... Inthe Example:

If [work]# = {a; ~ ay,ret = ay,t > t}
then H [work]* = Idyy @ {a1 +— ai,ret — a1}

= {ay — ay,ret — ay,t—t}

Now we can perform fixpoint iteration:-)

563

work () \

Neg(a1) Pos(a)

work();

(9)
ret = aq;

1

10

{a; — ay,ret — ret,t — t}
{CL1 — ap, ret — ret, { — t}
{@1 — ap,ret — a;,t— t}

{@1 — ap,ret — ret,{ — t}

{a1 — aq,ret — a,t — t} O
{@1 — a1, ret — ret, t — t}

{@1 — aq,ret — a,t — t}

564

2
7 {a; ¥ ay,ret — ret,t — t}
9| |{a1 — ay,ret — a; Uret, t +— t}
10 {a; — aq,ret = ay,t — t}
8 {a; — ay,ret — ret,t — t}

{a1 — aq,ret — a,t — t} O
{Cll — a1, ret — ret, t — t}

{Cll — aq,ret — a,t — t}

565

If we know the effects of procedure calls, we can put up a camdt
system for determining the abstract state when reachinggrgom point:

‘main]
/]

V]

]

| | O

enter? d,
enter? (R[u]) k= (u,f();_) call
R|f] v entry pointof f

[K]F (Ru]) k= (u,_,v) edge

566

... Inthe Example:

main()

{a; — T, ret— T,t— 0}
{a; — T, ret— T,t— 0}
{a; — T, ret— T,t— 0}
— T,ret— T,t+ 0}
{a; — 0,ret— T,t— 0}

{a; — 0,ret — 0,1 — 0}

S Ut R W NN = O
R
=)
[

{a; — O,ret — T,t— 0}

567

Discussion:

e Atleastcopy-constantsan be determined interprocedurally.
e Forthat, we had to ignore conditions and complex assignsnen(
e Inthe second phase, however, we could have been more preejse
e The extra abstractions were necessary for two reasons:
(1) The set of occurring transformerdVl € D — D must be
finite;
(2) Thefunctions M € M must beefficientlyimplementable
-)

e The second condition can, sometimes, be abandoned ...

568

Observation: Sharir/Pnueli, Cousot

— Often, procedures are only called ftaw distinct abstract
arguments.

— Each procedure need only to be analyzed for thesg

1

Put up a constraint system:

a v entry point

combine® ([u, a], [f, enter* [u, a]*]#)
(u, f();,v) call

[lab)?* [u,a]* &k = (u,lab,v) edge

[stop;,a]* stop, end pointof f

|

|

/| [v,a]* == value for the argumenta .

569

Discussion:

e This constraint system may beige :-(
e \We do not want to solve it completely

e Itis sufficient to compute the correct values for all callseth
occur I.e., which are necessary to determine the value
[main(), ag]* —— We apply ourocal fixpoint algorithm
-))

e The fixpoint algo provides us also with tketof actual parameters
a € D for which procedures are (possibly) called and all abstract
values at their program points for each of these call$

570

... In the Example:

Let us try afull constant propagation ...

ret = 1 — ret;

work () \

Neg(a1)

r

POS(al)

work();

et = aq;

571

S
[y

-
D
—+

© o0 N b~ W NN = O

—_
-

main()

4 4 oo oo A4 A4+ +

e e e e e e e e

o o o O

— o o -

Discussion:

e Inthe Example, the analysis terminatesckly :-)

e If DD hasfinite height, the analysis terminates if each procedure
Is only analyzed fofinitely manyarguments :-))

e Analogous analysis algorithms have proved very effectivelie
analysis ofProlog :-)

e Together with a points-to analysis and propagation of megat
constant information, this algorithm is the heart of a vargcessful
race analyzer fo€ with Posixthreads :-)

572

(2) The Call-String Approach:

ldea:

— Compute the set of all reachable call stacks!
— In general, this is infinite :-(

— Only treat stacks up to a fixed depth/ precisely! From longer
stacks, we only keep the upper prefix of length :-)

— Important special case:d = 0.

—_— Just track the current stack frame ...

573

.. In the Example:

éwork
% ret =1 — ret;

574

... Inthe Example:

main() work () \ enter

t =0 Neg(a) Pos(aq)

(8)

Neg () Pos(t)

ofl

M[17] = 3; éret = ai;
10
/ combine

ay = t; enter

§ combine
% ret =1 — ret;

575

The conditions for 5,7,10, e.q., are:

2
=
1L

combine® (R[4], R[10])

enter? (R[4])
enter? (R[8])

i

©
L]

combine® (R[8], R[10])

Warning:

The resulting super-graph contains obviousiypossible paths.

