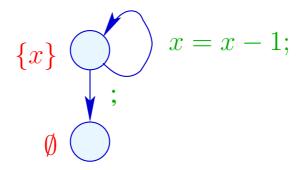
• True liveness detects more superfluous assignments than repeated liveness !!!

$$x = x - 1;$$

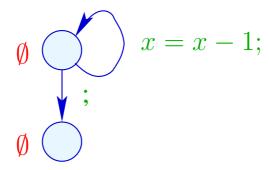
• True liveness detects more superfluous assignments than repeated liveness !!!

Liveness:

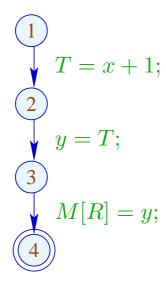


• True liveness detects more superfluous assignments than repeated liveness !!!

True Liveness:

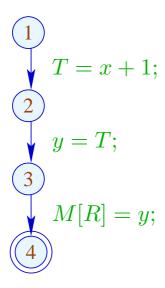


Example:



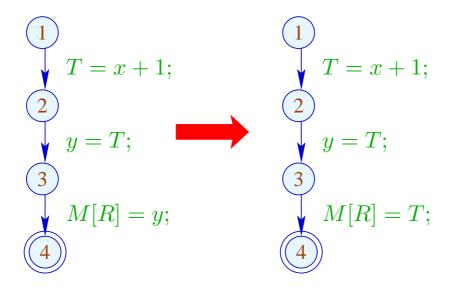
This variable-variable assignment is obviously useless :-(

Example:



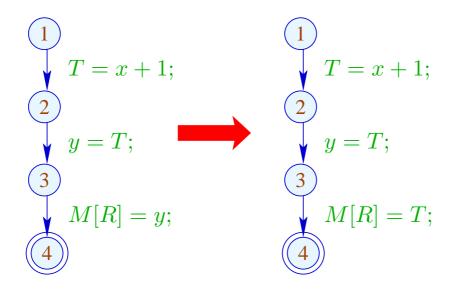
This variable-variable assignment is obviously useless :-(
Instead of y, we could also store T :-)

Example:



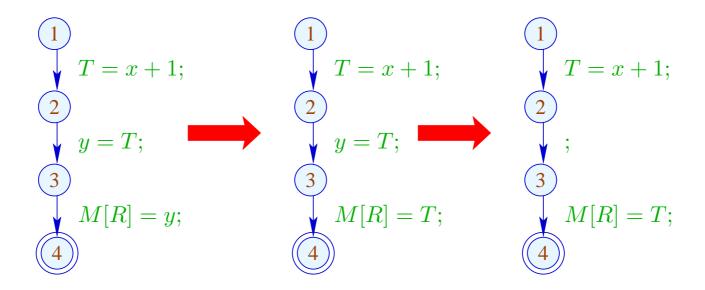
This variable-variable assignment is obviously useless :-(
Instead of y, we could also store T :-)

Example:



Advantage: Now, y has become dead :-))

Example:



Advantage: Now, y has become dead :-))

Idea:

For each expression, we record the variable which currently contains its value :-)

We use:
$$V = Expr \rightarrow 2^{Vars}$$
 ...

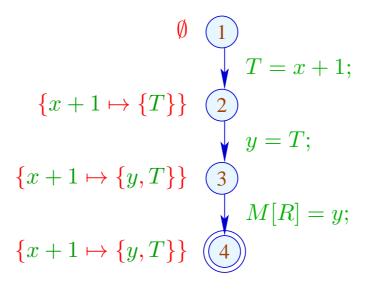
Idea:

For each expression, we record the variable which currently contains its value :-)

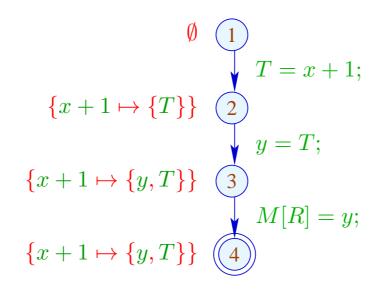
We use: $V = Expr \rightarrow 2^{Vars}$ and define:

analogously for the diverse stores

In the Example:



In the Example:



- → We propagate information in forward direction :-)
 - At *start*, $V_0 e = \emptyset$ for all e;
- \rightarrow $\sqsubseteq \subseteq \mathbb{V} \times \mathbb{V}$ is defined by:

$$V_1 \sqsubseteq V_2$$
 iff $V_1 e \supseteq V_2 e$ for all e

Observation:

The new effects of edges are distributive:

To show this, we consider the functions:

$$(1) f_1^x V e = (V e) \setminus \{x\}$$

(2)
$$f_2^{e,a} V = V \oplus \{e \mapsto a\}\}$$

(3)
$$f_3^{x,y} V e = (y \in V e) ? (V e \cup \{x\}) : ((V e) \setminus \{x\})$$

Obviously, we have:

$$[x = e;]^{\sharp} = f_2^{e,\{x\}} \circ f_1^x$$

$$[x = y;]^{\sharp} = f_3^{x,y}$$

$$[x = M[e];]^{\sharp} = f_2^{e,\emptyset} \circ f_1^x$$

By closure under composition, the assertion follows :-))

(1) For $f V e = (V e) \setminus \{x\}$, we have:

$$f(V_1 \sqcup V_2) e = ((V_1 \sqcup V_2) e) \setminus \{x\}$$

$$= ((V_1 e) \cap (V_2 e)) \setminus \{x\}$$

$$= ((V_1 e) \setminus \{x\}) \cap ((V_2 e) \setminus \{x\})$$

$$= (f V_1 e) \cap (f V_2 e)$$

$$= (f V_1 \sqcup f V_2) e :-)$$

(2) For $fV = V \oplus \{e \mapsto a\}$, we have:

$$f(V_{1} \sqcup V_{2}) e' = ((V_{1} \sqcup V_{2}) \oplus \{e \mapsto a\}) e'$$

$$= (V_{1} \sqcup V_{2}) e'$$

$$= (f V_{1} \sqcup f V_{2}) e' \text{ given that } e \neq e'$$

$$f(V_{1} \sqcup V_{2}) e = ((V_{1} \sqcup V_{2}) \oplus \{e \mapsto a\}) e$$

$$= a$$

$$= ((V_{1} \oplus \{e \mapsto a\}) e) \cap ((V_{2} \oplus \{e \mapsto a\}) e)$$

$$= (f V_{1} \sqcup f V_{2}) e :-)$$

(3) For $f V e = (y \in V e) ? (V e \cup \{x\}) : ((V e) \setminus \{x\})$, we have:

$$f(V_{1} \sqcup V_{2}) e = (((V_{1} \sqcup V_{2}) e) \setminus \{x\}) \cup (y \in (V_{1} \sqcup V_{2}) e) ? \{x\} : \emptyset$$

$$= ((V_{1} e \cap V_{2} e) \setminus \{x\}) \cup (y \in (V_{1} e \cap V_{2} e)) ? \{x\} : \emptyset$$

$$= ((V_{1} e \cap V_{2} e) \setminus \{x\}) \cup$$

$$((y \in V_{1} e) ? \{x\} : \emptyset) \cap ((y \in V_{2} e) ? \{x\} : \emptyset)$$

$$= (((V_{1} e) \setminus \{x\}) \cup (y \in V_{1} e) ? \{x\} : \emptyset) \cap$$

$$(((V_{2} e) \setminus \{x\}) \cup (y \in V_{2} e) ? \{x\} : \emptyset)$$

$$= (f V_{1} \sqcup f V_{2}) e : -)$$

We conclude:

- → Solving the constraint system returns the MOP solution :-)
- \rightarrow Let \mathcal{V} denote this solution.

