... in the Example:

$$
\begin{aligned}
& \text { If } \quad \llbracket \text { work } \rrbracket^{\sharp}=\left\{a_{1} \mapsto a_{1} \text {, ret } \mapsto a_{1}, t \mapsto t\right\} \\
& \text { then } H \llbracket \text { work } \rrbracket^{\sharp}=\operatorname{Id}_{\{t\}} \oplus\left\{a_{1} \mapsto a_{1} \text {, ret } \mapsto a_{1}\right\} \\
& =\left\{a_{1} \mapsto a_{1}, \text { ret } \mapsto a_{1}, t \mapsto t\right\}
\end{aligned}
$$

Now we can perform fixpoint iteration :-)

	1
7	$\left\{a_{1} \mapsto a_{1}\right.$, ret \mapsto ret,$\left.t \mapsto t\right\}$
9	$\left\{a_{1} \mapsto a_{1}\right.$, ret \mapsto ret, $\left.t \mapsto t\right\}$
10	$\left\{a_{1} \mapsto a_{1}\right.$, ret $\left.\mapsto a_{1}, t \mapsto t\right\}$
8	$\left\{a_{1} \mapsto a_{1}\right.$, ret \mapsto ret,$\left.t \mapsto t\right\}$

$$
\begin{aligned}
\llbracket(8, \ldots, 9) \rrbracket^{\sharp} \circ \llbracket 8 \rrbracket^{\sharp}= & \left\{a_{1} \mapsto a_{1}, \text { ret } \mapsto a_{1}, t \mapsto t\right\} \circ \\
& \left\{a_{1} \mapsto a_{1}, \text { ret } \mapsto \text { ret }, t \mapsto t\right\} \\
= & \left\{a_{1} \mapsto a_{1}, \text { ret } \mapsto a_{1}, t \mapsto t\right\}
\end{aligned}
$$

	2
7	$\left\{a_{1} \mapsto a_{1}\right.$, ret \mapsto ret,$\left.t \mapsto t\right\}$
9	$\left\{a_{1} \mapsto a_{1}\right.$, ret $\mapsto a_{1} \sqcup$ ret,$\left.t \mapsto t\right\}$
10	$\left\{a_{1} \mapsto a_{1}\right.$, ret $\left.\mapsto a_{1}, t \mapsto t\right\}$
8	$\left\{a_{1} \mapsto a_{1}\right.$, ret \mapsto ret,$\left.t \mapsto t\right\}$

$$
\begin{aligned}
\llbracket(8, \ldots, 9) \rrbracket^{\sharp} \circ \llbracket 8 \rrbracket^{\sharp=} & \left\{a_{1} \mapsto a_{1}, \text { ret } \mapsto a_{1}, t \mapsto t\right\} \circ \\
& \left\{a_{1} \mapsto a_{1}, \text { ret } \mapsto \text { ret }, t \mapsto t\right\} \\
= & \left\{a_{1} \mapsto a_{1}, \text { ret } \mapsto a_{1}, t \mapsto t\right\}
\end{aligned}
$$

If we know the effects of procedure calls, we can put up a constraint system for determining the abstract state when reaching a program point:

$$
\begin{array}{llll}
\mathcal{R}[\text { main }] & \sqsupseteq \text { enter }^{\sharp} d_{0} & \\
\mathcal{R}[f] & \sqsupseteq \text { enter }^{\sharp}(\mathcal{R}[u]) & k=\left(u, f() ;,{ }_{-}\right) \quad \text { call } \\
\mathcal{R}[v] & \sqsupseteq \mathcal{R}[f] & v \quad \text { entry point of } f \\
\mathcal{R}[v] & \sqsupseteq \llbracket k \rrbracket^{\sharp}(\mathcal{R}[u]) & k=\left(u,{ }_{-}, v\right) \quad \text { edge }
\end{array}
$$

... in the Example:

0	$\left\{a_{1} \mapsto \mathrm{~T}\right.$, ret $\left.\mapsto \mathrm{T}, t \mapsto 0\right\}$
1	$\left\{a_{1} \mapsto \mathrm{~T}\right.$, ret $\left.\mapsto \mathrm{\top}, t \mapsto 0\right\}$
2	$\left\{a_{1} \mapsto \mathrm{\top}\right.$, ret $\left.\mapsto \mathrm{\top}, t \mapsto 0\right\}$
3	$\left\{a_{1} \mapsto \mathrm{\top}\right.$, ret $\left.\mapsto \mathrm{\top}, t \mapsto 0\right\}$
4	$\left\{a_{1} \mapsto 0\right.$, ret $\left.\mapsto \mathrm{T}, t \mapsto 0\right\}$
5	$\left\{a_{1} \mapsto 0\right.$, ret $\left.\mapsto 0, t \mapsto 0\right\}$
6	$\left\{a_{1} \mapsto 0\right.$, ret $\left.\mapsto \mathrm{\top}, t \mapsto 0\right\}$

Discussion:

- At least copy-constants can be determined interprocedurally.
- For that, we had to ignore conditions and complex assignments
- In the second phase, however, we could have been more precise :-)
- The extra abstractions were necessary for two reasons:
(1) The set of occurring transformers $\mathbb{M} \subseteq \mathbb{D} \rightarrow \mathbb{D}$ must be finite;
(2) The functions $\quad M \in \mathbb{M}$ must be efficiently implementable :-)
- The second condition can, sometimes, be abandoned ...

