Caveat:

- Reachability of all program points cannot be abandoned! Consider:
(0) (2) where $\mathbb{D}=\mathbb{N} \cup\{\infty\}$

Then:

$$
\begin{aligned}
& \mathcal{I}[2]=\operatorname{inc} 0=1 \\
& \mathcal{I}^{*}[2]=\bigsqcup \emptyset=0
\end{aligned}
$$

- Unreachable program points can always be thrown away :-)

Summary and Application:

$\rightarrow \quad$ The effects of edges of the analysis of availability of expressions are distributive:

$$
\begin{aligned}
\left(a \cup\left(x_{1} \cap x_{2}\right)\right) \backslash b & =\left(\left(a \cup x_{1}\right) \cap\left(a \cup x_{2}\right)\right) \backslash b \\
& =\left(\left(a \cup x_{1}\right) \backslash b\right) \cap\left(\left(a \cup x_{2}\right) \backslash b\right)
\end{aligned}
$$

Summary and Application:

$\rightarrow \quad$ The effects of edges of the analysis of availability of expressions are distributive:

$$
\begin{aligned}
\left(a \cup\left(x_{1} \cap x_{2}\right)\right) \backslash b & =\left(\left(a \cup x_{1}\right) \cap\left(a \cup x_{2}\right)\right) \backslash b \\
& =\left(\left(a \cup x_{1}\right) \backslash b\right) \cap\left(\left(a \cup x_{2}\right) \backslash b\right)
\end{aligned}
$$

$\rightarrow \quad$ If all effects of edges are distributive, then the MOP can be computed by means of the constraint system and RR-iteration. :-)

Summary and Application:

$\rightarrow \quad$ The effects of edges of the analysis of availability of expressions are distributive:

$$
\begin{aligned}
\left(a \cup\left(x_{1} \cap x_{2}\right)\right) \backslash b & =\left(\left(a \cup x_{1}\right) \cap\left(a \cup x_{2}\right)\right) \backslash b \\
& =\left(\left(a \cup x_{1}\right) \backslash b\right) \cap\left(\left(a \cup x_{2}\right) \backslash b\right)
\end{aligned}
$$

$\rightarrow \quad$ If all effects of edges are distributive, then the MOP can be computed by means of the constraint system and RR-iteration. :-)
$\rightarrow \quad$ If not all effects of edges are distributive, then RR-iteration for the constraint system at least returns a safe upper bound to the MOP :-)

1.2 Removing Assignments to Dead Variables

Example:

$$
\begin{array}{ll}
1: & x=y+2 \\
2: & y=5 \\
3: & x=y+3
\end{array}
$$

The value of x at program points 1,2 is over-written before it can be used.

Therefore, we call the variable x dead at these program points :-)

Note:

$\rightarrow \quad$ Assignments to dead variables can be removed ;-)
$\rightarrow \quad$ Such inefficiencies may originate from other transformations.

Note:

\rightarrow Assignments to dead variables can be removed ;-)
$\rightarrow \quad$ Such inefficiencies may originate from other transformations.

Formal Definition:

The variable x is called live at u along the path π starting at
u relative to a set X of variables either:
if $x \in X$ and π does not contain a definition of $x ;$ or:
if $\quad \pi \quad$ can be decomposed into: $\quad \pi=\pi_{1} k \pi_{2} \quad$ such that:

- $\quad k$ is a use of x; and
- π_{1} does not contain a definition of x.

Thereby, the set of all defined or used variables at an edge $k=\left({ }_{-}, l a b,{ }_{\prime}\right) \quad$ is defined by:

$l a b$	used	defined
$;$	\emptyset	\emptyset
$\operatorname{Pos}(e)$	Vars (e)	\emptyset
$\operatorname{Neg}(e)$	Vars (e)	\emptyset
$x=e ;$	$\operatorname{Vars}(e)$	$\{x\}$
$x=M[e] ;$	$\operatorname{Vars}(e)$	$\{x\}$
$M\left[e_{1}\right]=e_{2} ;$	$\operatorname{Vars}\left(e_{1}\right) \cup \operatorname{Vars}\left(e_{2}\right)$	\emptyset

A variable x which is not live at u along $\pi \quad$ (relative to X) is called dead at u along π (relative to X).

Example:

where $X=\emptyset$. Then we observe:

	live	dead
0	$\{y\}$	$\{x\}$
1	\emptyset	$\{x, y\}$
2	$\{y\}$	$\{x\}$
3	\emptyset	$\{x, y\}$

The variable x is live at u (relative to X) if x is live at u along some path to the exit (relative to X). Otherwise, x is called dead at u (relative to X).

The variable x is live at u (relative to X) if x is live at u along some path to the exit (relative to X). Otherwise, x is called dead at u (relative to X).

Question:

How can the sets of all dead/live variables be computed for every u???

The variable x is live at u (relative to X) if x is live at u along some path to the exit (relative to X). Otherwise, x is called dead at u (relative to X).

Question:

How can the sets of all dead/live variables be computed for every u???

Idea:

For every edge $k=\left(u,{ }_{-}, v\right)$, define a function $\llbracket k \rrbracket^{\sharp}$ which transforms the set of variables which are live at v into the set of variables which are live at u...

Let $\mathbb{L}=2^{\text {Vars }}$.
For $\quad k=\left(_, l a b,{ }_{-}\right)$, define $\quad \llbracket k \rrbracket^{\sharp}=\llbracket l a b \rrbracket^{\sharp} \quad$ by:

$$
\begin{array}{ll}
\llbracket ; \rrbracket^{\sharp} L & =L \\
\llbracket \operatorname{Pos}(e) \rrbracket^{\sharp} L & =\llbracket \operatorname{Neg}(e) \rrbracket^{\sharp} L=L \cup \operatorname{Vars}(e) \\
\llbracket x=e ; \rrbracket^{\sharp} L & =(L \backslash\{x\}) \cup \operatorname{Vars}(e) \\
\llbracket x=M[e\rceil ; \rrbracket^{\sharp} L & =(L \backslash\{x\}) \cup \operatorname{Vars}(e) \\
\llbracket M\left[e_{1}\right]=e_{2} ; \rrbracket^{\sharp} L & =L \cup \operatorname{Vars}\left(e_{1}\right) \cup \operatorname{Vars}\left(e_{2}\right)
\end{array}
$$

Let $\mathbb{L}=2^{\text {Vars }}$.
For $\quad k=\left(_, l a b,{ }_{-}\right)$, define $\quad \llbracket k \rrbracket^{\sharp}=\llbracket l a b \rrbracket^{\sharp} \quad$ by:

$$
\begin{array}{ll}
\llbracket ; \mathbb{1}^{\sharp} L & =L \\
\llbracket \operatorname{Pos}(e) \rrbracket^{\sharp} L & =\llbracket \operatorname{Neg}(e) \rrbracket^{\sharp} L=L \cup \operatorname{Vars}(e) \\
\llbracket x=e ; \rrbracket^{\sharp} L & =(L \backslash\{x\}) \cup \operatorname{Vars}(e) \\
\llbracket x=M[e] ; \mathbb{\rrbracket}^{\sharp} L & =(L \backslash\{x\}) \cup \operatorname{Vars}(e) \\
\llbracket M\left[e_{1}\right]=e_{2} ; \rrbracket^{\sharp} L & =L \cup \operatorname{Vars}\left(e_{1}\right) \cup \operatorname{Vars}\left(e_{2}\right)
\end{array}
$$

$\llbracket k \rrbracket^{\sharp} \quad$ can again be composed to the effects of $\quad \llbracket \pi \rrbracket^{\sharp} \quad$ of paths $\pi=k_{1} \ldots k_{r} \quad$ by:

$$
\llbracket \pi \rrbracket^{\sharp}=\llbracket k_{1} \rrbracket^{\sharp} \circ \ldots \circ \llbracket k_{r} \rrbracket^{\sharp}
$$

We verify that these definitions are meaningful :-)

The set of variables which are live at u then is given by:

$$
\mathcal{L}^{*}[u]=\bigcup\left\{\llbracket \pi \rrbracket^{\sharp} X \mid \pi: u \rightarrow^{*} \text { stop }\right\}
$$

... literally:

- The paths start in u :-)
\Longrightarrow As partial ordering for \mathbb{L} we use $\sqsubseteq=\subseteq$.
- The set of variables which are live at program exit is given by the set $X \quad$:-)

Transformation 2:

$\bigoplus_{v} x=M[e] ;$

Correctness Proof:

$\rightarrow \quad$ Correctness of the effects of edges: If L is the set of variables which are live at the exit of the path π, then $\llbracket \pi \rrbracket^{\sharp} L$ is the set of variables which are live at the beginning of $\pi \quad:-)$
$\rightarrow \quad$ Correctness of the transformation along a path: If the value of a variable is accessed, this variable is necessarily live. The value of dead variables thus is irrelevant :-)
$\rightarrow \quad$ Correctness of the transformation: In any execution of the transformed programs, the live variables always receive the same values :-))

Computation of the sets $\mathcal{L}^{*}[u]:$

(1) Collecting constraints:

$$
\begin{array}{lll}
\mathcal{L}[\text { stop }] & \supseteq X & \\
\mathcal{L}[u] & \supseteq \llbracket k \rrbracket^{\sharp}(\mathcal{L}[v]) \quad k=\left(u,_{-}, v\right) \quad \text { edge }
\end{array}
$$

(2) Solving the constraint system by means of RR iteration. Since \mathbb{L} is finite, the iteration will terminate :-)
(3) If the exit is (formally) reachable from every program point, then the smallest solution $\quad \mathcal{L}$ of the constraint system equals $\quad \mathcal{L}^{*}$ since all $\llbracket k \rrbracket^{\sharp}$ are distributive $\left.\left.:-\right)\right)$

Computation of the sets $\mathcal{L}^{*}[u]:$

(1) Collecting constraints:

$$
\begin{array}{lll}
\mathcal{L}[\text { stop }] & \supseteq X & \\
\mathcal{L}[u] & \supseteq \llbracket k \rrbracket^{\sharp}(\mathcal{L}[v]) \quad k=\left(u,_{-}, v\right) \quad \text { edge }
\end{array}
$$

(2) Solving the constraint system by means of RR iteration. Since \mathbb{L} is finite, the iteration will terminate :-)
(3) If the exit is (formally) reachable from every program point, then the smallest solution \mathcal{L} of the constraint system equals $\quad \mathcal{L}^{*}$ since all $\llbracket k \rrbracket^{\sharp}$ are distributive $\left.\left.:-\right)\right)$

Caveat: The information is propagated backwards !!!

Example:

$$
\begin{aligned}
\mathcal{L}[0] & \supseteq(\mathcal{L}[1] \backslash\{x\}) \cup\{I\} \\
\mathcal{L}[1] & \supseteq \mathcal{L}[2] \backslash\{y\} \\
\mathcal{L}[2] & \supseteq(\mathcal{L}[6] \cup\{x\}) \cup(\mathcal{L}[3] \cup\{x\}) \\
\mathcal{L}[3] & \supseteq(\mathcal{L}[4] \backslash\{y\}) \cup\{x, y\} \\
\mathcal{L}[4] & \supseteq(\mathcal{L}[5] \backslash\{x\}) \cup\{x\} \\
\mathcal{L}[5] & \supseteq \mathcal{L}[2] \\
\mathcal{L}[6] & \supseteq \mathcal{L}[7] \cup\{y, R\} \\
\mathcal{L}[7] & \supseteq \emptyset
\end{aligned}
$$

Example:

The left-hand side of no assignment is dead :-)

Caveat:

Removal of assignments to dead variables may kill further variables:

The left-hand side of no assignment is dead :-)

Caveat:

Removal of assignments to dead variables may kill further variables:

The left-hand side of no assignment is dead :-)

Caveat:

Removal of assignments to dead variables may kill further variables:

The left-hand side of no assignment is dead :-)

Caveat:

Removal of assignments to dead variables may kill further variables:

The left-hand side of no assignment is dead :-)

Caveat:

Removal of assignments to dead variables may kill further variables:

The left-hand side of no assignment is dead :-)

Caveat:

Removal of assignments to dead variables may kill further variables:

The left-hand side of no assignment is dead :-)

Caveat:

Removal of assignments to dead variables may kill further variables:

Re-analyzing the program is inconvenient

Idea: Analyze true liveness!
$x \quad$ is called truly live at u along a path π (relative to X), either
if $x \in X, \quad \pi$ does not contain a definition of $x ;$ or
if $\quad \pi \quad$ can be decomposed into $\quad \pi=\pi_{1} k \pi_{2} \quad$ such that:

- $\quad k \quad$ is a true use of x relative to π_{2};
- π_{1} does not contain any definition of x.

