Background 2: Complete Lattices

A set \mathbb{D} together with a relation $\sqsubseteq \subseteq \mathbb{D} \times \mathbb{D}$ is a partial order if for all $a, b, c \in \mathbb{D}$,

$$
\begin{array}{ll}
a \sqsubseteq a & \text { reflexivity } \\
a \sqsubseteq b \wedge b \sqsubseteq a \Longrightarrow a=b & \text { anti-symmetry } \\
a \sqsubseteq b \wedge b \sqsubseteq c \Longrightarrow a \sqsubseteq c & \text { transitivity }
\end{array}
$$

Examples:

1. $\mathbb{D}=2^{\{a, b, c\}}$ with the relation " \subseteq ":

2. \mathbb{Z} with the relation " $=$ ":

3. \mathbb{Z} with the relation " \leq ":

4. $\mathbb{Z}_{\perp}=\mathbb{Z} \cup\{\perp\}$ with the ordering:

$d \in \mathbb{D}$ is called upper bound for $X \subseteq \mathbb{D}$ if

$$
x \sqsubseteq d \quad \text { for all } x \in X
$$

$d \in \mathbb{D}$ is called upper bound for $X \subseteq \mathbb{D}$ if

$$
x \sqsubseteq d \quad \text { for all } x \in X
$$

d is called least upper bound (lub) if

1. d is an upper bound and
2. $d \sqsubseteq y$ for every upper bound y of X.
$d \in \mathbb{D}$ is called upper bound for $X \subseteq \mathbb{D}$ if

$$
x \sqsubseteq d \quad \text { for all } x \in X
$$

d is called least upper bound (lub) if

1. d is an upper bound and
2. $d \sqsubseteq y$ for every upper bound y of X.

Caveat:

- $\quad\{0,2,4, \ldots\} \subseteq \mathbb{Z}$ has no upper bound!
- $\{0,2,4\} \subseteq \mathbb{Z}$ has the upper bounds $4,5,6, \ldots$

A complete lattice (cl) \mathbb{D} is a partial ordering where every subset $X \subseteq \mathbb{D} \quad$ has a least upper bound $\quad \bigsqcup X \in \mathbb{D} \quad$.

Note:

Every complete lattice has
$\rightarrow \quad$ a least element $\quad \perp=\bigsqcup \emptyset \quad \in \mathbb{D} ;$
$\rightarrow \quad$ a greatest element $\quad \top=\bigsqcup \mathbb{D} \quad \in \mathbb{D}$.

Examples:

1. $\mathbb{D}=2^{\{a, b, c\}}$ is a cl $\left.:-\right)$
2. $\mathbb{D}=\mathbb{Z}$ with " $=$ " is not.
3. $\mathbb{D}=\mathbb{Z}$ with " \leq " is neither.
4. $\mathbb{D}=\mathbb{Z}_{\perp}$ is also not $\quad:-($
5. With an extra element T, we obtain the flat lattice

$$
\mathbb{Z}_{\perp}^{\top}=\mathbb{Z} \cup\{\perp, \top\} \quad:
$$

We have:

Theorem:

If \mathbb{D} is a complete lattice, then every subset $X \subseteq \mathbb{D} \quad$ has a greatest lower bound ΠX.

We have:

Theorem:

If \mathbb{D} is a complete lattice, then every subset $X \subseteq \mathbb{D} \quad$ has a greatest lower bound ΠX.

Proof:

Construct $\quad U=\{u \in \mathbb{D} \mid \forall x \in X: u \sqsubseteq x\}$.
// the set of all lower bounds of X :-)

We have:

Theorem:

If \mathbb{D} is a complete lattice, then every subset $X \subseteq \mathbb{D} \quad$ has a greatest lower bound ΠX.

Proof:

Construct $\quad U=\{u \in \mathbb{D} \mid \forall x \in X: u \sqsubseteq x\}$.
// the set of all lower bounds of $X \quad:-)$
Set: $\quad g:=\bigsqcup U$
Claim: $\quad g=\Pi X$
(1) g is a lower bound of X :

$$
\begin{array}{ll}
\text { Assume } & x \in X . \text { Then: } \\
& u \sqsubseteq x \text { for all } u \in U \\
\Longrightarrow & x \text { is an upper bound of } U \\
\Longrightarrow & g \sqsubseteq x \quad:-)
\end{array}
$$

