... in the Example:

If
$$\llbracket \text{work} \rrbracket^{\sharp} = \{a_1 \mapsto a_1, \text{ret} \mapsto a_1, t \mapsto t\}$$

then $H \llbracket \text{work} \rrbracket^{\sharp} = \mathsf{Id}_{\{t\}} \oplus \{a_1 \mapsto a_1, \text{ret} \mapsto a_1\}$
 $= \{a_1 \mapsto a_1, \text{ret} \mapsto a_1, t \mapsto t\}$

Now we can perform fixpoint iteration :-)

$$\llbracket (8, \dots, 9) \rrbracket^{\sharp} \circ \llbracket 8 \rrbracket^{\sharp} = \{ a_1 \mapsto a_1, \operatorname{ret} \mapsto a_1, t \mapsto t \} \circ \\ \{ a_1 \mapsto a_1, \operatorname{ret} \mapsto \operatorname{ret}, t \mapsto t \} \\ = \{ a_1 \mapsto a_1, \operatorname{ret} \mapsto a_1, t \mapsto t \}$$

$$\llbracket (8, \ldots, 9) \rrbracket^{\sharp} \circ \llbracket 8 \rrbracket^{\sharp} = \{ a_1 \mapsto a_1, \operatorname{ret} \mapsto a_1, t \mapsto t \} \circ \\ \{ a_1 \mapsto a_1, \operatorname{ret} \mapsto \operatorname{ret}, t \mapsto t \} \\ = \{ a_1 \mapsto a_1, \operatorname{ret} \mapsto a_1, t \mapsto t \}$$

If we know the effects of procedure calls, we can put up a constraint system for determining the abstract state when reaching a program point:

... in the Example:

$$\begin{array}{ll}0 & \{a_1 \mapsto \top, \mathsf{ret} \mapsto \top, t \mapsto 0\}\\ 1 & \{a_1 \mapsto \top, \mathsf{ret} \mapsto \top, t \mapsto 0\}\\ 2 & \{a_1 \mapsto \top, \mathsf{ret} \mapsto \top, t \mapsto 0\}\\ 3 & \{a_1 \mapsto \top, \mathsf{ret} \mapsto \top, t \mapsto 0\}\\ 4 & \{a_1 \mapsto 0, \mathsf{ret} \mapsto \top, t \mapsto 0\}\\ 5 & \{a_1 \mapsto 0, \mathsf{ret} \mapsto 0, t \mapsto 0\}\\ 6 & \{a_1 \mapsto 0, \mathsf{ret} \mapsto \top, t \mapsto 0\}\end{array}$$

Discussion:

- At least copy-constants can be determined interprocedurally.
- For that, we had to ignore conditions and complex assignments :-(
- In the second phase, however, we could have been more precise :-)
- The extra abstractions were necessary for two reasons:
 - (1) The set of occurring transformers $\mathbb{M} \subseteq \mathbb{D} \to \mathbb{D}$ must be finite;
 - (2) The functions $M \in \mathbb{M}$ must be efficiently implementable :-)
- The second condition can, sometimes, be abandoned ...

Observation:

- \rightarrow Often, procedures are only called for few distinct abstract arguments.
- \rightarrow Each procedure need only to be analyzed for these :-)
- \rightarrow Put up a constraint system:

 $\begin{bmatrix} v, a \end{bmatrix}^{\sharp} \supseteq a \qquad v \text{ entry point}$ $\begin{bmatrix} v, a \end{bmatrix}^{\sharp} \supseteq \text{ combine}^{\sharp} (\llbracket u, a \rrbracket, \llbracket f, \text{enter}^{\sharp} \llbracket u, a \rrbracket^{\sharp} \rrbracket^{\sharp})$ (u, f();, v) call $\begin{bmatrix} v, a \end{bmatrix}^{\sharp} \supseteq [\llbracket ab \rrbracket^{\sharp} \llbracket u, a \rrbracket^{\sharp} \quad k = (u, lab, v) \text{ edge}$ $\llbracket f, a \rrbracket^{\sharp} \supseteq [\llbracket stop_{f}, a \rrbracket^{\sharp} \quad stop_{f} \text{ end point of } f$ $// [\llbracket v, a \rrbracket^{\sharp} \implies value \text{ for the argument } a.$

Discussion:

- This constraint system may be huge :-(
- We do not want to solve it completely!!!
- It is sufficient to compute the correct values for all calls which occur, i.e., which are necessary to determine the value
 [main(), a₀][#] =>> We apply our local fixpoint algorithm
 :-))
- The fixpoint algo provides us also with the set of actual parameters a ∈ D for which procedures are (possibly) called and all abstract values at their program points for each of these calls :-)

... in the Example:

Let us try a full constant propagation ...

Τ

Τ

Т

1

Discussion:

- In the Example, the analysis terminates quickly :-)
- If D has finite height, the analysis terminates if each procedure is only analyzed for finitely many arguments :-))
- Analogous analysis algorithms have proved very effective for the analysis of Prolog :-)
- Together with a points-to analysis and propagation of negative constant information, this algorithm is the heart of a very successful race analyzer for C with Posix threads :-)

(2) The Call-String Approach:

Idea:

- \rightarrow Compute the set of all reachable call stacks!
- \rightarrow In general, this is infinite :-(
- \rightarrow Only treat stacks up to a fixed depth d precisely! From longer stacks, we only keep the upper prefix of length d :-)
- \rightarrow Important special case: d = 0.
 - \implies Just track the current stack frame ...

