e True liveness detectsoresuperfluous assignments than repeated
livenesg!!!
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e True liveness detectsoresuperfluous assignments than repeated
livenesg!!!

Liveness:
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e True liveness detectsoresuperfluous assignments than repeated
livenesg!!!

True Liveness:

=
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1.3 Removing Superfluous Moves

Example:

This variable-variable assignment is obviously useless
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1.3 Removing Superfluous Moves

Example:

This variable-variable assignment is obviously useless
Instead of 1, we could also store 7" :-)
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1.3 Removing Superfluous Moves

Example:
€ €
T=ux+1; T=x+1;
(2 l (2
y=1; y="1T;
© (3®
M[R] = y; M[R] =T;

@ @

This variable-variable assignment is obviously useless
Instead of 1, we could also store 7" :-)
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1.3 Removing Superfluous Moves

Example:
€ €
T =zx+1; T=ux+1;
(2 l (2
y="1T; y="1T;
© (3®
M[R] = y; M[R] =T;

Advantage: Now, y hasbecomeead :-))
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1.3 Removing Superfluous Moves

Example:
€ €
(2 (2
y =1Tj — y =1Tj —
© (3®
M[R] = y; M[R] =T;

Advantage: Now, vy has becomeéead

244

-))

©



ldea:

For each expression, we record the variable which curreotiyains its
value :-)

We use: V = Expr — 2V0rs
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ldea:

For each expression, we record the variable which curreotiyains its
value :-)

We use: V = Frpr — 2V and define:

[]FV =V
0 if ¢/ =¢

[Pos(e)]f Ve = [Neg(e)]fVe = _
Ve otherwise
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[ =)V e
[z =y]*Ve
r=e]fVe
r=M[c;]*V ¢
r=Mly|;]FV e
[ = Mle];]fV €

I

Veoyu{z} if ¢=c

<

K
| (Ve)\{z} otherwise
(((Ve)u{z} if yeVe
| (Ve)\{z} otherwise
B

(

) x} if ¢ =e
| (Ve)\{z} otherwise
(V e\

(VeO\r

B 0 if e/ =¢
(Ve)\{xr} otherwise

analogously for the diverse stores
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In the Example:

E

T =x+1;
{e+1={T}} (@
{z+1—{y,T}} (3)

fe+10- {11 ()
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In the Example:

0O
T =x+1;
{x+1— {T}} e
y =T
{r+1— {y,T}} e
MI[R] = y;

{r+1— {y,T}} @

—  We propagate information forwarddirection :-)
At start, Vie=10 forall e;
— L C VxV isdefined by:

ViCV, iff Vie DO Vshe forall e
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Observation:
The new effects of edges adestributive

To show this, we consider the functions:

(1) fiVe=Ve)\{z}

(2) [V =Va{e—al}

3) f3'Ve=(yeVe)?(Veu{z}):(Ve)\{z})

Obviously, we have:

[r=c]t = fot oy
[r=y]F = /Y
[v = Mlel;]t = fsPoff

By closure undecomposition the assertion follows :-))
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(1) For fVe=(Ve)\{z}, we have:
fVidVa)e = ((ViUVa)e)\{r}
(Vie)n (Vae))\{z}
= (Vie)\{zp) n((Vze)\ir})
(fVie)n(fVae)
(fViufWa)e o)
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(2) For fV =V &{e~— a}, we have:

fWhuWye = (ViuVa) @{era})e
= (iuly)e
= (fViufW)e  giventhat e # ¢

fWiuVe)e = (ViuVy)@©{e—a})e
(Vid{e—al)e)n((Va®{e— a})e)
(fiufWa)e -)
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(3) For fVe=(yeVe)?(Veu{z}):(Ve)\{x}), we have:

f(ViuVy)e

ViuVa)e)\{zHh U (ye (Vi Va)e) 7{z}:0
renVae)\{zh)U(y €(VienVae))?{z}:0
1enVae)\{z}) U

yeVie){z}:0)N((y € Vae) ?{z}:0)

Vie)\{z}) U (y €Vie) ?{z}:0) N

(Vae)\{z}) U (y € Vae) 7 {x}:0)

fvidfVa)e =)

((
(V
(V
((
((
((
(
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We conclude:

1

Solving the constraint system returns the MOP solutibn
— Let )V denote this solution.

