
Problem:

→ The solution can be computed with RR-iteration —
after about 42 rounds:-(

→ On some programs, iteration mayneverterminate :-((

Idea 1: Widening

• Accelerate the iteration — at theprize of imprecision :-)

• Allow only a bounded number of modifications of values!!!

... in the Example:

• dis-allow updates of interval bounds inZ ...

==⇒ a maximal chain:

[3, 17] ⊏ [3,+∞] ⊏ [−∞,+∞]

336



Formalization of the Approach:

Let xi ⊒ fi (x1, . . . , xn) , i = 1, . . . , n (1)

denote a system of constraints overD where the fi arenot
necessarilymonotonic.

Nonetheless, anaccumulatingiteration can be defined. Consider the
system of equations:

xi = xi ⊔ fi (x1, . . . , xn) , i = 1, . . . , n (2)

We obviously have:

(a) x is a solution of(1) iff x is a solution of(2).

(b) The function G : Dn → D
n with

G (x1, . . . , xn) = (y1, . . . , yn) , yi = xi ⊔ fi (x1, . . . , xn)

is increasing, i.e., x ⊑ Gx for all x ∈ D
n .

337



(c) The sequenceGk ⊥ , k ≥ 0, is an ascending chain:

⊥ ⊑ G⊥ ⊑ . . . ⊑ Gk ⊥ ⊑ . . .

(d) If Gk ⊥ = Gk+1 ⊥ = y , then y is a solution of(1).

(e) If D has infinite strictly ascending chains, then(d) is not yet
sufficient...

but: we could consider the modified system of equations:

xi = xi ⊔– fi(x1, . . . , xn) , i = 1, . . . , n (3)

for a binary operationwidening:

⊔– : D2 → D with v1 ⊔ v2 ⊑ v1 ⊔– v2

(RR)-iteration for(3) still will compute a solution of(1) :-)

338



... for Interval Analysis:

• The complete lattice is: DI = (Vars → I)⊥

• the widening ⊔– is defined by:

⊥⊔– D = D⊔– ⊥ = D and for D1 6= ⊥ 6= D2:

(D1 ⊔– D2) x = (D1 x)⊔– (D2 x) where

[l1, u1]⊔– [l2, u2] = [l, u] with

l =

{

l1 if l1 ≤ l2

−∞ otherwise

u =

{

u1 if u1 ≥ u2

+∞ otherwise

==⇒ ⊔– is not commutative!!!

339



Example:

[0, 2]⊔– [1, 2] = [0, 2]

[1, 2]⊔– [0, 2] = [−∞, 2]

[1, 5]⊔– [3, 7] = [1,+∞]

→ Widening returns larger valuesmore quickly.

→ It should be constructed in such a way that termination of iteration
is guaranteed :-)

→ For interval analysis, widening bounds the number of iterations by:

#points · (1 + 2 ·#Vars)

340



Conclusion:

• In order to determine a solution of(1) over a complete lattice
with infinite ascending chains, we define a suitable wideningand
then solve (3) :-)

• Caveat: The construction of suitable widenings is adark art!!!

Often ⊔– is chosendynamicallyduring iteration such that

→ the abstract values do not get toocomplicated;

→ the number of updates remains bounded ...

341



Our Example:

0

1

7

8

6

5

4

i = 0;

Pos(i < 42)

Neg(0 ≤ i < 42)

i = i+ 1;

Neg(i < 42)

M [A1] = i;

A1 = A+ i;

2

3

Pos(0 ≤ i < 42)

1

l u

0 −∞ +∞

1 0 0

2 0 0

3 0 0

4 0 0

5 0 0

6 1 1

7 ⊥

8 ⊥

342



Our Example:

0

1

7

8

6

5

4

i = 0;

Pos(i < 42)

Neg(0 ≤ i < 42)

i = i+ 1;

Neg(i < 42)

M [A1] = i;

A1 = A+ i;

2

3

Pos(0 ≤ i < 42)

1 2 3

l u l u l u

0 −∞ +∞ −∞ +∞

1 0 0 0 +∞

2 0 0 0 +∞

3 0 0 0 +∞

4 0 0 0 +∞ dito

5 0 0 0 +∞

6 1 1 1 +∞

7 ⊥ 42 +∞

8 ⊥ 42 +∞

343



... obviously, the result is disappointing:-(

Idea 2:

In fact, acceleration with ⊔– need only be applied atsufficiently many
places!

A set I is aloop separator, if every loop contains at least one point
from I :-)

If we apply widening only at program points from such a setI , then
RR-iteration still terminates!!!

344



In our Example:

0

1

7

8

6

5

4

i = 0;

Pos(i < 42)

Neg(0 ≤ i < 42)

i = i+ 1;

Neg(i < 42)

M [A1] = i;

A1 = A+ i;

2

3

Pos(0 ≤ i < 42)

I1 = {1} or:

I2 = {2} or:

I3 = {3}

345



The Analysis with I = {1} :

0

1

7

8

6

5

4

i = 0;

Pos(i < 42)

Neg(0 ≤ i < 42)

i = i+ 1;

Neg(i < 42)

M [A1] = i;

A1 = A+ i;

2

3

Pos(0 ≤ i < 42)

1 2 3

l u l u l u

0 −∞ +∞ −∞ +∞

1 0 0 0 +∞

2 0 0 0 41

3 0 0 0 41

4 0 0 0 41 dito

5 0 0 0 41

6 1 1 1 42

7 ⊥ ⊥

8 ⊥ 42 +∞

346



The Analysis with I = {2} :

0

1

7

8

6

5

4

i = 0;

Pos(i < 42)

Neg(0 ≤ i < 42)

i = i+ 1;

Neg(i < 42)

M [A1] = i;

A1 = A+ i;

2

3

Pos(0 ≤ i < 42)

1 2 3 4

l u l u l u

0 −∞ +∞ −∞ +∞ −∞ +∞

1 0 0 0 1 0 42

2 0 0 0 +∞ 0 +∞

3 0 0 0 41 0 41

4 0 0 0 41 0 41 dito

5 0 0 0 41 0 41

6 1 1 1 42 1 42

7 ⊥ 42 +∞ 42 +∞

8 ⊥ ⊥ 42 42

347



Discussion:

• Both runs of the analysis determine interesting information :-)

• The run with I = {2} proves that always i = 42 after
leaving the loop.

• Only the run with I = {1} finds, however, that the outer check
makes the inner check superfluous:-(

How can we find a suitable loop separatorI ???

348



Idea 3: Narrowing

Let x denote any solution of (1) , i.e.,

xi ⊒ fi x , i = 1, . . . , n

Then for monotonic fi ,

x ⊒ F x ⊒ F 2 x ⊒ . . . ⊒ F k x ⊒ . . .

// NarrowingIteration

349



Idea 3: Narrowing

Let x denote any solution of (1) , i.e.,

xi ⊒ fi x , i = 1, . . . , n

Then for monotonic fi ,

x ⊒ F x ⊒ F 2 x ⊒ . . . ⊒ F k x ⊒ . . .

// NarrowingIteration

Every tuple F k x is a solution of (1) :-)

==⇒

Termination is no problem anymore:
we stop whenever we want:-))

// The same also holds for RR-iteration.

350



Narrowing Iteration in the Example:

0

1

7

8

6

5

4

i = 0;

Pos(i < 42)

Neg(0 ≤ i < 42)

i = i+ 1;

Neg(i < 42)

M [A1] = i;

A1 = A+ i;

2

3

Pos(0 ≤ i < 42)

0

l u

0 −∞ +∞

1 0 +∞

2 0 +∞

3 0 +∞

4 0 +∞

5 0 +∞

6 1 +∞

7 42 +∞

8 42 +∞

351



Narrowing Iteration in the Example:

0

1

7

8

6

5

4

i = 0;

Pos(i < 42)

Neg(0 ≤ i < 42)

i = i+ 1;

Neg(i < 42)

M [A1] = i;

A1 = A+ i;

2

3

Pos(0 ≤ i < 42)

0 1

l u l u

0 −∞ +∞ −∞ +∞

1 0 +∞ 0 +∞

2 0 +∞ 0 41

3 0 +∞ 0 41

4 0 +∞ 0 41

5 0 +∞ 0 41

6 1 +∞ 1 42

7 42 +∞ ⊥

8 42 +∞ 42 +∞

352



Narrowing Iteration in the Example:

0

1

7

8

6

5

4

i = 0;

Pos(i < 42)

Neg(0 ≤ i < 42)

i = i+ 1;

Neg(i < 42)

M [A1] = i;

A1 = A+ i;

2

3

Pos(0 ≤ i < 42)

0 1 2

l u l u l u

0 −∞ +∞ −∞ +∞ −∞ +∞

1 0 +∞ 0 +∞ 0 42

2 0 +∞ 0 41 0 41

3 0 +∞ 0 41 0 41

4 0 +∞ 0 41 0 41

5 0 +∞ 0 41 0 41

6 1 +∞ 1 42 1 42

7 42 +∞ ⊥ ⊥

8 42 +∞ 42 +∞ 42 42

353



Discussion:

→ We start with a safe approximation.

