
Caveat:

• Reachabilityof all program points cannot be abandoned! Consider:

0 1 2
inc7

where D = N ∪ {∞}

Then:

I[2] = inc 0 = 1

I∗[2] =
⊔
∅ = 0

• Unreachableprogram points can always be thrown away:-)

191



Summary and Application:

→ The effects of edges of the analysis ofavailability of expressions
are distributive:

(a ∪ (x1 ∩ x2))\b = ((a ∪ x1) ∩ (a ∪ x2))\b

= ((a ∪ x1)\b) ∩ ((a ∪ x2)\b)

192



Summary and Application:

→ The effects of edges of the analysis ofavailability of expressions
are distributive:

(a ∪ (x1 ∩ x2))\b = ((a ∪ x1) ∩ (a ∪ x2))\b

= ((a ∪ x1)\b) ∩ ((a ∪ x2)\b)

→ If all effects of edges aredistributive, then theMOP can be
computed by means of the constraint system andRR-iteration. :-)

193



Summary and Application:

→ The effects of edges of the analysis ofavailability of expressions
are distributive:

(a ∪ (x1 ∩ x2))\b = ((a ∪ x1) ∩ (a ∪ x2))\b

= ((a ∪ x1)\b) ∩ ((a ∪ x2)\b)

→ If all effects of edges aredistributive, then theMOP can be
computed by means of the constraint system andRR-iteration. :-)

→ If not all effects of edges aredistributive, thenRR-iterationfor the
constraint system at least returns asafeupper bound to the MOP
:-)

194



1.2 Removing Assignments to Dead Variables

Example:

1 : x = y + 2;

2 : y = 5;

3 : x = y + 3;

The value of x at program points 1, 2 is over-written before it can
be used.

Therefore, we call the variablex deadat these program points:-)

195



Note:

→ Assignments to dead variables can be removed;-)

→ Such inefficiencies may originate from other transformations.

196



Note:

→ Assignments to dead variables can be removed;-)

→ Such inefficiencies may originate from other transformations.

Formal Definition:

The variable x is calledlive at u along the path π starting at
u relative to a set X of variables either:

if x ∈ X and π does not contain adefinitionof x; or:

if π can be decomposed into:π = π1 k π2 such that:

• k is auseof x ; and

• π1 does not contain adefinitionof x.

197



u
π1

k

Thereby, the set of all defined or used variables at an edge
k = (_, lab, _) is defined by:

lab used defined

; ∅ ∅

Pos (e) Vars (e) ∅

Neg (e) Vars (e) ∅

x = e; Vars (e) {x}

x = M [e]; Vars (e) {x}

M [e1] = e2; Vars (e1) ∪ Vars (e2) ∅

198



A variable x which is not live at u along π (relative toX) is
called dead at u along π (relative toX).

Example:

10 2 3

x = y + 2; y = 5; x = y + 3;

whereX = ∅. Then we observe:

live dead

0 {y} {x}

1 ∅ {x, y}

2 {y} {x}

3 ∅ {x, y}

199



The variable x is live at u (relative toX) if x is live at u

alongsomepath to the exit (relative toX). Otherwise, x is calleddead
at u (relative toX).

200



The variable x is live at u (relative toX) if x is live at u

alongsomepath to the exit (relative toX). Otherwise, x is calleddead
at u (relative toX).

Question:

How can the sets of all dead/live variables be computed for every u ???

201



The variable x is live at u (relative toX) if x is live at u

alongsomepath to the exit (relative toX). Otherwise, x is calleddead
at u (relative toX).

Question:

How can the sets of all dead/live variables be computed for every u ???

Idea:

For every edge k = (u, _, v) , define a function [[k]]♯ which transforms
the set of variables which are live atv into the set of variables which
are live at u ...

202



Let L = 2Vars .

For k = (_, lab, _) , define [[k]]♯ = [[lab]]♯ by:

[[;]]♯ L = L

[[Pos(e)]]♯ L = [[Neg(e)]]♯ L = L ∪ Vars(e)

[[x = e;]]♯ L = (L\{x}) ∪ Vars(e)

[[x = M [e];]]♯ L = (L\{x}) ∪ Vars(e)

[[M [e1] = e2;]]
♯ L = L ∪ Vars(e1) ∪ Vars(e2)

203



Let L = 2Vars .