If 2 e€Vule,then = at w« contains the value of e —
which we have stored in7.

—

the accessto » can be replaced by the access t6. :-)

For V €V,let V- denote thevariable substitutiomvith:

B T, f reVe
V= o = _
T otherwise

if VenVe =0 for e#¢ . Otherwise: Voo =2a2 :-)
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Transformation 3:

o= Vu|~
Pos(e) ﬁ Pos(a(e))

... analogously for edges withNeg (¢)

o= V|u|~
T =e; ﬁ v =o(e);
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Transformation 3 (cont.):

ixM[e];

iM[el] — €9;

256



Procedure as a whole:

(1) Availability of expressions: T1

+ removes arithmetic operations

— inserts superfluous moves

(2) Values of variables: T3

+  creates dead variables

(3) (true) liveness of variables: T2

+ removes assignments to dead variables
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Example:

Ay = A+ T,
By = M[A4];
Bs = By — 1;
Ao = A4 T,
M[As] = Ba;

a[ 7] - -;

T1.1

Ty = A+7;
Ay =Ty
By = M[A1];
Ty = By — 1;
By = Tb;

1 = A+ 7,
Ao = T
M[Az] = Ba;
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Example:

Ay = A+ T,
By = M[Ay];
Bs = B1 — 1;
Ao = A4 T,
M[As] = B;

a[ 7] - -;

T1.1

Ty = A+7;
Ay =Ty
By = M[A1];
Ty = By — 1;
By = Tb;

T, = A+ 7,
Ag = Ti;
M[As] = Bo;

259

T1.2

T = A+T;
Ay =Ty
B1 = M[A4];
Ty = By — 1;
By = Tb;

Ao = Tr;
M[A2] = Ba;



T, = A+ T,
Ay =Ty
By = M[A1];
Ty = By — 1;
By = Tx;
Ag = Th;
M[Az] = Ba;

Example (cont.):

T3

a[ 7] - -;

T, = A+ 7T,
Ay =Ty
By = M[T1];
Ty = By — 1;
By = T5;
Ag = Tr;
M[T:1] = Ty;
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T, = A+ T,
Ay =Ty
By = M[A1];
Ty = By — 1;
By = Tx;
Ag = Th;
M[Az] = Ba;

Example (cont.):

T3

a[ 7] - -;

T, = A+ T,
Ay =Ty
By = M[T1];
Ty = By — 1;
By = T5;
Ag = Tr;
M[T:] = Ty;

261

T2

T1 :A—|—7,
By = M[T1];
To = B; — 1;
M[T1] = Ts;



1.4 Constant Propagation

ldea:
Execute as much of the code at compile-time as possible!

Example:

if (z>0)
M|A] = B;
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Obviously, = has always the value 7:-)

Thus, the memory accessabvaysexecuted :-))

Goal:
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Obviously, = has always the value 7:-)

Thus, the memory accessabvaysexecuted :-))

Goal:
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Generalization: Partial Evaluation

Neil D. Jones, DIKU, Kopenhagen
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ldea:

Design an analysis which for everyu,

e determines the values which variabtesinitely have;

e tellswhether u can be reached at all:-)
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ldea:

Design an analysis which for everyu,

e determines the values which variabtesinitely have;

e tellswhether » can be reached at all:-)

The complete lattice is constructed in two steps.