(1) g is a lower bound of X :

```
Assume \(\quad x \in X\). Then:
                        \(u \sqsubseteq x\) for all \(u \in U\)
        \(\Longrightarrow \quad x\) is an upper bound of \(U\)
        \(\Longrightarrow \quad g \sqsubseteq x \quad:-)\)
```

(2) g is the greatest lower bound of X :

Assume u is a lower bound of X. Then:

$$
\begin{aligned}
& u \in U \\
\Longrightarrow \quad & u \sqsubseteq g \quad:-))
\end{aligned}
$$

We are looking for solutions for systems of constraints of the form:

$$
x_{i} \sqsupseteq f_{i}\left(x_{1}, \ldots, x_{n}\right)
$$

$(*)$

We are looking for solutions for systems of constraints of the form:

$$
\begin{equation*}
x_{i} \sqsupseteq f_{i}\left(x_{1}, \ldots, x_{n}\right) \tag{*}
\end{equation*}
$$

where:

x_{i}	unknown	here:	$\mathcal{A}[u]$
\mathbb{D}	values	here:	$2^{\text {Expr }}$
$\sqsubseteq \subseteq \mathbb{D} \times \mathbb{D}$	ordering relation	here:	\supseteq
$f_{i}: \mathbb{D}^{n} \rightarrow \mathbb{D}$	constraint	here:	\ldots

We are looking for solutions for systems of constraints of the form:

$$
\begin{equation*}
x_{i} \quad \sqsupseteq \quad f_{i}\left(x_{1}, \ldots, x_{n}\right) \tag{*}
\end{equation*}
$$

where:

x_{i}	unknown	here:	$\mathcal{A}[u]$
\mathbb{D}	values	here:	$2^{\text {Expr }}$
$\sqsubseteq \subseteq \mathbb{D} \times \mathbb{D}$	ordering relation	here:	\supseteq
$f_{i}: \mathbb{D}^{n} \rightarrow \mathbb{D}$	constraint	here:	\ldots

Constraint for $\mathcal{A}[v] \quad(v \neq$ start $)$:

$$
\mathcal{A}[v] \subseteq \bigcap\left\{\llbracket k \rrbracket^{\sharp}(\mathcal{A}[u]) \mid k=\left(u,_{-}, v\right) \text { edge }\right\}
$$

We are looking for solutions for systems of constraints of the form:

$$
\begin{equation*}
x_{i} \sqsupseteq f_{i}\left(x_{1}, \ldots, x_{n}\right) \tag{*}
\end{equation*}
$$

where:

x_{i}	unknown	here:	$\mathcal{A}[u]$
\mathbb{D}	values	here:	$2^{\text {Expr }}$
$\sqsubseteq \subseteq \mathbb{D} \times \mathbb{D}$	ordering relation	here:	\supseteq
$f_{i}: \mathbb{D}^{n} \rightarrow \mathbb{D}$	constraint	here:	\ldots

Constraint for $\mathcal{A}[v] \quad(v \neq$ start $)$:

$$
\mathcal{A}[v] \subseteq \bigcap\left\{\llbracket k \rrbracket^{\sharp}(\mathcal{A}[u]) \mid k=\left(u,_{-}, v\right) \text { edge }\right\}
$$

Because:

$$
\left.x \sqsupseteq d_{1} \wedge \ldots \wedge x \sqsupseteq d_{k} \quad \text { iff } \quad x \sqsupseteq \bigsqcup\left\{d_{1}, \ldots, d_{k}\right\} \quad:-\right)
$$

A mapping $\quad f: \mathbb{D}_{1} \rightarrow \mathbb{D}_{2} \quad$ is called monotonic, if $\quad f(a) \sqsubseteq f(b) \quad$ for all $a \sqsubseteq b$ 。

A mapping $f: \mathbb{D}_{1} \rightarrow \mathbb{D}_{2} \quad$ is called monotonic, if $f(a) \sqsubseteq f(b)$ for all $a \sqsubseteq b$.

Examples:

(1) $\quad \mathbb{D}_{1}=\mathbb{D}_{2}=2^{U} \quad$ for a set U and $\quad f x=(x \cap a) \cup b$.

Obviously, every such f is monotonic :-)

A mapping $f: \mathbb{D}_{1} \rightarrow \mathbb{D}_{2} \quad$ is called monotonic, if $f(a) \sqsubseteq f(b)$ for all $a \sqsubseteq b$.

