
[[R = M [e];]] (ρ, µ) = (ρ⊕ {R 7→ µ([[e]] ρ))} , µ)

[[M [e1] = e2;]] (ρ, µ) = (ρ, µ⊕ {[[e1]] ρ 7→ [[e2]] ρ})

Example:

[[x = x+ 1;]] ({x 7→ 5}, µ) = (ρ, µ) where:

ρ = {x 7→ 5} ⊕ {x 7→ [[x+ 1]] {x 7→ 5}}

= {x 7→ 5} ⊕ {x 7→ 6}

= {x 7→ 6}

32

A path π = k1k2 . . . km is acomputationfor the states if:

s ∈ def ([[km]] ◦ . . . ◦ [[k1]])

Theresultof the computation is:

[[π]] s = ([[km]] ◦ . . . ◦ [[k1]]) s

Application:

Assume that we have computed the value ofx+ y at program pointu:

u v
x+y

π

We perform a computation along pathπ and reachv where we evaluate
againx+ y ...

33

Idea:

If x andy have not been modified inπ, then evaluation ofx+ y at v must
return the same value as evaluation atu :-)

We can check this property at every edge inπ :-}

More generally:

Assume that the values of the expressionsA = {e1, . . . , er} are available
atu.

Every edgek transforms this set into a set [[k]]♯A of expressions
whose values are available after execution ofk ...

34

Idea:

If x andy have not been modified inπ, then evaluation ofx+ y at v must
return the same value as evaluation atu :-)

We can check this property at every edge inπ :-}

More generally:

Assume that the values of the expressionsA = {e1, . . . , er} are available
atu.

Every edgek transforms this set into a set [[k]]♯A of expressions
whose values are available after execution ofk ...

35

Idea:

If x andy have not been modified inπ, then evaluation ofx+ y at v must
return the same value as evaluation atu :-)

We can check this property at every edge inπ :-}

More generally:

Assume that the values of the expressionsA = {e1, . . . , er} are available
atu.

Every edgek transforms this set into a set [[k]]♯A of expressions
whose values are availableafterexecution ofk ...

36

... which transformations can be composed to theeffectof a path
π = k1 . . . kr:

[[π]]♯ = [[kr]]
♯ ◦ . . . ◦ [[k1]]

♯

The effect [[k]]♯ of an edge k = (u, lab, v) only depends on the
label lab, i.e., [[k]]♯ = [[lab]]♯ where:

[[;]]♯ A = A

[[Pos(e)]]♯A = [[Neg(e)]]♯A = A ∪ {e}

[[x = e;]]♯A = (A ∪ {e})\ itExprx where

Exprx all expressions which containx

37

... which transformations can be composed to theeffectof a path
π = k1 . . . kr:

[[π]]♯ = [[kr]]
♯ ◦ . . . ◦ [[k1]]

♯

The effect [[k]]♯ of an edge k = (u, lab, v) only depends on the
label lab, i.e., [[k]]♯ = [[lab]]♯ where:

[[;]]♯ A = A

[[Pos(e)]]♯A = [[Neg(e)]]♯A = A ∪ {e}

[[x = e;]]♯A = (A ∪ {e})\Exprx where

Exprx all expressions which containx

38

... which transformations can be composed to theeffectof a path
π = k1 . . . kr:

[[π]]♯ = [[kr]]
♯ ◦ . . . ◦ [[k1]]

♯

The effect [[k]]♯ of an edge k = (u, lab, v) only depends on the
label lab, i.e., [[k]]♯ = [[lab]]♯ where:

[[;]]♯A = A

[[Pos(e)]]♯A = [[Neg(e)]]♯A = A ∪ {e}

[[x = e;]]♯A = (A ∪ {e})\Exprx where

Exprx all expressions which containx

39

[[x = M [e];]]♯ A = (A ∪ {e})\Exprx

[[M [e1] = e2;]]
♯A = A ∪ {e1, e2}

40

[[x = M [e];]]♯ A = (A ∪ {e})\Exprx

[[M [e1] = e2;]]
♯A = A ∪ {e1, e2}

By that,every pathcan be analyzed :-)

A given program may admitseveral paths :-(

For any given input, another path may be chosen:-((

41

[[x = M [e];]]♯ A = (A ∪ {e})\Exprx

[[M [e1] = e2;]]
♯A = A ∪ {e1, e2}

By that,every pathcan be analyzed :-)

A given program may admitseveral paths :-(

For any given input, another path may be chosen:-((

==⇒ We require the set:

A[v] =
⋂

{[[π]]♯∅ | π : start →∗ v}

42

Concretely:

→ We considerall pathsπ which reachv.

