Theorem

Knaster – Tarski

Assume \mathbb{D} is a complete lattice. Then every monotonic function $f: \mathbb{D} \to \mathbb{D}$ has a least fixpoint $d_0 \in \mathbb{D}$.

Let $P = \{ d \in \mathbb{D} \mid f d \sqsubseteq d \}.$ Then $d_0 = \prod P$.

Proof:

(1) $d_0 \in P$:

Theorem

Knaster – Tarski

Assume \mathbb{D} is a complete lattice. Then every monotonic function $f: \mathbb{D} \to \mathbb{D}$ has a least fixpoint $d_0 \in \mathbb{D}$.

Let
$$P = \{ d \in \mathbb{D} \mid f d \sqsubseteq d \}.$$

Then $d_0 = \prod P$.

Proof:

(1)
$$d_0 \in P$$
:
 $f d_0 \sqsubseteq f d \sqsubseteq d$ for all $d \in P$
 $\implies f d_0$ is a lower bound of P
 $\implies f d_0 \sqsubseteq d_0$ since $d_0 = \prod P$
 $\implies d_0 \in P$:-)

(2)
$$f d_0 = d_0$$
:

(2)
$$f d_0 = d_0$$
:
 $f d_0 \sqsubseteq d_0$ by (1)
 $\implies f(f d_0) \sqsubseteq f d_0$ by monotonicity of f
 $\implies f d_0 \in P$
 $\implies d_0 \sqsubseteq f d_0$ and the claim follows :-)

(2)
$$f d_0 = d_0$$
:
 $f d_0 \sqsubseteq d_0$ by (1)
 $\implies f(f d_0) \sqsubseteq f d_0$ by monotonicity of f
 $\implies f d_0 \in P$
 $\implies d_0 \sqsubseteq f d_0$ and the claim follows :-)

(3) d_0 is least fixpoint:

(2)
$$f d_0 = d_0$$
:
 $f d_0 \sqsubseteq d_0$ by (1)
 $\implies f(f d_0) \sqsubseteq f d_0$ by monotonicity of f
 $\implies f d_0 \in P$
 $\implies d_0 \sqsubseteq f d_0$ and the claim follows :-)

(3)
$$d_0$$
 is least fixpoint:
 $f d_1 = d_1 \sqsubseteq d_1$ an other fixpoint
 $\implies d_1 \in P$
 $\implies d_0 \sqsubseteq d_1$:-))

Remark:

The least fixpoint d_0 is in P and a lower bound :-) $\implies d_0$ is the least value x with $x \supseteq f x$

Remark:

The least fixpoint d_0 is in P and a lower bound :-) $\implies d_0$ is the least value x with $x \sqsupseteq f x$

Application:

Assume
$$x_i \supseteq f_i(x_1, \dots, x_n), \quad i = 1, \dots, n$$
 (*)
is a system of constraints where all $f_i : \mathbb{D}^n \to \mathbb{D}$ are monotonic.

Remark:

The least fixpoint d_0 is in P and a lower bound :-) $\implies d_0$ is the least value x with $x \supseteq f x$

Application:

Assume
$$x_i \supseteq f_i(x_1, \dots, x_n), \quad i = 1, \dots, n$$
 (*)
is a system of constraints where all $f_i : \mathbb{D}^n \to \mathbb{D}$ are monotonic.

 \implies least solution of (*) == least fixpoint of F :-)

f	$f^k \perp$	$f^k \top$
0	Ø	U
1	b	$a \cup b$

f	$f^k \perp$	$f^k \top$
0	Ø	U
1	b	$a \cup b$
2	b	$a \cup b$

f	$f^k \perp$	$f^k \top$
0	Ø	U
1	b	$a \cup b$
2	b	$a \cup b$

Example 2: $\mathbb{D} = \mathbb{N} \cup \{\infty\}$

Assume f x = x + 1. Then

$$f^i \perp = f^i \, 0 = i \quad \Box \quad i+1 = f^{i+1} \perp$$

f	$f^k \perp$	$f^k \top$
0	Ø	U
1	b	$a \cup b$
2	b	$a \cup b$

Example 2: $\mathbb{D} = \mathbb{N} \cup \{\infty\}$

Assume f x = x + 1. Then

$$f^i \perp = f^i \, 0 = i \quad \Box \quad i+1 = f^{i+1} \perp$$

$$\implies \text{Ordinary iteration will never reach a fixpoint} :-($$
$$\implies \text{Sometimes, transfinite iteration} is needed :-)$$

Systems of inequations can be solved through fixpoint iteration, i.e., by repeated evaluation of right-hand sides :-)

