- True liveness detects more superfluous assignments than repeated liveness !!!

- True liveness detects more superfluous assignments than repeated liveness !!!

Liveness:

- True liveness detects more superfluous assignments than repeated liveness !!!

True Liveness:

1.3 Removing Superfluous Moves

Example:

This variable-variable assignment is obviously useless

1.3 Removing Superfluous Moves

Example:

This variable-variable assignment is obviously useless
Instead of y, we could also store T :-)

1.3 Removing Superfluous Moves

Example:

This variable-variable assignment is obviously useless
Instead of y, we could also store $T \quad$:-)

1.3 Removing Superfluous Moves

Example:

Advantage: \quad Now, y has become dead :-))

1.3 Removing Superfluous Moves

Example:

Advantage: \quad Now, y has become dead :-))

Idea:

For each expression, we record the variable which currently contains its value :-)

We use: $\mathbb{V}=$ Expr $\rightarrow 2^{\text {Vars }} \quad .$.

Idea:

For each expression, we record the variable which currently contains its value :-)

We use: $\mathbb{V}=\operatorname{Expr} \rightarrow 2^{\text {Vars }}$ and define:

$$
\begin{array}{ll}
\llbracket ; \rrbracket^{\sharp} V & =V \\
\llbracket \operatorname{Pos}(e) \rrbracket^{\sharp} V e^{\prime} & =\llbracket \operatorname{Neg}(e) \rrbracket^{\sharp} V e^{\prime}= \begin{cases}\emptyset & \text { if } e^{\prime}=e \\
V e^{\prime} & \text { otherwise }\end{cases}
\end{array}
$$

$$
\begin{aligned}
& \llbracket x=c ; \rrbracket^{\sharp} V e^{\prime}= \begin{cases}(V c) \cup\{x\} & \text { if } e^{\prime}=c \\
\left(V e^{\prime}\right) \backslash\{x\} & \text { otherwise }\end{cases} \\
& \llbracket x=y ; \rrbracket^{\sharp} V e= \begin{cases}(V e) \cup\{x\} & \text { if } y \in V e \\
(V e) \backslash\{x\} & \text { otherwise }\end{cases} \\
& \llbracket x=e ; \rrbracket^{\sharp} V e^{\prime}= \begin{cases}\{x\} & \text { if } e^{\prime}=e \\
\left(V e^{\prime}\right) \backslash\{x\} & \text { otherwise }\end{cases} \\
& \llbracket x=M[c] ; \rrbracket^{\sharp} V e^{\prime}=\left(V e^{\prime}\right) \backslash\{x\} \\
& \llbracket x=M[y] ; \mathbb{Z}^{\sharp} V e^{\prime}=\left(V e^{\prime}\right) \backslash\{x\} \\
& \llbracket x=M[e] ; \rrbracket^{\sharp} V e^{\prime}= \begin{cases}\emptyset & \text { if } e^{\prime}=e \\
\left(V e^{\prime}\right) \backslash\{x\} & \text { otherwise }\end{cases} \\
& \text { / analogously for the diverse stores }
\end{aligned}
$$

In the Example:

$$
\{x+1 \mapsto\{T\}\}
$$

In the Example:

$$
\{x+1 \mapsto\{T\}\}
$$

\rightarrow We propagate information in forward direction :-)
At start, $V_{0} e=\emptyset$ for all e;
$\rightarrow \quad \sqsubseteq \subseteq \mathbb{V} \times \mathbb{V}$ is defined by:

$$
V_{1} \sqsubseteq V_{2} \quad \text { iff } \quad V_{1} e \quad \supseteq \quad V_{2} e \quad \text { for all }
$$

Observation:

The new effects of edges are distributive:

To show this, we consider the functions:
(1) $f_{1}^{x} V e=(V e) \backslash\{x\}$
(2) $\left.f_{2}^{e, a} V=V \oplus\{e \mapsto a\}\right\}$
(3) $f_{3}^{x, y} V e=(y \in V e) ?(V e \cup\{x\}):((V e) \backslash\{x\})$