If $x \in \mathcal{V}[\underline{u}] e$, then x at \underline{u} contains the value of e — which we have stored in T_e

 \Longrightarrow

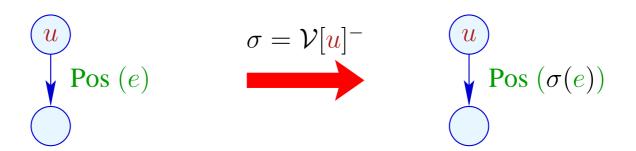
the access to x can be replaced by the access to T_e :-)

For $V \in \mathbb{V}$, let V^- denote the variable substitution with:

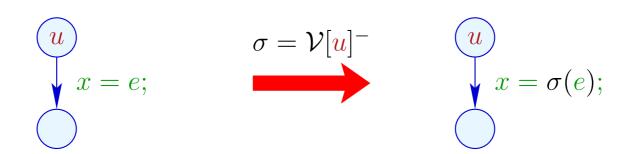
$$V^{-}x = \begin{cases} T_e & \text{if } x \in Ve \\ x & \text{otherwise} \end{cases}$$

if $Ve \cap Ve' = \emptyset$ for $e \neq e'$. Otherwise: $V^-x = x$:-)

Transformation 3:



... analogously for edges with Neg(e)



Transformation 3 (cont.):

$$\sigma = \mathcal{V}[u]^{-}$$

$$x = M[e];$$

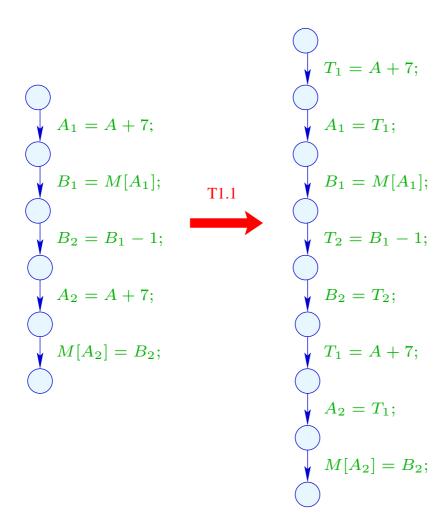
$$x = M[\sigma(e)];$$

$$\sigma = \mathcal{V}[u]^ M[e_1] = e_2;$$
 $M[\sigma(e_1)] = \sigma(e_2);$

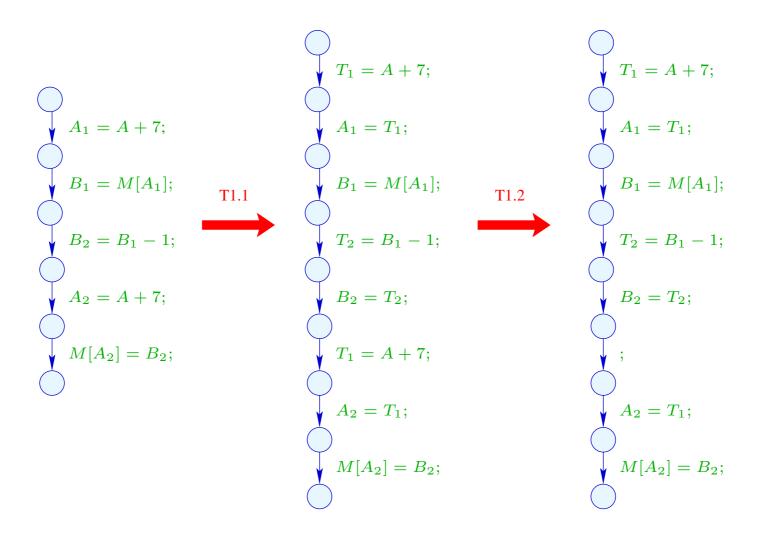
Procedure as a whole:

(1)	Availability of expressions:	T1
	+ removes arithmetic operations	
	 inserts superfluous moves 	
(2)	Values of variables:	T3
	+ creates dead variables	
(3)	(true) liveness of variables:	T2
	+ removes assignments to dead variables	

