Theorem
Knaster - Tarski

Assume \mathbb{D} is a complete lattice. Then every monotonic function $f: \mathbb{D} \rightarrow \mathbb{D}$ has a least fixpoint $d_{0} \in \mathbb{D}$.

Let $P=\{d \in \mathbb{D} \mid f d \sqsubseteq d\}$.
Then $\quad d_{0}=\Pi P$.

Proof:
(1) $d_{0} \in P$:

Theorem
Knaster - Tarski
Assume \mathbb{D} is a complete lattice. Then every monotonic function $f: \mathbb{D} \rightarrow \mathbb{D}$ has a least fixpoint $d_{0} \in \mathbb{D}$.

Let $P=\{d \in \mathbb{D} \mid f d \sqsubseteq d\}$.
Then $\quad d_{0}=\Pi P$.

Proof:

(1) $d_{0} \in P$:

$$
\begin{array}{ll}
& f d_{0} \sqsubseteq f d \sqsubseteq d \quad \text { for all } d \in P \\
\Longrightarrow & f d_{0} \text { is a lower bound of } P \\
\Longrightarrow & f d_{0} \sqsubseteq d_{0} \quad \text { since } d_{0}=\Pi P \\
\Longrightarrow & \left.d_{0} \in P \quad:-\right)
\end{array}
$$

(2) $f d_{0}=d_{0}$:
(2) $\quad f d_{0}=d_{0}$:

$$
\begin{array}{ll}
& f d_{0} \sqsubseteq d_{0} \quad \text { by } \quad(1) \\
\Longrightarrow & f\left(f d_{0}\right) \sqsubseteq f d_{0} \quad \text { by monotonicity of } f \\
\Longrightarrow & f d_{0} \in P \\
\Longrightarrow & \left.d_{0} \sqsubseteq f d_{0} \quad \text { and the claim follows } \quad:-\right)
\end{array}
$$

(2) $\quad f d_{0}=d_{0}$:

$$
\begin{array}{ll}
& f d_{0} \sqsubseteq d_{0} \quad \text { by } \quad(1) \\
\Longrightarrow & f\left(f d_{0}\right) \sqsubseteq f d_{0} \quad \text { by monotonicity of } f \\
\Longrightarrow & f d_{0} \in P \\
\Longrightarrow & \left.d_{0} \sqsubseteq f d_{0} \quad \text { and the claim follows } \quad:-\right)
\end{array}
$$

(3) d_{0} is least fixpoint:
(2) $\quad f d_{0}=d_{0}$:

$$
\begin{array}{ll}
& f d_{0} \sqsubseteq d_{0} \quad \text { by } \quad(1) \\
\Longrightarrow & f\left(f d_{0}\right) \sqsubseteq f d_{0} \quad \text { by monotonicity of } f \\
\Longrightarrow & f d_{0} \in P \\
\Longrightarrow & \left.d_{0} \sqsubseteq f d_{0} \quad \text { and the claim follows } \quad:-\right)
\end{array}
$$

(3) d_{0} is least fixpoint:

$$
\begin{array}{ll}
& f d_{1}=d_{1} \sqsubseteq d_{1} \quad \text { an other fixpoint } \\
\Longrightarrow & d_{1} \in P \\
\Longrightarrow & d_{0} \sqsubseteq d_{1}
\end{array}
$$

Remark:

The least fixpoint $\quad d_{0}$ is in P and a lower bound $\left.:-\right)$
$\Longrightarrow \quad d_{0} \quad$ is the least value x with $\quad x \sqsupseteq f x$

Remark:

The least fixpoint $\quad d_{0}$ is in P and a lower bound $\left.:-\right)$
$\Longrightarrow \quad d_{0} \quad$ is the least value x with $\quad x \sqsupseteq f x$

Application:

Assume

$$
\begin{equation*}
x_{i} \sqsupseteq f_{i}\left(x_{1}, \ldots, x_{n}\right), \quad i=1, \ldots, n \tag{*}
\end{equation*}
$$

is a system of constraints where all $f_{i}: \mathbb{D}^{n} \rightarrow \mathbb{D}$ are monotonic.