Obviously, we have:

$$
\begin{array}{ll}
\llbracket x=e ; \rrbracket^{\sharp} & =f_{2}^{e,\{x\}} \circ f_{1}^{x} \\
\llbracket x=y ; \rrbracket^{\sharp} & =f_{3}^{x, y} \\
\llbracket x=M[e] ; \mathbb{\rrbracket}^{\sharp} & =f_{2}^{e, \emptyset} \circ f_{1}^{x}
\end{array}
$$

By closure under composition, the assertion follows :-))
(1) For $f V e=(V e) \backslash\{x\}$, we have:

$$
\begin{aligned}
f\left(V_{1} \sqcup V_{2}\right) e & =\left(\left(V_{1} \sqcup V_{2}\right) e\right) \backslash\{x\} \\
& =\left(\left(V_{1} e\right) \cap\left(V_{2} e\right)\right) \backslash\{x\} \\
& =\left(\left(V_{1} e\right) \backslash\{x\}\right) \cap\left(\left(V_{2} e\right) \backslash\{x\}\right) \\
& =\left(f V_{1} e\right) \cap\left(f V_{2} e\right) \\
& \left.=\left(f V_{1} \sqcup f V_{2}\right) e \quad:-\right)
\end{aligned}
$$

(2) For $f V=V \oplus\{e \mapsto a\}$, we have:

$$
\begin{aligned}
f\left(V_{1} \sqcup V_{2}\right) e^{\prime} & =\left(\left(V_{1} \sqcup V_{2}\right) \oplus\{e \mapsto a\}\right) e^{\prime} \\
& =\left(V_{1} \sqcup V_{2}\right) e^{\prime} \\
& =\left(f V_{1} \sqcup f V_{2}\right) e^{\prime} \quad \text { given that } \quad e \neq e^{\prime} \\
f\left(V_{1} \sqcup V_{2}\right) e & =\left(\left(V_{1} \sqcup V_{2}\right) \oplus\{e \mapsto a\}\right) e \\
& =a \\
& =\left(\left(V_{1} \oplus\{e \mapsto a\}\right) e\right) \cap\left(\left(V_{2} \oplus\{e \mapsto a\}\right) e\right) \\
& \left.=\left(f V_{1} \sqcup f V_{2}\right) e \quad:-\right)
\end{aligned}
$$

(3) For $f V e=(y \in V e)$? $(V e \cup\{x\}):((V e) \backslash\{x\})$, we have:

$$
\begin{aligned}
f\left(V_{1} \sqcup V_{2}\right) e= & \left(\left(\left(V_{1} \sqcup V_{2}\right) e\right) \backslash\{x\}\right) \cup\left(y \in\left(V_{1} \sqcup V_{2}\right) e\right) ?\{x\}: \emptyset \\
= & \left(\left(V_{1} e \cap V_{2} e\right) \backslash\{x\}\right) \cup\left(y \in\left(V_{1} e \cap V_{2} e\right)\right) ?\{x\}: \emptyset \\
= & \left(\left(V_{1} e \cap V_{2} e\right) \backslash\{x\}\right) \cup \\
& \left(\left(y \in V_{1} e\right) ?\{x\}: \emptyset\right) \cap\left(\left(y \in V_{2} e\right) ?\{x\}: \emptyset\right) \\
= & \left(\left(\left(V_{1} e\right) \backslash\{x\}\right) \cup\left(y \in V_{1} e\right) ?\{x\}: \emptyset\right) \cap \\
& \left(\left(\left(V_{2} e\right) \backslash\{x\}\right) \cup\left(y \in V_{2} e\right) ?\{x\}: \emptyset\right) \\
= & \left.\left(f V_{1} \sqcup f V_{2}\right) e \quad:-\right)
\end{aligned}
$$

We conclude:

$\rightarrow \quad$ Solving the constraint system returns the MOP solution :-)
\rightarrow Let \mathcal{V} denote this solution.
If $x \in \mathcal{V}[u] e$, then x at u contains the value of e which we have stored in T_{e}
\qquad
the access to x can be replaced by the access to T_{e} :-)

For $\quad V \in \mathbb{V}$, let V^{-}denote the variable substitution with:

$$
V^{-} x= \begin{cases}T_{e} & \text { if } x \in V e \\ x & \text { otherwise }\end{cases}
$$

if $\quad V e \cap V e^{\prime}=\emptyset \quad$ for $\quad e \neq e^{\prime}$. Otherwise: $\left.\quad V^{-} x=x \quad:-\right)$

Transformation 3:

... analogously for edges with Neg (e)

Transformation 3 (cont.):

Procedure as a whole:

(1) Availability of expressions:

+ removes arithmetic operations
- inserts superfluous moves
(2) Values of variables:
$+\quad$ creates dead variables
(3) (true) liveness of variables:
+ removes assignments to dead variables

Example: a[7]--;

Example: a[7]--;

Example (cont.): a[7]--;

Example (cont.): a[7]--;

1.4 Constant Propagation

Idea:

Execute as much of the code at compile-time as possible!

Example:

$$
\begin{aligned}
& x=7 \\
& \text { if }(x>0) \\
& \qquad M[A]=B ;
\end{aligned}
$$

Obviously, x has always the value 7 :-)
Thus, the memory access is always executed :-))

Goal:

Obviously, x has always the value 7 :-)
Thus, the memory access is always executed :-))
Goal:

Generalization:
Partial Evaluation

Neil D. Jones, DIKU, Kopenhagen

Idea:

Design an analysis which for every u,

- determines the values which variables definitely have;
- tells whether u can be reached at all :-)

Idea:

Design an analysis which for every u,

- determines the values which variables definitely have;
- tells whether u can be reached at all :-)

The complete lattice is constructed in two steps.
(1) The potential values of variables:

$$
\mathbb{Z}^{\top}=\mathbb{Z} \cup\{\top\} \quad \text { with } \quad x \sqsubseteq y \quad \text { iff } y=\top \text { or } x=y
$$

Caveat: \mathbb{Z}^{\top} is not a complete lattice in itself
(2) $\mathbb{D}=\left(\text { Vars } \rightarrow \mathbb{Z}^{\top}\right)_{\perp}=\left(\right.$ Vars $\left.\rightarrow \mathbb{Z}^{\top}\right) \cup\{\perp\}$

$$
/ / \perp \text { denotes: "not reachable" :-)) }
$$

$$
\begin{array}{llll}
\text { with } \quad D_{1} \sqsubseteq D_{2} & \text { iff } & \perp=D_{1} & \text { or } \\
& & D_{1} x \sqsubseteq D_{2} x & \\
& & (x \in \text { Vars })
\end{array}
$$

Remark: \mathbb{D} is a complete lattice :-)

Caveat: \mathbb{Z}^{\top} is not a complete lattice in itself
(2) $\mathbb{D}=\left(\text { Vars } \rightarrow \mathbb{Z}^{\top}\right)_{\perp}=\left(\right.$ Vars $\left.\rightarrow \mathbb{Z}^{\top}\right) \cup\{\perp\}$

$$
/ / \perp \text { denotes: "not reachable" :-)) }
$$

$$
\begin{array}{llll}
\text { with } \quad D_{1} \sqsubseteq D_{2} & \text { iff } & \perp=D_{1} & \text { or } \\
& & D_{1} x \sqsubseteq D_{2} x & \\
& & (x \in \text { Vars })
\end{array}
$$

Remark: \mathbb{D} is a complete lattice :-)
Consider $\quad X \subseteq \mathbb{D}$. W.l.o.g., $\quad \perp \notin X$.
Then $\quad X \subseteq$ Vars $\rightarrow \mathbb{Z}^{\top}$.
If $\quad X=\emptyset$, then $\quad \bigsqcup X=\perp \in \mathbb{D} \quad:-)$

If $X \neq \emptyset$, then $\quad \bigsqcup X=D$ with

$$
\begin{aligned}
D x & =\bigsqcup\{f x \mid f \in X\} \\
& = \begin{cases}z & \text { if } f x=z \quad(f \in X) \\
\top & \text { otherwise }\end{cases}
\end{aligned}
$$

