
Background 2: Complete Lattices

A setD together with a relation ⊑ ⊆ D× D is apartial orderif for
all a, b, c ∈ D,

a ⊑ a reflexivity

a ⊑ b ∧ b ⊑ a =⇒ a = b anti−symmetry

a ⊑ b ∧ b ⊑ c =⇒ a ⊑ c transitivity

Examples:

1. D = 2{a,b,c} with the relation “⊆” :

a, b, c

a, b a, c b, c

a b c
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2. Z with the relation “=” :

210-1-2

3. Z with the relation “≤” :

0
-1

1
2

4. Z⊥ = Z ∪ {⊥} with the ordering:

210-1-2

⊥
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d ∈ D is calledupper boundfor X ⊆ D if

x ⊑ d for all x ∈ X

d is called least upper bound (lub) if

1. d is an upper bound and

2. d ⊑ y for every upper boundy of X.

Caveat:

• has no upper bound!

• has the upper bounds
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d ∈ D is calledupper boundfor X ⊆ D if

x ⊑ d for all x ∈ X

d is calledleast upper bound (lub)if

1. d is an upper bound and

2. d ⊑ y for every upper boundy of X.

Caveat:

• {0, 2, 4, . . .} ⊆ Z hasno upper bound!

• {0, 2, 4} ⊆ Z has the upper bounds4, 5, 6, . . .
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A complete lattice (cl) D is a partial ordering whereevery subset
X ⊆ D has a least upper bound

⊔
X ∈ D .

Note:

Every complete lattice has

→ a leastelement ⊥ =
⊔
∅ ∈ D;

→ a greatestelement ⊤ =
⊔
D ∈ D.
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Examples:

1. D = 2{a,b,c} is a cl :-)

2. D = Z with “=” is not.

3. D = Z with “≤” is neither.

4. D = Z⊥ is also not :-(

5. With an extra element⊤, we obtain theflat lattice
Z

⊤
⊥ = Z ∪ {⊥,⊤} :

210-1-2

⊥

⊤
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We have:

Theorem:

If D is a complete lattice, then every subsetX ⊆ D has agreatest
lower bound ⊔X.

Proof:

Construct U = {u ∈ D | ∀ x ∈ X : u ⊑ x}.

// the set of all lower bounds ofX :-)

Set: g :=
⊔
U

Claim: g = ⊔X
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We have:

Theorem:

If D is a complete lattice, then every subsetX ⊆ D has agreatest
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(1) g is alower boundof X :

Assume x ∈ X. Then:

u ⊑ x for all u ∈ U

==⇒ x is an upper bound ofU

==⇒ g ⊑ x :-)

(2) g is the greatest lower bound ofX :

Assume u is a lower bound ofX. Then:

u ∈ U

==⇒ u ⊑ g :-))
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(1) g is alower boundof X :

Assume x ∈ X. Then:

u ⊑ x for all u ∈ U

==⇒ x is an upper bound ofU

==⇒ g ⊑ x :-)

(2) g is thegreatest lower boundof X :

Assume u is a lower bound ofX. Then:

u ∈ U

==⇒ u ⊑ g :-))
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We are looking forsolutionsfor systems of constraints of the form:

xi ⊒ fi(x1, . . . , xn) (∗)
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We are looking forsolutionsfor systems of constraints of the form:

xi ⊒ fi(x1, . . . , xn) (∗)

where:

xi unknown here: A[u]

D values here: 2Expr

⊑ ⊆ D× D ordering relation here: ⊇

fi: Dn → D constraint here: ...

Constraint for A[v] :

A[v] ⊆
⋂

{[[k]]♯ (A[u]) | k = (u, _, v) edge}

Because:

x ⊒ d1 ∧ . . . ∧ x ⊒ dk iff x ⊒
⊔
{d1, . . . , dk} :-)
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A mapping f : D1 → D2 is calledmonotonic, if f(a) ⊑ f(b) for
all a ⊑ b.
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A mapping f : D1 → D2 is calledmonotonic, if f(a) ⊑ f(b) for
all a ⊑ b.

Examples:

(1) D1 = D2 = 2U for a setU and f x = (x ∩ a) ∪ b.

Obviously, every suchf is monotonic :-)
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A mapping f : D1 → D2 is calledmonotonic, if f(a) ⊑ f(b) for
all a ⊑ b.

Examples:

(1) D1 = D2 = 2U for a setU and f x = (x ∩ a) ∪ b.

Obviously, every suchf is monotonic :-)

(2) D1 = D2 = Z (with the ordering “≤”). Then:

• incx = x+ 1 is monotonic.

• dec x = x− 1 is monotonic.

textbullet
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A mapping f : D1 → D2 is calledmonotonic, is f(a) ⊑ f(b) for
all a ⊑ b.

Examples:

(1) D1 = D2 = 2U for a setU and f x = (x ∩ a) ∪ b.

Obviously, every suchf is monotonic :-)

(2) D1 = D2 = Z (with the ordering “≤”). Then:

• incx = x+ 1 is monotonic.