Remark:

The least fixpoint $\quad d_{0}$ is in P and a lower bound $\left.:-\right)$
$\Longrightarrow \quad d_{0} \quad$ is the least value x with $\quad x \sqsupseteq f x$

Application:

Assume

$$
\begin{equation*}
x_{i} \sqsupseteq f_{i}\left(x_{1}, \ldots, x_{n}\right), \quad i=1, \ldots, n \tag{*}
\end{equation*}
$$

is a system of constraints where all $f_{i}: \mathbb{D}^{n} \rightarrow \mathbb{D}$ are monotonic.
\Longrightarrow least solution of $(*)=$ least fixpoint of $F \quad:-)$

Example 1: $\quad \mathbb{D}=2^{U}, \quad f x=x \cap a \cup b$

Example 1: $\quad \mathbb{D}=2^{U}, \quad f x=x \cap a \cup b$

f	$f^{k} \perp$	$f^{k} \top$
0	\emptyset	U

Example 1: $\quad \mathbb{D}=2^{U}, \quad f x=x \cap a \cup b$

f	$f^{k} \perp$	$f^{k} \top$
0	\emptyset	U
1	b	$a \cup b$

Example 1: $\quad \mathbb{D}=2^{U}, \quad f x=x \cap a \cup b$

f	$f^{k} \perp$	$f^{k} \top$
0	\emptyset	U
1	b	$a \cup b$
2	b	$a \cup b$

Example 1: $\quad \mathbb{D}=2^{U}, \quad f x=x \cap a \cup b$

f	$f^{k} \perp$	$f^{k} \top$
0	\emptyset	U
1	b	$a \cup b$
2	b	$a \cup b$

Example 2: $\quad \mathbb{D}=\mathbb{N} \cup\{\infty\}$
Assume $f x=x+1$. Then

$$
f^{i} \perp=f^{i} 0=i \quad \sqsubset \quad i+1=f^{i+1} \perp
$$

Example 1: $\quad \mathbb{D}=2^{U}, \quad f x=x \cap a \cup b$

f	$f^{k} \perp$	$f^{k} \top$
0	\emptyset	U
1	b	$a \cup b$
2	b	$a \cup b$

Example 2: $\quad \mathbb{D}=\mathbb{N} \cup\{\infty\}$
Assume $f x=x+1$. Then

$$
f^{i} \perp=f^{i} 0=i \quad \sqsubset \quad i+1=f^{i+1} \perp
$$

\Longrightarrow Ordinary iteration will never reach a fixpoint
\Longrightarrow Sometimes, transfinite iteration is needed :-)

Conclusion:

Systems of inequations can be solved through fixpoint iteration, i.e., by repeated evaluation of right-hand sides :-)

Conclusion:

Systems of inequations can be solved through fixpoint iteration, i.e., by repeated evaluation of right-hand sides :-)

Caveat: Naive fixpoint iteration is rather inefficient :-(

Conclusion:

Systems of inequations can be solved through fixpoint iteration, i.e., by repeated evaluation of right-hand sides :-)

Caveat: Naive fixpoint iteration is rather inefficient

Example:

Conclusion:

Systems of inequations can be solved through fixpoint iteration, i.e., by repeated evaluation of right-hand sides :-)

Caveat: Naive fixpoint iteration is rather inefficient :-(

Example:

	1
0	\emptyset
1	$\{1, x>1, x-1\}$
2	Expr
3	$\{1, x>1, x-1\}$
4	$\{1\}$
5	Expr

Conclusion:

Systems of inequations can be solved through fixpoint iteration, i.e., by repeated evaluation of right-hand sides :-)

Caveat: Naive fixpoint iteration is rather inefficient

Example:

	1	2
0	\emptyset	\emptyset
1	$\{1, x>1, x-1\}$	$\{1\}$
2	Expr	$\{1, x>1, x-1\}$
3	$\{1, x>1, x-1\}$	$\{1, x>1, x-1\}$
4	$\{1\}$	$\{1\}$
5	Expr	$\{1, x>1, x-1\}$

Conclusion:

Systems of inequations can be solved through fixpoint iteration, i.e., by repeated evaluation of right-hand sides :-)

Caveat: Naive fixpoint iteration is rather inefficient :-(

Example:

	1	2	3
0	\emptyset	\emptyset	\emptyset
1	$\{1, x>1, x-1\}$	$\{1\}$	$\{1\}$
2	Expr	$\{1, x>1, x-1\}$	$\{1, x>1\}$
3	$\{1, x>1, x-1\}$	$\{1, x>1, x-1\}$	$\{1, x>1, x-1\}$
4	$\{1\}$	$\{1\}$	$\{1\}$
5	Expr	$\{1, x>1, x-1\}$	$\{1, x>1\}$

Conclusion:

Systems of inequations can be solved through fixpoint iteration, i.e., by repeated evaluation of right-hand sides :-)

Caveat: Naive fixpoint iteration is rather inefficient :-(

Example:

	1	2	3	4
0	\emptyset	\emptyset	\emptyset	\emptyset
1	$\{1, x>1, x-1\}$	$\{1\}$	$\{1\}$	$\{1\}$
2	Expr	$\{1, x>1, x-1\}$	$\{1, x>1\}$	$\{1, x>1\}$
3	$\{1, x>1, x-1\}$	$\{1, x>1, x-1\}$	$\{1, x>1, x-1\}$	$\{1, x>1\}$
4	$\{1\}$	$\{1\}$	$\{1\}$	$\{1\}$
5	Expr	$\{1, x>1, x-1\}$	$\{1, x>1\}$	$\{1, x>1\}$

Conclusion:

Systems of inequations can be solved through fixpoint iteration, i.e., by repeated evaluation of right-hand sides :-)

Caveat: Naive fixpoint iteration is rather inefficient :-(

Example:

	1	2	3	4	5
0	\emptyset	\emptyset	\emptyset	\emptyset	
1	$\{1, x>1, x-1\}$	$\{1\}$	$\{1\}$	$\{1\}$	
2	Expr	$\{1, x>1, x-1\}$	$\{1, x>1\}$	$\{1, x>1\}$	
3	$\{1, x>1, x-1\}$	$\{1, x>1, x-1\}$	$\{1, x>1, x-1\}$	$\{1, x>1\}$	dito
4	$\{1\}$	$\{1\}$	$\{1\}$	$\{1\}$	
5	Expr	$\{1, x>1, x-1\}$	$\{1, x>1\}$	$\{1, x>1\}$	

Idea: Round Robin Iteration

Instead of accessing the values of the last iteration, always use the current values of unknowns :-)

Idea: Round Robin Iteration

Instead of accessing the values of the last iteration, always use the current values of unknowns :-)

Example:

0
1
2
3
4
5

Idea: Round Robin Iteration

Instead of accessing the values of the last iteration, always use the current values of unknowns :-)

Example:

	1
0	\emptyset
1	$\{1\}$
2	$\{1, x>1\}$
3	$\{1, x>1\}$
4	$\{1\}$
5	$\{1, x>1\}$

Idea: Round Robin Iteration

Instead of accessing the values of the last iteration, always use the current values of unknowns :-)

Example:

	1	2
0	\emptyset	
1	$\{1\}$	
2	$\{1, x>1\}$	
3	$\{1, x>1\}$	dito
4	$\{1\}$	
5	$\{1, x>1\}$	

The code for Round Robin Iteration in Java looks as follows:

```
for (i=1;i\leqn;i++) x 
do {
    finished = true;
    for (i=1;i\leqn;i++) {
        new = fi}(\mp@subsup{x}{1}{},\ldots,\mp@subsup{x}{n}{})
        if (!(x, (
            finished = false;
            x}=\mp@subsup{x}{i}{}\sqcupnew
        }
    }
} while (!finished);
```


Correctness:

Assume $\quad y_{i}^{(d)} \quad$ is the i-th component of $\quad F^{d} \perp$.
Assume $x_{i}^{(d)}$ is the value of x_{i} after the d-th RR-iteration.

Correctness:

Assume $\quad y_{i}^{(d)} \quad$ is the i-th component of $\quad F^{d} \perp$.
Assume $x_{i}^{(d)}$ is the value of x_{i} after the i-th RR-iteration.

One proves:
(1) $y_{i}^{(d)} \sqsubseteq x_{i}^{(d)} \quad$:-)

Correctness:

Assume $\quad y_{i}^{(d)} \quad$ is the i-th component of $\quad F^{d} \perp$.
Assume $x_{i}^{(d)}$ is the value of x_{i} after the i-th RR-iteration.

