
Background 4: Interprocedural Analysis

So far, we can analyze each procedure separately.

→ The costs are moderate:-)

→ The methods also work in presence of separate compilation:-)

→ At procedure calls, we must assume the worst case:-(

→ Constant propagation only works for local constants:-((

Question:

How can recursive programs be analyzed???

549

Example: Constant Propagation

main() { int t;

t = 0;

if (t) M [17] = 3;

a1 = t;

work ();

ret = 1− ret;

}

work() {

if (a1) work();

ret = a1;

}

550

Example: Constant Propagation

7

8

0

4

5

1

2

3

6

ret = 1− ret;

work();

9

10

main()

t = 0;

Pos(t)Neg(t)

M [17] = 3;

a1 = t;

work();

Neg(a1) Pos(a1)

ret = a1;

work ()

551

Example: Constant Propagation

70

4

5

1

3

9

10

6

ret = 1;

main()

t = 0;

2

work0();

work0 ()

8

ret = 0;

a1 = 0;

552

(1) Functional Approach:

Let D denote a complete lattice of (abstract) states.

Idea:

Represent the effect off() by a function:

[[f]]♯ : D → D

553

Micha Sharir, Tel Aviv University Amir Pnueli, Weizmann Institute

554

In order to determine the effect of a call edgek = (u, f ();, v) we
require abstract functions:

enter
♯ : D → D

combine
♯ : D

2 → D

Then we define:

[[k]]♯ D = combine
♯ (D, [[f]]♯ (enter♯ D))

555

... for Constant Propagation:

D = (Vars → Z
⊤)⊥

enter
♯ D =

{

⊥ if D = ⊥

D|Globals ⊕ {x 7→ 0 | x ∈ Locals} otherwise

combine
♯ (D1, D2) =

{

⊥ if D1 = ⊥ ∨D2 = ⊥

D1|Locals ⊕D2|Globals otherwise

556

The effects [[f]]♯ then can be determined by a system of constraints
over the complete latticeD → D :

[[v]]♯ ⊒ Id v entry point

[[v]]♯ ⊒ [[k]]♯ ◦ [[u]]♯ k = (u, _, v) edge

[[f]]♯ ⊒ [[stopf]]
♯ stopf end point of f

[[v]]♯ : D → D describes the effect of all prefixes of computation
forests w of a procedure which lead from the entry point tov :-)

557

Problems:

• How can we represent functionsf : D → D ???

• If #D = ∞ , then D → D hasinfinite strictly increasing
chains :-(

Simplification: Copy-Constants

→ Conditions are interpreted as; :-)

→ Only assignments x = e; with e ∈ Vars ∪ Z are treated
exactly :-)

558

Observation:

→ The effects of assignments are:

[[x = e;]]♯ D =

D ⊕ {x 7→ c} if e = c ∈ Z

D ⊕ {x 7→ (D y)} if e = y ∈ Vars

D ⊕ {x 7→ ⊤} otherwise

→ Let V denote the (finite!!!) set ofconstantright-hand sides.
Then variables may only take values fromV⊤ :-))

→ The occurring effects can be taken from

Df → Df with Df = (Vars → V
⊤)⊥

→ The complete lattice is huge, butfinite !!!

559

Improvement:

→ Not all functions from Df → Df will occur :-)

→ All occurring functions λD.⊥ 6= M are of the form:

M = {x 7→ (bx ⊔
⊔

y∈Ix
y) | x ∈ Vars} where:

M D = {x 7→ (bx ⊔
⊔

y∈Ix
D y) | x ∈ Vars} für D 6= ⊥

→ Let M denote the set of all these functions. Then for
M1,M2 ∈ M (M1 6= λD. ⊥ 6= M2) :

(M1 ⊔M2) x = (M1 x) ⊔ (M2 x)

→ For k = #Vars , M has height O(k2) :-)

560

Improvement (Cont.):

→ Also, composition can be directly implemented:

(M1 ◦M2) x = b′ ⊔
⊔

y∈I′ y with

b′ = b ⊔
⊔

z∈I bz

I ′ =
⋃

z∈I Iz where

M1 x = b ⊔
⊔

y∈I y

M2 z = bz ⊔
⊔

y∈Iz
y

→ The effects of assignments then are:

[[x = e;]]♯ =

IdVars ⊕ {x 7→ c} if e = c ∈ Z

IdVars ⊕ {x 7→ y} if e = y ∈ Vars

IdVars ⊕ {x 7→ ⊤} otherwise

561

... in the Example:

[[t = 0;]]♯ = {a1 7→ a1, ret 7→ ret, t 7→ 0 }

[[a1 = t;]]♯ = { a1 7→ t , ret 7→ ret, t 7→ t}

In order to implement the analysis, we additionally must construct the
effect of a call k = (_, f ();, _) from the effect of a proceduref :

[[k]]♯ = H ([[f]]♯) where:

H (M) = Id|Locals ⊕ (M ◦ enter♯)|Globals

enter
♯ x =

{

x if x ∈ Globals

0 otherwise

562