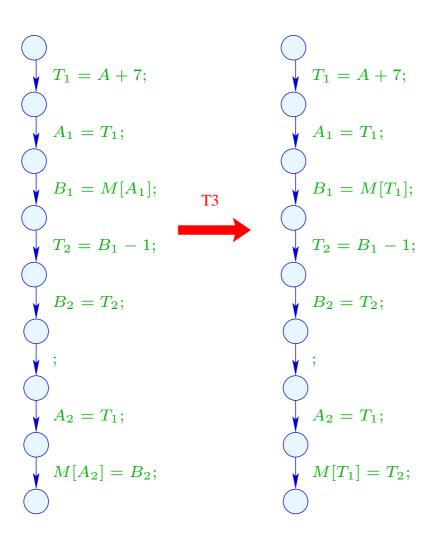
Example: a[7]--;



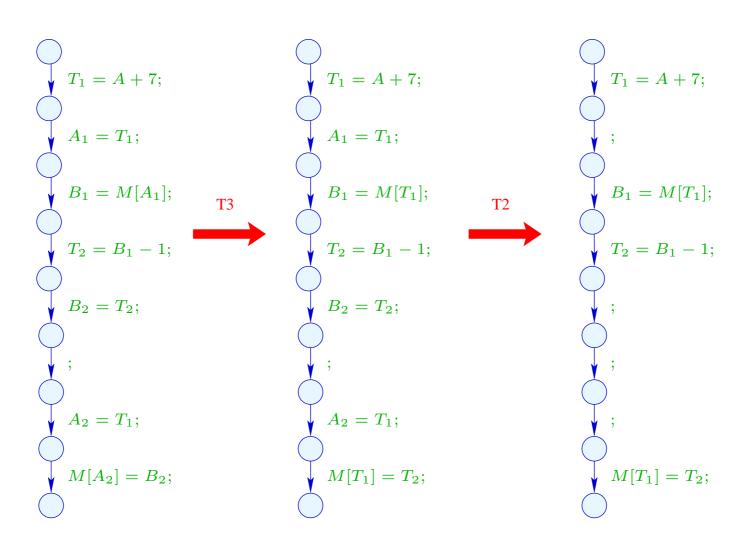
Example: a[7]--;



Example (cont.): a[7]--;



Example (cont.): a[7]--;



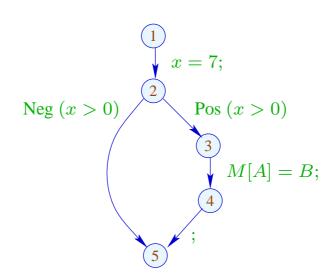
1.4 Constant Propagation

Idea:

Execute as much of the code at compile-time as possible!

Example:

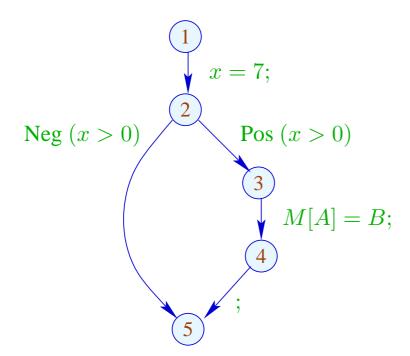
$$x = 7;$$
 if $(x > 0)$
$$M[A] = B;$$



Obviously, x has always the value 7 :-)

Thus, the memory access is always executed :-))

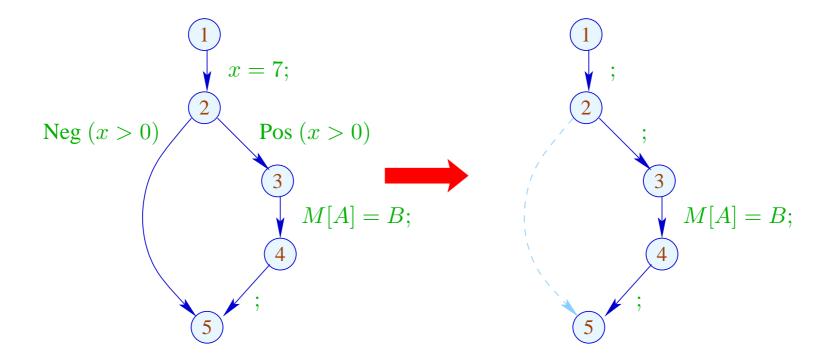
Goal:



Obviously, x has always the value 7 :-)

Thus, the memory access is always executed :-))

Goal:



Generalization: Partial Evaluation

Neil D. Jones, DIKU, Kopenhagen

Idea:

Design an analysis which for every u,

- determines the values which variables definitely have;
- tells whether u can be reached at all :-)

Idea:

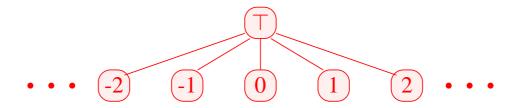
Design an analysis which for every u,

- determines the values which variables definitely have;
- tells whether u can be reached at all :-)

The complete lattice is constructed in two steps.

(1) The potential values of variables:

$$\mathbb{Z}^{\top} = \mathbb{Z} \cup \{\top\}$$
 with $x \sqsubseteq y$ iff $y = \top$ or $x = y$



Caveat: \mathbb{Z}^{\top} is not a complete lattice in itself :-(

(2)
$$\mathbb{D} = (Vars \to \mathbb{Z}^{\top})_{\perp} = (Vars \to \mathbb{Z}^{\top}) \cup \{\bot\}$$

// \perp denotes: "not reachable" :-))

with $D_1 \sqsubseteq D_2$ iff $\perp = D_1$ or

 $D_1 x \sqsubseteq D_2 x$ $(x \in Vars)$

Remark: \mathbb{D} is a complete lattice :-)

Caveat: \mathbb{Z}^{\top} is not a complete lattice in itself :-(

(2)
$$\mathbb{D} = (Vars \to \mathbb{Z}^{\top})_{\perp} = (Vars \to \mathbb{Z}^{\top}) \cup \{\bot\}$$

// \perp denotes: "not reachable" :-))

with $D_1 \sqsubseteq D_2$ iff $\perp = D_1$ or

 $D_1 x \sqsubseteq D_2 x$ $(x \in Vars)$

Remark: \mathbb{D} is a complete lattice :-)

Consider $X \subseteq \mathbb{D}$. W.l.o.g., $\perp \notin X$.

Then $X \subseteq Vars \to \mathbb{Z}^{\top}$.

If $X = \emptyset$, then $| X = \bot \in \mathbb{D}$:-)

If
$$X \neq \emptyset$$
 , then $\bigsqcup X = D$ with
$$Dx = \bigsqcup \{fx \mid f \in X\}$$

$$= \begin{cases} z & \text{if} \quad fx = z \quad (f \in X) \\ \top & \text{otherwise} \end{cases}$$
 :-))

If
$$X \neq \emptyset$$
 , then $\bigsqcup X = D$ with
$$Dx = \bigsqcup \{fx \mid f \in X\}$$

$$= \begin{cases} z & \text{if} \quad fx = z \quad (f \in X) \\ \top & \text{otherwise} \end{cases}$$
 :-))

For every edge $k = (_, lab, _)$, construct an effect function $[\![k]\!]^\sharp = [\![lab]\!]^\sharp : \mathbb{D} \to \mathbb{D}$ which simulates the concrete computation.

Obviously, $[\![lab]\!]^{\sharp} \perp = \perp$ for all lab :-) Now let $\perp \neq D \in Vars \rightarrow \mathbb{Z}^{\top}$.

Idea:

• We use D to determine the values of expressions.