Observation:
$\rightarrow \quad$ Often, procedures are only called for few distinct abstract arguments.
$\rightarrow \quad$ Each procedure need only to be analyzed for these :-)
$\rightarrow \quad$ Put up a constraint system:

$$
\begin{aligned}
\llbracket v, a \rrbracket^{\sharp} & \sqsupseteq a \\
\llbracket v, a \rrbracket^{\sharp} & \sqsupseteq \text { combine }^{\sharp}\left(\llbracket u, a \rrbracket, ~ \llbracket f, \text { enter } \llbracket u, a \rrbracket^{\sharp} \rrbracket^{\sharp}\right) \\
& \\
\llbracket v, a \rrbracket^{\sharp} & \sqsupseteq \llbracket l a b \rrbracket^{\sharp} \llbracket u, a \rrbracket^{\sharp} \quad k=(u, l a b, v) \quad \text { edge } \\
\llbracket f, a \rrbracket^{\sharp} & \sqsupseteq \llbracket \text { stop }_{f}, a \rrbracket^{\sharp} \quad \text { stop }_{f} \quad \text { end point of } \quad f \\
& \\
\llbracket v, a \rrbracket^{\sharp} & =\text { value for the argument } a .
\end{aligned}
$$

Discussion:

- This constraint system may be huge
- We do not want to solve it completely!!!
- It is sufficient to compute the correct values for all calls which occur, i.e., which are necessary to determine the value $\llbracket \operatorname{main}(), a_{0} \rrbracket^{\sharp} \quad \Longrightarrow$ We apply our local fixpoint algorithm :-))
- The fixpoint algo provides us also with the set of actual parameters $a \in \mathbb{D}$ for which procedures are (possibly) called and all abstract values at their program points for each of these calls :-)

... in the Example:

Let us try a full constant propagation ...

Discussion:

- In the Example, the analysis terminates quickly :-)
- If \mathbb{D} has finite height, the analysis terminates if each procedure is only analyzed for finitely many arguments :-))
- Analogous analysis algorithms have proved very effective for the analysis of Prolog :-)
- Together with a points-to analysis and propagation of negative constant information, this algorithm is the heart of a very successful race analyzer for C with Posix threads :-)
(2) The Call-String Approach:

Idea:

$\rightarrow \quad$ Compute the set of all reachable call stacks!
$\rightarrow \quad$ In general, this is infinite
$\rightarrow \quad$ Only treat stacks up to a fixed depth d precisely! From longer stacks, we only keep the upper prefix of length d :-)
\rightarrow Important special case: $d=0$.
\Longrightarrow Just track the current stack frame ...
... in the Example:

... in the Example:

The conditions for $5,7,10$, e.g., are:

$$
\begin{aligned}
\mathcal{R}[5] & \sqsupseteq \operatorname{combine}^{\sharp}(\mathcal{R}[4], \mathcal{R}[10]) \\
\mathcal{R}[7] & \sqsupseteq \operatorname{enter}^{\sharp}(\mathcal{R}[4]) \\
\mathcal{R}[7] & \sqsupseteq \operatorname{enter}^{\sharp}(\mathcal{R}[8]) \\
\mathcal{R}[9] & \sqsupseteq \operatorname{combine}^{\sharp}(\mathcal{R}[8], \mathcal{R}[10])
\end{aligned}
$$

Warning:
The resulting super-graph contains obviously impossible paths ...

... in the Example this is:

... in the Example this is:

Note:

$\rightarrow \quad$ In the example, we find the same results: more paths render the results less precise.
In particular, we provide for each procedure the result just for one (possibly very boring) argument :-(
$\rightarrow \quad$ The analysis terminates - whenever $\quad \mathbb{D} \quad$ has no infinite strictly ascending chains :-)
$\rightarrow \quad$ The correctness is easily shown w.r.t. the operational semantics with call stacks.
$\rightarrow \quad$ For the correctness of the functional approach, the semantics with computation forests is better suited :-)

3 Exploiting Hardware Features

Question:

How can we optimally use:
... Registers
... Pipelines
... Caches
... Processors ???

3.1 Registers

Example:

$$
\begin{aligned}
& \text { read(); } \\
& x=M[A] ; \\
& y=x+1 ; \\
& \text { if }(y) \text { \{ } \\
& z=x \cdot x ; \\
& M[A]=z ; \\
& \text { \} else \{ } \\
& t=-y \cdot y ; \\
& M[A]=t ; \\
& \text { \} }
\end{aligned}
$$

The program uses 5 variables ...

