op-node of f has no
out-going edges ...

e The =z, arethe copies of the locals of the procedurg

e According to our semantics of procedure calls, these must be
initialized with 0 :-)

544

2. ldea: Elimination of Tail Recursion

fO { int b

if (ap <1) { ret =ay; goto ewil; }
b= ay - as;
az = ag — 1;
a; = b;
fO;
_exit
h
After the procedure call, nothing in the body remains to beedo
— We maydirectly jump to the beginning :-)

... after having reset the locals to O.

545

... this yields in the Example:

fO { int b
_f if (ap <1) { ret =ay; goto cwit; }
b= a1 + 9,

CLQZCLQ—I;

_exit :
}

// It works, since we have ruled otgferences to variables

546

Transformation 11:

— O,
f0: \CEI =0; (x € Locals)

547

Warning:

— This optimization is crucial for programming languageshoiit
iteration constructs!

— Duplication of code is not necessary:-)
— No variable renaming is necessary-)
— The optimization may also be profitable for non-recursiviectlls

-)
— The corresponding code may contain jumps from the body of one
procedure into the body of anoth&??

548