→ For every pathπ, we determine the set of expressions which are
available alongπ.

→ Initially at program start,nothingis available :-)

→ We compute theintersection ==⇒ safe information

How do we exploit this information ???

43

Concretely:

→ We considerall pathsπ which reachv.

→ For every pathπ, we determine the set of expressions which are
available alongπ.

→ Initially at program start,nothingis available :-)

→ We compute theintersection ==⇒ safe information

How do we exploit this information???

44

Transformation 1.1:

We provide novel registersTe asstoragefor thee:

v

u

v

u

Te = e;

x = Te;

x = e;

45

Transformation 1.1:

We provide novel registersTe asstoragefor thee:

v

u

u

v v

Pos(e)

v

u

v

u

Te = e;

x = Te;

Neg(e)

x = e;

Te = e;

v

Pos(Te)Neg(Te)

46

... analogously for R = M [e]; and M [e1] = e2;.

Transformation 1.2:

If e is available at program pointu, thene need not be re-evaluated:

u u

Te = e; ;

e ∈ A[u]

We replace the assignment withNop :-)

47

Example:

x = y + 3;

x = 7;

z = y + 3;

x = 7;

z = y + 3;

x = y + 3;

48

Example:

x = y + 3;

x = 7;

z = y + 3;

x = 7;

T = y + 3;

x = T ;

T = y + 3;

z = T ;

49

Example:

x = y + 3;

x = 7;

z = y + 3;

x = 7;

z = T ;

T = y + 3;

x = T ;

T = y + 3;

{y + 3}

{y + 3}

{y + 3}

{y + 3}

{y + 3}

50

Example:

x = y + 3;

x = 7;

z = y + 3;

x = 7;

T = y + 3;

x = T ;

;

z = T ;

{y + 3}

{y + 3}

{y + 3}

{y + 3}

{y + 3}

51

Correctness: (Idea)

Transformation 1.1 preserves the semantics andA[u] for all program
pointsu :-)

Assumeπ : start →∗ u is the path taken by a computation.

If e ∈ A[u], then alsoe ∈ [[π]]♯ ∅.

Therefore,π can be decomposed into:

start u1 u2 u
π1 π2k

with the following properties:

52

• The expressione is evaluated at the edgek;

• The expressione is not removed from the set of available
expressions at any edge inπ2, i.e., no variable ofe receives a new
value :-)

==⇒

The registerTe contains the value ofe wheneveru is reached :-))

53

• The expressione is evaluated at the edgek;

• The expressione is not removed from the set of available
expressions at any edge inπ2, i.e., no variable ofe receives a new
value :-)

==⇒

The registerTe contains the value ofe wheneveru is reached :-))

54

Warning:

Transformation 1.1 is only meaningful for assignmentsx = e; where:

→ e 6∈ Vars;

→ the evaluation ofe is non-trivial :-}

Which leaves open whether ...

55

Warning:

Transformation 1.1 is only meaningful for assignmentsx = e; where:

→ x 6∈ Vars(e);

→ e 6∈ Vars;

→ the evaluation ofe is non-trivial :- }

Which leaves us with the followingquestion...

56

Question:

How do we computeA[u] for every program pointu ??

Idea:

We collect all restrictions to the values ofA[u] into a system of
constraints:

A[start] ⊆ ∅

A[v] ⊆ [[k]]♯ (A[u]) k = (u, _, v) edge

57

Question:

How can we computeA[u] for every program pointu ??

Idea:

We collect all restrictions to the values ofA[u] into asystem of
constraints:

A[start] ⊆ ∅

A[v] ⊆ [[k]]♯ (A[u]) k = (u, _, v) edge

58

Wanted:

• a maximallylargesolution (??)