... in the Example:

The conditions for 5, 7, 10, e.g., are:

- $\mathcal{R}[5] \supseteq \text{ combine}^{\sharp}(\mathcal{R}[4], \mathcal{R}[10])$
- $\mathcal{R}[7] \supseteq \operatorname{enter}^{\sharp}(\mathcal{R}[4])$
- $\mathcal{R}[7] \supseteq \operatorname{enter}^{\sharp}(\mathcal{R}[8])$
- $\mathcal{R}[9] \supseteq \text{ combine}^{\sharp}(\mathcal{R}[8], \mathcal{R}[10])$

Warning:

The resulting super-graph contains obviously impossible paths ...

... in the Example this is:

... in the Example this is:

Note:

- → In the example, we find the same results: more paths render the results less precise.
 In particular, we provide for each procedure the result just for one (possibly very boring) argument :-(
- \rightarrow The analysis terminates whenever \mathbb{D} has no infinite strictly ascending chains :-)
- \rightarrow The correctness is easily shown w.r.t. the operational semantics with call stacks.
- \rightarrow For the correctness of the functional approach, the semantics with computation forests is better suited :-)

3 Exploiting Hardware Features

Question:

How can we optimally use:

- ... Registers
- ... Pipelines
- ... Caches
- ... Processors ???

3.1 **Registers**

Example:

The program uses 5 variables ...

Problem:

What if the program uses more variables than there are registers :-(

Idea:

Use one register for several variables :-) In the example, e.g., one for $x, t, z \dots$

read();

$$x = M[A];$$

 $y = x + 1;$
if (y) {
 $z = x \cdot x;$
 $M[A] = z;$
} else {
 $t = -y \cdot y;$
 $M[A] = t;$
}

read();

$$R = M[A];$$

 $y = R + 1;$
if $(y) \{$
 $R = R \cdot R;$
 $M[A] = R;$
} else {
 $R = -y \cdot y;$
 $M[A] = R;$
}

Warning:

This is only possible if the live ranges do not overlap :-)

The (true) live range of x is defined by:

$$\mathcal{L}[x] = \{ \mathbf{u} \mid x \in \mathcal{L}[\mathbf{u}] \}$$

... in the Example:

	\mathcal{L}
8	Ø
7	$\{A, z\}$
6	$\{A, x\}$
5	$\{A,t\}$
4	$\{A, y\}$
3	$\{A, x, y\}$
2	$\{A, x\}$
1	$\{A\}$
0	Ø

	\mathcal{L}
8	Ø
7	$\{A, z\}$
6	$\{A, x\}$
5	$\{A,t\}$
4	$\{A, y\}$
3	$\{A, x, y\}$
2	$\{A, x\}$
1	$\{A\}$
0	$\{A\}$

$$\begin{array}{c|c|c} A & \{0, \dots, 7\} \\ x & \{2, 3, 6\} \\ y & \{2, 4\} \\ t & \{5\} \\ z & \{7\} \end{array}$$

In order to determine sets of compatible variables, we construct the Interference Graph $I = (Vars, E_I)$ where:

$$E_I = \{\{x, y\} \mid x \neq y, \mathcal{L}[x] \cap \mathcal{L}[y] \neq \emptyset\}$$

 E_I has an edge for $x \neq y$ iff x, y are jointly live at some program point :-)

... in the Example:

Interference Graph:

Variables which are not connected with an edge can be assigned to the same register :-)

Variables which are not connected with an edge can be assigned to the same register :-)

Sviatoslav Sergeevich Lavrov, Russian Academy of Sciences (1962)

Gregory J. Chaitin, University of Maine (1981)

Abstract Problem:

Given:	Undirected Graph	(V, E).
--------	------------------	---------

Wanted: Minimal coloring, i.e., mapping $c: V \to \mathbb{N}$ mit

(1)
$$c(u) \neq c(v)$$
 for $\{u, v\} \in E$;

- (2) $\bigsqcup\{c(u) \mid u \in V\}$ minimal!
- In the example, 3 colors suffice :-) But:
- In general, the minimal coloring is not unique :-(
- It is NP-complete to determine whether there is a coloring with at most k colors :-((

We must rely on heuristics or special cases :-)

Greedy Heuristics:

- Start somewhere with color 1;
- Next choose the smallest color which is different from the colors of all already colored neighbors;
- If a node is colored, color all neighbors which not yet have colors;
- Deal with one component after the other ...

... more concretely:

```
forall (v \in V) c[v] = 0;
forall (v \in V) color (v);
void color (v) {
       if (c[v] \neq 0) return;
       neighbors = \{u \in V \mid \{u, v\} \in E\};
       c[v] = \prod \{k > 0 \mid \forall u \in \mathsf{neighbors} : k \neq c(u)\};
       forall (u \in \text{neighbors})
              if (c(u) == 0) color (u);
}
```

The new color can be easily determined once the neighbors are sorted according to their colors :-)

Discussion:

- \rightarrow Essentially, this is a Pre-order DFS :-)
- \rightarrow In theory, the result may arbitrarily far from the optimum :-(
- \rightarrow ... in practice, it may not be as bad :-)
- \rightarrow ... Anecdote: different variants have been patented !!!

Discussion:

- \rightarrow Essentially, this is a Pre-order DFS :-)
- \rightarrow In theory, the result may arbitrarily far from the optimum :-(
- \rightarrow ... in practice, it may not be as bad :-)
- \rightarrow ... Anecdote: different variants have been patented !!!

The algorithm works the better the smaller life ranges are ...

Idea: Life Range Splitting