Problem:

What if the program uses more variables than there are registers

Idea:

Use one register for several variables :-)
In the example, e.g., one for $x, t, z \ldots$

$$
\begin{aligned}
& \text { read(); } \\
& x=M[A] ; \\
& y=x+1 ; \\
& \text { if }(y)\{ \\
& z=x \cdot x ; \\
& M[A]=z ; \\
& \text { \} else \{ } \\
& t=-y \cdot y ; \\
& M[A]=t ; \\
& \text { \} }
\end{aligned}
$$

$$
\begin{aligned}
& \text { read(); } \\
& R=M[A] ; \\
& y=R+1 ; \\
& \text { if }(y) \text { \{ } \\
& R=R \cdot R ; \\
& M[A]=R ; \\
& \text { \} else \{ } \\
& R=-y \cdot y ; \\
& M[A]=R ; \\
& \text { \} }
\end{aligned}
$$

Warning:

This is only possible if the live ranges do not overlap :-)

The (true) live range of x is defined by:

$$
\mathcal{L}[x]=\{u \mid x \in \mathcal{L}[u]\}
$$

... in the Example:

	\mathcal{L}
8	\emptyset
7	$\{A, z\}$
6	$\{A, x\}$
5	$\{A, t\}$
4	$\{A, y\}$
3	$\{A, x, y\}$
2	$\{A, x\}$
1	$\{A\}$
0	\emptyset

	\mathcal{L}
8	\emptyset
7	$\{A, z\}$
6	$\{A, x\}$
5	$\{A, t\}$
4	$\{A, y\}$
3	$\{A, x, y\}$
2	$\{A, x\}$
1	$\{A\}$
0	$\{A\}$

Live Ranges:

A	$\{0, \ldots, 7\}$
x	$\{2,3,6\}$
y	$\{2,4\}$
t	$\{5\}$
z	$\{7\}$

In order to determine sets of compatible variables, we construct the Interference Graph $I=\left(\right.$ Vars, $\left.E_{I}\right) \quad$ where:

$$
E_{I}=\{\{x, y\} \mid x \neq y, \mathcal{L}[x] \cap \mathcal{L}[y] \neq \emptyset\}
$$

E_{I} has an edge for $x \neq y$ iff x, y are jointly live at some program point :-)
... in the Example:

Interference Graph:

Variables which are not connected with an edge can be assigned to the same register :-)

Variables which are not connected with an edge can be assigned to the same register :-)

$$
\text { Color }=\text { Register }
$$

[^0]

Gregory J. Chaitin, University of Maine (1981)

Abstract Problem:

Given: Undirected Graph (V, E).
Wanted: \quad Minimal coloring, i.e., mapping $\quad c: V \rightarrow \mathbb{N}$ mit
(1) $c(u) \neq c(v)$ for $\quad\{u, v\} \in E$;
(2) $\quad\lfloor\{c(u) \mid u \in V\} \quad$ minimal!

- In the example, 3 colors suffice :-) But:
- In general, the minimal coloring is not unique
- It is NP-complete to determine whether there is a coloring with at most k colors
\qquad
We must rely on heuristics or special cases :-)

Greedy Heuristics:

- Start somewhere with color 1;
- Next choose the smallest color which is different from the colors of all already colored neighbors;
- If a node is colored, color all neighbors which not yet have colors;
- Deal with one component after the other ...
... more concretely:

```
forall (v\inV) c[v]=0;
forall (v\inV) color (v);
void color (v) {
    if (c[v]}\not=0)\mathrm{ return;
    neighbors ={u\inV |{u,v}\inE };
    c[v]=\Pi{k>0 | \forallu\in neighbors : k\not=c(u)};
    forall ( }u\in\mathrm{ neighbors)
        if }(c(u)==0) color (u)
}
```

The new color can be easily determined once the neighbors are sorted according to their colors :-)

Discussion:

\rightarrow Essentially, this is a Pre-order DFS :-)
$\rightarrow \quad$ In theory, the result may arbitrarily far from the optimum :-(
$\rightarrow \quad$... in practice, it may not be as bad :-)
$\rightarrow \quad$... Anecdote: different variants have been patented !!!

Discussion:

$\rightarrow \quad$ Essentially, this is a Pre-order DFS :-)
$\rightarrow \quad$ In theory, the result may arbitrarily far from the optimum :-(
$\rightarrow \quad$... in practice, it may not be as bad :-)
$\rightarrow \quad$... Anecdote: different variants have been patented !!!

The algorithm works the better the smaller life ranges are ...

Idea: Life Range Splitting

[^0]: Sviatoslav Sergeevich Lavrov, Russian Academy of Sciences (1962)