Examples:

(1) $\quad \mathbb{D}_{1}=\mathbb{D}_{2}=2^{U} \quad$ for a set U and $\quad f x=(x \cap a) \cup b$. Obviously, every such f is monotonic :-)
(2) $\mathbb{D}_{1}=\mathbb{D}_{2}=\mathbb{Z}$ (with the ordering " \leq "). Then:

- $\quad \operatorname{inc} x=x+1 \quad$ is monotonic.
- $\operatorname{dec} x=x-1 \quad$ is monotonic.

A mapping $\quad f: \mathbb{D}_{1} \rightarrow \mathbb{D}_{2} \quad$ is called monotonic, is $\quad f(a) \sqsubseteq f(b) \quad$ for all $a \sqsubseteq b$ 。

Examples:
(1) $\quad \mathbb{D}_{1}=\mathbb{D}_{2}=2^{U} \quad$ for a set U and $\quad f x=(x \cap a) \cup b$.

Obviously, every such f is monotonic :-)
(2) $\quad \mathbb{D}_{1}=\mathbb{D}_{2}=\mathbb{Z}$ (with the ordering " $\leq "$). Then:

- $\quad \operatorname{inc} x=x+1 \quad$ is monotonic.
- $\quad \operatorname{dec} x=x-1 \quad$ is monotonic.
- $\quad \operatorname{inv} x=-x \quad$ is not monotonic :-)

Theorem:

$$
\begin{aligned}
& \text { If } \quad f_{1}: \mathbb{D}_{1} \rightarrow \mathbb{D}_{2} \quad \text { and } \quad f_{2}: \mathbb{D}_{2} \rightarrow \mathbb{D}_{3} \quad \text { are monotonic, then also } \\
& \left.f_{2} \circ f_{1}: \mathbb{D}_{1} \rightarrow \mathbb{D}_{3} \quad:-\right)
\end{aligned}
$$

Theorem:

If $\quad f_{1}: \mathbb{D}_{1} \rightarrow \mathbb{D}_{2} \quad$ and $\quad f_{2}: \mathbb{D}_{2} \rightarrow \mathbb{D}_{3} \quad$ are monotonic, then also $\left.f_{2} \circ f_{1}: \mathbb{D}_{1} \rightarrow \mathbb{D}_{3} \quad:-\right)$

Theorem:

If $\quad \mathbb{D}_{2}$ is a complete lattice, then the set $\quad\left[\mathbb{D}_{1} \rightarrow \mathbb{D}_{2}\right]$ of monotonic functions $\quad f: \mathbb{D}_{1} \rightarrow \mathbb{D}_{2}$ is also a complete lattice where

$$
f \sqsubseteq g \quad \text { iff } \quad f x \sqsubseteq g x \quad \text { for all } x \in \mathbb{D}_{1}
$$

Theorem:

If $f_{1}: \mathbb{D}_{1} \rightarrow \mathbb{D}_{2}$ and $f_{2}: \mathbb{D}_{2} \rightarrow \mathbb{D}_{3}$ are monotonic, then also $\left.f_{2} \circ f_{1}: \mathbb{D}_{1} \rightarrow \mathbb{D}_{3} \quad:-\right)$

Theorem:

If $\quad \mathbb{D}_{2}$ is a complete lattice, then the set $\left[\mathbb{D}_{1} \rightarrow \mathbb{D}_{2}\right]$ of monotonic functions $f: \mathbb{D}_{1} \rightarrow \mathbb{D}_{2}$ is also a complete lattice where

$$
f \sqsubseteq g \quad \text { iff } \quad f x \sqsubseteq g x \quad \text { for all } x \in \mathbb{D}_{1}
$$

In particular for $F \subseteq\left[\mathbb{D}_{1} \rightarrow \mathbb{D}_{2}\right]$,

$$
\bigsqcup F=f \quad \text { mit } \quad f x=\bigsqcup\{g x \mid g \in F\}
$$

For functions $\quad f_{i} x=a_{i} \cap x \cup b_{i}$, the operations "०", " \sqcup " and " \sqcap " can be explicitly defined by:

$$
\begin{aligned}
& \left(f_{2} \circ f_{1}\right) x=a_{1} \cap a_{2} \cap x \cup a_{2} \cap b_{1} \cup b_{2} \\
& \left(f_{1} \sqcup f_{2}\right) x=\left(a_{1} \cup a_{2}\right) \cap x \cup b_{1} \cup b_{2} \\
& \left(f_{1} \sqcap f_{2}\right) x=\left(a_{1} \cup b_{1}\right) \cap\left(a_{2} \cup b_{2}\right) \cap x \cup b_{1} \cap b_{2}
\end{aligned}
$$

Wanted: minimally small solution for:

$$
\begin{equation*}
x_{i} \sqsupseteq f_{i}\left(x_{1}, \ldots, x_{n}\right), \quad i=1, \ldots, n \tag{*}
\end{equation*}
$$

where all $f_{i}: \mathbb{D}^{n} \rightarrow \mathbb{D}$ are monotonic.