Systems of inequations can be solved through fixpoint iteration, i.e., by repeated evaluation of right-hand sides :-)

Caveat: Naive fixpoint iteration is rather inefficient :-(

Systems of inequations can be solved through fixpoint iteration, i.e., by repeated evaluation of right-hand sides :-)

Caveat: Naive fixpoint iteration is rather inefficient :-(

Systems of inequations can be solved through fixpoint iteration, i.e., by repeated evaluation of right-hand sides :-)

Caveat: Naive fixpoint iteration is rather inefficient :-(

Systems of inequations can be solved through fixpoint iteration, i.e., by repeated evaluation of right-hand sides :-)

Caveat: Naive fixpoint iteration is rather inefficient :-(

Systems of inequations can be solved through fixpoint iteration, i.e., by repeated evaluation of right-hand sides :-)

Caveat: Naive fixpoint iteration is rather inefficient :-(

Systems of inequations can be solved through fixpoint iteration, i.e., by repeated evaluation of right-hand sides :-)

Caveat: Naive fixpoint iteration is rather inefficient :-(

Systems of inequations can be solved through fixpoint iteration, i.e., by repeated evaluation of right-hand sides :-)

Caveat: Naive fixpoint iteration is rather inefficient :-(

Instead of accessing the values of the last iteration, always use the current values of unknowns :-)

Instead of accessing the values of the last iteration, always use the current values of unknowns :-)

Instead of accessing the values of the last iteration, always use the current values of unknowns :-)

Instead of accessing the values of the last iteration, always use the current values of unknowns :-)

	1	2
0	Ø	
1	{1}	
2	$\{1, x > 1\}$	
3	$\{1, x > 1\}$	dito
4	{1}	
5	$\{1, x > 1\}$	

The code for Round Robin Iteration in Java looks as follows:

```
for (i = 1; i \le n; i++) x_i = \bot;
do {
      finished = true;
      for (i = 1; i \le n; i++) {
             new = f_i(x_1, \ldots, x_n);
             if (!(x_i \supseteq new)) {
                    finished = false;
                    x_i = x_i \sqcup new;
              }
       }
} while (!finished);
```

Assume $y_i^{(d)}$ is the *i*-th component of $F^d \perp$. Assume $x_i^{(d)}$ is the value of x_i after the *d*-th RR-iteration.

Assume $y_i^{(d)}$ is the *i*-th component of $F^d \perp$. Assume $x_i^{(d)}$ is the value of x_i after the *i*-th RR-iteration.

One proves:

(1) $y_i^{(d)} \sqsubseteq x_i^{(d)}$:-)

Assume $y_i^{(d)}$ is the *i*-th component of $F^d \perp$. Assume $x_i^{(d)}$ is the value of x_i after the *i*-th RR-iteration.

One proves:

(1) $y_i^{(d)} \sqsubseteq x_i^{(d)}$:-) (2) $x_i^{(d)} \sqsubseteq z_i$ for every solution (z_1, \dots, z_n) :-)

Assume $y_i^{(d)}$ is the *i*-th component of $F^d \perp$. Assume $x_i^{(d)}$ is the value of x_i after the *i*-th RR-iteration.

One proves:

- (1) $y_i^{(d)} \sqsubseteq x_i^{(d)}$:-) (2) $x_i^{(d)} \sqsubseteq z_i$ for every solution (z_1, \dots, z_n) :-)
- (3) If **RR**-iteration terminates after *d* rounds, then $(x_1^{(d)}, \ldots, x_n^{(d)})$ is a solution :-))

Caveat:

The efficiency of RR-iteration depends on the ordering of the unknowns !!!!

Caveat:

The efficiency of RR-iteration depends on the ordering of the unknowns !!!!

Good:

- \rightarrow *u* before *v*, if *u* $\rightarrow^* v$;
- \rightarrow entry condition before loop body :-)

Caveat:

The efficiency of RR-iteration depends on the ordering of the unknowns !!!!

Good:

- \rightarrow *u* before *v*, if *u* $\rightarrow^* v$;
- \rightarrow entry condition before loop body :-)

Bad:

e.g., post-order DFS of the CFG, starting at start :-)

		1
()	Expr
-	1	{1}
4	2	$\{1, x - 1, x > 1\}$
ę	3	Expr
4	1	$\{1\}$
Ę	5	Ø

	1	2
0	Expr	$\{1, x > 1\}$
1	{1}	{1}
2	$\{1, x - 1, x > 1\}$	$\{1, x - 1, x > 1\}$
3	Expr	$\{1, x > 1\}$
4	{1}	{1}
5	Ø	Ø

