Example: $\{x \mapsto 1, y \mapsto -7\}$ Δ $\{x \mapsto \top, y \mapsto -7\}$

(3) States:

$$\Delta \subseteq ((Vars \to \mathbb{Z}) \times (\mathbb{N} \to \mathbb{Z})) \times (Vars \to \mathbb{Z}^{\top})_{\perp}$$
$$(\rho, \mu) \Delta D \quad \text{iff} \quad \rho \Delta D$$

Concretization:

$$\gamma \, D = \left\{ \begin{array}{ll} \emptyset & \text{if} \quad D = \bot \\ \{(\rho, \mu) \mid \forall \, x : \ (\rho \, x) \, \Delta \, (D \, x)\} & \text{otherwise} \end{array} \right.$$

We show:

(*) If $s \Delta D$ and $[\pi]s$ is defined, then:

$$(\llbracket \pi \rrbracket s) \Delta (\llbracket \pi \rrbracket^{\sharp} D)$$

The abstract semantics simulates the concrete semantics :-)
In particular:

$$\llbracket \pi \rrbracket \, \mathbf{s} \in \gamma \, (\llbracket \pi \rrbracket^{\sharp} \, D)$$

The abstract semantics simulates the concrete semantics :-)
In particular:

$$\llbracket \pi \rrbracket \, \mathbf{s} \in \gamma \, (\llbracket \pi \rrbracket^{\sharp} \, D)$$

In practice, this means, e.g., that Dx = -7 implies:

$$\rho' x = -7 \text{ for all } \rho' \in \gamma D$$

$$\longrightarrow \rho_1 x = -7 \text{ for } (\rho_1, \underline{\ }) = \llbracket \pi \rrbracket s$$

To prove (*), we show for every edge k:

Then (*) follows by induction :-)

To prove (**), we show for every expression e: (***) $(\llbracket e \rrbracket \rho)$ Δ $(\llbracket e \rrbracket^{\sharp} D)$ whenever $\rho \Delta D$

To prove (**), we show for every expression e: (***) $(\llbracket e \rrbracket \rho)$ Δ $(\llbracket e \rrbracket^{\sharp} D)$ whenever $\rho \Delta D$

To prove (***), we show for every operator \square :

 $(x \Box y) \Delta (x^{\sharp} \Box^{\sharp} y^{\sharp})$ whenever $x \Delta x^{\sharp} \wedge y \Delta y^{\sharp}$

To prove (**), we show for every expression e: (***) $(\llbracket e \rrbracket \rho)$ Δ $(\llbracket e \rrbracket^{\sharp} D)$ whenever $\rho \Delta D$

To prove (***), we show for every operator \square :

$$(x \square y) \ \Delta \ (x^{\sharp} \square^{\sharp} y^{\sharp})$$
 whenever $x \ \Delta \ x^{\sharp} \wedge y \ \Delta \ y^{\sharp}$

This precisely was how we have defined the operators \Box^{\sharp} :-)

Now, (**) is proved by case distinction on the edge labels lab.

Let $s = (\rho, \mu) \ \Delta \ D$. In particular, $\bot \neq D$: $Vars \to \mathbb{Z}^{\top}$

Case
$$x = e$$
;:

$$\rho_1 = \rho \oplus \{x \mapsto \llbracket e \rrbracket \rho\} \quad \mu_1 = \mu$$

$$D_1 = D \oplus \{x \mapsto \llbracket e \rrbracket^{\sharp} D\}$$

$$\longrightarrow$$
 $(\rho_1, \mu_1) \Delta D_1$

Case
$$x = M[e];$$
:
$$\rho_1 = \rho \oplus \{x \mapsto \mu(\llbracket e \rrbracket^{\sharp} \rho)\} \qquad \mu_1 = \mu$$

$$D_1 = D \oplus \{x \mapsto \top\}$$

$$\Longrightarrow (\rho_1, \mu_1) \Delta D_1$$

Case
$$M[e_1] = e_2;$$
:
$$\rho_1 = \rho \qquad \mu_1 = \mu \oplus \{ [e_1]^{\sharp} \rho \mapsto [e_2]^{\sharp} \rho \}$$

$$D_1 = D$$

$$\longrightarrow (\rho_1, \mu_1) \Delta D_1$$

Case
$$Neg(e)$$
: $(\rho_1, \mu_1) = s$ where:
$$0 = [e] \rho$$

$$\Delta \quad [e]^{\sharp} D$$

$$\longrightarrow \quad 0 \quad \sqsubseteq \quad [e]^{\sharp} D$$

$$\longrightarrow \quad \bot \quad \neq \quad D_1 = D$$

$$\longrightarrow \quad (\rho_1, \mu_1) \quad \Delta \quad D_1$$

Case
$$Pos(e)$$
: $(\rho_1, \mu_1) = s$ where:

$$0 \neq [e] \rho$$

$$\Delta [e]^{\sharp} D$$

$$\Longrightarrow 0 \neq [e]^{\sharp} D$$

$$\Longrightarrow \bot \neq D_{1} = D$$

$$\Longrightarrow (\rho_{1}, \mu_{1}) \Delta D_{1}$$

:-)

We conclude: The assertion (*) is true :-))

The MOP-Solution:

$$\mathcal{D}^*[v] = \bigsqcup\{\llbracket\pi\rrbracket^\sharp \ D_\top \mid \pi : start \to^* v\}$$

where $D_{\top} x = \top$ $(x \in Vars)$.

