Background 4: Interprocedural Analysis

So far, we can analyze each procedure separately.

- \rightarrow The costs are moderate :-)
- \rightarrow The methods also work in presence of separate compilation :-)
- \rightarrow At procedure calls, we must assume the worst case :-(
- \rightarrow Constant propagation only works for local constants :-((

Question:

How can recursive programs be analyzed ???

Constant Propagation

Example:

(1) Functional Approach:

Let \mathbb{D} denote a complete lattice of (abstract) states.

Idea:

Represent the effect of f() by a function:

 $\llbracket f \rrbracket^{\sharp} : \mathbb{D} \to \mathbb{D}$

Micha Sharir, Tel Aviv University

Amir Pnueli, Weizmann Institute

In order to determine the effect of a call edge k = (u, f();, v) we require abstract functions:

enter [♯]	•	$\mathbb{D} \to \mathbb{D}$
combine [#]	•	$\mathbb{D}^2 \to \mathbb{D}$

Then we define:

$$\llbracket k \rrbracket^{\sharp} D = \operatorname{combine}^{\sharp} (D, \llbracket f \rrbracket^{\sharp} (\operatorname{enter}^{\sharp} D))$$

... for Constant Propagation:

$$\mathbb{D} \qquad = (Vars \to \mathbb{Z}^{\top})_{\perp}$$

enter[#]
$$D$$
 = $\begin{cases} \bot$ if $D = \bot$
 $D|_{Globals} \oplus \{x \mapsto 0 \mid x \in Locals\}$ otherwise
combine[#] (D_1, D_2) = $\begin{cases} \bot$ if $D_1 = \bot \lor D_2 = \bot$
 $D_1|_{Locals} \oplus D_2|_{Globals}$ otherwise

The effects $\llbracket f \rrbracket^{\sharp}$ then can be determined by a system of constraints over the complete lattice $\mathbb{D} \to \mathbb{D}$:

$$\begin{split} \llbracket v \rrbracket^{\sharp} & \sqsupseteq & \mathsf{Id} & v \text{ entry point} \\ \llbracket v \rrbracket^{\sharp} & \sqsupseteq & \llbracket k \rrbracket^{\sharp} \circ \llbracket u \rrbracket^{\sharp} & k = (u, _, v) \text{ edge} \\ \llbracket f \rrbracket^{\sharp} & \sqsupseteq & \llbracket stop_f \rrbracket^{\sharp} & stop_f \text{ end point of } f \end{split}$$

 $\llbracket v \rrbracket^{\sharp} : \mathbb{D} \to \mathbb{D}$ describes the effect of all prefixes of computation forests w of a procedure which lead from the entry point to v :-)

Problems:

- How can we represent functions $f : \mathbb{D} \to \mathbb{D}$???
- If $\#\mathbb{D} = \infty$, then $\mathbb{D} \to \mathbb{D}$ has infinite strictly increasing chains :-(

Simplification: Copy-Constants

- \rightarrow Conditions are interpreted as ; :-)
- → Only assignments x = e; with $e \in Vars \cup \mathbb{Z}$ are treated exactly :-)

Observation:

 \rightarrow The effects of assignments are:

$$\llbracket x = e; \rrbracket^{\sharp} D = \begin{cases} D \oplus \{x \mapsto c\} & \text{if } e = c \in \mathbb{Z} \\ D \oplus \{x \mapsto (D y)\} & \text{if } e = y \in Vars \\ D \oplus \{x \mapsto \top\} & \text{otherwise} \end{cases}$$

- → Let \mathbb{V} denote the (finite !!!) set of constant right-hand sides. Then variables may only take values from \mathbb{V}^{\top} :-))
- \rightarrow The occurring effects can be taken from

$$\mathbb{D}_f \to \mathbb{D}_f \qquad \text{with} \qquad \mathbb{D}_f = (Vars \to \mathbb{V}^+)_\perp$$

 \rightarrow The complete lattice is huge, but finite !!!

Improvement:

- \rightarrow Not all functions from $\mathbb{D}_f \rightarrow \mathbb{D}_f$ will occur :-)
- \rightarrow All occurring functions $\lambda D. \perp \neq M$ are of the form:

$$M = \{x \mapsto (b_x \sqcup \bigsqcup_{y \in I_x} y) \mid x \in Vars\}$$
where:
$$M D = \{x \mapsto (b_x \sqcup \bigsqcup_{y \in I_x} D y) \mid x \in Vars\}$$
für $D \neq \bot$

→ Let
$$\mathbb{M}$$
 denote the set of all these functions. Then for $M_1, M_2 \in \mathbb{M}$ $(M_1 \neq \lambda D, \perp \neq M_2)$:

$$(M_1 \sqcup M_2) x = (M_1 x) \sqcup (M_2 x)$$

 \rightarrow For k = # Vars , M has height $\mathcal{O}(k^2)$:-)

Improvement (Cont.):

 \rightarrow Also, composition can be directly implemented:

$$(M_1 \circ M_2) x = b' \sqcup \bigsqcup_{y \in I'} y \quad \text{with}$$
$$b' = b \sqcup \bigsqcup_{z \in I} b_z$$
$$I' = \bigcup_{z \in I} I_z \quad \text{where}$$
$$M_1 x = b \sqcup \bigsqcup_{y \in I} y$$
$$M_2 z = b_z \sqcup \bigsqcup_{y \in I_z} y$$

 \rightarrow The effects of assignments then are:

$$\llbracket x = e; \rrbracket^{\sharp} = \begin{cases} \mathsf{Id}_{Vars} \oplus \{x \mapsto c\} & \text{if } e = c \in \mathbb{Z} \\ \mathsf{Id}_{Vars} \oplus \{x \mapsto y\} & \text{if } e = y \in Vars \\ \mathsf{Id}_{Vars} \oplus \{x \mapsto \top\} & \text{otherwise} \end{cases}$$

... in the Example:

$$\llbracket t = 0; \rrbracket^{\sharp} = \{a_1 \mapsto a_1, \operatorname{ret} \mapsto \operatorname{ret}, t \mapsto 0\}$$
$$\llbracket a_1 = t; \rrbracket^{\sharp} = \{a_1 \mapsto t, \operatorname{ret} \mapsto \operatorname{ret}, t \mapsto t\}$$

In order to implement the analysis, we additionally must construct the effect of a call $k = (_, f();, _)$ from the effect of a procedure f:

$$\llbracket k \rrbracket^{\sharp} = H (\llbracket f \rrbracket^{\sharp}) \quad \text{where:} \\ H (M) = \mathsf{Id}|_{Locals} \oplus (M \circ \mathsf{enter}^{\sharp})|_{Globals} \\ \mathsf{enter}^{\sharp} x = \begin{cases} x & \text{if } x \in Globals \\ 0 & \text{otherwise} \end{cases}$$