Wanted: minimally small solution for:

$$
\begin{equation*}
x_{i} \sqsupseteq f_{i}\left(x_{1}, \ldots, x_{n}\right), \quad i=1, \ldots, n \tag{*}
\end{equation*}
$$

where all $f_{i}: \mathbb{D}^{n} \rightarrow \mathbb{D}$ are monotonic.

Idea:

- Consider $F: \mathbb{D}^{n} \rightarrow \mathbb{D}^{n} \quad$ where

$$
F\left(x_{1}, \ldots, x_{n}\right)=\left(y_{1}, \ldots, y_{n}\right) \quad \text { with } \quad y_{i}=f_{i}\left(x_{1}, \ldots, x_{n}\right)
$$

Wanted: minimally small solution for:

$$
\begin{equation*}
x_{i} \sqsupseteq f_{i}\left(x_{1}, \ldots, x_{n}\right), \quad i=1, \ldots, n \tag{*}
\end{equation*}
$$

where all $f_{i}: \mathbb{D}^{n} \rightarrow \mathbb{D}$ are monotonic.

Idea:

- Consider $F: \mathbb{D}^{n} \rightarrow \mathbb{D}^{n} \quad$ where

$$
F\left(x_{1}, \ldots, x_{n}\right)=\left(y_{1}, \ldots, y_{n}\right) \quad \text { with } \quad y_{i}=f_{i}\left(x_{1}, \ldots, x_{n}\right)
$$

- If all f_{i} are monotonic, then also F :-)

Wanted: minimally small solution for:

$$
\begin{equation*}
x_{i} \sqsupseteq f_{i}\left(x_{1}, \ldots, x_{n}\right), \quad i=1, \ldots, n \tag{*}
\end{equation*}
$$

where all $f_{i}: \mathbb{D}^{n} \rightarrow \mathbb{D}$ are monotonic.

Idea:

- Consider $F: \mathbb{D}^{n} \rightarrow \mathbb{D}^{n} \quad$ where

$$
F\left(x_{1}, \ldots, x_{n}\right)=\left(y_{1}, \ldots, y_{n}\right) \quad \text { with } \quad y_{i}=f_{i}\left(x_{1}, \ldots, x_{n}\right)
$$

- If all f_{i} are monotonic, then also F :-)
- We successively approximate a solution. We construct:

$$
\perp, \quad F \perp, \quad F^{2} \perp, \quad F^{3} \perp, \quad \ldots
$$

Hope: We eventually reach a solution ... ???

Example:

$$
\mathbb{D}=2^{\{a, b, c\}}, \quad \sqsubseteq=\subseteq
$$

$$
\begin{array}{ll}
x_{1} & \supseteq\{a\} \cup x_{3} \\
x_{2} & \supseteq x_{3} \cap\{a, b\} \\
x_{3} & \supseteq x_{1} \cup\{c\}
\end{array}
$$

Example:

$$
\mathbb{D}=2^{\{a, b, c\}}, \quad \sqsubseteq=\subseteq
$$

$$
\begin{array}{ll}
x_{1} & \supseteq\{a\} \cup x_{3} \\
x_{2} & \supseteq x_{3} \cap\{a, b\} \\
x_{3} & \supseteq x_{1} \cup\{c\}
\end{array}
$$

The Iteration:

	0	1	2	3	4
x_{1}	\emptyset				
x_{2}	\emptyset				
x_{3}	\emptyset				

Example:

$$
\mathbb{D}=2^{\{a, b, c\}}, \quad \sqsubseteq=\subseteq
$$

$$
\begin{array}{ll}
x_{1} & \supseteq\{a\} \cup x_{3} \\
x_{2} & \supseteq x_{3} \cap\{a, b\} \\
x_{3} & \supseteq x_{1} \cup\{c\}
\end{array}
$$

The Iteration:

	0	1	2	3	4
x_{1}	\emptyset	$\{a\}$			
x_{2}	\emptyset	\emptyset			
x_{3}	\emptyset	$\{c\}$			