We conclude: The assertion (*) is true :-))

The MOP-Solution:

$$\mathcal{D}^*[v] = \bigsqcup \{ \llbracket \pi \rrbracket^{\sharp} D_{\top} \mid \pi : start \to^* v \}$$

where $D_{\top} x = \top$ $(x \in Vars)$.

By (*), we have for all initial states s and all program executions π which reach v:

$$(\llbracket \pi \rrbracket s) \Delta (\mathcal{D}^*[v])$$

We conclude: The assertion (*) is true :-))

The MOP-Solution

$$\mathcal{D}^*[v] = \bigsqcup \{ \llbracket \pi \rrbracket^{\sharp} \ D_{\top} \mid \pi : start \to^* v \}$$

where $D_{\top} x = \top$ $(x \in Vars)$.

By (*), we have for all initial states s and all program executions π which reach v:

$$(\llbracket \pi \rrbracket s) \Delta (\mathcal{D}^*[v])$$

In order to approximate the MOP, we use our constraint system :-))

		1		
	1			
	x	y		
0	T	T		
1	10	T		
2	10	1		
3	10	1		
4	10 10			
5	9 10			
6				
7				

	1		2	
	x	y	x	y
0	Т	T	T	T
1	10	Т	10	\top
2	10	1	$\mid \top \mid$	\top
3	10	1	$\mid \top \mid$	\top
4	10	10	$\mid \top \mid$	\top
5	9	10	$\mid \top \mid$	\top
6		L		$\mid \top \mid$
7		L		\top

	1		2		3	
	x	y	x	y	x	y
0	T	Т	Т	T		
1	10	Т	10	$ \top $		
2	10	1	T	$ \top $		
3	10	1	T	$ \top $		
4	10	10	T	$ \top $	di	to
5	9	10	T	$ \top $		
6			T	$\mid \top \mid$		
7	上		T	$\mid \top \mid$		

Conclusion:

Although we compute with concrete values, we fail to compute everything :-(

The fixpoint iteration, at least, is guaranteed to terminate:

For n program points and m variables, we maximally need: $n \cdot (m+1)$ rounds :-)

Caveat:

The effects of edge are not distributive!!!

Counter Example:
$$f = [x = x + y]^{\sharp}$$

Let
$$D_1 = \{x \mapsto 2, y \mapsto 3\}$$

 $D_2 = \{x \mapsto 3, y \mapsto 2\}$
Dann $f D_1 \sqcup f D_2 = \{x \mapsto 5, y \mapsto 3\} \sqcup \{x \mapsto 5, y \mapsto 2\}$
 $= \{x \mapsto 5, y \mapsto \top\}$
 $\neq \{x \mapsto \top, y \mapsto \top\}$
 $= f\{x \mapsto \top, y \mapsto \top\}$
 $= f(D_1 \sqcup D_2)$
:-((

We conclude:

The least solution \mathcal{D} of the constraint system in general yields only an upper approximation of the MOP, i.e.,

$$\mathcal{D}^*[v] \subseteq \mathcal{D}[v]$$

We conclude:

The least solution \mathcal{D} of the constraint system in general yields only an upper approximation of the MOP, i.e.,

$$\mathcal{D}^*[v] \subseteq \mathcal{D}[v]$$

As an upper approximation, $\mathcal{D}[v]$ nonetheless describes the result of every program execution π which reaches v:

$$(\llbracket \pi \rrbracket (\rho, \mu)) \Delta (\mathcal{D}[v])$$

whenever $\llbracket \pi \rrbracket (\rho, \mu)$ is defined ;-))

Transformation 4:

Removal of Dead Code

Transformation 4 (cont.): Removal of Dead Code

Transformation 4 (cont.): Simplified Expressions

Extensions:

• Instead of complete right-hand sides, also subexpressions could be simplified:

$$x + (3*y) \xrightarrow{\{x \mapsto \top, y \mapsto 5\}} x + 15$$

... and further simplifications be applied, e.g.:

$$\begin{array}{ccc}
x * 0 & \Longrightarrow & 0 \\
x * 1 & \Longrightarrow & x \\
x + 0 & \Longrightarrow & x \\
x - 0 & \Longrightarrow & x
\end{array}$$

• So far, the information of conditions has not yet be optimally exploited:

if
$$(x == 7)$$

$$y = x + 3;$$

Even if the value of x before the if statement is unknown, we at least know that x definitely has the value 7 — whenever the then-part is entered :-)

Therefore, we can define:

$$[Pos (x == e)]^{\sharp} D = \begin{cases} D & \text{if } [x == e]^{\sharp} D = 1 \\ \bot & \text{if } [x == e]^{\sharp} D = 0 \\ D_1 & \text{otherwise} \end{cases}$$

where

$$D_1 = D \oplus \{x \mapsto (D \, x \sqcap \llbracket e \rrbracket^{\sharp} \, D)\}$$

The effect of an edge labeled $Neg(x \neq e)$ is analogous :-)

Our Example:

The effect of an edge labeled $Neg(x \neq e)$ is analogous :-)

Our Example:

The effect of an edge labeled $Neg(x \neq e)$ is analogous :-)

Our Example:

