
Theorem Knaster – Tarski

Assume D is a complete lattice. Then everymonotonicfunction
f : D → D has aleast fixpoint d0 ∈ D.

Let P = {d ∈ D | f d ⊑ d}.

Then d0 = ⊔P .

Proof:

(1) d0 ∈ P :

112



Theorem Knaster – Tarski

Assume D is a complete lattice. Then everymonotonicfunction
f : D → D has aleast fixpoint d0 ∈ D.

Let P = {d ∈ D | f d ⊑ d}.

Then d0 = ⊔P .

Proof:

(1) d0 ∈ P :

f d0 ⊑ f d ⊑ d for all d ∈ P

==⇒ f d0 is a lower bound ofP

==⇒ f d0 ⊑ d0 sinced0 = ⊔P
==⇒ d0 ∈ P :-)

113



(2) f d0 = d0 :

114



(2) f d0 = d0 :

f d0 ⊑ d0 by (1)

==⇒ f(f d0) ⊑ f d0 by monotonicity off

==⇒ f d0 ∈ P

==⇒ d0 ⊑ f d0 and the claim follows :-)

115



(2) f d0 = d0 :

f d0 ⊑ d0 by (1)

==⇒ f(f d0) ⊑ f d0 by monotonicity off

==⇒ f d0 ∈ P

==⇒ d0 ⊑ f d0 and the claim follows :-)

(3) d0 is leastfixpoint:

116



(2) f d0 = d0 :

f d0 ⊑ d0 by (1)

==⇒ f(f d0) ⊑ f d0 by monotonicity off

==⇒ f d0 ∈ P

==⇒ d0 ⊑ f d0 and the claim follows :-)

(3) d0 is leastfixpoint:

f d1 = d1 ⊑ d1 an other fixpoint

==⇒ d1 ∈ P

==⇒ d0 ⊑ d1 :-))

117



Remark:

The least fixpoint d0 is in P and alower bound :-)

==⇒ d0 is the least valuex with x ⊒ f x

118



Remark:

The least fixpoint d0 is in P and alower bound :-)

==⇒ d0 is the least valuex with x ⊒ f x

Application:

Assume xi ⊒ fi(x1, . . . , xn), i = 1, . . . , n (∗)

is asystem of constraintswhere all fi : D
n → D are monotonic.

119



Remark:

The least fixpoint d0 is in P and alower bound :-)

==⇒ d0 is the least valuex with x ⊒ f x

Application:

Assume xi ⊒ fi(x1, . . . , xn), i = 1, . . . , n (∗)

is asystem of constraintswhere all fi : D
n → D are monotonic.

==⇒ least solution of(∗) == least fixpoint ofF :-)

120



Example 1: D = 2U , f x = x ∩ a ∪ b

121



Example 1: D = 2U , f x = x ∩ a ∪ b

f fk ⊥ fk ⊤

0 ∅ U

122



Example 1: D = 2U , f x = x ∩ a ∪ b

f fk ⊥ fk ⊤

0 ∅ U

1 b a ∪ b

123



Example 1: D = 2U , f x = x ∩ a ∪ b

f fk ⊥ fk ⊤

0 ∅ U

1 b a ∪ b

2 b a ∪ b

124



Example 1: D = 2U , f x = x ∩ a ∪ b

f fk ⊥ fk ⊤

0 ∅ U

1 b a ∪ b

2 b a ∪ b

Example 2: D = N ∪ {∞}

Assume f x = x+ 1. Then

f i ⊥ = f i 0 = i ⊏ i+ 1 = f i+1 ⊥

125



Example 1: D = 2U , f x = x ∩ a ∪ b

f fk ⊥ fk ⊤

0 ∅ U

1 b a ∪ b

2 b a ∪ b

Example 2: D = N ∪ {∞}

Assume f x = x+ 1. Then

f i ⊥ = f i 0 = i ⊏ i+ 1 = f i+1 ⊥

==⇒ Ordinaryiteration will never reach a fixpoint :-(

==⇒ Sometimes, transfinite iteration is needed :-)