One proves:
(1) $y_{i}^{(d)} \sqsubseteq x_{i}^{(d)} \quad$:-)
(2) $x_{i}^{(d)} \sqsubseteq z_{i}$ for every solution $\left(z_{1}, \ldots, z_{n}\right) \quad$:-)

Correctness:

Assume $y_{i}^{(d)}$ is the i-th component of $\quad F^{d} \perp$.
Assume $x_{i}^{(d)}$ is the value of x_{i} after the i-th RR-iteration.

One proves:
(1) $y_{i}^{(d)} \sqsubseteq x_{i}^{(d)} \quad$:-)
(2) $x_{i}^{(d)} \sqsubseteq z_{i}$ for every solution $\left(z_{1}, \ldots, z_{n}\right) \quad$:-)
(3) If RR-iteration terminates after d rounds, then $\left(x_{1}^{(d)}, \ldots, x_{n}^{(d)}\right)$ is a solution :-))

Caveat:

The efficiency of RR-iteration depends on the ordering of the unknowns !!!

Caveat:

The efficiency of RR-iteration depends on the ordering of the unknowns !!!

Good:

$\rightarrow \quad u$ before v, if $u \rightarrow^{*} v$;
$\rightarrow \quad$ entry condition before loop body :-)

Caveat:

The efficiency of RR-iteration depends on the ordering of the unknowns !!!

Good:

$\rightarrow u$ before v, if $u \rightarrow^{*} v$;
$\rightarrow \quad$ entry condition before loop body :-)
Bad:
e.g., post-order DFS of the CFG, starting at start :-)

Good:

Bad:

Inefficient Round Robin Iteration:

Inefficient Round Robin Iteration:

	1
0	Expr
1	$\{1\}$
2	$\{1, x-1, x>1\}$
3	Expr
4	$\{1\}$
5	\emptyset

Inefficient Round Robin Iteration:

	1	2
0	$E x p r$	$\{1, x>1\}$
1	$\{1\}$	$\{1\}$
2	$\{1, x-1, x>1\}$	$\{1, x-1, x>1\}$
3	$E x p r$	$\{1, x>1\}$
4	$\{1\}$	$\{1\}$
5	\emptyset	\emptyset

Inefficient Round Robin Iteration:

	1	2	3
0	Expr	$\{1, x>1\}$	$\{1, x>1\}$
1	$\{1\}$	$\{1\}$	$\{1\}$
2	$\{1, x-1, x>1\}$	$\{1, x-1, x>1\}$	$\{1, x>1\}$
3	Expr	$\{1, x>1\}$	$\{1, x>1\}$
4	$\{1\}$	$\{1\}$	$\{1\}$
5	\emptyset	\emptyset	\emptyset

Inefficient Round Robin Iteration:

	1	2	3	4
0	$E x p r$	$\{1, x>1\}$	$\{1, x>1\}$	
1	$\{1\}$	$\{1\}$	$\{1\}$	
2	$\{1, x-1, x>1\}$	$\{1, x-1, x>1\}$	$\{1, x>1\}$	dito
3	Expr	$\{1, x>1\}$	$\{1, x>1\}$	
4	$\{1\}$	$\{1\}$	$\{1\}$	
5	\emptyset	\emptyset	\emptyset	

$\Longrightarrow \quad$ significantly less efficient :-)
... end of background on: Complete Lattices
... end of background on: Complete Lattices

Final Question:

Why is a (or the least) solution of the constraint system useful ???

... end of background on: Complete Lattices

Final Question:

Why is a (or the least) solution of the constraint system useful ???

For a complete lattice \mathbb{D}, consider systems:

$$
\begin{array}{lll}
\mathcal{I}[\text { start }] & \sqsupseteq d_{0} & \\
\mathcal{I}[v] & \sqsupseteq \llbracket k \rrbracket^{\sharp}(\mathcal{I}[u]) \quad k=\left(u,{ }_{-}, v\right) \quad \text { edge }
\end{array}
$$

where $\quad d_{0} \in \mathbb{D} \quad$ and all $\llbracket k \rrbracket^{\sharp}: \mathbb{D} \rightarrow \mathbb{D}$ are monotonic ...

... end of background on: Complete Lattices

Final Question:

Why is a (or the least) solution of the constraint system useful ???

For a complete lattice \mathbb{D}, consider systems:

$$
\begin{array}{lll}
\mathcal{I}[\text { start }] & \sqsupseteq d_{0} & \\
\mathcal{I}[v] & \sqsupseteq \llbracket k \rrbracket^{\sharp}(\mathcal{I}[u]) \quad k=\left(u,{ }_{-}, v\right) \quad \text { edge }
\end{array}
$$

where $d_{0} \in \mathbb{D}$ and all $\llbracket k \rrbracket^{\sharp}: \mathbb{D} \rightarrow \mathbb{D}$ are monotonic ...
$\Longrightarrow \quad$ Monotonic Analysis Framework

Wanted: MOP (Merge Over all Paths)

$$
\mathcal{I}^{*}[v]=\bigsqcup\left\{\llbracket \pi \rrbracket^{\sharp} d_{0} \mid \pi: \text { start } \rightarrow^{*} v\right\}
$$

Wanted: MOP (Merge Over all Paths)

$$
\mathcal{I}^{*}[v]=\bigsqcup\left\{\llbracket \pi \rrbracket^{\sharp} d_{0} \mid \pi: \text { start } \rightarrow^{*} v\right\}
$$

Theorem
Kam, Ullman 1975

Assume \mathcal{I} is a solution of the constraint system. Then:

$$
\mathcal{I}[v] \sqsupseteq \mathcal{I}^{*}[v] \quad \text { for every } \quad v
$$

Jeffrey D. Ullman, Stanford

Wanted: MOP (Merge Over all Paths)

$$
\mathcal{I}^{*}[v]=\bigsqcup\left\{\llbracket \pi \rrbracket^{\sharp} d_{0} \mid \pi: \text { start } \rightarrow^{*} v\right\}
$$

Theorem
Kam, Ullman 1975

Assume \mathcal{I} is a solution of the constraint system. Then:

$$
\mathcal{I}[v] \sqsupseteq \mathcal{I}^{*}[v] \quad \text { for every } \quad v
$$

In particular: $\mathcal{I}[v] \sqsupseteq \llbracket \pi \rrbracket^{\sharp} d_{0} \quad$ for every $\pi:$ start $\rightarrow^{*} v$

$$
\text { Proof: } \quad \text { Induction on the length of } \pi .
$$

$$
\text { Proof: Induction on the length of } \pi \text {. }
$$

Foundation: $\quad \pi=\epsilon \quad$ (empty path)

Proof: Induction on the length of π.

Foundation: $\quad \pi=\epsilon \quad$ (empty path)
Then:

$$
\llbracket \pi \rrbracket^{\sharp} d_{0}=\llbracket \epsilon \rrbracket^{\sharp} d_{0}=d_{0} \sqsubseteq \mathcal{I}[\text { start }]
$$

Proof: Induction on the length of π.

Foundation: $\quad \pi=\epsilon \quad$ (empty path)
Then:

$$
\llbracket \pi \rrbracket^{\sharp} d_{0}=\llbracket \epsilon \rrbracket^{\sharp} d_{0}=d_{0} \sqsubseteq \mathcal{I}[\text { start }]
$$

Step: $\quad \pi=\pi^{\prime} k \quad$ for $\quad k=(u,-v) \quad$ edge.

Proof: Induction on the length of π.

Foundation: $\quad \pi=\epsilon \quad$ (empty path)
Then:

$$
\llbracket \pi \rrbracket^{\sharp} d_{0}=\llbracket \epsilon \rrbracket^{\sharp} d_{0}=d_{0} \sqsubseteq \mathcal{I}[\text { start }]
$$

Step: $\quad \pi=\pi^{\prime} k \quad$ for $\quad k=(u,-v) \quad$ edge.
Then:

$$
\begin{array}{rlrll}
\llbracket \pi^{\prime} \rrbracket^{\sharp} d_{0} & \sqsubseteq \mathcal{I}[u] & \text { by I.H. for } \pi \\
\Longrightarrow \llbracket \pi \rrbracket^{\sharp} d_{0} & =\llbracket k \rrbracket^{\sharp}\left(\llbracket \pi^{\prime} \rrbracket^{\sharp} d_{0}\right) & & \\
& \sqsubseteq \llbracket k \rrbracket^{\sharp}(\mathcal{I}[u]) & \text { since } \llbracket k \rrbracket^{\sharp} \text { monotonic } \\
& \sqsubseteq \mathcal{I}[v] & \text { since } & \mathcal{I} & \text { solution } \quad:-))
\end{array}
$$

Disappointment:

Are solutions of the constraint system just upper bounds ???