(1) The potentialvalues of variables

2'=2ZU{T} with 2Cy iffy=Torz=y

/\
@ @ O D @
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Caveat: Z' isnota complete lattice in itself :-(

(2) D= (Vars = 2Z"), = (Vars — Z") U {L}
// 1L denotes: “not reachable”:-))

with Dy C Do Iff 1 =D or
DixE Dyx  (x € Vars)

Remark: D isacomplete lattice :-)
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Caveat: Z' isnotacomplete lattice in itself :-(

(2) D= (Vars = 2Z"), = (Vars — Z") U {L}
// 1L denotes: “not reachable”:-))

with Dy C Do Iff 1 =D or
DixE Dyx  (x € Vars)

Remark: D is acomplete lattice :-)

Consider X CD.W.lo.g., 1l ¢X.
Then X C Vars - 7" .
f X=0,then || X=1 €D :)

269



If X#£0 ,then ||X =D with

Dr = |[{fz]|[feX}
_ {z if fr=z (fe€X)

T otherwise

-))
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If X#£0 ,then ||X =D with

Dr = |[{fz]|[feX}
_ {z if fr=z (fe€X)

T otherwise

-))

For every edge k£ = (_, lab, ), construct an effect function
[£]* = [lab]* : D — D which simulates theoncretecomputation.

Obviously, [lab]* L =1 forall lab :-)
Nowlet L # D¢ Vars —7Z'.
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ldea:

e Weuse D todetermine the values of expressions.
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ldea:

e Weuse D todetermine the values of expressions.

e For some sub-expressions, we obtaifn :-)
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ldea:

e Weuse D todetermine the values of expressions.

e For some sub-expressions, we obtaifn :-)

—

We must replace the concrete operators by abstracbperators
0% which can handle T :

T f a=Torb=T
a0 b =
aOdb otherwise
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ldea:

e Weuse D todetermine the values of expressions.
e For some sub-expressions, we obtaifn :-)
—
We must replace the concrete operators by abstracbperators
0% which can handle T :
T f a=Torb=T
alfph =
aOb otherwise

e The abstract operators allow to defineaostracevaluation of
expressions:

[e]f : (Vars = Z') = Z'
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Abstract evaluatioof expressions is like theoncretesvaluation — but
with abstract values and operators. Here:

[c]* D = ¢
[ex O] D = [e]f DO [es]* D

... analogously founaryoperators :-)
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Abstract evaluatioof expressions is like theoncretesvaluation — but
with abstract values and operators. Here:

[c]* D = ¢
[ex O] D = [e]f DO [es]* D

... analogously founaryoperators :-)
Example: D={r+2,y+— T}

[+ +7]*D = [«]*D +* [7]* D
= 24F 7
= 9

[t —y]*D = 2 -FT
= T
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Thus, we obtain the following effects of edgeq/ab]* :

[]* D = D
(L if 0=[e!D
[Pos (e)]# D = I°]
| D otherwise
(D if 0C[e]!D
Neg (e)]* D = -
INeg (<) | L otherwise
x = e]f D = D@ {xw [e]* D}
=MD = D& {rw T)
Mlei]=ex]*D = D

...Whenever D=#1 )
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At start, wehave Dt ={z+— T |x € Vars}.

Example:
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At start, wehave Dt ={z+— T |x € Vars}.

Example:

aa B~ W N P

{r— T}
{r+— T}
{r+— T}
{2z +— T}
Lu{er— 7 ={r—T7}
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The abstract effects of edgegk]* are again composed to the effects of
paths ==k, ... k. Dby:

[7]* = [k ]fo...0o[k]f :D—D

|dea for Correctness: Abstract Interpretation
Cousot, Cousot 1977
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Patrick Cousot, ENS, Paris
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The abstract effects of edgegk]* are again composed to the effects of
paths == k... k. Dby:

[7)f = [k, JFo...0o[k]f :D—D

|Idea for Correctness: Abstract Interpretation
Cousot, Cousot 1977

Establish a description relationA between theoncretevalues and
their descriptions with:

xAa; N agCay — zAa

Concretization:  ~va={z|zAa}
//  returns the set of described values)
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(1) Values: A CZxZ'
zAa Iff z=aVa=T

Concretization:

{a} if aCC T
Ta =
Z if a=T
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(1) Values: A CZxZ'
zAa Iff z=aVa=T
Concretization:

{a} if aCC T
Ta =
Z if a=T

(2) Variable Assignments: A C (Vars = 7Z) x (Vars = Z")

pAD iff D#1L AN prEDx (xe Vars)

Concretization:

Do 0 if D=1
! (p|¥ze: (p2) A (D)} otherwise

285