126



Conclusion:

Systems of inequations can be solved throughfixpoint iteration, i.e., by
repeated evaluation of right-hand sides:-)

127



Conclusion:

Systems of inequations can be solved throughfixpoint iteration, i.e., by
repeated evaluation of right-hand sides:-)

Caveat: Naive fixpoint iteration is ratherinefficient :-(

128



Conclusion:

Systems of inequations can be solved throughfixpoint iteration, i.e., by
repeated evaluation of right-hand sides:-)

Caveat: Naive fixpoint iteration is ratherinefficient :-(

Example:

3

2

4

5

0

1

y = 1;

x = x− 1;

y = x ∗ y;

Pos(x > 1)Neg(x > 1)

0

1

2

3

4

5

129



Conclusion:

Systems of inequations can be solved throughfixpoint iteration, i.e., by
repeated evaluation of right-hand sides:-)

Caveat: Naive fixpoint iteration is ratherinefficient :-(

Example:

3

2

4

5

0

1

y = 1;

x = x− 1;

y = x ∗ y;

Pos(x > 1)Neg(x > 1)

1

0 ∅

1 {1, x > 1, x − 1}

2 Expr

3 {1, x > 1, x − 1}

4 {1}

5 Expr

130



Conclusion:

Systems of inequations can be solved throughfixpoint iteration, i.e., by
repeated evaluation of right-hand sides:-)

Caveat: Naive fixpoint iteration is ratherinefficient :-(

Example:

3

2

4

5

0

1

y = 1;

x = x− 1;

y = x ∗ y;

Pos(x > 1)Neg(x > 1)

1 2

0 ∅ ∅

1 {1, x > 1, x − 1} {1}

2 Expr {1, x > 1, x − 1}

3 {1, x > 1, x − 1} {1, x > 1, x − 1}

4 {1} {1}

5 Expr {1, x > 1, x − 1}

131



Conclusion:

Systems of inequations can be solved throughfixpoint iteration, i.e., by
repeated evaluation of right-hand sides:-)

Caveat: Naive fixpoint iteration is ratherinefficient :-(

Example:

3

2

4

5

0

1

y = 1;

x = x− 1;

y = x ∗ y;

Pos(x > 1)Neg(x > 1)

1 2 3

0 ∅ ∅ ∅

1 {1, x > 1, x − 1} {1} {1}

2 Expr {1, x > 1, x − 1} {1, x > 1}

3 {1, x > 1, x − 1} {1, x > 1, x − 1} {1, x > 1, x − 1}

4 {1} {1} {1}

5 Expr {1, x > 1, x − 1} {1, x > 1}

132



Conclusion:

Systems of inequations can be solved throughfixpoint iteration, i.e., by
repeated evaluation of right-hand sides:-)

Caveat: Naive fixpoint iteration is ratherinefficient :-(

Example:

3

2

4

5

0

1

y = 1;

x = x− 1;

y = x ∗ y;

Pos(x > 1)Neg(x > 1)

1 2 3 4

0 ∅ ∅ ∅ ∅

1 {1, x > 1, x − 1} {1} {1} {1}

2 Expr {1, x > 1, x − 1} {1, x > 1} {1, x > 1}

3 {1, x > 1, x − 1} {1, x > 1, x − 1} {1, x > 1, x − 1} {1, x > 1}

4 {1} {1} {1} {1}

5 Expr {1, x > 1, x − 1} {1, x > 1} {1, x > 1}

133



Conclusion:

Systems of inequations can be solved throughfixpoint iteration, i.e., by
repeated evaluation of right-hand sides:-)

Caveat: Naive fixpoint iteration is ratherinefficient :-(

Example:

3

2

4

5

0

1

y = 1;

x = x− 1;

y = x ∗ y;

Pos(x > 1)Neg(x > 1)

1 2 3 4 5

0 ∅ ∅ ∅ ∅

1 {1, x > 1, x − 1} {1} {1} {1}

2 Expr {1, x > 1, x − 1} {1, x > 1} {1, x > 1}

3 {1, x > 1, x − 1} {1, x > 1, x − 1} {1, x > 1, x − 1} {1, x > 1} dito

4 {1} {1} {1} {1}

5 Expr {1, x > 1, x − 1} {1, x > 1} {1, x > 1}

134



Idea: Round Robin Iteration

Instead of accessing the values of the last iteration, always use thecurrent
values of unknowns :-)

135



Idea: Round Robin Iteration

Instead of accessing the values of the last iteration, always use thecurrent
values of unknowns :-)

Example:

3

2

4

5

0

1

y = 1;

x = x− 1;

y = x ∗ y;

Pos(x > 1)Neg(x > 1)

0

1

2

3

4

5

136



Idea: Round Robin Iteration

Instead of accessing the values of the last iteration, always use thecurrent
values of unknowns :-)

Example:

3

2

4

5

0

1

y = 1;

x = x− 1;

y = x ∗ y;

Pos(x > 1)Neg(x > 1)

1

0 ∅

1 {1}

2 {1, x > 1}

3 {1, x > 1}

4 {1}

5 {1, x > 1}

137



Idea: Round Robin Iteration

Instead of accessing the values of the last iteration, always use thecurrent
values of unknowns :-)

Example:

3

2

4

5

0

1

y = 1;

x = x− 1;

y = x ∗ y;

Pos(x > 1)Neg(x > 1)

1 2

0 ∅

1 {1}

2 {1, x > 1}

3 {1, x > 1} dito

4 {1}

5 {1, x > 1}

138



The code forRound RobinIteration inJavalooks as follows:

for (i = 1; i ≤ n; i++) xi = ⊥;

do {
finished = true;

for (i = 1; i ≤ n; i++) {
new = fi(x1, . . . , xn);

if (!(xi ⊒ new)) {
finished = false;

xi = xi ⊔ new ;
}

}
} while (!finished);

139



Correctness:

Assume y
(d)
i is thei-th component of F d ⊥.

Assume x
(d)
i is the value of xi after thed-th RR-iteration.

140



Correctness:

Assume y
(d)
i is thei-th component of F d ⊥.

Assume x
(d)
i is the value of xi after thei-th RR-iteration.

One proves:

(1) y
(d)
i ⊑ x

(d)
i :-)

141



Correctness:

Assume y
(d)
i is thei-th component of F d ⊥.

Assume x
(d)
i is the value of xi after thei-th RR-iteration.

One proves:

(1) y
(d)
i ⊑ x

(d)
i :-)

(2) x
(d)
i ⊑ zi for every solution (z1, . . . , zn) :-)

142



Correctness:

Assume y
(d)
i is thei-th component of F d ⊥.

Assume x
(d)
i is the value of xi after thei-th RR-iteration.

One proves:

(1) y
(d)
i ⊑ x

(d)
i :-)

(2) x
(d)
i ⊑ zi for every solution (z1, . . . , zn) :-)

(3) If RR-iteration terminates afterd rounds, then
(x

(d)
1 , . . . , x

(d)
n ) is a solution :-))

143



Caveat:

The efficiency ofRR-iteration depends on theorderingof the unknowns
!!!

144



Caveat:

The efficiency ofRR-iteration depends on theorderingof the unknowns
!!!

Good:
→ u beforev, if u →∗ v;

→ entry condition before loop body:-)

145



Caveat:

The efficiency ofRR-iteration depends on theorderingof the unknowns
!!!

