$$[R = M[e];] (\rho, \mu) = (\rho \oplus \{R \mapsto \mu([e]] \rho)\}, \mu)$$
$$[M[e_1] = e_2;] (\rho, \mu) = (\rho, \mu \oplus \{[e_1]] \rho \mapsto [[e_2]] \rho\})$$

$$[x = x + 1;]] (\{x \mapsto 5\}, \mu) = (\rho, \mu)$$
 where:

$$\rho = \{x \mapsto 5\} \oplus \{x \mapsto [[x+1]]] \{x \mapsto 5\}\}$$
$$= \{x \mapsto 5\} \oplus \{x \mapsto 6\}$$
$$= \{x \mapsto 6\}$$

A path $\pi = k_1 k_2 \dots k_m$ is a computation for the state s if: $s \in def([[k_m]] \circ \dots \circ [[k_1]])$

The result of the computation is:

$$\llbracket \pi \rrbracket \mathbf{s} = (\llbracket k_m \rrbracket \circ \ldots \circ \llbracket k_1 \rrbracket) \mathbf{s}$$

Application:

Assume that we have computed the value of x + y at program point u:

We perform a computation along path π and reach v where we evaluate again x + y ...

Idea:

If x and y have not been modified in π , then evaluation of x + y at v must return the same value as evaluation at u :-)

We can check this property at every edge in π :-}

Idea:

If x and y have not been modified in π , then evaluation of x + y at v must return the same value as evaluation at u :-)

We can check this property at every edge in π :-}

More generally:

Assume that the values of the expressions $A = \{e_1, \ldots, e_r\}$ are available at u.

Idea:

If x and y have not been modified in π , then evaluation of x + y at v must return the same value as evaluation at u :-)

We can check this property at every edge in π :-}

More generally:

Assume that the values of the expressions $A = \{e_1, \ldots, e_r\}$ are available at u.

Every edge k transforms this set into a set $[k]^{\sharp} A$ of expressions whose values are available after execution of k ...

... which transformations can be composed to the effect of a path $\pi = k_1 \dots k_r$:

$$\llbracket \pi
rbracket^{\sharp} = \llbracket k_r
rbracket^{\sharp} \circ \ldots \circ \llbracket k_1
rbracket^{\sharp}$$

... which transformations can be composed to the effect of a path $\pi = k_1 \dots k_r$:

$$\llbracket \pi
rbracket^{\sharp} = \llbracket k_r
rbracket^{\sharp} \circ \ldots \circ \llbracket k_1
rbracket^{\sharp}$$

The effect $[\![k]\!]^{\sharp}$ of an edge k = (u, lab, v) only depends on the label *lab*, i.e., $[\![k]\!]^{\sharp} = [\![lab]\!]^{\sharp}$

... which transformations can be composed to the effect of a path $\pi = k_1 \dots k_r$:

$$\llbracket \pi
rbracket^{\sharp} = \llbracket k_r
rbracket^{\sharp} \circ \ldots \circ \llbracket k_1
rbracket^{\sharp}$$

The effect $[\![k]\!]^{\sharp}$ of an edge k = (u, lab, v) only depends on the label *lab*, i.e., $[\![k]\!]^{\sharp} = [\![lab]\!]^{\sharp}$ where:

$$[x = M[e];]^{\sharp} A = (A \cup \{e\}) \setminus Expr_{x}$$
$$[M[e_{1}] = e_{2};]^{\sharp} A = A \cup \{e_{1}, e_{2}\}$$

$$\llbracket x = M[e]; \rrbracket^{\sharp} A = (A \cup \{e\}) \setminus Expr_x$$
$$\llbracket M[e_1] = e_2; \rrbracket^{\sharp} A = A \cup \{e_1, e_2\}$$

By that, every path can be analyzed :-) A given program may admit several paths :-(For any given input, another path may be chosen :-((

$$\llbracket x = M[e]; \rrbracket^{\sharp} A = (A \cup \{e\}) \setminus Expr_x$$
$$\llbracket M[e_1] = e_2; \rrbracket^{\sharp} A = A \cup \{e_1, e_2\}$$

