Problem:

- $\rightarrow \qquad \text{The solution can be computed with RR-iteration} \\ \text{after about 42 rounds} \quad :-($
- \rightarrow On some programs, iteration may never terminate :-((

Idea 1: Widening

- Accelerate the iteration at the prize of imprecision :-)
- Allow only a bounded number of modifications of values !!! ... in the Example:
- dis-allow updates of interval bounds in \mathbb{Z} ...
 - \Rightarrow a maximal chain:

 $[3,17] \sqsubset [3,+\infty] \sqsubset [-\infty,+\infty]$

Formalization of the Approach:

Let $x_i \supseteq f_i(x_1, \dots, x_n)$, $i = 1, \dots, n$ (1)

denote a system of constraints over \mathbb{D} where the f_i are not necessarily monotonic.

Nonetheless, an accumulating iteration can be defined. Consider the system of equations:

$$x_i = x_i \sqcup f_i(x_1, \dots, x_n), \quad i = 1, \dots, n$$
(2)

We obviously have:

(a) \underline{x} is a solution of (1) iff \underline{x} is a solution of (2).

(b) The function
$$G: \mathbb{D}^n \to \mathbb{D}^n$$
 with
 $G(x_1, \dots, x_n) = (y_1, \dots, y_n)$, $y_i = x_i \sqcup f_i(x_1, \dots, x_n)$
is increasing, i.e., $\underline{x} \sqsubseteq G \underline{x}$ for all $\underline{x} \in \mathbb{D}^n$.

- (c) The sequence $G^k \perp , \quad k \ge 0$, is an ascending chain: $\perp \sqsubseteq G \perp \sqsubseteq \dots \sqsubseteq G^k \perp \sqsubseteq \dots$
- (d) If $G^{k} \perp = G^{k+1} \perp = \underline{y}$, then \underline{y} is a solution of (1).
- (e) If \mathbb{D} has infinite strictly ascending chains, then (d) is not yet sufficient ...

but: we could consider the modified system of equations:

$$x_i = x_i \sqcup f_i(x_1, \dots, x_n) , \quad i = 1, \dots, n$$
(3)

for a binary operation widening:

 $\sqcup : \mathbb{D}^2 \to \mathbb{D} \quad \text{with} \quad v_1 \sqcup v_2 \sqsubseteq v_1 \sqcup v_2$

(RR)-iteration for (3) still will compute a solution of (1) :-)

... for Interval Analysis:

• The complete lattice is: $\mathbb{D}_{\mathbb{I}} = (Vars \to \mathbb{I})_{\perp}$

• the widening \square is defined by:

 $\perp \sqcup D = D \sqcup \bot = D$ and for $D_1 \neq \bot \neq D_2$: $(D_1 \sqcup D_2) x = (D_1 x) \sqcup (D_2 x)$ where $[l_1, u_1] \sqcup [l_2, u_2] = [l, u]$ with $l = \begin{cases} l_1 & \text{if } l_1 \leq l_2 \\ -\infty & \text{otherwise} \end{cases}$ $u = \begin{cases} u_1 & \text{if } u_1 \geq u_2 \\ +\infty & \text{otherwise} \end{cases}$

is not commutative !!!

Example:

 $[0,2] \sqcup [1,2] = [0,2]$ [1,2] $\sqcup [0,2] = [-\infty,2]$ [1,5] $\sqcup [3,7] = [1,+\infty]$

- \rightarrow Widening returns larger values more quickly.
- \rightarrow It should be constructed in such a way that termination of iteration is guaranteed :-)
- \rightarrow For interval analysis, widening bounds the number of iterations by:

$$\#points \cdot (1 + 2 \cdot \#Vars)$$

Conclusion:

- In order to determine a solution of (1) over a complete lattice with infinite ascending chains, we define a suitable widening and then solve (3) :-)
- Caveat: The construction of suitable widenings is a dark art !!!
 Often ⊔ is chosen dynamically during iteration such that
 - \rightarrow the abstract values do not get too complicated;
 - \rightarrow the number of updates remains bounded ...

