
... in the Example:

If [[work]]♯ = {a1 7→ a1, ret 7→ a1, t 7→ t}

then H [[work]]♯ = Id{t} ⊕ {a1 7→ a1, ret 7→ a1}

= {a1 7→ a1, ret 7→ a1, t 7→ t}

Now we can perform fixpoint iteration:-)

563



7

8

work();

9

10

Neg(a1) Pos(a1)

ret = a1;

work ()

1

7 {a1 7→ a1, ret 7→ ret, t 7→ t}

9 {a1 7→ a1, ret 7→ ret, t 7→ t}

10 {a1 7→ a1, ret 7→ a1, t 7→ t}

8 {a1 7→ a1, ret 7→ ret, t 7→ t}

[[(8, . . ., 9)]]♯ ◦ [[8]]♯ = {a1 7→ a1, ret 7→ a1, t 7→ t} ◦

{a1 7→ a1, ret 7→ ret, t 7→ t}

= {a1 7→ a1, ret 7→ a1, t 7→ t}

564



7

8

work();

9

10

Neg(a1) Pos(a1)

ret = a1;

work ()

2

7 {a1 7→ a1, ret 7→ ret, t 7→ t}

9 {a1 7→ a1, ret 7→ a1 ⊔ ret, t 7→ t}

10 {a1 7→ a1, ret 7→ a1, t 7→ t}

8 {a1 7→ a1, ret 7→ ret, t 7→ t}

[[(8, . . ., 9)]]♯ ◦ [[8]]♯ = {a1 7→ a1, ret 7→ a1, t 7→ t} ◦

{a1 7→ a1, ret 7→ ret, t 7→ t}

= {a1 7→ a1, ret 7→ a1, t 7→ t}

565



If we know the effects of procedure calls, we can put up a constraint
system for determining the abstract state when reaching a program point:

R[main] ⊒ enter♯ d0

R[f ] ⊒ enter♯ (R[u]) k = (u, f ();, _) call

R[v] ⊒ R[f ] v entry point of f

R[v] ⊒ [[k]]♯ (R[u]) k = (u, _, v) edge

566



... in the Example:

0

4

5

1

2

3

6

ret = 1− ret;

main()

t = 0;

Pos(t)Neg(t)

M [17] = 3;

a1 = t;

work();

0 {a1 7→ ⊤, ret 7→ ⊤, t 7→ 0}

1 {a1 7→ ⊤, ret 7→ ⊤, t 7→ 0}

2 {a1 7→ ⊤, ret 7→ ⊤, t 7→ 0}

3 {a1 7→ ⊤, ret 7→ ⊤, t 7→ 0}

4 {a1 7→ 0, ret 7→ ⊤, t 7→ 0}

5 {a1 7→ 0, ret 7→ 0, t 7→ 0}

6 {a1 7→ 0, ret 7→ ⊤, t 7→ 0}

567



Discussion:

• At leastcopy-constantscan be determined interprocedurally.

• For that, we had to ignore conditions and complex assignments :-(

• In the second phase, however, we could have been more precise:-)

• The extra abstractions were necessary for two reasons:

(1) The set of occurring transformersM ⊆ D → D must be
finite;

(2) The functions M ∈ M must beefficiently implementable
:-)

• The second condition can, sometimes, be abandoned ...

568



Observation: Sharir/Pnueli, Cousot

→ Often, procedures are only called forfew distinct abstract
arguments.

→ Each procedure need only to be analyzed for these:-)

→ Put up a constraint system:

[[v, a]]♯ ⊒ a v entry point

[[v, a]]♯ ⊒ combine♯ ([[u, a]], [[f, enter♯ [[u, a]]♯]]♯)

(u, f ();, v) call

[[v, a]]♯ ⊒ [[lab]]♯ [[u, a]]♯ k = (u, lab, v) edge

[[f, a]]♯ ⊒ [[stopf , a]]
♯ stopf end point of f

// [[v, a]]♯ == value for the argument a .

569



Discussion:

• This constraint system may behuge :-(

• We do not want to solve it completely!!!

• It is sufficient to compute the correct values for all calls which
occur, i.e., which are necessary to determine the value
[[main(), a0]]

♯ ==⇒ We apply ourlocal fixpoint algorithm
:-))

• The fixpoint algo provides us also with thesetof actual parameters
a ∈ D for which procedures are (possibly) called and all abstract
values at their program points for each of these calls:-)

570



... in the Example:

Let us try afull constant propagation ...

