Example: $\quad\{x \mapsto 1, y \mapsto-7\} \Delta\{x \mapsto \top, y \mapsto-7\}$
(3) States:

$$
\begin{gathered}
\Delta \subseteq((\text { Vars } \rightarrow \mathbb{Z}) \times(\mathbb{N} \rightarrow \mathbb{Z})) \times\left(\text { Vars } \rightarrow \mathbb{Z}^{\top}\right)_{\perp} \\
(\rho, \mu) \Delta D \quad \text { iff } \quad \rho \Delta D
\end{gathered}
$$

Concretization:

$$
\gamma D= \begin{cases}\emptyset & \text { if } D=\perp \\ \{(\rho, \mu) \mid \forall x:(\rho x) \Delta(D x)\} & \text { otherwise }\end{cases}
$$

We show:
(*) If $s \Delta D$ and $\llbracket \pi \rrbracket s$ is defined, then:

$$
(\llbracket \pi \rrbracket s) \Delta\left(\llbracket \pi \rrbracket^{\sharp} D\right)
$$

The abstract semantics simulates the concrete semantics :-)
In particular:

$$
\llbracket \pi \rrbracket s \in \gamma\left(\llbracket \pi \rrbracket^{\sharp} D\right)
$$

The abstract semantics simulates the concrete semantics :-)
In particular:

$$
\llbracket \pi \rrbracket s \in \gamma\left(\llbracket \pi \rrbracket^{\sharp} D\right)
$$

In practice, this means, e.g., that $\quad D x=-7 \quad$ implies:

$$
\begin{aligned}
\rho^{\prime} x & =-7 \text { for all } \rho^{\prime} \in \gamma D \\
\Longrightarrow \rho_{1} x & =-7 \text { for }\left(\rho_{1},,_{-}\right)=\llbracket \pi \rrbracket s
\end{aligned}
$$

To prove $(*)$, we show for every edge k :

Then ($*$) follows by induction :-)

To prove $(* *)$, we show for every expression e :
$(* * *) \quad(\llbracket e \rrbracket \rho) \Delta\left(\llbracket e \rrbracket^{\sharp} D\right) \quad$ whenever $\quad \rho \Delta D$

To prove $(* *)$, we show for every expression e :
$(* * *) \quad(\llbracket e \rrbracket \rho) \Delta\left(\llbracket e \rrbracket^{\sharp} D\right) \quad$ whenever $\quad \rho \Delta D$

To prove $(* * *)$, we show for every operator \square :

$$
(x \square y) \Delta\left(x^{\sharp} \square^{\sharp} y^{\sharp}\right) \quad \text { whenever } \quad x \Delta x^{\sharp} \wedge y \Delta y^{\sharp}
$$

To prove $(* *)$, we show for every expression e :
$(* * *) \quad(\llbracket e \rrbracket \rho) \Delta\left(\llbracket e \rrbracket^{\sharp} D\right) \quad$ whenever $\quad \rho \Delta D$

To prove $(* * *)$, we show for every operator \square :

$$
(x \square y) \Delta\left(x^{\sharp} \square^{\sharp} y^{\sharp}\right) \quad \text { whenever } \quad x \Delta x^{\sharp} \wedge y \Delta y^{\sharp}
$$

This precisely was how we have defined the operators \square^{\sharp} :-)

Now, $(* *)$ is proved by case distinction on the edge labels lab.
Let $s=(\rho, \mu) \Delta D$. In particular, $\perp \neq D: \operatorname{Vars} \rightarrow \mathbb{Z}^{\top}$

Case $x=e ;$:

$$
\begin{array}{ll}
\rho_{1} & =\rho \oplus\{x \mapsto \llbracket e \rrbracket \rho\} \quad \mu_{1}=\mu \\
D_{1} & =D \oplus\left\{x \mapsto \llbracket e \rrbracket^{\sharp} D\right\} \\
& \left(\rho_{1}, \mu_{1}\right) \Delta D_{1}
\end{array}
$$