:-))

If $X \neq \emptyset$, then $\quad \bigsqcup X=D$ with

$$
\begin{aligned}
D x & =\bigsqcup\{f x \mid f \in X\} \\
& = \begin{cases}z & \text { if } f x=z \quad(f \in X) \\
\top & \text { otherwise }\end{cases}
\end{aligned}
$$

:-))

For every edge $k=\left(_, l a b,{ }_{-}\right)$, construct an effect function
$\llbracket k \rrbracket^{\sharp}=\llbracket l a b \rrbracket^{\sharp}: \mathbb{D} \rightarrow \mathbb{D}$ which simulates the concrete computation.
Obviously, $\quad \llbracket l a b \rrbracket^{\sharp} \perp=\perp$ for all lab :-)
Now let $\perp \neq D \in$ Vars $\rightarrow \mathbb{Z}^{\top}$.

Idea:

- We use D to determine the values of expressions.

Idea:

- We use D to determine the values of expressions.
- For some sub-expressions, we obtain \top :-)

Idea:

- We use D to determine the values of expressions.
- For some sub-expressions, we obtain \top :-)

We must replace the concrete operators \square by abstract operators $\square \sharp$ which can handle \top :

$$
a \square^{\sharp} b= \begin{cases}\top & \text { if } a=\top \text { or } b=\top \\ a \square b & \text { otherwise }\end{cases}
$$

Idea:

- We use D to determine the values of expressions.
- For some sub-expressions, we obtain T :-)

We must replace the concrete operators $\quad \square$ by abstract operators $\square \sharp$ which can handle \top :

$$
a \square^{\sharp} b= \begin{cases}\top & \text { if } a=\top \text { or } b=\top \\ a \square b & \text { otherwise }\end{cases}
$$

- The abstract operators allow to define an abstract evaluation of expressions:

$$
\llbracket e \rrbracket^{\sharp}: \quad\left(\text { Vars } \rightarrow \mathbb{Z}^{\top}\right) \rightarrow \mathbb{Z}^{\top}
$$

Abstract evaluation of expressions is like the concrete evaluation - but with abstract values and operators. Here:

$$
\begin{array}{ll}
\llbracket c \rrbracket^{\sharp} D & =c \\
\llbracket e_{1} \square e_{2} \rrbracket^{\sharp} D & =\llbracket e_{1} \rrbracket^{\sharp} D \square^{\sharp} \llbracket e_{2} \rrbracket^{\sharp} D
\end{array}
$$

... analogously for unary operators :-)

Abstract evaluation of expressions is like the concrete evaluation - but with abstract values and operators. Here:

$$
\begin{array}{ll}
\llbracket c \rrbracket^{\sharp} D & =c \\
\llbracket e_{1} \square e_{2} \rrbracket^{\sharp} D & =\llbracket e_{1} \rrbracket^{\sharp} D \square^{\sharp} \llbracket e_{2} \rrbracket^{\sharp} D
\end{array}
$$

... analogously for unary operators :-)

Example:

$$
\begin{aligned}
& D=\{x \mapsto 2, y \mapsto \top\} \\
& \llbracket x+7 \rrbracket^{\sharp} D=\llbracket x \rrbracket^{\sharp} D+^{\sharp} \llbracket 7 \rrbracket^{\sharp} D \\
&=2+^{\sharp} 7 \\
&=9 \\
& \llbracket x-y \rrbracket^{\sharp} D=2-\sharp \top \\
&=\top
\end{aligned}
$$