• an algorithm which computes this :-)

Example:

3

2

4

5

0

1

y = 1;

x = x− 1;

y = x ∗ y;

Pos(x > 1)Neg(x > 1)

59

Wanted:

• a maximallylargesolution (??)

• an algorithm which computes this :-)

Example:

3

2

4

5

0

1

y = 1;

x = x− 1;

y = x ∗ y;

Pos(x > 1)Neg(x > 1)

A[0] ⊆ ∅

60

Wanted:

• a maximallylargesolution (??)

• an algorithm which computes this :-)

Example:

3

2

4

5

0

1

y = 1;

x = x− 1;

y = x ∗ y;

Pos(x > 1)Neg(x > 1)

A[0] ⊆ ∅

A[1] ⊆ (A[0] ∪ {1})\Expr
y

A[1] ⊆ A[4]

61

Wanted:

• a maximallylargesolution (??)

• an algorithm which computes this :-)

Example:

3

2

4

5

0

1

y = 1;

x = x− 1;

y = x ∗ y;

Pos(x > 1)Neg(x > 1)

A[0] ⊆ ∅

A[1] ⊆ (A[0] ∪ {1})\Expr
y

A[1] ⊆ A[4]

A[2] ⊆ A[1] ∪ {x > 1}

62

Wanted:

• a maximallylargesolution (??)

• an algorithm which computes this :-)

Example:

3

2

4

5

0

1

y = 1;

x = x− 1;

y = x ∗ y;

Pos(x > 1)Neg(x > 1)

A[0] ⊆ ∅

A[1] ⊆ (A[0] ∪ {1})\Expr
y

A[1] ⊆ A[4]

A[2] ⊆ A[1] ∪ {x > 1}

A[3] ⊆ (A[2] ∪ {x ∗ y})\Expr
y

63

Wanted:

• a maximallylargesolution (??)

• an algorithm which computes this :-)

Example:

3

2

4

5

0

1

y = 1;

x = x− 1;

y = x ∗ y;

Pos(x > 1)Neg(x > 1)

A[0] ⊆ ∅

A[1] ⊆ (A[0] ∪ {1})\Expr
y

A[1] ⊆ A[4]

A[2] ⊆ A[1] ∪ {x > 1}

A[3] ⊆ (A[2] ∪ {x ∗ y})\Expr
y

A[4] ⊆ (A[3] ∪ {x− 1})\Expr
x

64

Wanted:

• a maximallylargesolution (??)

• an algorithm which computes this :-)

Example:

3

2

4

5

0

1

y = 1;

x = x− 1;

y = x ∗ y;

Pos(x > 1)Neg(x > 1)

A[0] ⊆ ∅

A[1] ⊆ (A[0] ∪ {1})\Expr
y

A[1] ⊆ A[4]

A[2] ⊆ A[1] ∪ {x > 1}

A[3] ⊆ (A[2] ∪ {x ∗ y})\Expr
y

A[4] ⊆ (A[3] ∪ {x− 1})\Expr
x

A[5] ⊆ A[1] ∪ {x > 1}

65

Wanted:

• a maximallylargesolution (??)

• an algorithm which computes this :-)

Example:

3

2

4

5

0

1

y = 1;

x = x− 1;

y = x ∗ y;

Pos(x > 1)Neg(x > 1)

Solution:

A[0] = ∅

A[1] = {1}

A[2] = {1, x > 1}

A[3] = {1, x > 1}

A[4] = {1}

A[5] = {1, x > 1}

66

Observation:

• The possible values forA[u] form acomplete lattice:

D = 2Expr with B1 ⊑ B2 iff B1 ⊇ B2

• The functions [[k]]♯ : D → D are monotonic, i.e.,

[[k]]♯(B1) ⊑ [[k]]♯(B2) whenever B1 ⊑ B2

67

Observation:

• The possible values forA[u] form acomplete lattice:

D = 2Expr with B1 ⊑ B2 iff B1 ⊇ B2

• The functions [[k]]♯ : D → D aremonotonic, i.e.,

[[k]]♯(B1) ⊑ [[k]]♯(B2) whenever B1 ⊑ B2

68