Case $x=M[e] ;$:

$$
\begin{array}{ll}
\rho_{1} & =\rho \oplus\left\{x \mapsto \mu\left(\llbracket e \rrbracket^{\sharp} \rho\right)\right\} \\
D_{1} & =D \oplus\{x \mapsto \top\} \\
& \\
\Longrightarrow & \left(\rho_{1}, \mu_{1}\right) \Delta D_{1}
\end{array}
$$

Case $M\left[e_{1}\right]=e_{2} ;$

$$
\begin{aligned}
& \rho_{1}=\rho \quad \mu_{1}=\mu \oplus\left\{\llbracket e_{1} \rrbracket \sharp \rho \mapsto \llbracket e_{2} \rrbracket \sharp \rho\right\} \\
& D_{1}=D \\
& \Longrightarrow \quad\left(\rho_{1}, \mu_{1}\right) \Delta D_{1}
\end{aligned}
$$

Case $\operatorname{Neg}(e)$:

$$
\begin{aligned}
\left(\rho_{1}, \mu_{1}\right) & =s \quad \text { where: } \\
0 & =\llbracket e \rrbracket \rho \\
\Delta & \Delta e \rrbracket^{\sharp} D \\
\Longrightarrow & \sqsubseteq \llbracket e \rrbracket^{\sharp} D \\
\Longrightarrow & \neq D_{1}=D \\
\Longrightarrow & \left(\rho_{1}, \mu_{1}\right) \Delta D_{1}
\end{aligned}
$$

Case $\operatorname{Pos}(e): \quad\left(\rho_{1}, \mu_{1}\right)=s \quad$ where:

$$
\begin{aligned}
0 & \neq \llbracket e \rrbracket \rho \\
& \Delta \llbracket e \rrbracket^{\sharp} D \\
\Longrightarrow & 0 \quad \llbracket e \rrbracket^{\sharp} D \\
\Longrightarrow & \perp \quad D_{1}=D \\
\Longrightarrow & \left(\rho_{1}, \mu_{1}\right) \Delta D_{1}
\end{aligned}
$$

We conclude: The assertion (*) is true :-))

The MOP-Solution:

$$
\mathcal{D}^{*}[v]=\bigsqcup\left\{\llbracket \pi \rrbracket^{\sharp} D_{\top} \mid \pi: \text { start } \rightarrow^{*} v\right\}
$$

where $\quad D_{\top} x=\top \quad(x \in$ Vars $)$.

We conclude: The assertion (*) is true :-))

The MOP-Solution:

$$
\mathcal{D}^{*}[v]=\bigsqcup\left\{\llbracket \pi \rrbracket^{\sharp} D_{\top} \mid \pi: \text { start } \rightarrow^{*} v\right\}
$$

where $\quad D_{\top} x=\top \quad(x \in$ Vars $)$.

By (*), we have for all initial states s and all program executions
π which reach v :

$$
(\llbracket \pi \rrbracket s) \Delta\left(\mathcal{D}^{*}[v]\right)
$$

We conclude: The assertion (*) is true :-))

The MOP-Solution

$$
\mathcal{D}^{*}[v]=\bigsqcup\left\{\llbracket \pi \rrbracket^{\sharp} D_{\top} \mid \pi: \text { start } \rightarrow^{*} v\right\}
$$

where $\quad D_{\top} x=\top \quad(x \in$ Vars $)$.

By (*), we have for all initial states s and all program executions
π which reach v :

$$
(\llbracket \pi \rrbracket s) \Delta\left(\mathcal{D}^{*}[v]\right)
$$

In order to approximate the MOP, we use our constraint system :-))

Example:

Example:

Example:

Example:

	1		2		3	
	x	y	x	y	x	y
0	\top	\top	\top	\top		
1	10	\top	10	\top		
2	10	1	\top	\top		
3	10	1	\top	\top		
4	10	10	\top	\top	dito	
5	9	10	\top	\top		
6		\perp	\top	\top		
7		\perp	\top	\top		

Conclusion:

Although we compute with concrete values, we fail to compute everything

The fixpoint iteration, at least, is guaranteed to terminate:
For n program points and m variables, we maximally need:
$n \cdot(m+1)$ rounds :-)

Caveat:

The effects of edge are not distributive !!!