576

... Inthe Example this is:

main() work () \ enter
Z? (7)
t =0 Neg(a) Pos(aq)
(8)

ofl

M[17] = 3; éret = ai;
10
/ combine

a; =t; enter

|§ combine
% ret =1 — ret;

577

... Inthe Example this is:

work-() \ enter

Neg(aq) Pos(aq)

(8)

o

= 3; éret = aq;
10
> combine

enter
§ combine
% ret =1 — ret;

578

Note:

— In the example, we find the same results:
more paths render the resultss precise

In particular, we provide for each procedure the resultfimisone
(possibly very boring) argument:-(

— The analysis terminates — wheneved has no infinite strictly
ascending chains:-)

— The correctness is easily shown w.r.t. the operational seasa
with call stacks.

— For the correctness of the functional approach, the seosantth
computation forests is better suited-)

579

3 Exploiting Hardware Features

Question: How can we optimally use:

Registers
Pipelines
Caches

Processorg8??

580

3.1 Registers

Example:

read();

x = M[A];
y=x+1;
it (y) {

581

The program usesvariables ...

Problem:

What if the program uses more variables than there are eegist-(

ldea:

Use one register fazeveralariables :-)

In the example, e.qg., one forz, ¢, = ...

582

r = M[A];

y=x+ 1;

it (y) {
M[A] = z;

} else {
t=—-y-y;
MIA] = t;

}

583

584

Warning:
This is only possible if théve rangesdo not overlap :-)

The (true) live range of = is defined by:

Llr] = {u |z e Llul}

... Inthe Example:

585

586

S N W ke Ot O N @

{A, =}
{A, z}
{A,t}
{4y}
{A z,y}
{A, z}
{A}

587

S N W ke Ot O N @

{A, =}
{A, z}
{A,t}
{4y}
{A z,y}
{A, z}
{A}

{A}

Live Ranges:

Alfo,.... 7
v | {2,3,6}
y | {2,4}

t {5}

z [{7}

588

In order to determine sets of compatible variables, we coatsthe
Interference Graph I = (Vars, E;) where:

Er = {{z,y} |z #y, Llz]) 0 L]y] # 0}

E; hasanedgefor #y Iff 2,y arejointly live at some program
point :-)

... Inthe Example:

589

Interference Graph:

590

Variables which ar@ot connected with an edge can be assigned to the
same register :-)

591

Variables which ar@ot connected with an edge can be assigned to the
same register :-)

60

Color = Reqister

592

Sviatoslav Sergeevich Lavrov,
Russian Academy of Sciences1962

593

Gregory J. Chaitin, University of Maine 1981)

594

Abstract Problem:
Given: Undirected Graph (V, E) .
Wanted.: Minimal coloring, i.e., mapping ¢:V — N mit

(1) c(u) #c(v) for {u,v} € F;
(2) | Hc(w)|weV} minimall

e Inthe example, 3 colors suffice:-) But:
e In general, the minimal coloring is not unique-(

e Itis NP-complete to determine whether there is a colorint) \at
most k£ colors :-((

—

We must rely on heuristics or special cases)

595

Greedy Heuristics:

e Start somewhere with color 1;

e Next choose the smallest color which is different from thi®icof
all already colored neighbors;

e Ifanode is colored, color all neighbors which not yet havies

e Deal with one component after the other ...

596

... MMore Concretely:

forall (v € V) c[v] =0;
forall (v € V') color (v);

void color (v) {
if (clv] #0) return;
neighbors = {u € V | {u,v} € E};
clv] = {k > 0| Vu € neighbors : k # c(u)};
forall (u € neighbors)
if (c(u) ==0) color (u);
h

The new color can be easily determined once the neighbosoaed
according to their colors :-)

597

Discussion:

Essentially, this is &#re-order DFS :-)
In theory, the result may arbitrarily far from the optimum(

... In practiceg it may not be as bad :-)

b

... Anecdote: different variants have begratented!!

598

Discussion:

Essentially, this is &#re-order DFS :-)
In theory, the result may arbitrarily far from the optimum(

... In practiceg it may not be as bad :-)

b

... Anecdote: different variants have begratented!!

The algorithm works the better the smaller life ranges.are

ldea: Life Range Splitting

599