Thus, we obtain the following effects of edges $\llbracket l a b \rrbracket^{\sharp}$:

$$
\begin{array}{ll}
\llbracket ; \mathbb{\sharp}^{\sharp} D & =D \\
\llbracket \operatorname{Pos}(e) \rrbracket^{\sharp} D & = \begin{cases}\perp & \text { if } \quad 0=\llbracket e \rrbracket^{\sharp} D \\
D & \text { otherwise }\end{cases} \\
\llbracket \operatorname{Neg}(e) \rrbracket^{\sharp} D & = \begin{cases}D & \text { if } \quad 0 \sqsubseteq \llbracket e \rrbracket^{\sharp} D \\
\perp & \text { otherwise }\end{cases} \\
\llbracket x=e ; \rrbracket^{\sharp} D & =D \oplus\left\{x \mapsto \llbracket \llbracket \rrbracket^{\sharp} D\right\} \\
\llbracket x=M[e] ; \mathbb{\sharp}^{\sharp} D & =D \oplus\{x \mapsto \top\} \\
\llbracket M\left[e_{1}\right]=e_{2} ; \rrbracket^{\sharp} D & =D
\end{array}
$$

$$
\ldots \text { whenever } \quad D \neq \perp \quad:-)
$$

At start, we have $D_{\top}=\{x \mapsto \top \mid x \in$ Vars $\}$.

Example:

At start, we have $D_{\top}=\{x \mapsto \top \mid x \in$ Vars $\}$.

Example:

1	$\{x \mapsto \mathrm{~T}\}$
2	$\{x \mapsto 7\}$
3	$\{x \mapsto 7\}$
4	$\{x \mapsto 7\}$
5	$\perp \sqcup\{x \mapsto 7\}=\{x \mapsto 7\}$

The abstract effects of edges $\llbracket k \rrbracket^{\sharp}$ are again composed to the effects of paths $\pi=k_{1} \ldots k_{r} \quad$ by:

$$
\llbracket \pi \rrbracket^{\sharp}=\llbracket k_{r} \rrbracket^{\sharp} \circ \ldots \circ \llbracket k_{1} \rrbracket^{\sharp} \quad: \mathbb{D} \rightarrow \mathbb{D}
$$

Idea for Correctness:

Abstract Interpretation
Cousot, Cousot 1977

Patrick Cousot, ENS, Paris

The abstract effects of edges $\llbracket k \rrbracket^{\sharp}$ are again composed to the effects of paths $\pi=k_{1} \ldots k_{r} \quad$ by:

$$
\llbracket \pi \rrbracket^{\sharp}=\llbracket k_{r} \rrbracket^{\sharp} \circ \ldots \circ \llbracket k_{1} \rrbracket^{\sharp} \quad: \quad \mathbb{D} \rightarrow \mathbb{D}
$$

Idea for Correctness:
Abstract Interpretation
Cousot, Cousot 1977

Establish a description relation Δ between theconcrete values and their descriptions with:

$$
x \Delta a_{1} \wedge a_{1} \sqsubseteq a_{2} \quad \Longrightarrow x \Delta a_{2}
$$

Concretization: $\quad \gamma a=\{x \mid x \Delta a\}$
// returns the set of described values :-)
(1) Values: $\Delta \subseteq \mathbb{Z} \times \mathbb{Z}^{\top}$

$$
z \Delta a \quad \text { iff } \quad z=a \vee a=\top
$$

Concretization:

$$
\gamma a=\left\{\begin{array}{lll}
\{a\} & \text { if } & a \sqsubset \top \\
\mathbb{Z} & \text { if } & a=\top
\end{array}\right.
$$

(1) Values: $\Delta \subseteq \mathbb{Z} \times \mathbb{Z}^{\top}$

$$
z \Delta a \quad \text { iff } \quad z=a \vee a=\top
$$

Concretization:

$$
\gamma a=\left\{\begin{array}{lll}
\{a\} & \text { if } & a \sqsubset \top \\
\mathbb{Z} & \text { if } & a=\top
\end{array}\right.
$$

(2) Variable Assignments: $\Delta \subseteq($ Vars $\rightarrow \mathbb{Z}) \times\left(\text { Vars } \rightarrow \mathbb{Z}^{\top}\right)_{\perp}$

$$
\rho \Delta D \quad \text { iff } \quad D \neq \perp \wedge \rho x \sqsubseteq D x \quad(x \in \operatorname{Vars})
$$

Concretization:

$$
\gamma D= \begin{cases}\emptyset & \text { if } \quad D=\perp \\ \{\rho \mid \forall x:(\rho x) \Delta(D x)\} & \text { otherwise }\end{cases}
$$