Example:

$$
\mathbb{D}=2^{\{a, b, c\}}, \quad \sqsubseteq=\subseteq
$$

$$
\begin{array}{ll}
x_{1} & \supseteq\{a\} \cup x_{3} \\
x_{2} & \supseteq x_{3} \cap\{a, b\} \\
x_{3} & \supseteq x_{1} \cup\{c\}
\end{array}
$$

The Iteration:

	0	1	2	3	4
x_{1}	\emptyset	$\{a\}$	$\{a, c\}$		
x_{2}	\emptyset	\emptyset	\emptyset		
x_{3}	\emptyset	$\{c\}$	$\{a, c\}$		

Example:

$$
\mathbb{D}=2^{\{a, b, c\}}, \quad \sqsubseteq=\subseteq
$$

$$
\begin{array}{ll}
x_{1} & \supseteq\{a\} \cup x_{3} \\
x_{2} & \supseteq x_{3} \cap\{a, b\} \\
x_{3} & \supseteq x_{1} \cup\{c\}
\end{array}
$$

The Iteration:

	0	1	2	3	4
x_{1}	\emptyset	$\{a\}$	$\{a, c\}$	$\{a, c\}$	
x_{2}	\emptyset	\emptyset	\emptyset	$\{a\}$	
x_{3}	\emptyset	$\{c\}$	$\{a, c\}$	$\{a, c\}$	

Example:

$$
\mathbb{D}=2^{\{a, b, c\}}, \quad \sqsubseteq=\subseteq
$$

$$
\begin{array}{ll}
x_{1} & \supseteq\{a\} \cup x_{3} \\
x_{2} & \supseteq x_{3} \cap\{a, b\} \\
x_{3} & \supseteq x_{1} \cup\{c\}
\end{array}
$$

The Iteration:

	0	1	2	3	4
x_{1}	\emptyset	$\{a\}$	$\{a, c\}$	$\{a, c\}$	dito
x_{2}	\emptyset	\emptyset	\emptyset	$\{a\}$	
x_{3}	\emptyset	$\{c\}$	$\{a, c\}$	$\{a, c\}$	

Theorem

- $\quad \perp, F \perp, F^{2} \perp, \ldots \quad$ form an ascending chain :

$$
\perp \sqsubseteq F \perp \quad \sqsubseteq \quad F^{2} \perp \quad \sqsubseteq \ldots
$$

- If $\quad F^{k} \perp=F^{k+1} \perp, \quad$ a solution is obtained which is the least one :-)
- If all ascending chains are finite, such a k always exists.

Theorem

- $\quad \perp, F \perp, F^{2} \perp, \ldots \quad$ form an ascending chain :

$$
\perp \quad \sqsubseteq \perp \quad \sqsubseteq \quad F^{2} \perp \quad \sqsubseteq \ldots
$$

- If $\quad F^{k} \perp=F^{k+1} \perp, \quad$ a solution is obtained which is the least one :-)
- If all ascending chains are finite, such a k always exists.

Proof

The first claim follows by complete induction:
Foundation: $\left.F^{0} \perp=\perp \sqsubseteq F^{1} \perp \quad:-\right)$

Step: Assume $F^{i-1} \perp \sqsubseteq F^{i} \perp$. Then

$$
F^{i} \perp=F\left(F^{i-1} \perp\right) \sqsubseteq F\left(F^{i} \perp\right)=F^{i+1} \perp
$$

since F monotonic :-)

Step: Assume $F^{i-1} \perp \sqsubseteq F^{i} \perp$. Then

$$
\begin{aligned}
& \quad F^{i} \perp=F\left(F^{i-1} \perp\right) \sqsubseteq F\left(F^{i} \perp\right)=F^{i+1} \perp \\
& \text { since } \quad F \quad \text { monotonic } \quad:-)
\end{aligned}
$$

Conclusion:

If \mathbb{D} is finite, a solution can be found which is definitely the least :-)

Question:

What, if \mathbb{D} is not finite ???

Theorem
Knaster - Tarski

Assume \mathbb{D} is a complete lattice. Then every monotonic function $f: \mathbb{D} \rightarrow \mathbb{D}$ has a least fixpoint $d_{0} \in \mathbb{D}$.

Let $P=\{d \in \mathbb{D} \mid f d \sqsubseteq d\}$.
Then $\quad d_{0}=\Pi P$.

Bronistaw Knester (1893-1980), topolagy