Good:
→ u beforev, if u →∗ v;

→ entry condition before loop body:-)

Bad:
e.g., post-order DFS of the CFG, starting atstart :-)

146



Good:

3

2

4

5

0

1

y = 1;

x = x− 1;

y = x ∗ y;

Pos(x > 1)Neg(x > 1)

Bad:

0

5

4

3

2

1
x = x− 1;

y = x ∗ y;

Pos(x > 1)Neg(x > 1)

y = 1;

147



Inefficient Round Robin Iteration:

0

5

4

3

2

1
x = x− 1;

y = x ∗ y;

Pos(x > 1)Neg(x > 1)

y = 1;

0

1

2

3

4

5

148



Inefficient Round Robin Iteration:

0

5

4

3

2

1
x = x− 1;

y = x ∗ y;

Pos(x > 1)Neg(x > 1)

y = 1; 1

0 Expr

1 {1}

2 {1, x − 1, x > 1}

3 Expr

4 {1}

5 ∅

149



Inefficient Round Robin Iteration:

0

5

4

3

2

1
x = x− 1;

y = x ∗ y;

Pos(x > 1)Neg(x > 1)

y = 1; 1 2

0 Expr {1, x > 1}

1 {1} {1}

2 {1, x − 1, x > 1} {1, x − 1, x > 1}

3 Expr {1, x > 1}

4 {1} {1}

5 ∅ ∅

150



Inefficient Round Robin Iteration:

0

5

4

3

2

1
x = x− 1;

y = x ∗ y;

Pos(x > 1)Neg(x > 1)

y = 1; 1 2 3

0 Expr {1, x > 1} {1, x > 1}

1 {1} {1} {1}

2 {1, x − 1, x > 1} {1, x − 1, x > 1} {1, x > 1}

3 Expr {1, x > 1} {1, x > 1}

4 {1} {1} {1}

5 ∅ ∅ ∅

151



Inefficient Round Robin Iteration:

0

5

4

3

2

1
x = x− 1;

y = x ∗ y;

Pos(x > 1)Neg(x > 1)

y = 1; 1 2 3 4

0 Expr {1, x > 1} {1, x > 1}

1 {1} {1} {1}

2 {1, x − 1, x > 1} {1, x − 1, x > 1} {1, x > 1} dito

3 Expr {1, x > 1} {1, x > 1}

4 {1} {1} {1}

5 ∅ ∅ ∅

==⇒ significantly less efficient :-)

152



... end of background on: Complete Lattices

153



... end of background on: Complete Lattices

Final Question:

Why is a (or the least) solution of the constraint system useful ???

154



... end of background on: Complete Lattices

Final Question:

Why is a (or the least) solution of the constraint system useful ???

For a complete lattice D, consider systems:

I[start ] ⊒ d0

I[v] ⊒ [[k]]♯ (I[u]) k = (u, _, v) edge

where d0 ∈ D and all [[k]]♯ : D → D are monotonic...

155



... end of background on: Complete Lattices

Final Question:

Why is a (or the least) solution of the constraint system useful ???

For a complete lattice D, consider systems:

I[start ] ⊒ d0

I[v] ⊒ [[k]]♯ (I[u]) k = (u, _, v) edge

where d0 ∈ D and all [[k]]♯ : D → D are monotonic...

==⇒ Monotonic Analysis Framework

156



Wanted: MOP (Merge Over all Paths)

I∗[v] =
⊔

{[[π]]♯ d0 | π : start →∗ v}

157



Wanted: MOP (Merge Over all Paths)

I∗[v] =
⊔

{[[π]]♯ d0 | π : start →∗ v}

Theorem Kam, Ullman 1975

Assume I is a solution of the constraint system. Then:

I[v] ⊒ I∗[v] for every v

158



Jeffrey D. Ullman, Stanford

159



Wanted: MOP (Merge Over all Paths)

I∗[v] =
⊔

{[[π]]♯ d0 | π : start →∗ v}

Theorem Kam, Ullman 1975

Assume I is a solution of the constraint system. Then:

I[v] ⊒ I∗[v] for every v

In particular: I[v] ⊒ [[π]]♯ d0 for every π : start →∗ v

160



Proof: Induction on the length of π.

161



Proof: Induction on the length of π.

Foundation: π = ǫ (empty path)

162



Proof: Induction on the length of π.

Foundation: π = ǫ (empty path)

Then:

[[π]]♯ d0 = [[ǫ]]♯ d0 = d0 ⊑ I[start ]

163



Proof: Induction on the length of π.