→ We find that the inner check is redundant:-)

→ We find that at exit from the loop, alwaysi = 42 :-))

→ It was not necessary to construct an optimal loop separator:-)))

Last Question:

Do we have to accept that narrowing may not terminate???

354



4. Idea: Accelerated Narrowing

Assume that we have a solutionx = (x1, . . . , xn) of the system of
constraints:

xi ⊒ fi (x1, . . . , xn) , i = 1, . . . , n (1)

Then consider the system of equations:

xi = xi ⊓ fi (x1, . . . , xn) , i = 1, . . . , n (4)

Obviously, we have for monotonicfi : Hk x = F k x :-)

where H (x1, . . . , xn) = (y1, . . . , yn) , yi = xi ⊓ fi (x1, . . . , xn).

In (4) , we replace ⊓ durch by the novel operator⊓– where:

a1 ⊓ a2 ⊑ a1 ⊓– a2 ⊑ a1

355



... for Interval Analysis:

We preserve finite interval bounds:-)

Therefore, ⊥⊓– D = D⊓– ⊥ = ⊥ and for D1 6= ⊥ 6= D2:

(D1 ⊓– D2) x = (D1 x)⊓– (D2 x) where

[l1, u1]⊓– [l2, u2] = [l, u] with

l =

{

l2 if l1 = −∞

l1 otherwise

u =

{

u2 if u1 = ∞

u1 otherwise

==⇒ ⊓– is not commutative!!!

356



Accelerated Narrowing in the Example:

0

1

7

8

6

5

4

i = 0;

Pos(i < 42)

Neg(0 ≤ i < 42)

i = i+ 1;

Neg(i < 42)

M [A1] = i;

A1 = A+ i;

2

3

Pos(0 ≤ i < 42)

0 1 2

l u l u l u

0 −∞ +∞ −∞ +∞ −∞ +∞

1 0 +∞ 0 +∞ 0 42

2 0 +∞ 0 41 0 41

3 0 +∞ 0 41 0 41

4 0 +∞ 0 41 0 41

5 0 +∞ 0 41 0 41

6 1 +∞ 1 42 1 42

7 42 +∞ ⊥ ⊥

8 42 +∞ 42 +∞ 42 42

357



Discussion:

→ Caveat: Widening also returns for non-monotonicfi a
solution. Narrowing is only applicable to monotonicfi !!

→ In the example, accelerated narrowing already returns the optimal
result :-)

→ If the operator ⊓– only allows for finitely many improvements
of values, we may execute narrowing until stabilization.

→ In case of interval analysis these are at most:

#points · (1 + 2 ·#Vars)

358



1.6 Pointer Analysis

Questions:

→ Are two addressespossiblyequal? May Alias

→ Are two addressesdefinitivelyequal? Must Alias

==⇒ Alias Analysis

359



1.6 Pointer Analysis

Questions:

→ Are two addressespossiblyequal? May Alias

→ Are two addressesdefinitivelyequal? Must Alias

==⇒ Alias Analysis

360



The analyses so farwithout alias information:

(1) Available Expressions:

• Extend the set Expr of expressions by occurring loadsM [e] .

• Extend the Effects of Edges:

[[x = e;]]♯A = (A ∪ {e})\Exprx

[[x = M [e];]]♯A = (A ∪ {e,M [e]})\Exprx

[[M [e1] = e2;]]
♯ A = (A ∪ {e1, e2})\Loads

361



(2) Values of Variables:

• Extend the set Expr of expressions by occurring loadsM [e] .

• Extend the Effects of Edges:

[[x = M [e];]]♯ V e′ =















{x} if e′ = M [e]

∅ if e′ = e

V e′\{x} otherwise

[[M [e1] = e2;]]
♯ V e′ =

{

∅ if e′ ∈ {e1, e2}

V e′ otherwise

362