Disappointment:

Are solutions of the constraint system just upper bounds ???

Answer:

In general: yes

Disappointment:

Are solutions of the constraint system just upper bounds ???

Answer:

In general: yes
:-(
With the notable exception when all functions $\llbracket k \rrbracket^{\sharp}$ are distributive ... :-)

The function $\quad f: \mathbb{D}_{1} \rightarrow \mathbb{D}_{2} \quad$ is called

- distributive, if $\quad f(\bigsqcup X)=\bigsqcup\{f x \mid x \in X\}$ for all $\emptyset \neq X \subseteq \mathbb{D}$;
- strict, if $f \perp=\perp$.
- totally distributive, if f is distributive and strict.

The function $\quad f: \mathbb{D}_{1} \rightarrow \mathbb{D}_{2} \quad$ is called

- distributive, if $\quad f(\bigsqcup X)=\bigsqcup\{f x \mid x \in X\}$ for all $\emptyset \neq X \subseteq \mathbb{D}$;
- strict, if $f \perp=\perp$.
- totally distributive, if f is distributive and strict.

Examples:

- $\quad f x=x \cap a \cup b$ for $a, b \subseteq U$.

The function $\quad f: \mathbb{D}_{1} \rightarrow \mathbb{D}_{2} \quad$ is called

- distributive, if $\quad f(\bigsqcup X)=\bigsqcup\{f x \mid x \in X\}$ for all $\emptyset \neq X \subseteq \mathbb{D}$;
- strict, if $f \perp=\perp$.
- totally distributive, if f is distributive and strict.

Examples:

- $\quad f x=x \cap a \cup b$ for $a, b \subseteq U$.

Strictness: $\quad f \emptyset=a \cap \emptyset \cup b=b=\emptyset \quad$ whenever $\quad b=\emptyset \quad:-($

The function $\quad f: \mathbb{D}_{1} \rightarrow \mathbb{D}_{2} \quad$ is called

- distributive, if $\quad f(\bigsqcup X)=\bigsqcup\{f x \mid x \in X\}$ for all $\emptyset \neq X \subseteq \mathbb{D}$;
- strict, if $f \perp=\perp$.
- totally distributive, if f is distributive and strict.

Examples:

- $\quad f x=x \cap a \cup b$ for $a, b \subseteq U$.

Strictness: $\quad f \emptyset=a \cap \emptyset \cup b=b=\emptyset \quad$ whenever $\quad b=\emptyset \quad:-($
Distributivity:

$$
\begin{aligned}
f\left(x_{1} \cup x_{2}\right) & =a \cap\left(x_{1} \cup x_{2}\right) \cup b \\
& =a \cap x_{1} \cup a \cap x_{2} \cup b \\
& =f x_{1} \cup f x_{2}
\end{aligned}
$$

$$
:-)
$$

- $\quad \mathbb{D}_{1}=\mathbb{D}_{2}=\mathbb{N} \cup\{\infty\}, \quad$ inc $x=x+1$
- $\quad \mathbb{D}_{1}=\mathbb{D}_{2}=\mathbb{N} \cup\{\infty\}, \quad$ inc $x=x+1$

Strictness: $\quad f \perp=\operatorname{inc} 0=1 \quad \neq \perp:-($

- $\quad \mathbb{D}_{1}=\mathbb{D}_{2}=\mathbb{N} \cup\{\infty\}, \quad$ inc $x=x+1$

Strictness: $\quad f \perp=\operatorname{inc} 0=1 \quad \neq \perp \quad:-($
Distributivity: $\quad f(\bigsqcup X)=\bigsqcup\{x+1 \mid x \in X\}$ for $\emptyset \neq X$:-)