	1	2	3
0	Expr	$\{1, x > 1\}$	$\{1, x > 1\}$
1	$\{1\}$	$\{1\}$	$\{1\}$
2	$\{1, x - 1, x > 1\}$	$\{1, x - 1, x > 1\}$	$\{1, x > 1\}$
3	Expr	$\{1, x > 1\}$	$\{1, x > 1\}$
4	{1}	$\{1\}$	$\{1\}$
5	Ø	Ø	Ø

	1	2	3	4
0	Expr	$\{1, x > 1\}$	$\{1, x > 1\}$	
1	{1}	$\{1\}$	{1}	
2	$\{1, x - 1, x > 1\}$	$\{1, x - 1, x > 1\}$	$\{1, x > 1\}$	dito
3	Expr	$\{1, x > 1\}$	$\{1, x > 1\}$	
4	$\{1\}$	$\{1\}$	$\{1\}$	
5	Ø	Ø	Ø	

 \Rightarrow significantly less efficient :-)

Final Question:

Why is a (or the least) solution of the constraint system useful ???

Final Question:

Why is a (or the least) solution of the constraint system useful ???

For a complete lattice \mathbb{D} , consider systems:

$$\begin{array}{ccc} \mathcal{I}[\textit{start}] & \sqsupseteq & d_0 \\ \\ \mathcal{I}[\textit{v}] & \sqsupset & \llbracket k \rrbracket^{\sharp} \left(\mathcal{I}[\textit{u}] \right) & k = (\textit{u},_,\textit{v}) & \text{edge} \end{array}$$

where $d_0 \in \mathbb{D}$ and all $[\![k]\!]^{\sharp} : \mathbb{D} \to \mathbb{D}$ are monotonic ...

Final Question:

Why is a (or the least) solution of the constraint system useful ???

For a complete lattice \mathbb{D} , consider systems:

$$\begin{array}{ccc} \mathcal{I}[\textit{start}] & \sqsupseteq & d_0 \\ \\ \mathcal{I}[\textit{v}] & \sqsupset & \llbracket k \rrbracket^{\sharp} \left(\mathcal{I}[\textit{u}] \right) & k = (\textit{u},_,\textit{v}) & \text{edge} \end{array}$$

where $d_0 \in \mathbb{D}$ and all $[\![k]\!]^{\sharp} : \mathbb{D} \to \mathbb{D}$ are monotonic ...

Wanted: MOP (Merge Over all Paths)

$$\mathcal{I}^*[v] = \bigsqcup \{ \llbracket \pi \rrbracket^{\sharp} d_0 \mid \pi : start \to^* v \}$$

Wanted: MOP (Merge Over all Paths)

 $\mathcal{I}^*[v] = \bigsqcup \{ \llbracket \pi \rrbracket^{\sharp} d_0 \mid \pi : start \to^* v \}$

Theorem

Kam, Ullman 1975

Assume \mathcal{I} is a solution of the constraint system. Then: $\mathcal{I}[v] \supseteq \mathcal{I}^*[v]$ for every v

Jeffrey D. Ullman, Stanford

Wanted: MOP (Merge Over all Paths)

 $\mathcal{I}^*[v] = \bigsqcup \{ \llbracket \pi \rrbracket^{\sharp} d_0 \mid \pi : start \to^* v \}$

Theorem

Kam, Ullman 1975

Assume \mathcal{I} is a solution of the constraint system. Then: $\mathcal{I}[v] \supseteq \mathcal{I}^*[v]$ for every vIn particular: $\mathcal{I}[v] \supseteq [\![\pi]\!]^{\sharp} d_0$ for every $\pi : start \to^* v$

Foundation: $\pi = \epsilon$ (empty path)

Foundation: $\pi = \epsilon$ (empty path)

Then:

$$\llbracket \pi \rrbracket^{\sharp} d_0 = \llbracket \epsilon \rrbracket^{\sharp} d_0 = d_0 \sqsubseteq \mathcal{I}[start]$$

Foundation: $\pi = \epsilon$ (empty path) Then:

$$\llbracket \pi \rrbracket^{\sharp} d_0 = \llbracket \epsilon \rrbracket^{\sharp} d_0 = d_0 \sqsubseteq \mathcal{I}[start]$$

Step: $\pi = \pi' k$ for $k = (u, _, v)$ edge.