Idea:

- ullet We use D to determine the values of expressions.
- For some sub-expressions, we obtain \top :-)

Idea:

- We use D to determine the values of expressions.
- For some sub-expressions, we obtain \top :-)

$$\Longrightarrow$$

We must replace the concrete operators \Box by abstract operators \Box^{\sharp} which can handle \top :

$$a \Box^{\sharp} b = \begin{cases} \top & \text{if} \quad a = \top \text{ or } b = \top \\ a \Box b & \text{otherwise} \end{cases}$$

Idea:

- We use D to determine the values of expressions.
- For some sub-expressions, we obtain \top :-)

$$\Longrightarrow$$

We must replace the concrete operators \Box by abstract operators \Box^{\sharp} which can handle \top :

$$a \Box^{\sharp} b = \begin{cases} \top & \text{if} \quad a = \top \text{ or } b = \top \\ a \Box b & \text{otherwise} \end{cases}$$

• The abstract operators allow to define an abstract evaluation of expressions:

$$\llbracket e \rrbracket^{\sharp} : (Vars \to \mathbb{Z}^{\top}) \to \mathbb{Z}^{\top}$$

Abstract evaluation of expressions is like the concrete evaluation — but with abstract values and operators. Here:

$$[\![c]\!]^{\sharp} D = c$$

$$[\![e_1 \square e_2]\!]^{\sharp} D = [\![e_1]\!]^{\sharp} D \square^{\sharp} [\![e_2]\!]^{\sharp} D$$
... analogously for unary operators :-)

Abstract evaluation of expressions is like the concrete evaluation — but with abstract values and operators. Here:

$$[\![c]\!]^{\sharp} D = c$$

$$[\![e_1 \square e_2]\!]^{\sharp} D = [\![e_1]\!]^{\sharp} D \square^{\sharp} [\![e_2]\!]^{\sharp} D$$

... analogously for unary operators :-)

$$D = \{x \mapsto 2, y \mapsto \top\}$$

$$[x + 7]^{\sharp} D = [x]^{\sharp} D +^{\sharp} [7]^{\sharp} D$$

$$= 2 +^{\sharp} 7$$

$$= 9$$

$$[x - y]^{\sharp} D = 2 -^{\sharp} \top$$

$$= \top$$

Thus, we obtain the following effects of edges $[ab]^{\sharp}$:

$$[\![;]\!]^{\sharp} D = D$$

$$[\![\operatorname{Pos}(e)]\!]^{\sharp} D = \begin{cases} \bot & \text{if } 0 = [\![e]\!]^{\sharp} D \\ D & \text{otherwise} \end{cases}$$

$$[\![\operatorname{Neg}(e)]\!]^{\sharp} D = \begin{cases} D & \text{if } 0 \sqsubseteq [\![e]\!]^{\sharp} D \\ \bot & \text{otherwise} \end{cases}$$

$$[\![x = e;]\!]^{\sharp} D = D \oplus \{x \mapsto [\![e]\!]^{\sharp} D\}$$

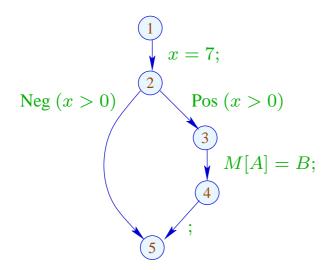
$$[\![x = M[e];]\!]^{\sharp} D = D \oplus \{x \mapsto \top\}$$

$$[\![M[e_1] = e_2;]\!]^{\sharp} D = D$$

... whenever $D \neq \bot$:-)

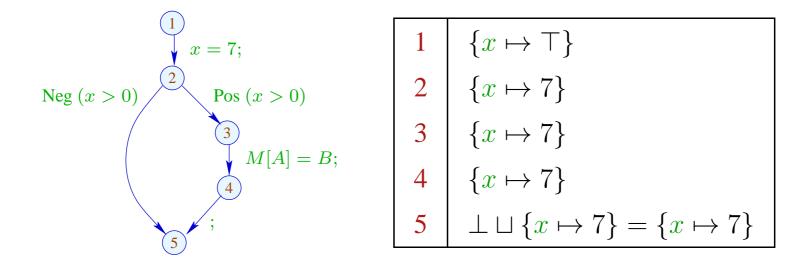
At *start*, we have $D_{\top} = \{x \mapsto \top \mid x \in Vars\}$.

