Problem:

$\rightarrow \quad$ The solution can be computed with RR-iteration after about 42 rounds
$\rightarrow \quad$ On some programs, iteration may never terminate

Idea 1: Widening

- Accelerate the iteration - at the prize of imprecision :-)
- Allow only a bounded number of modifications of values !!!
... in the Example:
- dis-allow updates of interval bounds in $\mathbb{Z} \ldots$
\Longrightarrow a maximal chain:

$$
[3,17] \sqsubset[3,+\infty] \sqsubset[-\infty,+\infty]
$$

Formalization of the Approach:

Let $\quad x_{i} \sqsupseteq f_{i}\left(x_{1}, \ldots, x_{n}\right), \quad i=1, \ldots, n$
denote a system of constraints over \mathbb{D} where the f_{i} are not necessarily monotonic.
Nonetheless, an accumulating iteration can be defined. Consider the system of equations:

$$
\begin{equation*}
x_{i}=x_{i} \sqcup f_{i}\left(x_{1}, \ldots, x_{n}\right), \quad i=1, \ldots, n \tag{2}
\end{equation*}
$$

We obviously have:
(a) $\quad \underline{x} \quad$ is a solution of (1) iff $\underline{x} \quad$ is a solution of (2).
(b) The function $G: \mathbb{D}^{n} \rightarrow \mathbb{D}^{n}$ with $G\left(x_{1}, \ldots, x_{n}\right)=\left(y_{1}, \ldots, y_{n}\right), \quad y_{i}=x_{i} \sqcup f_{i}\left(x_{1}, \ldots, x_{n}\right)$ is increasing, i.e., $\quad \underline{x} \sqsubseteq G \underline{x}$ for all $\underline{x} \in \mathbb{D}^{n}$.
(c) The sequence $G^{k} \perp, \quad k \geq 0, \quad$ is an ascending chain:

$$
\perp \sqsubseteq G \perp \sqsubseteq \ldots \sqsubseteq G^{k} \perp \sqsubseteq \ldots
$$

(d) If $G^{k} \perp=G^{k+1} \perp=\underline{y}$, then $\underline{y} \quad$ is a solution of (1).
(e) If \mathbb{D} has infinite strictly ascending chains, then (d) is not yet sufficient ...
but: we could consider the modified system of equations:

$$
\begin{equation*}
x_{i}=x_{i} \sqcup f_{i}\left(x_{1}, \ldots, x_{n}\right), \quad i=1, \ldots, n \tag{3}
\end{equation*}
$$

for a binary operation widening:

$$
\sqcup: \mathbb{D}^{2} \rightarrow \mathbb{D} \quad \text { with } \quad v_{1} \sqcup v_{2} \sqsubseteq v_{1} \sqcup v_{2}
$$

(RR)-iteration for (3) still will compute a solution of (1) :-)
... for Interval Analysis:

- The complete lattice is: $\quad \mathbb{D}_{\mathbb{I}}=(\text { Vars } \rightarrow \mathbb{I})_{\perp}$
- the widening $\quad \sqcup$ is defined by:

$$
\begin{aligned}
\perp \sqcup D=D \sqcup \perp=D & \text { and for } \quad D_{1} \neq \perp \neq D_{2}: \\
\left(D_{1} \sqcup D_{2}\right) x & =\left(D_{1} x\right) \sqcup\left(D_{2} x\right) \quad \text { where } \\
{\left[l_{1}, u_{1}\right] \sqcup\left[l_{2}, u_{2}\right] } & =[l, u] \quad \text { with } \\
l & = \begin{cases}l_{1} & \text { if } l_{1} \leq l_{2} \\
-\infty & \text { otherwise }\end{cases} \\
u & = \begin{cases}u_{1} & \text { if } u_{1} \geq u_{2} \\
+\infty & \text { otherwise }\end{cases}
\end{aligned}
$$

$\Longrightarrow \quad \sqcup \quad$ is not commutative !!!

Example:

$$
\begin{aligned}
{[0,2] \sqcup[1,2] } & =[0,2] \\
{[1,2] \sqcup[0,2] } & =[-\infty, 2] \\
{[1,5] \sqcup[3,7] } & =[1,+\infty]
\end{aligned}
$$

$\rightarrow \quad$ Widening returns larger values more quickly.
$\rightarrow \quad$ It should be constructed in such a way that termination of iteration is guaranteed :-)
\rightarrow For interval analysis, widening bounds the number of iterations by:

$$
\# \text { points } \cdot(1+2 \cdot \# \text { Vars })
$$

Conclusion:

- In order to determine a solution of (1) over a complete lattice with infinite ascending chains, we define a suitable widening and then solve (3) :-)
- Caveat: The construction of suitable widenings is a dark art !!!

Often $\quad \sqcup$ is chosen dynamically during iteration such that
$\rightarrow \quad$ the abstract values do not get too complicated;
$\rightarrow \quad$ the number of updates remains bounded ...

Our Example:

Our Example:

... obviously, the result is disappointing :-(

Idea 2:

In fact, acceleration with $\quad \sqcup$ need only be applied at sufficiently many places!

A set I is a loop separator, if every loop contains at least one point from I :-)

If we apply widening only at program points from such a set I, then RR-iteration still terminates !!!

In our Example:

The Analysis with $\quad I=\{1\}$:

	1		2		3	
	l	u	l	u	l	u
0	$-\infty$	$+\infty$	$-\infty$	$+\infty$		
1	0	0	0	$+\infty$		
2	0	0	0	41		
3	0	0	0	41		
4	0	0	0	41	dito	
5	0	0	0	41		
6	1	1	1	42		
7		\perp				
8		\perp	42	$+\infty$		

The Analysis with $\quad I=\{2\}$:

	1		2		3		4
	l	u	l	u	l	u	
0	$-\infty$	$+\infty$	$-\infty$	$+\infty$	$-\infty$	$+\infty$	
1	0	0	0	1	0	42	
2	0	0	0	$+\infty$	0	$+\infty$	
3	0	0	0	41	0	41	
4	0	0	0	41	0	41	dito
5	0	0	0	41	0	41	
6	1	1	1	42	1	42	
7		\perp	42	$+\infty$	42	$+\infty$	
8		\perp		42	42		

Discussion:

- Both runs of the analysis determine interesting information :-)
- The run with $I=\{2\} \quad$ proves that always $i=42 \quad$ after leaving the loop.
- Only the run with $I=\{1\}$ finds, however, that the outer check makes the inner check superfluous

How can we find a suitable loop separator I ???

Idea 3: Narrowing

Let \underline{x} denote any solution of (1), i.e.,

$$
x_{i} \sqsupseteq f_{i} \underline{x}, \quad i=1, \ldots, n
$$

Then for monotonic f_{i},

$$
\underline{x} \sqsupseteq F \underline{x} \sqsupseteq F^{2} \underline{x} \sqsupseteq \ldots \sqsupseteq F^{k} \underline{x} \sqsupseteq \ldots
$$

// Narrowing Iteration

Idea 3: Narrowing

Let \underline{x} denote any solution of (1), i.e.,

$$
x_{i} \sqsupseteq f_{i} \underline{x}, \quad i=1, \ldots, n
$$

Then for monotonic f_{i},

$$
\underline{x} \sqsupseteq F \underline{x} \sqsupseteq F^{2} \underline{x} \sqsupseteq \ldots \sqsupseteq F^{k} \underline{x} \sqsupseteq \ldots
$$

// Narrowing Iteration

Every tuple $F^{k} \underline{x}$ is a solution of (1) :-)
\qquad
Termination is no problem anymore:
we stop whenever we want :-))
// The same also holds for RR-iteration.

Narrowing Iteration in the Example:

Narrowing Iteration in the Example:

Narrowing Iteration in the Example:

Discussion:

$\rightarrow \quad$ We start with a safe approximation.
$\rightarrow \quad$ We find that the inner check is redundant $:-$)
$\rightarrow \quad$ We find that at exit from the loop, always $\quad i=42 \quad:-))$
$\rightarrow \quad$ It was not necessary to construct an optimal loop separator $:-$)))

Last Question:

Do we have to accept that narrowing may not terminate ???

4. Idea: Accelerated Narrowing

Assume that we have a solution $\underline{x}=\left(x_{1}, \ldots, x_{n}\right)$ of the system of constraints:

$$
\begin{equation*}
x_{i} \sqsupseteq f_{i}\left(x_{1}, \ldots, x_{n}\right), \quad i=1, \ldots, n \tag{1}
\end{equation*}
$$

Then consider the system of equations:

$$
\begin{equation*}
x_{i}=x_{i} \sqcap f_{i}\left(x_{1}, \ldots, x_{n}\right), \quad i=1, \ldots, n \tag{4}
\end{equation*}
$$

Obviously, we have for monotonic $\left.\quad f_{i}: \quad H^{k} \underline{x}=F^{k} \underline{x} \quad:-\right)$
where $H\left(x_{1}, \ldots, x_{n}\right)=\left(y_{1}, \ldots, y_{n}\right), \quad y_{i}=x_{i} \sqcap f_{i}\left(x_{1}, \ldots, x_{n}\right)$.

In (4), we replace \sqcap durch by the novel operator \sqcap where:

$$
a_{1} \sqcap a_{2} \sqsubseteq a_{1} \sqcap a_{2} \sqsubseteq a_{1}
$$

... for Interval Analysis:

We preserve finite interval bounds :-)

Therefore, $\quad \perp \sqcap D=D \sqcap \perp=\perp$ and for $D_{1} \neq \perp \neq D_{2}$:

$$
\begin{aligned}
&\left(D_{1} \sqcap D_{2}\right) x=\left(D_{1} x\right) \sqcap\left(D_{2} x\right) \quad \text { where } \\
& {\left[l_{1}, u_{1}\right] \sqcap\left[l_{2}, u_{2}\right] }=[l, u] \quad \text { with } \\
& l=\left\{\begin{array}{lll}
l_{2} & \text { if } l_{1}=-\infty \\
l_{1} & \text { otherwise }
\end{array}\right. \\
& u=\left\{\begin{array}{lll}
u_{2} & \text { if } & u_{1}=\infty \\
u_{1} & \text { otherwise }
\end{array}\right. \\
& \Longrightarrow \text { ค is not commutative !!! }
\end{aligned}
$$

Accelerated Narrowing in the Example:

Discussion:

\rightarrow Caveat: Widening also returns for non-monotonic f_{i} a solution. Narrowing is only applicable to monotonic f_{i} !!
$\rightarrow \quad$ In the example, accelerated narrowing already returns the optimal result :-)
$\rightarrow \quad$ If the operator $\quad \sqcap \quad$ only allows for finitely many improvements of values, we may execute narrowing until stabilization.
$\rightarrow \quad$ In case of interval analysis these are at most:

$$
\# \text { points } \cdot(1+2 \cdot \# \text { Vars })
$$

1.6 Pointer Analysis

Questions:

$\rightarrow \quad$ Are two addresses possibly equal?
$\rightarrow \quad$ Are two addresses definitively equal?

1.6 Pointer Analysis

Questions:

$\rightarrow \quad$ Are two addresses possibly equal?
$\rightarrow \quad$ Are two addresses definitively equal?

May Alias
Must Alias
\Longrightarrow Alias Analysis

The analyses so far without alias information:
(1) Available Expressions:

- Extend the set Expr of expressions by occurring loads $M[e]$.
- Extend the Effects of Edges:

$$
\begin{array}{ll}
\llbracket x=e ; \rrbracket^{\sharp} A & =(A \cup\{e\}) \backslash \operatorname{Expr}_{x} \\
\llbracket x=M[e] ; \rrbracket^{\sharp} A & =(A \cup\{e, M[e\rfloor\}) \backslash \text { Expr }_{x} \\
\llbracket M\left[e_{1}\right]=e_{2} ; \rrbracket^{\sharp} A & =\left(A \cup\left\{e_{1}, e_{2}\right\}\right) \backslash \text { Loads }^{2}
\end{array}
$$

(2) Values of Variables:

- Extend the set Expr of expressions by occurring loads $M[e]$.
- Extend the Effects of Edges:

$$
\begin{aligned}
& \llbracket x=M[e] ; \mathbb{\sharp}^{\sharp} V e^{\prime}= \begin{cases}\{x\} & \text { if } e^{\prime}=M[e] \\
\emptyset & \text { if } e^{\prime}=e \\
V e^{\prime} \backslash\{x\} & \text { otherwise }\end{cases} \\
& \llbracket M\left[e_{1}\right]=e_{2} ; \rrbracket^{\sharp} V e^{\prime}= \begin{cases}\emptyset & \text { if } e^{\prime} \in\left\{e_{1}, e_{2}\right\} \\
V e^{\prime} & \text { otherwise }\end{cases}
\end{aligned}
$$