Foundation: π = ǫ (empty path)

Then:

[[π]]♯ d0 = [[ǫ]]♯ d0 = d0 ⊑ I[start ]

Step: π = π′k for k = (u, _, v) edge.

164



Proof: Induction on the length of π.

Foundation: π = ǫ (empty path)

Then:

[[π]]♯ d0 = [[ǫ]]♯ d0 = d0 ⊑ I[start ]

Step: π = π′k for k = (u, _, v) edge.

Then:

[[π′]]♯ d0 ⊑ I[u] by I.H. for π

==⇒ [[π]]♯ d0 = [[k]]♯ ([[π′]]♯ d0)

⊑ [[k]]♯ (I[u]) since [[k]]♯ monotonic

⊑ I[v] since I solution :-))

165



Disappointment:

Are solutions of the constraint systemjust upper bounds???

166



Disappointment:

Are solutions of the constraint systemjust upper bounds???

Answer:

In general:yes :-(

167



Disappointment:

Are solutions of the constraint systemjust upper bounds???

Answer:

In general:yes :-(

With the notable exception when all functions[[k]]♯ aredistributive...
:-)

168



The function f : D1 → D2 is called

• distributive, if f (
⊔
X) =

⊔
{f x | x ∈ X} for all ∅ 6= X ⊆ D;

• strict, if f ⊥ = ⊥.

• totally distributive, if f is distributive and strict.

169



The function f : D1 → D2 is called

• distributive, if f (
⊔
X) =

⊔
{f x | x ∈ X} for all ∅ 6= X ⊆ D;

• strict, if f ⊥ = ⊥.

• totally distributive, if f is distributive and strict.

Examples:

• f x = x ∩ a ∪ b for a, b ⊆ U .

170



The function f : D1 → D2 is called

• distributive, if f (
⊔
X) =

⊔
{f x | x ∈ X} for all ∅ 6= X ⊆ D;

• strict, if f ⊥ = ⊥.

• totally distributive, if f is distributive and strict.

Examples:

• f x = x ∩ a ∪ b for a, b ⊆ U .

Strictness: f ∅ = a ∩ ∅ ∪ b = b = ∅ whenever b = ∅ :-(

171



The function f : D1 → D2 is called

• distributive, if f (
⊔
X) =

⊔
{f x | x ∈ X} for all ∅ 6= X ⊆ D;

• strict, if f ⊥ = ⊥.

• totally distributive, if f is distributive and strict.

Examples:

• f x = x ∩ a ∪ b for a, b ⊆ U .

Strictness: f ∅ = a ∩ ∅ ∪ b = b = ∅ whenever b = ∅ :-(

Distributivity:

f (x1 ∪ x2) = a ∩ (x1 ∪ x2) ∪ b

= a ∩ x1 ∪ a ∩ x2 ∪ b

= f x1 ∪ f x2 :-)

172



• D1 = D2 = N ∪ {∞}, incx = x+ 1

173



• D1 = D2 = N ∪ {∞}, incx = x+ 1

Strictness: f ⊥ = inc 0 = 1 6= ⊥ :-(

174



• D1 = D2 = N ∪ {∞}, incx = x+ 1

Strictness: f ⊥ = inc 0 = 1 6= ⊥ :-(

Distributivity: f (
⊔
X) =

⊔
{x+ 1 | x ∈ X} for ∅ 6= X

:-)

175



• D1 = D2 = N ∪ {∞}, incx = x+ 1

Strictness: f ⊥ = inc 0 = 1 6= ⊥ :-(

Distributivity: f (
⊔
X) =

⊔
{x+ 1 | x ∈ X} for ∅ 6= X

:-)

• D1 = (N ∪ {∞})2, D2 = N ∪ {∞}, f(x1, x2) = x1 + x2

176



• D1 = D2 = N ∪ {∞}, incx = x+ 1

Strictness: f ⊥ = inc 0 = 1 6= ⊥ :-(

Distributivity: f (
⊔
X) =

⊔
{x+ 1 | x ∈ X} for ∅ 6= X

:-)