- $\quad \mathbb{D}_{1}=\mathbb{D}_{2}=\mathbb{N} \cup\{\infty\}, \quad$ inc $x=x+1$

Strictness: $\quad f \perp=\operatorname{inc} 0=1 \quad \neq \perp \quad:-($
Distributivity: $\quad f(\bigsqcup X)=\bigsqcup\{x+1 \mid x \in X\}$ for $\emptyset \neq X$:-)

- $\quad \mathbb{D}_{1}=(\mathbb{N} \cup\{\infty\})^{2}, \quad \mathbb{D}_{2}=\mathbb{N} \cup\{\infty\}, \quad f\left(x_{1}, x_{2}\right)=x_{1}+x_{2}$
- $\quad \mathbb{D}_{1}=\mathbb{D}_{2}=\mathbb{N} \cup\{\infty\}, \quad$ inc $x=x+1$

Strictness: $\quad f \perp=\operatorname{inc} 0=1 \quad \neq \perp \quad:-($
Distributivity: $\quad f(\bigsqcup X)=\bigsqcup\{x+1 \mid x \in X\}$ for $\emptyset \neq X$:-)

- $\quad \mathbb{D}_{1}=(\mathbb{N} \cup\{\infty\})^{2}, \quad \mathbb{D}_{2}=\mathbb{N} \cup\{\infty\}, \quad f\left(x_{1}, x_{2}\right)=x_{1}+x_{2}$: Strictness: $\quad f \perp=0+0=0 \quad:-)$
- $\quad \mathbb{D}_{1}=\mathbb{D}_{2}=\mathbb{N} \cup\{\infty\}, \quad$ inc $x=x+1$

Strictness: $\quad f \perp=\operatorname{inc} 0=1 \quad \neq \perp \quad:-($
Distributivity: $\quad f(\bigsqcup X)=\bigsqcup\{x+1 \mid x \in X\}$ for $\emptyset \neq X$:-)

- $\mathbb{D}_{1}=(\mathbb{N} \cup\{\infty\})^{2}, \quad \mathbb{D}_{2}=\mathbb{N} \cup\{\infty\}, \quad f\left(x_{1}, x_{2}\right)=x_{1}+x_{2}:$

Strictness: $\quad f \perp=0+0=0 \quad:-)$
Distributivity:

$$
\begin{aligned}
f((1,4) \sqcup(4,1)) & =f(4,4)=8 \\
& \neq 5=f(1,4) \sqcup f(4,1) \quad:-)
\end{aligned}
$$

Remark:

If $\quad f: \mathbb{D}_{1} \rightarrow \mathbb{D}_{2}$ is distributive, then also monotonic $\left.\quad:-\right)$

Remark:

If $f: \mathbb{D}_{1} \rightarrow \mathbb{D}_{2}$ is distributive, then also monotonic :-)

Obviously: $\quad a \sqsubseteq b \quad$ iff $\quad a \sqcup b=b$.

Remark:

If $\quad f: \mathbb{D}_{1} \rightarrow \mathbb{D}_{2} \quad$ is distributive, then also monotonic $\left.\quad:-\right)$

Obviously: $\quad a \sqsubseteq b \quad$ iff $\quad a \sqcup b=b$.
From that follows:

$$
\begin{aligned}
f b & =f(a \sqcup b) \\
& =f a \sqcup f b \\
\Longrightarrow f a & \sqsubseteq f b \quad:-)
\end{aligned}
$$

Assumption: all v are reachable from start.

Assumption: all v are reachable from start.
Then:

Theorem
Kildall 1972
If all effects of edges $\quad \llbracket k \rrbracket^{\sharp}$ are distributive, then: $\quad \mathcal{I}^{*}[v]=\mathcal{I}[v]$ for all v.

Gary A. Kildall (1942-1994).
Has developed the operating system CP/M and GUIs for PCs.

Assumption: all v are reachable from start.
Then:

Theorem
Kildall 1972
If all effects of edges $\quad \llbracket k \rrbracket^{\sharp}$ are distributive, then: $\quad \mathcal{I}^{*}[v]=\mathcal{I}[v]$ for all v.