By that, every path can be analyzed :-) A given program may admit several paths :-(For any given input, another path may be chosen :-((

 \Rightarrow We require the set:

 $\mathcal{A}[v] = \bigcap \{ \llbracket \pi \rrbracket^{\sharp} \emptyset \mid \pi : start \to^{*} v \}$

Concretely:

- \rightarrow We consider all paths π which reach v.
- \rightarrow For every path π , we determine the set of expressions which are available along π .
- \rightarrow Initially at program start, nothing is available :-)
- \rightarrow We compute the intersection \implies safe information

Concretely:

- \rightarrow We consider all paths π which reach v.
- \rightarrow For every path π , we determine the set of expressions which are available along π .
- \rightarrow Initially at program start, nothing is available :-)
- \rightarrow We compute the intersection \implies safe information

How do we exploit this information ???

Transformation 1.1:

We provide novel registers T_e as storage for the e:

Transformation 1.1:

We provide novel registers T_e as storage for the e:

... analogously for R = M[e]; and $M[e_1] = e_2$;.

Transformation 1.2:

If e is available at program point u, then e need not be re-evaluated:

We replace the assignment with Nop :-)

$$x = y + 3;$$

$$x = 7;$$

$$z = y + 3;$$

$$x = y + 3;$$

 $x = 7;$
 $z = y + 3;$

x = y+3;

x = 7;

z = y+3;

$$T = y + 3;$$

$$x = T;$$

$$x = 7;$$

$$T = y + 3;$$

$$z = T;$$

x = y +

$$\begin{cases} y+3 \} & T = y+3; \\ x = y+3; & \{y+3\} & x = T; \\ x = 7; & x = 7; \\ z = y+3; & \{y+3\} & ; \\ \{y+3\} & ; \\ \{y+3\} & z = T; \\ \{y+3\} & z = T; \end{cases}$$

Correctness: (Idea)

Transformation 1.1 preserves the semantics and $\mathcal{A}[u]$ for all program points u :-)

Assume $\pi : start \to^* u$ is the path taken by a computation. If $e \in \mathcal{A}[u]$, then also $e \in [\![\pi]\!]^{\sharp} \emptyset$.

Therefore, π can be decomposed into:

with the following properties:

- The expression e is evaluated at the edge k;
- The expression e is not removed from the set of available expressions at any edge in π₂, i.e., no variable of e receives a new value :-)

- The expression e is evaluated at the edge k;
- The expression e is not removed from the set of available expressions at any edge in π₂, i.e., no variable of e receives a new value :-)

The register T_e contains the value of e whenever u is reached :-))

Warning:

Transformation 1.1 is only meaningful for assignments x = e; where:

- \rightarrow $e \notin Vars;$
- \rightarrow the evaluation of *e* is non-trivial :-}

Warning:

Transformation 1.1 is only meaningful for assignments x = e; where:

- \rightarrow $x \notin Vars(e);$
- $\rightarrow e \notin Vars;$
- \rightarrow the evaluation of *e* is non-trivial :- }

Which leaves us with the following question ...

Question:

How do we compute $\mathcal{A}[u]$ for every program point u ??

Question:

How can we compute $\mathcal{A}[u]$ for every program point u ??

We collect all restrictions to the values of $\mathcal{A}[u]$ into a system of constraints:

$$\begin{array}{lll} \mathcal{A}[\textit{start}] & \subseteq & \emptyset \\ \mathcal{A}[\textit{v}] & \subseteq & \llbracket k \rrbracket^{\sharp} \left(\mathcal{A}[\textit{u}] \right) & \quad \textit{k} = (\textit{u},_,\textit{v}) \quad \text{edge} \end{array}$$

- a maximally large solution (??)
- an algorithm which computes this :-)

- a maximally large solution (??)
- an algorithm which computes this :-)

Example: 0 y = 1; $A[0] \subseteq \emptyset$ Neg(x > 1) 2 y = x * y; 3 x = x - 1; 4

- a maximally large solution (??)
- an algorithm which computes this :-)

$$\begin{array}{lll} \mathcal{A}[\mathbf{0}] &\subseteq & \emptyset \\ \mathcal{A}[\mathbf{1}] &\subseteq & (\mathcal{A}[\mathbf{0}] \cup \{1\}) \backslash Expr_y \\ \mathcal{A}[\mathbf{1}] &\subseteq & \mathcal{A}[\mathbf{4}] \end{array}$$

- a maximally large solution (??)
- an algorithm which computes this :-)

$$\begin{array}{lll} \mathcal{A}[\mathbf{0}] &\subseteq & \emptyset \\ \mathcal{A}[\mathbf{1}] &\subseteq & (\mathcal{A}[\mathbf{0}] \cup \{1\}) \backslash Expr_y \\ \mathcal{A}[\mathbf{1}] &\subseteq & \mathcal{A}[\mathbf{4}] \\ \mathcal{A}[\mathbf{2}] &\subseteq & \mathcal{A}[\mathbf{1}] \cup \{x > 1\} \end{array}$$

- a maximally large solution (??)
- an algorithm which computes this :-)

$$\begin{array}{lll} \mathcal{A}[0] &\subseteq & \emptyset \\ \mathcal{A}[1] &\subseteq & (\mathcal{A}[0] \cup \{1\}) \backslash Expr_y \\ \mathcal{A}[1] &\subseteq & \mathcal{A}[4] \\ \mathcal{A}[2] &\subseteq & \mathcal{A}[1] \cup \{x > 1\} \\ \mathcal{A}[3] &\subseteq & (\mathcal{A}[2] \cup \{x * y\}) \backslash Expr_y \end{array}$$

- a maximally large solution (??)
- an algorithm which computes this :-)

Example:

- a maximally large solution (??)
- an algorithm which computes this :-)

Example:

 $\begin{array}{lll} \mathcal{A}[0] &\subseteq & \emptyset \\ \mathcal{A}[1] &\subseteq & (\mathcal{A}[0] \cup \{1\}) \backslash Expr_y \\ \mathcal{A}[1] &\subseteq & \mathcal{A}[4] \\ \mathcal{A}[2] &\subseteq & \mathcal{A}[1] \cup \{x > 1\} \\ \mathcal{A}[3] &\subseteq & (\mathcal{A}[2] \cup \{x * y\}) \backslash Expr_y \\ \mathcal{A}[4] &\subseteq & (\mathcal{A}[3] \cup \{x - 1\}) \backslash Expr_x \\ \mathcal{A}[5] &\subseteq & \mathcal{A}[1] \cup \{x > 1\} \end{array}$

- a maximally large solution (??)
- an algorithm which computes this :-)

Example:

Solution:

$$\mathcal{A}[0] = \emptyset$$

$$\mathcal{A}[1] = \{1\}$$

$$\mathcal{A}[2] = \{1, x > 1\}$$

$$\mathcal{A}[3] = \{1, x > 1\}$$

$$\mathcal{A}[4] = \{1\}$$

$$\mathcal{A}[5] = \{1, x > 1\}$$

Observation:

• The possible values for $\mathcal{A}[u]$ form a complete lattice:

$$\mathbb{D} = 2^{Expr}$$
 with $B_1 \sqsubseteq B_2$ iff $B_1 \supseteq B_2$

Observation:

• The possible values for $\mathcal{A}[u]$ form a complete lattice:

$$\mathbb{D} = 2^{Expr} \quad \text{with} \quad B_1 \sqsubseteq B_2 \quad \text{iff} \quad B_1 \supseteq B_2$$

• The functions $\llbracket k \rrbracket^{\sharp} : \mathbb{D} \to \mathbb{D}$ are monotonic, i.e., $\llbracket k \rrbracket^{\sharp}(B_1) \sqsubseteq \llbracket k \rrbracket^{\sharp}(B_2)$ whenever $B_1 \sqsubseteq B_2$