Example:



At *start*, we have $D_{\top} = \{x \mapsto \top \mid x \in Vars\}$.

Example:



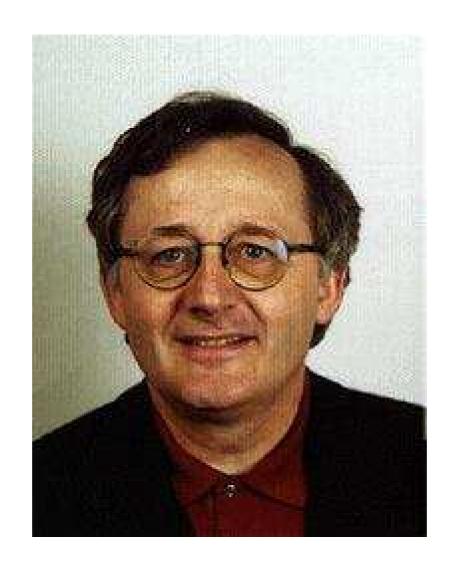
The abstract effects of edges $[\![k]\!]^{\sharp}$ are again composed to the effects of paths $\pi = k_1 \dots k_r$ by:

$$\llbracket \pi \rrbracket^{\sharp} = \llbracket k_r \rrbracket^{\sharp} \circ \ldots \circ \llbracket k_1 \rrbracket^{\sharp} : \mathbb{D} \to \mathbb{D}$$

Idea for Correctness:

Abstract Interpretation

Cousot, Cousot 1977



Patrick Cousot, ENS, Paris

The abstract effects of edges $[\![k]\!]^{\sharp}$ are again composed to the effects of paths $\pi = k_1 \dots k_r$ by:

$$\llbracket \pi \rrbracket^{\sharp} = \llbracket k_r \rrbracket^{\sharp} \circ \ldots \circ \llbracket k_1 \rrbracket^{\sharp} : \mathbb{D} \to \mathbb{D}$$

Idea for Correctness:

Abstract Interpretation

Cousot, Cousot 1977

Establish a description relation Δ between the concrete values and their descriptions with:

$$x \Delta a_1 \quad \land \quad a_1 \sqsubseteq a_2 \quad \Longrightarrow \quad x \Delta a_2$$

Concretization:
$$\gamma a = \{x \mid x \Delta a\}$$

// returns the set of described values :-)

(1) Values:
$$\Delta \subseteq \mathbb{Z} \times \mathbb{Z}^{\top}$$

$$z \Delta a$$
 iff $z = a \vee a = \top$

Concretization:

$$\gamma a = \begin{cases} \{a\} & \text{if} \quad a \sqsubseteq \top \\ \mathbb{Z} & \text{if} \quad a = \top \end{cases}$$

(1) Values: $\Delta \subseteq \mathbb{Z} \times \mathbb{Z}^{\top}$ $z \Delta a \quad \text{iff} \quad z = a \lor a = \top$

Concretization:

$$\gamma a = \begin{cases} \{a\} & \text{if} \quad a \sqsubseteq \top \\ \mathbb{Z} & \text{if} \quad a = \top \end{cases}$$

(2) Variable Assignments: $\Delta \subseteq (Vars \to \mathbb{Z}) \times (Vars \to \mathbb{Z}^{\top})_{\perp}$ $\rho \Delta D \quad \text{iff} \quad D \neq \perp \wedge \rho x \sqsubseteq D x \quad (x \in Vars)$

Concretization:

$$\gamma D = \begin{cases} \emptyset & \text{if } D = \bot \\ \{\rho \mid \forall x : (\rho x) \Delta (D x)\} & \text{otherwise} \end{cases}$$