The set of truely used variables at an edge $k=\left(_, l a b, v\right) \quad$ is defined as:

$l a b$	truely used
$;$	\emptyset
$\operatorname{Pos}(e)$	Vars (e)
$\operatorname{Neg}(e)$	$\operatorname{Vars}(e)$
$x=e ;$	$\operatorname{Vars}(e) \quad(*)$
$x=M[e] ;$	$\operatorname{Vars}(e) \quad(*)$
$M\left[e_{1}\right]=e_{2} ;$	$\operatorname{Vars}\left(e_{1}\right) \cup \operatorname{Vars}\left(e_{2}\right)$

$(*) \quad$ - given that $\quad x \quad$ is truely live at $\quad v$ w.r.t. $\left.\pi_{2} \quad:-\right)$

Example:

Example:

Example:

Example:

Example:

The Effects of Edges:

$$
\begin{array}{llr}
\llbracket ; \rrbracket^{\sharp} L & =L \\
\llbracket \operatorname{Pos}(e) \rrbracket^{\sharp} L & =\llbracket \operatorname{Neg}(e) \rrbracket^{\sharp} L= & L \cup \operatorname{Vars}(e) \\
\llbracket x=e ; \rrbracket \hbar & =(L \backslash\{x\}) \cup & \operatorname{Vars}(e) \\
\llbracket x=M[e] ; \rrbracket^{\sharp} L & =(L \backslash\{x\}) \cup & \operatorname{Vars}(e) \\
\llbracket M\left[e_{1}\right]=e_{2} ; \rrbracket^{\sharp} L & =L \cup \operatorname{Vars}\left(e_{1}\right) \cup \operatorname{Vars}\left(e_{2}\right)
\end{array}
$$

The Effects of Edges:

$$
\begin{array}{ll}
\llbracket ; \mathbb{\rrbracket}^{\sharp} L & =L \\
\llbracket \operatorname{Pos}(e) \rrbracket^{\sharp} L & =\llbracket \operatorname{Neg}(e) \rrbracket^{\sharp} L=L \cup \operatorname{Vars}(e) \\
\llbracket x=e ; \rrbracket^{\sharp} L & =(L \backslash\{x\}) \cup(x \in L) ? \operatorname{Vars}(e): \emptyset \\
\llbracket x=M[e] ; \mathbb{\rrbracket}^{\sharp} L & =(L \backslash\{x\}) \cup(x \in L) ? \operatorname{Vars}(e): \emptyset \\
\llbracket M\left[e_{1}\right]=e_{2} ; \rrbracket^{\sharp} L & =L \cup \operatorname{Vars}\left(e_{1}\right) \cup \operatorname{Vars}\left(e_{2}\right)
\end{array}
$$

Note:

- The effects of edges for truely live variables are more complicated than for live variables :-)
- Nonetheless, they are distributive !!

Note:

- The effects of edges for truely live variables are more complicated than for live variables :-)
- Nonetheless, they are distributive !!

To see this, consider for $\mathbb{D}=2^{U}, \quad f y=(u \in y) ? b: \emptyset \quad$ We verify:

$$
\begin{aligned}
f\left(y_{1} \cup y_{2}\right) & =\left(u \in y_{1} \cup y_{2}\right) ? b: \emptyset \\
& =\left(u \in y_{1} \vee u \in y_{2}\right) ? b: \emptyset \\
& =\left(u \in y_{1}\right) ? b: \emptyset \cup\left(u \in y_{2}\right) ? b: \emptyset \\
& =f y_{1} \cup f y_{2}
\end{aligned}
$$

Note:

- The effects of edges for truely live variables are more complicated than for live variables :-)
- Nonetheless, they are distributive !!

To see this, consider for $\quad \mathbb{D}=2^{U}, \quad f y=(u \in y) ? b: \emptyset \quad$ We verify:

$$
\begin{aligned}
f\left(y_{1} \cup y_{2}\right) & =\left(u \in y_{1} \cup y_{2}\right) ? b: \emptyset \\
& =\left(u \in y_{1} \vee u \in y_{2}\right) ? b: \emptyset \\
& =\left(u \in y_{1}\right) ? b: \emptyset \cup\left(u \in y_{2}\right) ? b: \emptyset \\
& =f y_{1} \cup f y_{2}
\end{aligned}
$$

\Longrightarrow the constraint system yields the MOP :-))

