Background 2: Complete Lattices

A set \mathbb{D} together with a relation $\Box \subseteq \mathbb{D} \times \mathbb{D}$ is a partial order if for all $a, b, c \in \mathbb{D}$,

$$a \sqsubseteq a$$
$$a \sqsubseteq b \land b \sqsubseteq a \implies a = b$$
$$a \sqsubseteq b \land b \sqsubseteq c \implies a \sqsubseteq c$$

reflexivity

anti-symmetry

transitivity

Examples:

1.
$$\mathbb{D} = 2^{\{a,b,c\}}$$
 with the relation " \subseteq ":

- 2. \mathbb{Z} with the relation "=" :
 - · · · · -2 -1 0 1 2 · · ·
- 3. \mathbb{Z} with the relation " \leq " :

4. $\mathbb{Z}_{\perp} = \mathbb{Z} \cup \{\perp\}$ with the ordering: •••• -2 -1 0 1 2 •••

$d \in \mathbb{D}$ is called upper bound for $X \subseteq \mathbb{D}$ if

 $x \sqsubseteq d$ for all $x \in X$

 $d \in \mathbb{D}$ is called upper bound for $X \subseteq \mathbb{D}$ if

 $x \sqsubseteq d$ for all $x \in X$

d is called least upper bound (lub) if

1. d is an upper bound and

2. $d \sqsubseteq y$ for every upper bound y of X.

 $d \in \mathbb{D}$ is called upper bound for $X \subseteq \mathbb{D}$ if

 $x \sqsubseteq d$ for all $x \in X$

d is called least upper bound (lub) if

1. d is an upper bound and

2. $d \sqsubseteq y$ for every upper bound y of X.

Caveat:

- $\{0, 2, 4, \ldots\} \subseteq \mathbb{Z}$ has no upper bound!
- $\{0, 2, 4\} \subseteq \mathbb{Z}$ has the upper bounds $4, 5, 6, \ldots$

A complete lattice (cl) \mathbb{D} is a partial ordering where every subset $X \subseteq \mathbb{D}$ has a least upper bound $\bigsqcup X \in \mathbb{D}$.

Note:

Every complete lattice has

- \rightarrow a least element $\bot = \bigsqcup \emptyset \in \mathbb{D};$
- \rightarrow a greatest element $\top = \bigsqcup \mathbb{D} \in \mathbb{D}$.

Examples:

- 1. $\mathbb{D} = 2^{\{a, b, c\}}$ is a cl :-)
- 2. $\mathbb{D} = \mathbb{Z}$ with "=" is not.
- 3. $\mathbb{D} = \mathbb{Z}$ with " \leq " is neither.
- 4. $\mathbb{D} = \mathbb{Z}_{\perp}$ is also not :-(
- 5. With an extra element \top , we obtain the flat lattice $\mathbb{Z}_{\perp}^{\top} = \mathbb{Z} \cup \{\perp, \top\}$:

We have:

Theorem:

If \mathbb{D} is a complete lattice, then every subset $X \subseteq \mathbb{D}$ has a greatest lower bound $\prod X$.

We have:

Theorem:

If \mathbb{D} is a complete lattice, then every subset $X \subseteq \mathbb{D}$ has a greatest lower bound $\prod X$.

Proof:

Construct $U = \{ u \in \mathbb{D} \mid \forall x \in X : u \sqsubseteq x \}.$ // the set of all lower bounds of X :-) We have:

Theorem:

If \mathbb{D} is a complete lattice, then every subset $X \subseteq \mathbb{D}$ has a greatest lower bound $\prod X$.

Proof:

Construct $U = \{u \in \mathbb{D} \mid \forall x \in X : u \sqsubseteq x\}.$ // the set of all lower bounds of X :-) Set: $g := \bigsqcup U$ Claim: $g = \bigsqcup X$ (1) g is a lower bound of X:

Assume $x \in X$. Then: $u \sqsubseteq x$ for all $u \in U$ \implies x is an upper bound of U \implies $g \sqsubseteq x$:-) (1) g is a lower bound of X:

Assume $x \in X$. Then: $u \sqsubseteq x$ for all $u \in U$ $\implies x$ is an upper bound of U $\implies g \sqsubseteq x$:-)

(2) g is the greatest lower bound of X:

Assume u is a lower bound of X. Then: $u \in U$ $\implies u \sqsubseteq g$:-))

$$x_i \quad \supseteq \quad f_i(x_1, \dots, x_n) \tag{(*)}$$

$$x_i \quad \supseteq \quad f_i(x_1, \dots, x_n) \tag{(*)}$$

where:

x_i	unknown	here:	$\mathcal{A}[\underline{u}]$
\mathbb{D}	values	here:	2^{Expr}
$\sqsubseteq \subseteq \mathbb{D} \times \mathbb{D}$	ordering relation	here:	\supseteq
$f_i: \mathbb{D}^n \to \mathbb{D}$	constraint	here:	•••

$$x_i \quad \supseteq \quad f_i(x_1, \dots, x_n) \tag{(*)}$$

where:

x_i	unknown	here:	$\mathcal{A}[u]$
\mathbb{D}	values	here:	2^{Expr}
$\sqsubseteq \subseteq \mathbb{D} \times \mathbb{D}$	ordering relation	here:	\supseteq
$f_i: \mathbb{D}^n \to \mathbb{D}$	constraint	here:	•••

Constraint for $\mathcal{A}[v]$ $(v \neq start)$: $\mathcal{A}[v] \subseteq \bigcap \{ [k]^{\sharp} (\mathcal{A}[u]) \mid k = (u, _, v) \text{ edge} \}$

$$x_i \quad \supseteq \quad f_i(x_1, \dots, x_n) \tag{(*)}$$

where:

x_i	unknown	here:	$\mathcal{A}[\underline{u}]$
\mathbb{D}	values	here:	2^{Expr}
$\sqsubseteq \subseteq \mathbb{D} \times \mathbb{D}$	ordering relation	here:	\supseteq
$f_i: \mathbb{D}^n \to \mathbb{D}$	constraint	here:	•••

Constraint for $\mathcal{A}[v]$ $(v \neq start)$: $\mathcal{A}[v] \subseteq \bigcap \{ [k]^{\sharp} (\mathcal{A}[u]) \mid k = (u, _, v) \text{ edge} \}$ Because:

$$x \supseteq d_1 \land \ldots \land x \supseteq d_k$$
 iff $x \supseteq \bigsqcup \{ d_1, \ldots, d_k \}$:-)

A mapping $f : \mathbb{D}_1 \to \mathbb{D}_2$ is called monotonic, if $f(a) \sqsubseteq f(b)$ for all $a \sqsubseteq b$.

A mapping $f : \mathbb{D}_1 \to \mathbb{D}_2$ is called monotonic, if $f(a) \sqsubseteq f(b)$ for all $a \sqsubseteq b$.

Examples:

(1) $\mathbb{D}_1 = \mathbb{D}_2 = 2^U$ for a set U and $f x = (x \cap a) \cup b$. Obviously, every such f is monotonic :-) A mapping $f : \mathbb{D}_1 \to \mathbb{D}_2$ is called monotonic, if $f(a) \sqsubseteq f(b)$ for all $a \sqsubseteq b$.

Examples:

(1) $\mathbb{D}_1 = \mathbb{D}_2 = 2^U$ for a set U and $f x = (x \cap a) \cup b$. Obviously, every such f is monotonic :-)

(2) $\mathbb{D}_1 = \mathbb{D}_2 = \mathbb{Z}$ (with the ordering " \leq "). Then:

- inc x = x + 1 is monotonic.
- dec x = x 1 is monotonic.

A mapping $f : \mathbb{D}_1 \to \mathbb{D}_2$ is called monotonic, is $f(a) \sqsubseteq f(b)$ for all $a \sqsubseteq b$.

Examples:

(1) $\mathbb{D}_1 = \mathbb{D}_2 = 2^U$ for a set U and $f x = (x \cap a) \cup b$. Obviously, every such f is monotonic :-)

(2) $\mathbb{D}_1 = \mathbb{D}_2 = \mathbb{Z}$ (with the ordering " \leq "). Then:

- inc x = x + 1 is monotonic.
- dec x = x 1 is monotonic.
- inv x = -x is not monotonic :-)

Theorem:

If $f_1 : \mathbb{D}_1 \to \mathbb{D}_2$ and $f_2 : \mathbb{D}_2 \to \mathbb{D}_3$ are monotonic, then also $f_2 \circ f_1 : \mathbb{D}_1 \to \mathbb{D}_3$:-)

Theorem:

If $f_1 : \mathbb{D}_1 \to \mathbb{D}_2$ and $f_2 : \mathbb{D}_2 \to \mathbb{D}_3$ are monotonic, then also $f_2 \circ f_1 : \mathbb{D}_1 \to \mathbb{D}_3$:-)

Theorem:

If \mathbb{D}_2 is a complete lattice, then the set $[\mathbb{D}_1 \to \mathbb{D}_2]$ of monotonic functions $f: \mathbb{D}_1 \to \mathbb{D}_2$ is also a complete lattice where

$$f \sqsubseteq g$$
 iff $f x \sqsubseteq g x$ for all $x \in \mathbb{D}_1$

Theorem:

If $f_1 : \mathbb{D}_1 \to \mathbb{D}_2$ and $f_2 : \mathbb{D}_2 \to \mathbb{D}_3$ are monotonic, then also $f_2 \circ f_1 : \mathbb{D}_1 \to \mathbb{D}_3$:-)

Theorem:

If \mathbb{D}_2 is a complete lattice, then the set $[\mathbb{D}_1 \to \mathbb{D}_2]$ of monotonic functions $f: \mathbb{D}_1 \to \mathbb{D}_2$ is also a complete lattice where

$$f \sqsubseteq g$$
 iff $f x \sqsubseteq g x$ for all $x \in \mathbb{D}_1$

In particular for $F \subseteq [\mathbb{D}_1 \to \mathbb{D}_2],$

$$F = f \quad \text{mit} \quad f x = \bigsqcup \{g x \mid g \in F\}$$

For functions $f_i x = a_i \cap x \cup b_i$, the operations " \circ ", " \sqcup " and " \sqcap " can be explicitly defined by:

$$(f_2 \circ f_1) x = a_1 \cap a_2 \cap x \cup a_2 \cap b_1 \cup b_2$$

$$(f_1 \sqcup f_2) x = (a_1 \cup a_2) \cap x \cup b_1 \cup b_2$$

$$(f_1 \sqcap f_2) x = (a_1 \cup b_1) \cap (a_2 \cup b_2) \cap x \cup b_1 \cap b_2$$

$$x_i \supseteq f_i(x_1, \dots, x_n), \quad i = 1, \dots, n \tag{(*)}$$

where all $f_i : \mathbb{D}^n \to \mathbb{D}$ are monotonic.

$$x_i \supseteq f_i(x_1, \dots, x_n), \quad i = 1, \dots, n \tag{(*)}$$

where all $f_i : \mathbb{D}^n \to \mathbb{D}$ are monotonic.

Idea:

• Consider $F : \mathbb{D}^n \to \mathbb{D}^n$ where $F(x_1, \dots, x_n) = (y_1, \dots, y_n)$ with $y_i = f_i(x_1, \dots, x_n)$.

$$x_i \supseteq f_i(x_1, \dots, x_n), \quad i = 1, \dots, n \tag{(*)}$$

where all $f_i : \mathbb{D}^n \to \mathbb{D}$ are monotonic.

Idea:

Consider F: Dⁿ → Dⁿ where F(x₁,...,x_n) = (y₁,...,y_n) with y_i = f_i(x₁,...,x_n).
If all f_i are monotonic, then also F :-)

$$x_i \supseteq f_i(x_1, \dots, x_n), \quad i = 1, \dots, n \tag{(*)}$$

where all $f_i : \mathbb{D}^n \to \mathbb{D}$ are monotonic.

Idea:

- Consider F: Dⁿ → Dⁿ where F(x₁,...,x_n) = (y₁,...,y_n) with y_i = f_i(x₁,...,x_n).
 If all f_i are monotonic, then also F :-)
- We successively approximate a solution. We construct:

$$\underline{\perp}, \quad F \underline{\perp}, \quad F^2 \underline{\perp}, \quad F^3 \underline{\perp}, \quad \dots$$

Hope: We eventually reach a solution ... ???

Example:
$$\mathbb{D} = 2^{\{a,b,c\}}, \quad \sqsubseteq = \subseteq$$

$$x_1 \supseteq \{a\} \cup x_3$$
$$x_2 \supseteq x_3 \cap \{a, b\}$$
$$x_3 \supseteq x_1 \cup \{c\}$$

Example:
$$\mathbb{D} = 2^{\{a, b, c\}}, \quad \sqsubseteq = \subseteq$$

$$x_1 \supseteq \{a\} \cup x_3$$
$$x_2 \supseteq x_3 \cap \{a, b\}$$
$$x_3 \supseteq x_1 \cup \{c\}$$

	0	1	2	3	4
x_1	Ø				
x_2	Ø				
x_3	Ø				

Example:
$$\mathbb{D} = 2^{\{a, b, c\}}, \quad \sqsubseteq = \subseteq$$

$$x_1 \supseteq \{a\} \cup x_3$$
$$x_2 \supseteq x_3 \cap \{a, b\}$$
$$x_3 \supseteq x_1 \cup \{c\}$$

	0	1	2	3	4
x_1	Ø	{ a }			
x_2	Ø	Ø			
x_3	Ø	{ c }			

Example:
$$\mathbb{D} = 2^{\{a, b, c\}}, \quad \sqsubseteq = \subseteq$$

$$x_1 \supseteq \{a\} \cup x_3$$
$$x_2 \supseteq x_3 \cap \{a, b\}$$
$$x_3 \supseteq x_1 \cup \{c\}$$

	0	1	2	3	4
x_1	Ø	{ a }	$\{a, c\}$		
x_2	Ø	Ø	Ø		
x_3	Ø	{ c }	$\{a, c\}$		

Example:
$$\mathbb{D} = 2^{\{a,b,c\}}, \quad \sqsubseteq = \subseteq$$

$$x_1 \supseteq \{a\} \cup x_3$$
$$x_2 \supseteq x_3 \cap \{a, b\}$$
$$x_3 \supseteq x_1 \cup \{c\}$$

	0	1	2	3	4
x_1	Ø	{ a }	$\{a, c\}$	$\{a, c\}$	
x_2	Ø	Ø	Ø	{ a }	
x_3	Ø	{ <i>c</i> }	$\{a, c\}$	$\{a, c\}$	

Example:
$$\mathbb{D} = 2^{\{a,b,c\}}, \quad \sqsubseteq = \subseteq$$

$$x_1 \supseteq \{a\} \cup x_3$$
$$x_2 \supseteq x_3 \cap \{a, b\}$$
$$x_3 \supseteq x_1 \cup \{c\}$$

	0	1	2	3	4
x_1	Ø	{ a }	$\{a, c\}$	$\{a, c\}$	dito
x_2	Ø	Ø	Ø	{ a }	
x_3	Ø	{ <i>c</i> }	$\{a, c\}$	$\{a, c\}$	

Theorem

- $\underline{\perp}, F \underline{\perp}, F^2 \underline{\perp}, \dots$ form an ascending chain : $\underline{\perp} \quad \sqsubseteq \quad F \underline{\perp} \quad \sqsubseteq \quad F^2 \underline{\perp} \quad \sqsubseteq \quad \dots$
- If $F^k \perp = F^{k+1} \perp$, a solution is obtained which is the least one :-)
- If all ascending chains are finite, such a k always exists.

Theorem

• $\underline{\perp}, F \underline{\perp}, F^2 \underline{\perp}, \dots$ form an ascending chain : $\underline{\perp} \quad \sqsubseteq \quad F \underline{\perp} \quad \sqsubseteq \quad F^2 \underline{\perp} \quad \sqsubseteq \quad \dots$

• If
$$F^k \perp = F^{k+1} \perp$$
, a solution is obtained which is the least one :-)

• If all ascending chains are finite, such a k always exists.

Proof

The first claim follows by complete induction:

Foundation: $F^0 \perp = \perp \sqsubseteq F^1 \perp$:-)

Step: Assume $F^{i-1} \perp \sqsubseteq F^i \perp$. Then $F^i \perp = F(F^{i-1} \perp) \sqsubseteq F(F^i \perp) = F^{i+1} \perp$

since *F* monotonic :-)

Step: Assume $F^{i-1} \perp \sqsubseteq F^i \perp$. Then $F^i \perp = F(F^{i-1} \perp) \sqsubseteq F(F^i \perp) = F^{i+1} \perp$ since F monotonic :-)

Conclusion:

If \mathbb{D} is finite, a solution can be found which is definitely the least :-)

Question:

What, if \mathbb{D} is not finite ???

Theorem

Knaster – Tarski

Assume \mathbb{D} is a complete lattice. Then every monotonic function $f: \mathbb{D} \to \mathbb{D}$ has a least fixpoint $d_0 \in \mathbb{D}$.

- Let $P = \{ d \in \mathbb{D} \mid f d \sqsubseteq d \}.$
- Then $d_0 = \prod P$.

Bronisław Knaster (1893-1980), topology