Assumption: all v are reachable from start.
Then:

Theorem
Kildall 1972
If all effects of edges $\quad \llbracket k \rrbracket^{\sharp}$ are distributive, then: $\quad \mathcal{I}^{*}[v]=\mathcal{I}[v]$ for all v.

Proof:
It suffices to prove that \mathcal{I}^{*} is a solution :-)
For this, we show that \mathcal{I}^{*} satisfies all constraints :-))
(1) We prove for start:

$$
\begin{aligned}
\mathcal{I}^{*}[\text { start }] & =\bigsqcup\left\{\llbracket \pi \rrbracket^{\sharp} d_{0} \mid \pi: \text { start } \rightarrow^{*} \text { start }\right\} \\
& \sqsupseteq \llbracket \epsilon \rrbracket d_{0} \\
& \left.\sqsupseteq d_{0} \quad:-\right)
\end{aligned}
$$

(1) We prove for start:

$$
\begin{aligned}
\mathcal{I}^{*}[\text { start }] & =\bigsqcup\left\{\llbracket \pi \rrbracket^{\sharp} d_{0} \mid \pi: \text { start } \rightarrow^{*} \text { start }\right\} \\
& \sqsupseteq \llbracket \epsilon \rrbracket \rrbracket_{0} \\
& \left.\sqsupseteq d_{0} \quad:-\right)
\end{aligned}
$$

(2) For every $k=\left(u,{ }_{-}, v\right) \quad$ we prove:

$$
\begin{aligned}
\mathcal{I}^{*}[v] & =\bigsqcup\left\{\llbracket \pi \rrbracket^{\sharp} d_{0} \mid \pi: \text { start } \rightarrow^{*} v\right\} \\
& \sqsupseteq \bigsqcup\left\{\llbracket \pi^{\prime} k \rrbracket^{\sharp} d_{0} \mid \pi^{\prime}: \text { start } \rightarrow^{*} u\right\} \\
& =\bigsqcup\left\{\llbracket k \rrbracket^{\sharp}\left(\llbracket \pi^{\prime} \rrbracket^{\sharp} d_{0}\right) \mid \pi^{\prime}: \text { start } \rightarrow^{*} u\right\} \\
& =\llbracket k \rrbracket^{\sharp}\left(\bigsqcup\left\{\llbracket \pi^{\prime} \rrbracket^{\sharp} d_{0} \mid \pi^{\prime}: \text { start } \rightarrow^{*} u\right\}\right) \\
& =\llbracket k \rrbracket^{\sharp}\left(\mathcal{I}^{*}[u \rrbracket)\right.
\end{aligned}
$$

since $\quad\left\{\pi^{\prime} \mid \pi^{\prime}:\right.$ start $\left.\rightarrow^{*} u\right\}$ is non-empty $\left.:-\right)$

Caveat:

- Reachability of all program points cannot be abandoned! Consider:

 where $\mathbb{D}=\mathbb{N} \cup\{\infty\}$

Caveat:

- Reachability of all program points cannot be abandoned! Consider:
(0) (1) ${ }^{7} \rightarrow$ where $\mathbb{D}=\mathbb{N} \cup\{\infty\}$

Then:

$$
\begin{aligned}
& \mathcal{I}[2]=\operatorname{inc} 0=1 \\
& \mathcal{I}^{*}[2]=\bigsqcup \emptyset=0
\end{aligned}
$$

Caveat:

- Reachability of all program points cannot be abandoned! Consider:
(0) (2) where $\mathbb{D}=\mathbb{N} \cup\{\infty\}$

Then:

$$
\begin{aligned}
& \mathcal{I}[2]=\operatorname{inc} 0=1 \\
& \mathcal{I}^{*}[2]=\bigsqcup \emptyset=0
\end{aligned}
$$

- Unreachable program points can always be thrown away :-)

Summary and Application:

$\rightarrow \quad$ The effects of edges of the analysis of availability of expressions are distributive:

$$
\begin{aligned}
\left(a \cup\left(x_{1} \cap x_{2}\right)\right) \backslash b & =\left(\left(a \cup x_{1}\right) \cap\left(a \cup x_{2}\right)\right) \backslash b \\
& =\left(\left(a \cup x_{1}\right) \backslash b\right) \cap\left(\left(a \cup x_{2}\right) \backslash b\right)
\end{aligned}
$$

