Caveat:

• Reachability of all program points cannot be abandoned! Consider:

$$\begin{array}{c}
 7 \\
 0 \\
 1 \\
 \end{array} \quad \begin{array}{c}
 \text{inc} \\
 2 \\
 \end{array} \quad \text{where} \quad \mathbb{D} = \mathbb{N} \cup \{\infty\}
\end{array}$$

Then:

$$\mathcal{I}[2] = \operatorname{inc} 0 = 1$$
$$\mathcal{I}^*[2] = \bigsqcup \emptyset = 0$$

• Unreachable program points can always be thrown away :-)

Summary and Application:

 \rightarrow The effects of edges of the analysis of availability of expressions are distributive:

$$(a \cup (x_1 \cap x_2)) \setminus b = ((a \cup x_1) \cap (a \cup x_2)) \setminus b$$
$$= ((a \cup x_1) \setminus b) \cap ((a \cup x_2) \setminus b)$$

Summary and Application:

 \rightarrow The effects of edges of the analysis of availability of expressions are distributive:

$$(a \cup (x_1 \cap x_2)) \setminus b = ((a \cup x_1) \cap (a \cup x_2)) \setminus b$$
$$= ((a \cup x_1) \setminus b) \cap ((a \cup x_2) \setminus b)$$

 \rightarrow If all effects of edges are distributive, then the MOP can be computed by means of the constraint system and RR-iteration. :-)

Summary and Application:

 \rightarrow The effects of edges of the analysis of availability of expressions are distributive:

$$(a \cup (x_1 \cap x_2)) \setminus b = ((a \cup x_1) \cap (a \cup x_2)) \setminus b$$
$$= ((a \cup x_1) \setminus b) \cap ((a \cup x_2) \setminus b)$$

- \rightarrow If all effects of edges are distributive, then the MOP can be computed by means of the constraint system and RR-iteration. :-)
- → If not all effects of edges are distributive, then RR-iteration for the constraint system at least returns a safe upper bound to the MOP
 :-)

1.2 Removing Assignments to Dead Variables

Example:

1:
$$x = y + 2;$$

2: $y = 5;$
3: $x = y + 3;$

The value of x at program points 1, 2 is over-written before it can be used.

Therefore, we call the variable x dead at these program points :-)

- \rightarrow Assignments to dead variables can be removed ;-)
- \rightarrow Such inefficiencies may originate from other transformations.

- \rightarrow Assignments to dead variables can be removed ;-)
- \rightarrow Such inefficiencies may originate from other transformations.

Formal Definition:

The variable x is called live at u along the path π starting at u relative to a set X of variables either:

- if $x \in X$ and π does not contain a definition of x; or:
- if π can be decomposed into: $\pi = \pi_1 k \pi_2$ such that:
 - k is a use of x; and
 - π_1 does not contain a definition of x.

$$u$$
 π_1 k \sim

Thereby, the set of all defined or used variables at an edge $k = (_, lab, _)$ is defined by:

lab	used	defined
;	Ø	Ø
Pos(e)	$Vars\left(e ight)$	Ø
$\operatorname{Neg}\left(e\right)$	$Vars\left(e ight)$	Ø
x = e;	$Vars\left(e ight)$	$\{x\}$
x = M[e];	$Vars\left(e ight)$	$\{x\}$
$M[e_1] = e_2;$	$Vars(e_1) \cup Vars(e_2)$	Ø

A variable x which is not live at u along π (relative to X) is called dead at u along π (relative to X).

Example:

where $X = \emptyset$. Then we observe:

	live	dead
0	$\{y\}$	$\{x\}$
1	Ø	$\{x, y\}$
2	$\{y\}$	$\{x\}$
3	Ø	$\{x, y\}$

The variable x is live at u (relative to X) if x is live at u along some path to the exit (relative to X). Otherwise, x is called dead at u (relative to X).

The variable x is live at u (relative to X) if x is live at u along some path to the exit (relative to X). Otherwise, x is called dead at u (relative to X).

Question:

How can the sets of all dead/live variables be computed for every u???

The variable x is live at u (relative to X) if x is live at u along some path to the exit (relative to X). Otherwise, x is called dead at u (relative to X).