Foundation: $\pi = \epsilon$ (empty path) Then: $\llbracket \pi \rrbracket^{\sharp} d_0 = \llbracket \epsilon \rrbracket^{\sharp} d_0 = d_0 \sqsubseteq \mathcal{I}[start]$ Step: $\pi = \pi' k$ for $k = (u, _, v)$ edge. Then:

$$\llbracket \pi' \rrbracket^{\sharp} d_{0} \subseteq \mathcal{I}[\boldsymbol{u}]$$
 by I.H. for π
$$\implies \llbracket \pi \rrbracket^{\sharp} d_{0} = \llbracket k \rrbracket^{\sharp} (\llbracket \pi' \rrbracket^{\sharp} d_{0})$$
$$\sqsubseteq \llbracket k \rrbracket^{\sharp} (\mathcal{I}[\boldsymbol{u}])$$
since $\llbracket k \rrbracket^{\sharp}$ monotonic
$$\sqsubseteq \mathcal{I}[\boldsymbol{v}]$$
since \mathcal{I} solution :-))

Disappointment:

Are solutions of the constraint system just upper bounds ???

Disappointment:

Are solutions of the constraint system just upper bounds ???

Answer:

In general: yes :-(

Disappointment:

Are solutions of the constraint system just upper bounds ???

Answer:

In general: yes :-(

With the notable exception when all functions $[k]^{\sharp}$ are distributive ... :-)

- distributive, if $f(\bigsqcup X) = \bigsqcup \{f x \mid x \in X\}$ for all $\emptyset \neq X \subseteq \mathbb{D}$;
- strict, if $f \perp = \perp$.
- totally distributive, if f is distributive and strict.

- distributive, if $f(\bigsqcup X) = \bigsqcup \{f x \mid x \in X\}$ for all $\emptyset \neq X \subseteq \mathbb{D}$;
- strict, if $f \perp = \perp$.
- totally distributive, if f is distributive and strict.

Examples:

•
$$f x = x \cap a \cup b$$
 for $a, b \subseteq U$.

- distributive, if $f(\bigsqcup X) = \bigsqcup \{f x \mid x \in X\}$ for all $\emptyset \neq X \subseteq \mathbb{D}$;
- strict, if $f \perp = \perp$.
- totally distributive, if f is distributive and strict.

Examples:

•
$$f x = x \cap a \cup b$$
 for $a, b \subseteq U$.
Strictness: $f \emptyset = a \cap \emptyset \cup b = b = \emptyset$ whenever $b = \emptyset$:-(

- distributive, if $f(\bigsqcup X) = \bigsqcup \{f x \mid x \in X\}$ for all $\emptyset \neq X \subseteq \mathbb{D}$;
- strict, if $f \perp = \perp$.
- totally distributive, if f is distributive and strict.

Examples:

•
$$f x = x \cap a \cup b$$
 for $a, b \subseteq U$.
Strictness: $f \emptyset = a \cap \emptyset \cup b = b = \emptyset$ whenever $b = \emptyset$:-(
Distributivity:

$$f(x_1 \cup x_2) = a \cap (x_1 \cup x_2) \cup b$$
$$= a \cap x_1 \cup a \cap x_2 \cup b$$
$$= f x_1 \cup f x_2 \qquad :-)$$

• $\mathbb{D}_1 = \mathbb{D}_2 = \mathbb{N} \cup \{\infty\}, \quad \text{inc } x = x+1$

• $\mathbb{D}_1 = \mathbb{D}_2 = \mathbb{N} \cup \{\infty\}$, $\operatorname{inc} x = x + 1$ Strictness: $f \perp = \operatorname{inc} 0 = 1 \neq \perp$:-(

• $\mathbb{D}_1 = (\mathbb{N} \cup \{\infty\})^2$, $\mathbb{D}_2 = \mathbb{N} \cup \{\infty\}$, $f(x_1, x_2) = x_1 + x_2$

• $\mathbb{D}_1 = (\mathbb{N} \cup \{\infty\})^2$, $\mathbb{D}_2 = \mathbb{N} \cup \{\infty\}$, $f(x_1, x_2) = x_1 + x_2$: Strictness: $f \perp = 0 + 0 = 0$:-)

• $\mathbb{D}_1 = (\mathbb{N} \cup \{\infty\})^2$, $\mathbb{D}_2 = \mathbb{N} \cup \{\infty\}$, $f(x_1, x_2) = x_1 + x_2$: Strictness: $f \perp = 0 + 0 = 0$:-) Distributivity:

$$f((1,4) \sqcup (4,1)) = f(4,4) = 8$$

$$\neq 5 = f(1,4) \sqcup f(4,1) \quad :-)$$

Remark:

If $f: \mathbb{D}_1 \to \mathbb{D}_2$ is distributive, then also monotonic :-)

Remark:

If $f: \mathbb{D}_1 \to \mathbb{D}_2$ is distributive, then also monotonic :-)

Obviously: $a \sqsubseteq b$ iff $a \sqcup b = b$.