]	1		
	l	u		
0	$-\infty$	$+\infty$		
1	0	0		
2	0	0		
3	0	0		
4	0	0		
5	0	0		
6	1	1		
7				
8				

	1		6	2		3
	l	u	l	u	l	u
0	$-\infty$	$+\infty$	$-\infty$	$+\infty$		
1	0	0	0	$+\infty$		
2	0	0	0	$+\infty$		
3	0	0	0	$+\infty$		
4	0	0	0	$+\infty$	di	ito
5	0	0	0	$+\infty$		
6	1	1	1	$+\infty$		
7			42	$+\infty$		
8	-	L	42	$+\infty$		

... obviously, the result is disappointing :-(

Idea 2:

In fact, acceleration with \Box need only be applied at sufficiently many places!

A set I is a loop separator, if every loop contains at least one point from I :-)

If we apply widening only at program points from such a set I, then RR-iteration still terminates !!!

In our Example:

$$I_1 = \{1\}$$
 or:
 $I_2 = \{2\}$ or:
 $I_3 = \{3\}$

The Analysis with $I = \{1\}$:

	1		2			3
	l	u	l	u	l	u
0	$-\infty$	$+\infty$	$-\infty$	$+\infty$		
1	0	0	0	$+\infty$		
2	0	0	0	41		
3	0	0	0	41		
4	0	0	0	41	di	ito
5	0	0	0	41		
6	1	1	1	42		
7		L	-	L		
8		L	42	$+\infty$		

The Analysis with $I = \{2\}$:

	1		2		د و	3	4
	l	u	l	u	l	u	
0	$-\infty$	$+\infty$	$-\infty$	$+\infty$	$-\infty$	$+\infty$	
1	0	0	0	1	0	42	
2	0	0	0	$+\infty$	0	$+\infty$	
3	0	0	0	41	0	41	
4	0	0	0	41	0	41	dito
5	0	0	0	41	0	41	
6	1	1	1	42	1	42	
7	_		42	$+\infty$	42	$+\infty$	
8				L	42	42	

Discussion:

- Both runs of the analysis determine interesting information :-)
- The run with $I = \{2\}$ proves that always i = 42 after leaving the loop.
- Only the run with $I = \{1\}$ finds, however, that the outer check makes the inner check superfluous :-(

How can we find a suitable loop separator *I*???

Idea 3: Narrowing

Let \underline{x} denote any solution of (1), i.e.,

$$x_i \supseteq f_i \underline{x}$$
, $i = 1, \dots, n$

Then for monotonic f_i ,

$$\underline{x} \ \supseteq \ F \underline{x} \ \supseteq \ F^2 \underline{x} \ \supseteq \ \dots \supseteq \ F^k \underline{x} \ \supseteq \ \dots$$

// Narrowing Iteration

Idea 3: Narrowing

Let \underline{x} denote any solution of (1), i.e.,

$$x_i \supseteq f_i \underline{x}$$
, $i = 1, \dots, n$

Then for monotonic f_i ,

$$\underline{x} \ \supseteq \ F \underline{x} \ \supseteq \ F^2 \underline{x} \ \supseteq \ \dots \supseteq \ F^k \underline{x} \ \supseteq \ \dots$$

// Narrowing Iteration

Every tuple $F^k \underline{x}$ is a solution of (1) :-)

Termination is no problem anymore: we stop whenever we want :-))

// The same also holds for RR-iteration.

Narrowing Iteration in the Example:

	()
	l	u
0	$-\infty$	$+\infty$
1	0	$+\infty$
2	0	$+\infty$
3	0	$+\infty$
4	0	$+\infty$
5	0	$+\infty$
6	1	$+\infty$
7	42	$+\infty$
8	42	$+\infty$

Narrowing Iteration in the Example:

	()	-	1	
	l	u	l	u	
0	$-\infty$	$+\infty$	$-\infty$	$+\infty$	
1	0	$+\infty$	0	$+\infty$	
2	0	$+\infty$	0	41	
3	0	$+\infty$	0	41	
4	0	$+\infty$	0	41	
5	0	$+\infty$	0	41	
6	1	$+\infty$	1	42	
7	42	$+\infty$			
8	42	$+\infty$	42	$+\infty$	

Narrowing Iteration in the Example:

	0		1		6 2	2
	l	u	l	u	l	u
0	$-\infty$	$+\infty$	$-\infty$	$+\infty$	$-\infty$	$+\infty$
1	0	$+\infty$	0	$+\infty$	0	42
2	0	$+\infty$	0	41	0	41
3	0	$+\infty$	0	41	0	41
4	0	$+\infty$	0	41	0	41
5	0	$+\infty$	0	41	0	41
6	1	$+\infty$	1	42	1	42
7	42	$+\infty$			-	L
8	42	$+\infty$	42	$+\infty$	42	42

Discussion:

- \rightarrow We start with a safe approximation.
- \rightarrow We find that the inner check is redundant :-)
- \rightarrow We find that at exit from the loop, always i = 42 :-))
- \rightarrow It was not necessary to construct an optimal loop separator :-)))

Last Question:

Do we have to accept that narrowing may not terminate ???

4. Idea: Accelerated Narrowing

Assume that we have a solution $\underline{x} = (x_1, \dots, x_n)$ of the system of constraints:

$$x_i \supseteq f_i(x_1, \dots, x_n), \quad i = 1, \dots, n$$
 (1)

Then consider the system of equations:

$$x_i = x_i \sqcap f_i(x_1, \dots, x_n), \quad i = 1, \dots, n$$
(4)

Obviously, we have for monotonic $f_i: H^k \underline{x} = F^k \underline{x}$:-) where $H(x_1, \dots, x_n) = (y_1, \dots, y_n), \quad y_i = x_i \sqcap f_i(x_1, \dots, x_n).$

In (4), we replace \sqcap durch by the novel operator \sqcap where: $a_1 \sqcap a_2 \sqsubseteq a_1 \sqcap a_2 \sqsubseteq a_1$

... for Interval Analysis:

We preserve finite interval bounds :-)

Therefore, $\perp \sqcap D = D \sqcap \perp = \perp$ and for $D_1 \neq \perp \neq D_2$: $(D_1 \sqcap D_2) x = (D_1 x) \sqcap (D_2 x)$ where $[l_1, u_1] \sqcap [l_2, u_2] = [l, u]$ with $l = \begin{cases} l_2 & \text{if } l_1 = -\infty \\ l_1 & \text{otherwise} \end{cases}$ $u = \begin{cases} u_2 & \text{if } u_1 = \infty \\ u_1 & \text{otherwise} \end{cases}$

□ is not commutative !!!

Accelerated Narrowing in the Example:

	0		-	1	6	2
	l	u	l	u	l	u
0	$-\infty$	$+\infty$	$-\infty$	$+\infty$	$-\infty$	$+\infty$
1	0	$+\infty$	0	$+\infty$	0	42
2	0	$+\infty$	0	41	0	41
3	0	$+\infty$	0	41	0	41
4	0	$+\infty$	0	41	0	41
5	0	$+\infty$	0	41	0	41
6	1	$+\infty$	1	42	1	42
7	42	$+\infty$				L
8	42	$+\infty$	42	$+\infty$	42	42

Discussion:

- → Caveat: Widening also returns for non-monotonic f_i a solution. Narrowing is only applicable to monotonic f_i !!
- \rightarrow In the example, accelerated narrowing already returns the optimal result :-)
- \rightarrow If the operator \square only allows for finitely many improvements of values, we may execute narrowing until stabilization.
- \rightarrow In case of interval analysis these are at most:

 $\#points \cdot (1 + 2 \cdot \#Vars)$

1.6 Pointer Analysis

Questions:

- \rightarrow Are two addresses possibly equal?
- \rightarrow Are two addresses definitively equal?

1.6 Pointer Analysis

Questions:

- \rightarrow Are two addresses possibly equal?
- \rightarrow Are two addresses definitively equal?

May Alias Must Alias

The analyses so far without alias information:

- (1) Available Expressions:
- Extend the set *Expr* of expressions by occurring loads M[e].
- Extend the Effects of Edges:

$$[x = e;]^{\sharp} A = (A \cup \{e\}) \setminus Expr_x$$
$$[x = M[e];]^{\sharp} A = (A \cup \{e, M[e]\}) \setminus Expr_x$$
$$[M[e_1] = e_2;]^{\sharp} A = (A \cup \{e_1, e_2\}) \setminus Loads$$

- (2) Values of Variables:
- Extend the set *Expr* of expressions by occurring loads M[e].
- Extend the Effects of Edges:

$$\llbracket x = M[e]; \rrbracket^{\sharp} V e' = \begin{cases} \{x\} & \text{if } e' = M[e] \\ \emptyset & \text{if } e' = e \\ V e' \setminus \{x\} & \text{otherwise} \end{cases}$$
$$\llbracket M[e_1] = e_2; \rrbracket^{\sharp} V e' = \begin{cases} \emptyset & \text{if } e' \in \{e_1, e_2\} \\ V e' & \text{otherwise} \end{cases}$$