Question:

How can the sets of all dead/live variables be computed for every u???

Idea:

For every edge $k = (u, _, v)$, define a function $[\![k]\!]^{\sharp}$ which transforms the set of variables which are live at v into the set of variables which are live at u ...

Let
$$\mathbb{L} = 2^{Vars}$$
.
For $k = (_, lab, _)$, define $[\![k]\!]^{\sharp} = [\![lab]\!]^{\sharp}$ by:

$$\llbracket : \rrbracket^{\sharp} L = L$$

$$\llbracket \operatorname{Pos}(e) \rrbracket^{\sharp} L = \llbracket \operatorname{Neg}(e) \rrbracket^{\sharp} L = L \cup \operatorname{Vars}(e)$$

$$\llbracket x = e : \rrbracket^{\sharp} L = (L \setminus \{x\}) \cup \operatorname{Vars}(e)$$

$$\llbracket x = M[e] : \rrbracket^{\sharp} L = (L \setminus \{x\}) \cup \operatorname{Vars}(e)$$

$$\llbracket M[e_1] = e_2 : \rrbracket^{\sharp} L = L \cup \operatorname{Vars}(e_1) \cup \operatorname{Vars}(e_2)$$

Let
$$\mathbb{L} = 2^{Vars}$$
.
For $k = (_, lab, _)$, define $[\![k]\!]^{\sharp} = [\![lab]\!]^{\sharp}$ by:

$$\llbracket : \rrbracket^{\sharp} L = L$$

$$\llbracket \operatorname{Pos}(e) \rrbracket^{\sharp} L = \llbracket \operatorname{Neg}(e) \rrbracket^{\sharp} L = L \cup \operatorname{Vars}(e)$$

$$\llbracket x = e : \rrbracket^{\sharp} L = (L \setminus \{x\}) \cup \operatorname{Vars}(e)$$

$$\llbracket x = M[e] : \rrbracket^{\sharp} L = (L \setminus \{x\}) \cup \operatorname{Vars}(e)$$

$$\llbracket M[e_1] = e_2 : \rrbracket^{\sharp} L = L \cup \operatorname{Vars}(e_1) \cup \operatorname{Vars}(e_2)$$

 $\llbracket k \rrbracket^{\sharp}$ can again be composed to the effects of $\llbracket \pi \rrbracket^{\sharp}$ of paths $\pi = k_1 \dots k_r$ by: $\llbracket \pi \rrbracket^{\sharp} = \llbracket k_1 \rrbracket^{\sharp} \circ \dots \circ \llbracket k_r \rrbracket^{\sharp}$

$$x = y + 2; \quad y = 5; \quad x = y + 2; \quad M[y] = x;$$

$$1 \longrightarrow 2 \longrightarrow 3 \longrightarrow 4 \longrightarrow 5$$

$$x = y + 2; \quad y = 5; \quad x = y + 2; \quad M[y] = x;$$
1 2 3 4 5

$$x = y + 2; \quad y = 5; \quad x = y + 2; \quad M[y] = x;$$

$$1 \longrightarrow 2 \longrightarrow 3 \longrightarrow 4 \longrightarrow 5$$

$$\{x, y\} \qquad \emptyset$$

$$x = y + 2; \quad y = 5; \quad x = y + 2; \quad M[y] = x;$$

$$1 \longrightarrow 2 \longrightarrow 3 \longrightarrow 4 \longrightarrow 5$$

$$\{y\} \quad \{x, y\} \quad \emptyset$$

$$x = y + 2; \quad y = 5; \quad x = y + 2; \quad M[y] = x;$$

$$1 \longrightarrow 2 \longrightarrow 3 \longrightarrow 4 \longrightarrow 5$$

$$\emptyset \qquad \{y\} \qquad \{x, y\} \qquad \emptyset$$

$$x = y + 2; \quad y = 5; \quad x = y + 2; \quad M[y] = x;$$

$$1 \longrightarrow 2 \longrightarrow 3 \longrightarrow 4 \longrightarrow 5$$

$$\{y\} \qquad \emptyset \qquad \{y\} \qquad \{x, y\} \qquad \emptyset$$

The set of variables which are live at u then is given by:

$$\mathcal{L}^*[u] = \bigcup \{ \llbracket \pi \rrbracket^{\sharp} X \mid \pi : u \to^* stop \}$$

... literally:

• The paths start in u :-)

 \implies As partial ordering for \mathbb{L} we use $\sqsubseteq = \subseteq$.

The set of variables which are live at program exit is given by the set
 X :-)

Transformation 2:

Correctness Proof:

- → Correctness of the effects of edges: If L is the set of variables which are live at the exit of the path π , then $[[\pi]]^{\sharp}L$ is the set of variables which are live at the beginning of π :-)
- → Correctness of the transformation along a path: If the value of a variable is accessed, this variable is necessarily live. The value of dead variables thus is irrelevant :-)
- → Correctness of the transformation: In any execution of the transformed programs, the live variables always receive the same values :-))

Computation of the sets $\mathcal{L}^*[u]$:

(1) Collecting constraints:

$$\mathcal{L}[stop] \supseteq X \mathcal{L}[u] \supseteq [k]^{\sharp} (\mathcal{L}[v]) \qquad k = (u, _, v) \text{ edge}$$

- (2) Solving the constraint system by means of RR iteration. Since \mathbb{L} is finite, the iteration will terminate :-)
- (3) If the exit is (formally) reachable from every program point, then the smallest solution \$\mathcal{L}\$ of the constraint system equals \$\mathcal{L}^*\$ since all \$\$\[[k]]^\\$ are distributive :-))

Computation of the sets $\mathcal{L}^*[u]$:

(1) Collecting constraints:

$$\mathcal{L}[stop] \supseteq X \mathcal{L}[u] \supseteq [k]^{\sharp} (\mathcal{L}[v]) \qquad k = (u, _, v) \text{ edge}$$

- (2) Solving the constraint system by means of RR iteration.Since L is finite, the iteration will terminate :-)
- (3) If the exit is (formally) reachable from every program point, then the smallest solution \$\mathcal{L}\$ of the constraint system equals \$\mathcal{L}^*\$ since all \$\$\[[k]]^\\$ are distributive :-))

Caveat: The information is propagated backwards !!!

$$\begin{split} \mathcal{L}[0] &\supseteq (\mathcal{L}[1] \setminus \{x\}) \cup \{I\} \\ \mathcal{L}[1] &\supseteq \mathcal{L}[2] \setminus \{y\} \\ \mathcal{L}[2] &\supseteq (\mathcal{L}[6] \cup \{x\}) \cup (\mathcal{L}[3] \cup \{x\})) \\ \mathcal{L}[3] &\supseteq (\mathcal{L}[4] \setminus \{y\}) \cup \{x, y\} \\ \mathcal{L}[4] &\supseteq (\mathcal{L}[5] \setminus \{x\}) \cup \{x\} \\ \mathcal{L}[5] &\supseteq \mathcal{L}[2] \\ \mathcal{L}[6] &\supseteq \mathcal{L}[7] \cup \{y, R\} \\ \mathcal{L}[7] &\supseteq \emptyset \end{split}$$

	1	2
7	Ø	
6	$\{y, R\}$	
2	$\{x, y, R\}$	dito
5	$\{x, y, R\}$	
4	$\{x, y, R\}$	
3	$\{x, y, R\}$	
1	$\{x, R\}$	
0	$\{I, R\}$	

Caveat:

$$\begin{array}{c}
1 \\
x = y + 1; \\
2 \\
z = 2 * x; \\
3 \\
M[R] = y; \\
4 \\
\emptyset
\end{array}$$

Caveat:

$$\begin{array}{c}
1 \\
x = y + 1; \\
2 \\
z = 2 * x; \\
3 \\
y, R \\
M[R] = y; \\
4 \\
\emptyset
\end{array}$$

Caveat:

$$\begin{array}{c}
1 \\
x = y + 1; \\
2 \\
x, y, R \\
z = 2 * x; \\
3 \\
y, R \\
M[R] = y; \\
4 \\
\emptyset
\end{array}$$

Caveat:

Caveat:

Caveat:

Caveat:

Re-analyzing the program is inconvenient :-(

Idea: Analyze true liveness!

x is called truly live at u along a path π (relative to X), either

if $x \in X$, π does not contain a definition of x; or

- if π can be decomposed into $\pi = \pi_1 k \pi_2$ such that:
 - k is a true use of x relative to π_2 ;
 - π_1 does not contain any definition of x.

The set of truly used variables at an edge $k = (_, lab, v)$ is defined as:

lab	truely used	
;	Ø	
$\operatorname{Pos}\left(e\right)$	$Vars\left(e ight)$	
$\operatorname{Neg}\left(e\right)$	$Vars\left(e ight)$	
x = e;	Vars(e) (*)	
x = M[e];	Vars(e) (*)	
$M[e_1] = e_2;$	$Vars(e_1) \cup Vars(e_2)$	

(*) – given that x is truly live at v w.r.t. π_2 :-)

$$\begin{array}{c}
1 \\
x = y + 1; \\
2 \\
z = 2 * x; \\
3 \\
M[R] = y; \\
4 \\
\emptyset
\end{array}$$

$$\begin{array}{c}
1 \\
x = y + 1; \\
2 \\
z = 2 * x; \\
3 \\
y, R \\
M[R] = y; \\
4 \\
\emptyset
\end{array}$$

$$\begin{array}{c}
1 \\
x = y + 1; \\
2 \\
y, R \\
z = 2 * x; \\
3 \\
y, R \\
M[R] = y; \\
4 \\
\emptyset
\end{array}$$

The Effects of Edges:

$$\llbracket : \rrbracket^{\sharp} L = L$$

$$\llbracket \operatorname{Pos}(e) \rrbracket^{\sharp} L = \llbracket \operatorname{Neg}(e) \rrbracket^{\sharp} L = L \cup \operatorname{Vars}(e)$$

$$\llbracket x = e : \rrbracket^{\sharp} L = (L \setminus \{x\}) \cup \operatorname{Vars}(e)$$

$$\llbracket x = M[e] : \rrbracket^{\sharp} L = (L \setminus \{x\}) \cup \operatorname{Vars}(e)$$

$$\llbracket M[e_1] = e_2 : \rrbracket^{\sharp} L = L \cup \operatorname{Vars}(e_1) \cup \operatorname{Vars}(e_2)$$

The Effects of Edges:

$$\begin{aligned} \llbracket : \rrbracket^{\sharp} L &= L \\ \llbracket \operatorname{Pos}(e) \rrbracket^{\sharp} L &= \llbracket \operatorname{Neg}(e) \rrbracket^{\sharp} L &= L \cup \operatorname{Vars}(e) \\ \llbracket x = e : \rrbracket^{\sharp} L &= (L \setminus \{x\}) \cup (x \in L) ? \operatorname{Vars}(e) : \emptyset \\ \llbracket x = M[e] : \rrbracket^{\sharp} L &= (L \setminus \{x\}) \cup (x \in L) ? \operatorname{Vars}(e) : \emptyset \\ \llbracket M[e_1] = e_2 : \rrbracket^{\sharp} L &= L \cup \operatorname{Vars}(e_1) \cup \operatorname{Vars}(e_2) \end{aligned}$$

- The effects of edges for truely live variables are more complicated than for live variables :-)
- Nonetheless, they are distributive !!

- The effects of edges for truely live variables are more complicated than for live variables :-)
- Nonetheless, they are distributive !!
 To see this, consider for D = 2^U, f y = (u ∈ y)?b: Ø We verify:

$$f(y_1 \cup y_2) = (u \in y_1 \cup y_2)?b: \emptyset$$

= $(u \in y_1 \lor u \in y_2)?b: \emptyset$
= $(u \in y_1)?b: \emptyset \cup (u \in y_2)?b: \emptyset$
= $f y_1 \cup f y_2$

- The effects of edges for truely live variables are more complicated than for live variables :-)
- Nonetheless, they are distributive !!
 To see this, consider for D = 2^U, f y = (u ∈ y)?b: Ø We verify:

$$f(y_1 \cup y_2) = (u \in y_1 \cup y_2)?b: \emptyset$$

= $(u \in y_1 \lor u \in y_2)?b: \emptyset$
= $(u \in y_1)?b: \emptyset \cup (u \in y_2)?b: \emptyset$
= $f y_1 \cup f y_2$

 \implies the constraint system yields the MOP :-))