0

4

5

1

2

3

6

ret = 1 − ret;

7

8

work();

9

10

main()

t = 0;

Pos(t)Neg(t)

M [17] = 3;

a1 = t;

work();

Pos(a1)

ret = a1;

work ()

Neg(a1)

a1 ret a1 ret

0 ⊤ ⊤ ⊤ ⊤

1 ⊤ ⊤ ⊤ ⊤

2 ⊤ ⊤ ⊥

3 ⊤ ⊤ ⊤ ⊤

4 ⊤ ⊤ 0 ⊤

7 0 ⊤ 0 ⊤

8 0 ⊤ ⊥

9 0 ⊤ 0 ⊤

10 0 ⊤ 0 0

5 ⊤ ⊤ 0 0

main() ⊤ ⊤ 0 1

571



Discussion:

• In the Example, the analysis terminatesquickly :-)

• If D has finite height, the analysis terminates if each procedure
is only analyzed forfinitely manyarguments :-))

• Analogous analysis algorithms have proved very effective for the
analysis ofProlog :-)

• Together with a points-to analysis and propagation of negative
constant information, this algorithm is the heart of a very successful
race analyzer forC with Posixthreads :-)

572



(2) The Call-String Approach:

Idea:

→ Compute the set of all reachable call stacks!

→ In general, this is infinite :-(

→ Only treat stacks up to a fixed depthd precisely! From longer
stacks, we only keep the upper prefix of lengthd :-)

→ Important special case:d = 0.

==⇒ Just track the current stack frame ...

573



... in the Example:

7

8

0

4

5

1

2

3

6

ret = 1− ret;

work();

9

10

main()

t = 0;

Pos(t)Neg(t)

M [17] = 3;

a1 = t;

work();

Neg(a1) Pos(a1)

ret = a1;

work ()

574



... in the Example:

7

8

0

4

5

1

2

3

6

10

9

ret = a1;

main()

t = 0;

Pos(t)Neg(t)

ret = 1− ret;

combine

enter

enter

M [17] = 3;

a1 = t;

work ()

Neg(a1) Pos(a1)

combine

575



The conditions for 5, 7, 10 , e.g., are:

R[5] ⊒ combine♯ (R[4],R[10])

R[7] ⊒ enter♯ (R[4])

R[7] ⊒ enter♯ (R[8])

R[9] ⊒ combine♯ (R[8],R[10])

Warning:

The resulting super-graph contains obviouslyimpossible paths...

576



... in the Example this is:

7

8

0

4

5

1

2

3

6

10

9

ret = a1;

main()

t = 0;

Pos(t)Neg(t)

ret = 1− ret;

combine

enter

enter

M [17] = 3;

a1 = t;

work ()

Neg(a1) Pos(a1)

combine

577



... in the Example this is:

7

8

0

4

5

1

2

3

6

10

9

ret = a1;

main()

t = 0;

Pos(t)Neg(t)

ret = 1− ret;

combine

enter

enter

M [17] = 3;

a1 = t;

work ()

Neg(a1) Pos(a1)

combine

578



Note:

→ In the example, we find the same results:
more paths render the resultsless precise.

In particular, we provide for each procedure the result justfor one
(possibly very boring) argument:-(

→ The analysis terminates — wheneverD has no infinite strictly
ascending chains:-)

→ The correctness is easily shown w.r.t. the operational semantics
with call stacks.

→ For the correctness of the functional approach, the semantics with
computation forests is better suited:-)

579



3 Exploiting Hardware Features

Question: How can we optimally use:

... Registers

... Pipelines

... Caches

... Processors???

580



3.1 Registers

Example:

read();

x = M [A];

y = x+ 1;

if (y) {

z = x · x;

M [A] = z;

} else {

t = −y · y;

M [A] = t;

}
8

0

1

2

3

64

5 7

read();

x = M [A];

y = x+ 1;

z = x · x

Neg(y) Pos(y)

M [A] = t; M [A] = z;

t = −y · y;

581



The program uses5 variables ...

Problem:

What if the program uses more variables than there are registers :-(

Idea:

Use one register forseveralvariables :-)

In the example, e.g., one forx, t, z ...