• D1 = (N ∪ {∞})2, D2 = N ∪ {∞}, f(x1, x2) = x1 + x2 :

Strictness: f ⊥ = 0 + 0 = 0 :-)

177



• D1 = D2 = N ∪ {∞}, incx = x+ 1

Strictness: f ⊥ = inc 0 = 1 6= ⊥ :-(

Distributivity: f (
⊔
X) =

⊔
{x+ 1 | x ∈ X} for ∅ 6= X

:-)

• D1 = (N ∪ {∞})2, D2 = N ∪ {∞}, f(x1, x2) = x1 + x2 :

Strictness: f ⊥ = 0 + 0 = 0 :-)

Distributivity:

f ((1, 4) ⊔ (4, 1)) = f (4, 4) = 8

6= 5 = f (1, 4) ⊔ f (4, 1) :-)

178



Remark:

If f : D1 → D2 is distributive, then also monotonic:-)

179



Remark:

If f : D1 → D2 is distributive, then also monotonic:-)

Obviously: a ⊑ b iff a ⊔ b = b.

180



Remark:

If f : D1 → D2 is distributive, then also monotonic:-)

Obviously: a ⊑ b iff a ⊔ b = b.

From that follows:

f b = f (a ⊔ b)

= f a ⊔ f b

==⇒ f a ⊑ f b :-)

181



Assumption: all v are reachable from start .

182



Assumption: all v are reachable from start .
Then:

Theorem Kildall 1972

If all effects of edges [[k]]♯ are distributive, then: I∗[v] = I[v]

for all v .

183



Gary A. Kildall (1942-1994).

Has developed the operating system CP/M and GUIs for PCs.

184



Assumption: all v are reachable from start .
Then:

Theorem Kildall 1972

If all effects of edges [[k]]♯ are distributive, then: I∗[v] = I[v]

for all v .

185



Assumption: all v are reachable from start .
Then:

Theorem Kildall 1972

If all effects of edges [[k]]♯ are distributive, then: I∗[v] = I[v]

for all v .

Proof:

It suffices to prove that I∗ is a solution :-)

For this, we show that I∗ satisfies all constraints:-))

186



(1) We prove for start :

I∗[start ] =
⊔

{[[π]]♯ d0 | π : start →∗ start}

⊒ [[ǫ]]♯ d0

⊒ d0 :-)

187



(1) We prove for start :

I∗[start ] =
⊔

{[[π]]♯ d0 | π : start →∗ start}

⊒ [[ǫ]]♯ d0

⊒ d0 :-)

(2) For every k = (u, _, v) we prove:

I∗[v] =
⊔
{[[π]]♯ d0 | π : start →∗ v}

⊒
⊔
{[[π′k]]♯ d0 | π

′ : start →∗ u}

=
⊔
{[[k]]♯ ([[π′]]♯ d0) | π

′ : start →∗ u}

= [[k]]♯ (
⊔
{[[π′]]♯ d0 | π

′ : start →∗ u})

= [[k]]♯ (I∗[u])

since {π′ | π′ : start →∗ u} is non-empty :-)

188



Caveat:

• Reachabilityof all program points cannot be abandoned! Consider:

0 1 2
inc7

where D = N ∪ {∞}

189



Caveat:

• Reachabilityof all program points cannot be abandoned! Consider:

0 1 2
inc7

where D = N ∪ {∞}

Then:

I[2] = inc 0 = 1

I∗[2] =
⊔
∅ = 0

190



Caveat:

• Reachabilityof all program points cannot be abandoned! Consider:

0 1 2
inc7

where D = N ∪ {∞}

Then:

I[2] = inc 0 = 1

I∗[2] =
⊔
∅ = 0

• Unreachableprogram points can always be thrown away:-)

191



Summary and Application:

→ The effects of edges of the analysis ofavailability of expressions
are distributive:

(a ∪ (x1 ∩ x2))\b = ((a ∪ x1) ∩ (a ∪ x2))\b

= ((a ∪ x1)\b) ∩ ((a ∪ x2)\b)

192