• dec x = x− 1 is monotonic.

• inv x = −x is not monotonic :-)
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Theorem:

If f1 : D1 → D2 and f2 : D2 → D3 are monotonic, then also
f2 ◦ f1 : D1 → D3 :-)
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Theorem:

If f1 : D1 → D2 and f2 : D2 → D3 are monotonic, then also
f2 ◦ f1 : D1 → D3 :-)

Theorem:

If D2 is a complete lattice, then the set[D1 → D2] of monotonic
functions f : D1 → D2 is also a complete lattice where

f ⊑ g iff f x ⊑ g x for all x ∈ D1
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Theorem:

If f1 : D1 → D2 and f2 : D2 → D3 are monotonic, then also
f2 ◦ f1 : D1 → D3 :-)

Theorem:

If D2 is a complete lattice, then the set[D1 → D2] of monotonic
functions f : D1 → D2 is also a complete lattice where

f ⊑ g iff f x ⊑ g x for all x ∈ D1

In particular for F ⊆ [D1 → D2],
⊔

F = f mit f x =
⊔

{g x | g ∈ F}
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For functions fi x = ai ∩ x ∪ bi, the operations “◦”, “⊔” and “⊓”
can be explicitly defined by:

(f2 ◦ f1) x = a1 ∩ a2 ∩ x ∪ a2 ∩ b1 ∪ b2

(f1 ⊔ f2) x = (a1 ∪ a2) ∩ x ∪ b1 ∪ b2

(f1 ⊓ f2) x = (a1 ∪ b1) ∩ (a2 ∪ b2) ∩ x ∪ b1 ∩ b2
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Wanted: minimally smallsolution for:

xi ⊒ fi(x1, . . . , xn), i = 1, . . . , n (∗)

where all fi : D
n → D are monotonic.
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Wanted: minimally smallsolution for:

xi ⊒ fi(x1, . . . , xn), i = 1, . . . , n (∗)

where all fi : D
n → D are monotonic.

Idea:

• Consider F : Dn → D
n where

F (x1, . . . , xn) = (y1, . . . , yn) with yi = fi(x1, . . . , xn).
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Wanted: minimally smallsolution for:

xi ⊒ fi(x1, . . . , xn), i = 1, . . . , n (∗)

where all fi : D
n → D are monotonic.

Idea:

• Consider F : Dn → D
n where

F (x1, . . . , xn) = (y1, . . . , yn) with yi = fi(x1, . . . , xn).

• If all fi are monotonic, then alsoF :-)

• We successivelyapproximatea solution. We construct:

⊥, F ⊥, F 2 ⊥, F 3 ⊥, . . .

Hope: We eventually reach a solution ...???
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Example: D = 2{a,b,c}, ⊑ = ⊆

x1 ⊇ {a} ∪ x3

x2 ⊇ x3 ∩ {a, b}

x3 ⊇ x1 ∪ {c}
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Example: D = 2{a,b,c}, ⊑ = ⊆

x1 ⊇ {a} ∪ x3

x2 ⊇ x3 ∩ {a, b}

x3 ⊇ x1 ∪ {c}

The Iteration:

0 1 2 3 4

x1 ∅ {a} {a, c} {a, c} dito

x2 ∅ ∅ ∅ {a} dito

x3 ∅ {c} {a, c} {a, c} dito
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Theorem

• ⊥, F ⊥, F 2 ⊥, . . . form anascending chain:

⊥ ⊑ F ⊥ ⊑ F 2 ⊥ ⊑ . . .

• If F k ⊥ = F k+1 ⊥ , a solution is obtained which is the least one
:-)

• If all ascending chains are finite, such ak alwaysexists.
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Theorem

• ⊥, F ⊥, F 2 ⊥, . . . form anascending chain:

⊥ ⊑ F ⊥ ⊑ F 2 ⊥ ⊑ . . .

• If F k ⊥ = F k+1 ⊥ , a solution is obtained which is the least one
:-)

• If all ascending chains are finite, such ak alwaysexists.

Proof

The first claim follows bycomplete induction:

Foundation: F 0 ⊥ = ⊥ ⊑ F 1 ⊥ :-)
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Step: Assume F i−1 ⊥ ⊑ F i ⊥ . Then

F i ⊥ = F (F i−1⊥) ⊑ F (F i ⊥) = F i+1 ⊥

since F monotonic :-)
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Step: Assume F i−1 ⊥ ⊑ F i ⊥ . Then

F i ⊥ = F (F i−1⊥) ⊑ F (F i ⊥) = F i+1 ⊥

since F monotonic :-)

Conclusion:

If D is finite, a solution can be found which is definitely the least:-)

Question:

3. What, if D is not finite ???

109



Theorem Knaster – Tarski

Assume D is a complete lattice. Then everymonotonicfunction
f : D → D has aleast fixpoint d0 ∈ D.

Let P = {d ∈ D | f d ⊑ d}.

Then d0 = ⊔P .

110



111