For k = (_, lab, _) , define [[k]]♯ = [[lab]]♯ by:

[[;]]♯ L = L

[[Pos(e)]]♯ L = [[Neg(e)]]♯ L = L ∪ Vars(e)

[[x = e;]]♯ L = (L\{x}) ∪ Vars(e)

[[x = M [e];]]♯ L = (L\{x}) ∪ Vars(e)

[[M [e1] = e2;]]
♯ L = L ∪ Vars(e1) ∪ Vars(e2)

[[k]]♯ can again be composed to the effects of[[π]]♯ of paths
π = k1 . . . kr by:

[[π]]♯ = [[k1]]
♯ ◦ . . . ◦ [[kr]]

♯

204



We verify that these definitions aremeaningful :-)

4 5321

M [y] = x;x = y + 2;y = 5;x = y + 2;

205



We verify that these definitions aremeaningful :-)

4 5321

M [y] = x;x = y + 2;y = 5;x = y + 2;

∅

206



We verify that these definitions aremeaningful :-)

4 5321

M [y] = x;x = y + 2;y = 5;x = y + 2;

∅{x, y}

207



We verify that these definitions aremeaningful :-)

4 5321

M [y] = x;x = y + 2;y = 5;x = y + 2;

∅{x, y}{y}

208



We verify that these definitions aremeaningful :-)

4 5321

M [y] = x;x = y + 2;y = 5;x = y + 2;

∅{x, y}{y}∅

209



We verify that these definitions aremeaningful :-)

4 5321

M [y] = x;x = y + 2;y = 5;x = y + 2;

∅{x, y}{y}∅{y}

210



The set of variables which are live atu then is given by:

L∗[u] =
⋃

{[[π]]♯X | π : u →∗ stop}

... literally:

• The pathsstartin u :-)

==⇒ As partial ordering for L we use ⊑ = ⊆ .

• The set of variables which are live at program exit is given bythe set
X :-)

211



Transformation 2:

;

v v

x = e;

x 6∈ L∗[v]

;

v v

x 6∈ L∗[v]

x = M [e];

212



Correctness Proof:

→ Correctness of the effects of edges:If L is the set of variables
which are live at the exit of the pathπ , then [[π]]♯ L is the set
of variables which are live at the beginning ofπ :-)

→ Correctness of the transformation along a path:If the value of a
variable is accessed, this variable is necessarily live. The value of
dead variables thus isirrelevant :-)

→ Correctness of the transformation:In any execution of the
transformed programs, the live variables always receive the same
values :-))

213



Computation of the setsL∗[u] :

(1) Collecting constraints:

L[stop] ⊇ X

L[u] ⊇ [[k]]♯ (L[v]) k = (u, _, v) edge

(2) Solving the constraint system by means of RR iteration.

Since L is finite, the iteration will terminate :-)

(3) If the exit is (formally) reachable from every program
point, then the smallest solutionL of the constraint
system equals L∗ since all [[k]]♯ are distributive :-))

214



Computation of the setsL∗[u] :

(1) Collecting constraints:

L[stop] ⊇ X

L[u] ⊇ [[k]]♯ (L[v]) k = (u, _, v) edge

(2) Solving the constraint system by means of RR iteration.

Since L is finite, the iteration will terminate :-)

(3) If the exit is (formally) reachable from every program
point, then the smallest solutionL of the constraint
system equals L∗ since all [[k]]♯ are distributive :-))

Caveat: The information is propagatedbackwards !!!

215



Example:

7
x = x− 1;

y = x ∗ y;

Pos(x > 1)Neg(x > 1)

36

4

5

2

y = 1;

1

x = M [I];

0

M [R] = y;

L[0] ⊇ (L[1]\{x}) ∪ {I}

L[1] ⊇ L[2]\{y}

L[2] ⊇ (L[6] ∪ {x}) ∪ (L[3] ∪ {x})

L[3] ⊇ (L[4]\{y}) ∪ {x, y}

L[4] ⊇ (L[5]\{x}) ∪ {x}

L[5] ⊇ L[2]

L[6] ⊇ L[7] ∪ {y, R}

L[7] ⊇ ∅

216



Example:

7
x = x− 1;

y = x ∗ y;

Pos(x > 1)Neg(x > 1)

36

4

5

2

y = 1;

1

x = M [I];

0

M [R] = y;

1 2

7 ∅

6 {y, R}

2 {x, y, R} dito

5 {x, y, R}

4 {x, y, R}

3 {x, y, R}

1 {x,R}

0 {I, R}

217



The left-hand side of no assignment isdead :-)

Caveat:

Removal of assignments to dead variables may kill further variables:

2

3

1

4

x = y + 1;

z = 2 ∗ x;

M [R] = y;

∅

218



The left-hand side of no assignment isdead :-)

Caveat:

Removal of assignments to dead variables may kill further variables:

2

3

1

4

x = y + 1;

z = 2 ∗ x;

M [R] = y;

∅

y, R

219



The left-hand side of no assignment isdead :-)

Caveat:

Removal of assignments to dead variables may kill further variables:

2

3

1

4

x = y + 1;

z = 2 ∗ x;

M [R] = y;

∅

y, R

x, y, R

220



The left-hand side of no assignment isdead :-)

Caveat:

Removal of assignments to dead variables may kill further variables:

2

3

1

4

x = y + 1;

z = 2 ∗ x;