Remark:

If $f: \mathbb{D}_1 \to \mathbb{D}_2$ is distributive, then also monotonic :-)

Obviously: $a \sqsubseteq b$ iff $a \sqcup b = b$. From that follows:

$$f b = f (a \sqcup b)$$
$$= f a \sqcup f b$$
$$\implies f a \sqsubseteq f b \qquad :-)$$

Assumption: all v are reachable from *start*.

Assumption: all v are reachable from *start*. Then:

Theorem

Kildall 1972

If all effects of edges $[\![k]\!]^{\sharp}$ are distributive, then: $\mathcal{I}^*[v] = \mathcal{I}[v]$ for all v.

Gary A. Kildall (1942-1994).

Has developed the operating system CP/M and GUIs for PCs.

Assumption: all v are reachable from *start*. Then:

Theorem

Kildall 1972

If all effects of edges $[\![k]\!]^{\sharp}$ are distributive, then: $\mathcal{I}^*[v] = \mathcal{I}[v]$ for all v.

Assumption: all v are reachable from *start*. Then:

Theorem

Kildall 1972

If all effects of edges $[\![k]\!]^{\sharp}$ are distributive, then: $\mathcal{I}^*[v] = \mathcal{I}[v]$ for all v.

Proof:

It suffices to prove that \mathcal{I}^* is a solution :-) For this, we show that \mathcal{I}^* satisfies all constraints :-)) (1) We prove for *start*:

$$\mathcal{I}^*[start] = \bigsqcup \{ \llbracket \pi \rrbracket^{\sharp} d_0 \mid \pi : start \to^* start \}$$
$$\supseteq \llbracket \epsilon \rrbracket^{\sharp} d_0$$
$$\supseteq d_0 :-)$$

(1) We prove for *start*:

$$\mathcal{I}^*[start] = \bigsqcup \{ \llbracket \pi \rrbracket^{\sharp} d_0 \mid \pi : start \to^* start \}$$
$$\supseteq \llbracket \epsilon \rrbracket^{\sharp} d_0$$
$$\supseteq d_0 :-)$$

(2) For every $k = (u, _, v)$ we prove:

$$\begin{split} \mathcal{I}^*[v] &= \bigsqcup\{\llbracket \pi \rrbracket^{\sharp} d_0 \mid \pi : start \to^* v\} \\ & \supseteq \bigsqcup\{\llbracket \pi' k \rrbracket^{\sharp} d_0 \mid \pi' : start \to^* u\} \\ &= \bigsqcup\{\llbracket k \rrbracket^{\sharp} (\llbracket \pi' \rrbracket^{\sharp} d_0) \mid \pi' : start \to^* u\} \\ &= \llbracket k \rrbracket^{\sharp} (\bigsqcup\{\llbracket \pi' \rrbracket^{\sharp} d_0 \mid \pi' : start \to^* u\}) \\ &= \llbracket k \rrbracket^{\sharp} (\mathcal{I}^*[u]) \end{split}$$

since $\{\pi' \mid \pi' : start \to^* u\}$ is non-empty :-)

Caveat:

Reachability of all program points cannot be abandoned! Consider: \bullet

Caveat:

• Reachability of all program points cannot be abandoned! Consider:

$$\begin{array}{c|c} & & & \\ \hline 0 & & \\ \hline 1 & \hline 2 \end{array} & \text{where} \quad \mathbb{D} = \mathbb{N} \cup \{\infty\} \end{array}$$

Then:

$$\mathcal{I}[2] = \operatorname{inc} \mathbf{0} = \mathbf{1}$$
$$\mathcal{I}^*[2] = \bigsqcup \emptyset = \mathbf{0}$$

Caveat:

• Reachability of all program points cannot be abandoned! Consider:

$$\begin{array}{c}
 7 \\
 0 \\
 1 \\
 \end{array} \quad \begin{array}{c}
 \text{inc} \\
 2 \\
 \end{array} \quad \text{where} \quad \mathbb{D} = \mathbb{N} \cup \{\infty\}
\end{array}$$

Then:

$$\mathcal{I}[2] = \operatorname{inc} 0 = 1$$
$$\mathcal{I}^*[2] = \bigsqcup \emptyset = 0$$

• Unreachable program points can always be thrown away :-)

Summary and Application:

 \rightarrow The effects of edges of the analysis of availability of expressions are distributive:

$$(a \cup (x_1 \cap x_2)) \setminus b = ((a \cup x_1) \cap (a \cup x_2)) \setminus b$$
$$= ((a \cup x_1) \setminus b) \cap ((a \cup x_2) \setminus b)$$