582



read();

x = M [A];

y = x+ 1;

if (y) {

z = x · x;

M [A] = z;

} else {

t = −y · y;

M [A] = t;

}
8

0

1

2

3

64

5 7

read();

x = M [A];

y = x+ 1;

z = x · x

Neg(y) Pos(y)

M [A] = t; M [A] = z;

t = −y · y;

583



read();

R = M [A];

y = R+ 1;

if (y) {

R = R ·R;

M [A] = R;

} else {

R = −y · y;

M [A] = R;

}
8

0

1

2

3

64

5 7

read();

R = M [A];

y = R+ 1;

Neg(y) Pos(y)

R = −y · y;

M [A] = R; M [A] = R;

R = R ·R

584



Warning:

This is only possible if thelive rangesdo not overlap :-)

The (true) live range of x is defined by:

L[x] = {u | x ∈ L[u]}

... in the Example:

585



8

0

1

2

3

64

5 7

read();

x = M [A];

y = x+ 1;

z = x · x

Neg(y) Pos(y)

M [A] = t; M [A] = z;

t = −y · y;

L

8 ∅

7 {A, z}

6 {A, x}

5 {A, t}

4 {A, y}

3 {A, x, y}

2 {A, x}

1 {A}

0 ∅

586



8

0

1

2

3

64

5 7

read();

x = M [A];

y = x+ 1;

z = x · x

Neg(y) Pos(y)

M [A] = t; M [A] = z;

t = −y · y;

zt

x

y

L

8 ∅

7 {A, z}

6 {A, x}

5 {A, t}

4 {A, y}

3 {A, x, y}

2 {A, x}

1 {A}

0 {A}

587



8

0

1

2

3

64

5 7

read();

x = M [A];

y = x+ 1;

z = x · x

Neg(y) Pos(y)

M [A] = t; M [A] = z;

t = −y · y;

zt

x

y

Live Ranges:

A {0, . . . , 7}

x {2, 3, 6}

y {2, 4}

t {5}

z {7}

588



In order to determine sets of compatible variables, we construct the
Interference Graph I = (Vars , EI) where:

EI = {{x, y} | x 6= y,L[x] ∩ L[y] 6= ∅}

EI has an edge forx 6= y iff x, y are jointly live at some program
point :-)

... in the Example:

589



8

0

1

2

3

64

5 7

read();

x = M [A];

y = x+ 1;

z = x · x

Neg(y) Pos(y)

M [A] = t; M [A] = z;

t = −y · y;

zt

x

y

Interference Graph:

A

t z

y x

590



Variables which arenot connected with an edge can be assigned to the
same register :-)

A

t z

y x

Color == Register

591



Variables which arenot connected with an edge can be assigned to the
same register :-)

A

t z

y x

Color == Register

592



Sviatoslav Sergeevich Lavrov,
Russian Academy of Sciences (1962)

593



Gregory J. Chaitin, University of Maine (1981)

594



Abstract Problem:

Given: Undirected Graph (V,E) .

Wanted: Minimal coloring, i.e., mapping c : V → N mit

(1) c(u) 6= c(v) for {u, v} ∈ E;

(2)
⊔
{c(u) | u ∈ V } minimal!

• In the example, 3 colors suffice:-) But:

• In general, the minimal coloring is not unique:-(

• It is NP-complete to determine whether there is a coloring with at
most k colors :-((

==⇒

We must rely on heuristics or special cases:-)

595



Greedy Heuristics:

• Start somewhere with color 1;

• Next choose the smallest color which is different from the colors of
all already colored neighbors;

• If a node is colored, color all neighbors which not yet have colors;

• Deal with one component after the other ...

596



... more concretely:

forall (v ∈ V ) c[v] = 0;

forall (v ∈ V ) color (v);

void color (v) {

if (c[v] 6= 0) return;

neighbors = {u ∈ V | {u, v} ∈ E};

c[v] = ⊔{k > 0 | ∀ u ∈ neighbors : k 6= c(u)};

forall (u ∈ neighbors)

if (c(u) == 0) color (u);

}

The new color can be easily determined once the neighbors aresorted
according to their colors :-)

597



Discussion:

→ Essentially, this is aPre-order DFS :-)

→ In theory, the result may arbitrarily far from the optimum:-(

→ ... in practice, it may not be as bad :-)

→ ... Anecdote: different variants have beenpatented!!!

598



Discussion:

→ Essentially, this is aPre-order DFS :-)

→ In theory, the result may arbitrarily far from the optimum:-(

→ ... in practice, it may not be as bad :-)

→ ... Anecdote: different variants have beenpatented!!!

The algorithm works the better the smaller life ranges are...

Idea: Life Range Splitting

599