M [R] = y;

y, R

∅

y, R

x, y, R

221



The left-hand side of no assignment isdead :-)

Caveat:

Removal of assignments to dead variables may kill further variables:

2

3

1

4

2

3

1

4

x = y + 1;

z = 2 ∗ x;

M [R] = y;

y, R

∅

y, R

x, y, R

x = y + 1;

;

M [R] = y;

222



The left-hand side of no assignment isdead :-)

Caveat:

Removal of assignments to dead variables may kill further variables:

2

3

1

4

2

3

1

4

x = y + 1;

z = 2 ∗ x;

M [R] = y;

y, R

∅

y, R

x, y, R

x = y + 1;

;

M [R] = y;

y, R

∅

y, R

y,R

223



The left-hand side of no assignment isdead :-)

Caveat:

Removal of assignments to dead variables may kill further variables:

2

3

1

4

2

3

1

4

2

3

1

4

x = y + 1;

z = 2 ∗ x;

M [R] = y;

y, R

∅

y, R

x, y, R

x = y + 1;

;

M [R] = y;

y, R

∅

y, R

y,R

;

;

M [R] = y;

224



Re-analyzing the program is inconvenient:-(

Idea: Analyzetrueliveness!

x is calledtruly live at u along a path π (relative toX), either

if x ∈ X , π does not contain a definition ofx; or

if π can be decomposed intoπ = π1 k π2 such that:

• k is atrueuse ofx relative toπ2;

• π1 does not contain anydefinitionof x.

225



u v
kπ2

The set of truely used variables at an edgek = (_, lab, v) is defined as:

lab truely used

; ∅

Pos (e) Vars (e)

Neg (e) Vars (e)

x = e; Vars (e) (∗)

x = M [e]; Vars (e) (∗)

M [e1] = e2; Vars(e1) ∪ Vars(e2)

(∗) – given that x is truely live at v w.r.t.π2 :-)

226



Example:

2

3

1

4

x = y + 1;

z = 2 ∗ x;

M [R] = y;

∅

227



Example:

2

3

1

4

x = y + 1;

z = 2 ∗ x;

M [R] = y;

∅

y, R

228



Example:

2

3

1

4

x = y + 1;

z = 2 ∗ x;

M [R] = y;

∅

y, R

y,R

229



Example:

2

3

1

4

x = y + 1;

z = 2 ∗ x;

M [R] = y;

y, R

∅

y, R

y,R

230



Example:

2

3

1

4

2

3

1

4

x = y + 1;

z = 2 ∗ x;

M [R] = y;

;

;

M [R] = y;

y, R

∅

y, R

y,R

231



The Effects of Edges:

[[;]]♯ L = L

[[Pos(e)]]♯ L = [[Neg(e)]]♯ L = L ∪ Vars(e)

[[x = e;]]♯ L = (L\{x}) ∪ (x ∈ L) ?Vars(e) : ∅

[[x = M [e];]]♯ L = (L\{x}) ∪ Vars(e)

[[M [e1] = e2;]]
♯ L = L ∪ Vars(e1) ∪ Vars(e2)

232



The Effects of Edges:

[[;]]♯ L = L

[[Pos(e)]]♯ L = [[Neg(e)]]♯ L = L ∪ Vars(e)

[[x = e;]]♯ L = (L\{x}) ∪ (x ∈ L) ?Vars(e) : ∅

[[x = M [e];]]♯ L = (L\{x}) ∪ (x ∈ L) ?Vars(e) : ∅

[[M [e1] = e2;]]
♯ L = L ∪ Vars(e1) ∪ Vars(e2)

233



Note:

• The effects of edges for truely live variables aremore complicated
than for live variables :-)

• Nonetheless, they aredistributive!!

234



Note:

• The effects of edges for truely live variables aremore complicated
than for live variables :-)

• Nonetheless, they aredistributive!!

To see this, consider forD = 2U , f y = (u ∈ y) ? b : ∅ We
verify:

f (y1 ∪ y2) = (u ∈ y1 ∪ y2) ? b : ∅

= (u ∈ y1 ∨ u ∈ y2) ? b : ∅

= (u ∈ y1) ? b : ∅ ∪ (u ∈ y2) ? b : ∅

= f y1 ∪ f y2

235



Note:

• The effects of edges for truely live variables aremore complicated
than for live variables :-)

• Nonetheless, they aredistributive!!

To see this, consider forD = 2U , f y = (u ∈ y) ? b : ∅ We
verify:

f (y1 ∪ y2) = (u ∈ y1 ∪ y2) ? b : ∅

= (u ∈ y1 ∨ u ∈ y2) ? b : ∅

= (u ∈ y1) ? b : ∅ ∪ (u ∈ y2) ? b : ∅

= f y1 ∪ f y2

==⇒ the constraint system yields theMOP :-))

236