Counter Example: $\quad f=\llbracket x=x+y ; \mathbb{\rrbracket}^{\sharp}$

$$
\begin{aligned}
\text { Let } \begin{aligned}
D_{1} & =\{x \mapsto 2, y \mapsto 3\} \\
D_{2} & =\{x \mapsto 3, y \mapsto 2\} \\
\text { Dann } f D_{1} \sqcup f D_{2} & =\{x \mapsto 5, y \mapsto 3\} \sqcup\{x \mapsto 5, y \mapsto 2\} \\
& =\{x \mapsto 5, y \mapsto \top\} \\
& \neq\{x \mapsto \top, y \mapsto \top\} \\
& =f\{x \mapsto \top, y \mapsto \top\} \\
& =f\left(D_{1} \sqcup D_{2}\right)
\end{aligned}
\end{aligned}
$$

We conclude:

The least solution \mathcal{D} of the constraint system in general yields only an upper approximation of the MOP, i.e.,

$$
\mathcal{D}^{*}[v] \sqsubseteq \mathcal{D}[v]
$$

We conclude:

The least solution \mathcal{D} of the constraint system in general yields only an upper approximation of the MOP, i.e.,

$$
\mathcal{D}^{*}[v] \sqsubseteq \mathcal{D}[v]
$$

As an upper approximation, $\mathcal{D}[v]$ nonetheless describes the result of every program execution π which reaches v :

$$
(\llbracket \pi \rrbracket(\rho, \mu)) \quad \Delta \quad(\mathcal{D}[v])
$$

whenever $\llbracket \pi \rrbracket(\rho, \mu)$ is defined ;-))

Transformation 4:

Removal of Dead Code

Transformation 4 (cont.): Removal of Dead Code

$$
\perp \neq \mathcal{D}[u]=D
$$

$\llbracket e \rrbracket^{\sharp} D=0$

$\perp \neq \mathcal{D}[u]=D$
$\llbracket e \rrbracket^{\sharp} D \notin\{0, \top\}$

Transformation 4 (cont.):

Extensions:

- Instead of complete right-hand sides, also subexpressions could be simplified:

$$
x+(3 * y) \quad \xlongequal{\{x \mapsto \mathrm{~T}, y \mapsto 5\}} x+15
$$

... and further simplifications be applied, e.g.:

$$
\begin{aligned}
x * 0 & \Longrightarrow 0 \\
x+1 & \Longrightarrow x \\
x+0 & \Longrightarrow x \\
x-0 & \Longrightarrow x
\end{aligned}
$$

- So far, the information of conditions has not yet be optimally exploited:

$$
\text { if } \begin{aligned}
& (x==7) \\
& y=x+3 ;
\end{aligned}
$$

Even if the value of x before the if statement is unknown, we at least know that $\quad x \quad$ definitely has the value 7 - whenever the then-part is entered :-)

Therefore, we can define:

$$
\llbracket \operatorname{Pos}(x==e) \rrbracket^{\sharp} D= \begin{cases}D & \text { if } \llbracket x==e \rrbracket^{\sharp} D=1 \\ \perp & \text { if } \llbracket x==e \rrbracket^{\sharp} D=0 \\ D_{1} & \text { otherwise }\end{cases}
$$

where

$$
D_{1}=D \oplus\left\{x \mapsto\left(D x \sqcap \llbracket e \rrbracket^{\sharp} D\right)\right\}
$$

The effect of an edge labeled $\operatorname{Neg}(x \neq e)$ is analogous :-)

Our Example:

The effect of an edge labeled $\operatorname{Neg}(x \neq e)$ is analogous :-)

Our Example:

The effect of an edge labeled $\operatorname{Neg}(x \neq e)$ is analogous :-)

Our Example:

