
Helmut Seidl

Program Optimization

TU München

Winter 2013/14

1

Organization

Dates:
Lecture: Monday, 14:00-15:30

Wednesday, 8:30-10:00

Tutorials: Tuesday/Wednesday, 10:00-12:00

Stefan Schulze Friehlinghaus:schulzef@in.tum.de

Material: slides,recording :-)

Moodle

Program Analysis and Transformation

Springer, 2012

2

Grades: • Bonus for homeworks

• written exam

3

Proposed Content:

1. Avoiding redundant computations

→ available expressions

→ constant propagation/array-bound checks

→ code motion

2. Replacing expensive with cheaper computations

→ peep hole optimization

→ inlining

→ reduction of strength

...

4

3. Exploiting Hardware

→ Instruction selection

→ Register allocation

→ Scheduling

→ Memory management

5

0 Introduction

Observation 1: Intuitive programsoftenare inefficient.

Example:
void swap (int i, int j) {

int t;

if (a[i] > a[j]) {

t = a[j];

a[j] = a[i];

a[i] = t;

}

}

6

Inefficiencies:

• Addressesa[i], a[j] are computed three times:-(

• Valuesa[i], a[j] are loaded twice :-(

Improvement:

• Use a pointer to traverse the arraya;

• store the values ofa[i], a[j]!

7

void swap (int *p, int *q) {

int t, ai, aj;

ai = *p; aj = *q;

if (ai > aj) {

t = aj;

*q = ai;

*p = t; // t can also be

} // eliminated!

}

8

Observation 2:

Higher programming languages (evenC :-) abstract from hardware and
efficiency.

It is up to the compiler to adaptintuitively written program to hardware.

Examples:

. . . Filling of delay slots;

. . . Utilization of special instructions;

. . . Re-organization of memory accesses for better cache behavior;

. . . Removal of (useless) overflow/range checks.

9

Observation 3:

Programm-Improvementsneed not always be correct:-(

Example:

y = f() + f(); ==⇒ y = 2 * f();

Idea: Save second evaluation off() ...

Problem: The second evaluation may return a result different from the
first; (e.g., becausef() reads from the input :-)

10

Observation 3:

Programm-Improvementsneed not always be correct:-(

Example:

y = f() + f(); ==⇒ y = 2 * f();

Idea: Save the second evaluation off() ???

Problem: The second evaluation may return a result different from the
first; (e.g., becausef() reads from the input :-)

11

Consequences:

=⇒ Optimizations haveassumptions.

=⇒ Theassumptionmust be:

• formalized,

• checked :-)

=⇒ It must be proven that the optimization iscorrect, i.e., preserves
thesemantics!!!

12

Observation 4:

Optimization techniques depend on theprogramming language:

→ which inefficiencies occur;

→ how analyzable programs are;

→ how difficult/impossible it is to prove correctness ...

Example: Java

13

Unavoidable Inefficiencies:

∗ Array-bound checks;

∗ Dynamic method invocation;

∗ Bombastic object organization ...

Analyzability:

+ no pointer arithmetic;

+ no pointer into the stack;

− dynamic class loading;

− reflection, exceptions, threads, ...

14

Correctness proofs:

+ more or less well-defined semantics;

− features, features, features;

− libraries with changing behavior ...

15

... in this course:

a simpleimperativeprogramming language with:

• variables // registers

• R = e; // assignments

• R =M [e]; // loads

• M [e1] = e2; // stores

• if (e) s1 else s2 // conditional branching

• goto L; // no loops :-)

16

Note:

• For the beginning, we omit procedures:-)

• External procedures are taken into account through a statementf() for
an unknown proceduref .

==⇒ intra-procedural

==⇒ kind of an intermediate language in which (almost) everything
can be translated.

Example: swap()

17

0 : A1 = A0 + 1 ∗ i; // A0 == &a

1 : R1 = M [A1]; // R1 == a[i]

2 : A2 = A0 + 1 ∗ j;

3 : R2 = M [A2]; // R2 == a[j]

4 : if (R1 > R2) {

5 : A3 = A0 + 1 ∗ j;

6 : t = M [A3];

7 : A4 = A0 + 1 ∗ j;

8 : A5 = A0 + 1 ∗ i;

9 : R3 = M [A5];

10 : M [A4] = R3;

11 : A6 = A0 + 1 ∗ i;

12 : M [A6] = t;

}

18

Optimization 1: 1 ∗R ==⇒ R

Optimization 2: Reuse of subexpressions

A1 == A5 == A6

A2 == A3 == A4

M [A1] ==M [A5]

M [A2] ==M [A3]

R1 == R3

19

By this, we obtain:

A1 = A0 + i;

R1 = M [A1];

A2 = A0 + j;

R2 = M [A2];

if (R1 > R2) {

t = R2;

M [A2] = R1;

M [A1] = t;

}

20

Optimization 3: Contraction of chains of assignments:-)

Gain:

before after

+ 6 2

∗ 6 0

load 4 2

store 2 2

> 1 1

= 6 2

21

1 Removing superfluous computations

1.1 Repeated computations

Idea:

If the same value is computedrepeatedly, then

→ storeit after the first computation;

→ replace every further computation through alook-up!

==⇒ Availability of expressions

==⇒ Memoization

22

Problem: Identify repeated computations!

Example:

z = 1;

y = M [17];

A : x1 = y + z ;

. . .

B : x2 = y + z ;

23

Note:

B is a repeated computation of the value ofy + z , if:

(1) A is alwaysexecutedbeforeB; and

(2) y andz atB have the same values as atA :-)

==⇒ We need:

→ an operational semantics:-)

→ a method which identifies at leastsomerepeated computations ...

24

Background 1: An Operational Semantics

we choose asmall-stepoperational approach.

Programs are represented ascontrol-flow graphs.

In the example:
start

stop

A1 = A0 + 1 ∗ i;

R1 = M [A1];

A2 = A0 + 1 ∗ j;

R2 = M [A2];

A3 = A0 + 1 ∗ j;

Pos(R1 > R2)Neg(R1 > R2)

25

Thereby, represent:

vertex program point

start programm start

stop program exit

edge step of computation

Edge Labelings:

Test : Pos(e) or Neg(e)

Assignment : R = e;

Load : R =M [e];

Store : M [e1] = e2;

Nop : ;

26

Thereby, represent:

vertex program point

start programm start

stop program exit

edge step of computation

Edge Labelings:

Test : Pos(e) or Neg(e)

Assignment: R = e;

Load : R =M [e];

Store : M [e1] = e2;

Nop : ;

27

Computations followpaths.

Computations transform the currentstate

s = (ρ, µ)

where:

ρ : Vars → int contents of registers

µ : N→ int contents of storage

Everyedgek = (u, lab, v) defines apartial transformation

[[k]] = [[lab]]

of the state:

28

[[;]] (ρ, µ) = (ρ, µ)

[[Pos (e)]] (ρ, µ) = (ρ, µ) if [[e]] ρ 6= 0

[[Neg (e)]] (ρ, µ) = (ρ, µ) if [[e]] ρ = 0

// [[e]] : evaluation of the expressione, z.B.

// [[x+ y]] {x 7→ 7, y 7→ −1} = 6

// [[!(x == 4)]] {x 7→ 5} = 1

[[R = e;]] (ρ, µ) = (ρ⊕ {R 7→ [[e]] ρ} , mu)

// where “⊕” modifies a mapping at a given argument

29

[[;]] (ρ, µ) = (ρ, µ)

[[Pos (e)]] (ρ, µ) = (ρ, µ) if [[e]] ρ 6= 0

[[Neg (e)]] (ρ, µ) = (ρ, µ) if [[e]] ρ = 0

// [[e]] : evaluationof the expressione, e.g.

// [[x+ y]] {x 7→ 7, y 7→ −1} = 6

// [[!(x == 4)]] {x 7→ 5} = 1

[[R = e;]] (ρ, µ) = (ρ⊕ {R 7→ [[e]] ρ} , µ)

// where “⊕” modifies a mapping at a given argument

30

[[;]] (ρ, µ) = (ρ, µ)

[[Pos (e)]] (ρ, µ) = (ρ, µ) if [[e]] ρ 6= 0

[[Neg (e)]] (ρ, µ) = (ρ, µ) if [[e]] ρ = 0

// [[e]] : evaluationof the expressione, e.g.

// [[x+ y]] {x 7→ 7, y 7→ −1} = 6

// [[!(x == 4)]] {x 7→ 5} = 1

[[R = e;]] (ρ, µ) = (ρ⊕ {R 7→ [[e]] ρ} , µ)

// where “⊕” modifies a mapping at a given argument

31

[[R =M [e];]] (ρ, µ) = (ρ⊕ {R 7→ µ([[e]] ρ))} , µ)

[[M [e1] = e2;]] (ρ, µ) = (ρ, µ⊕ {[[e1]] ρ 7→ [[e2]] ρ})

Example:

[[x = x+ 1;]] ({x 7→ 5}, µ) = (ρ, µ) where:

ρ = {x 7→ 5} ⊕ {x 7→ [[x+ 1]] {x 7→ 5}}

= {x 7→ 5} ⊕ {x 7→ 6}

= {x 7→ 6}

32

A path π = k1k2 . . . km is acomputationfor the states if:

s ∈ def ([[km]] ◦ . . . ◦ [[k1]])

Theresultof the computation is:

[[π]] s = ([[km]] ◦ . . . ◦ [[k1]]) s

Application:

Assume that we have computed the value ofx+ y at program pointu:

u v
x+y

π

We perform a computation along pathπ and reachv where we evaluate
againx+ y ...

33

Idea:

If x andy have not been modified inπ, then evaluation ofx+ y at v must
return the same value as evaluation atu :-)

We can check this property at every edge inπ :-}

More generally:

Assume that the values of the expressionsA = {e1, . . . , er} are available
atu.

Every edgek transforms this set into a set [[k]]♯A of expressions
whose values are available after execution ofk ...

34

Idea:

If x andy have not been modified inπ, then evaluation ofx+ y at v must
return the same value as evaluation atu :-)

We can check this property at every edge inπ :-}

More generally:

Assume that the values of the expressionsA = {e1, . . . , er} are available
atu.

Every edgek transforms this set into a set [[k]]♯A of expressions
whose values are available after execution ofk ...

35

Idea:

If x andy have not been modified inπ, then evaluation ofx+ y at v must
return the same value as evaluation atu :-)

We can check this property at every edge inπ :-}

More generally:

Assume that the values of the expressionsA = {e1, . . . , er} are available
atu.

Every edgek transforms this set into a set [[k]]♯A of expressions
whose values are availableafterexecution ofk ...

36

... which transformations can be composed to theeffectof a path
π = k1 . . . kr:

[[π]]♯ = [[kr]]
♯ ◦ . . . ◦ [[k1]]

♯

The effect [[k]]♯ of an edge k = (u, lab, v) only depends on the
label lab, i.e., [[k]]♯ = [[lab]]♯ where:

[[;]]♯A = A

[[Pos(e)]]♯A = [[Neg(e)]]♯A = A ∪ {e}

[[x = e;]]♯A = (A ∪ {e})\ itExprx where

Exprx all expressions which containx

37

... which transformations can be composed to theeffectof a path
π = k1 . . . kr:

[[π]]♯ = [[kr]]
♯ ◦ . . . ◦ [[k1]]

♯

The effect [[k]]♯ of an edge k = (u, lab, v) only depends on the
label lab, i.e., [[k]]♯ = [[lab]]♯ where:

[[;]]♯A = A

[[Pos(e)]]♯A = [[Neg(e)]]♯A = A ∪ {e}

[[x = e;]]♯A = (A ∪ {e})\Exprx where

Exprx all expressions which containx

38

... which transformations can be composed to theeffectof a path
π = k1 . . . kr:

[[π]]♯ = [[kr]]
♯ ◦ . . . ◦ [[k1]]

♯

The effect [[k]]♯ of an edge k = (u, lab, v) only depends on the
label lab, i.e., [[k]]♯ = [[lab]]♯ where:

[[;]]♯A = A

[[Pos(e)]]♯A = [[Neg(e)]]♯A = A ∪ {e}

[[x = e;]]♯A = (A ∪ {e})\Exprx where

Exprx all expressions which containx

39

[[x =M [e];]]♯A = (A ∪ {e})\Exprx

[[M [e1] = e2;]]
♯A = A ∪ {e1, e2}

40

[[x =M [e];]]♯A = (A ∪ {e})\Exprx

[[M [e1] = e2;]]
♯A = A ∪ {e1, e2}

By that,every pathcan be analyzed :-)

A given program may admitseveral paths :-(

For any given input, another path may be chosen:-((

41

[[x =M [e];]]♯A = (A ∪ {e})\Exprx

[[M [e1] = e2;]]
♯A = A ∪ {e1, e2}

By that,every pathcan be analyzed :-)

A given program may admitseveral paths :-(

For any given input, another path may be chosen:-((

==⇒ We require the set:

A[v] =
⋂

{[[π]]♯∅ | π : start →∗ v}

42

Concretely:

→ We considerall pathsπ which reachv.

→ For every pathπ, we determine the set of expressions which are
available alongπ.

→ Initially at program start,nothingis available :-)

→ We compute theintersection ==⇒ safe information

How do we exploit this information ???

43

Concretely:

→ We considerall pathsπ which reachv.

→ For every pathπ, we determine the set of expressions which are
available alongπ.

→ Initially at program start,nothingis available :-)

→ We compute theintersection ==⇒ safe information

How do we exploit this information???

44

Transformation 1.1:

We provide novel registersTe asstoragefor thee:

v

u

v

u

Te = e;

x = Te;

x = e;

45

Transformation 1.1:

We provide novel registersTe asstoragefor thee:

v

u

u

v v

Pos(e)

v

u

v

u

Te = e;

x = Te;

Neg(e)

x = e;

Te = e;

v

Pos(Te)Neg(Te)

46

... analogously for R =M [e]; and M [e1] = e2;.

Transformation 1.2:

If e is available at program pointu, thene need not be re-evaluated:

u u

Te = e; ;

e ∈ A[u]

We replace the assignment withNop :-)

47

Example:

x = y + 3;

x = 7;

z = y + 3;

x = 7;

z = y + 3;

x = y + 3;

48

Example:

x = y + 3;

x = 7;

z = y + 3;

x = 7;

T = y + 3;

x = T ;

T = y + 3;

z = T ;

49

Example:

x = y + 3;

x = 7;

z = y + 3;

x = 7;

z = T ;

T = y + 3;

x = T ;

T = y + 3;

{y + 3}

{y + 3}

{y + 3}

{y + 3}

{y + 3}

50

Example:

x = y + 3;

x = 7;

z = y + 3;

x = 7;

T = y + 3;

x = T ;

;

z = T ;

{y + 3}

{y + 3}

{y + 3}

{y + 3}

{y + 3}

51

Correctness: (Idea)

Transformation 1.1 preserves the semantics andA[u] for all program
pointsu :-)

Assumeπ : start →∗ u is the path taken by a computation.

If e ∈ A[u], then alsoe ∈ [[π]]♯ ∅.

Therefore,π can be decomposed into:

start u1 u2 u
π1 π2k

with the following properties:

52

• The expressione is evaluated at the edgek;

• The expressione is not removed from the set of available
expressions at any edge inπ2, i.e., no variable ofe receives a new
value :-)

==⇒

The registerTe contains the value ofe wheneveru is reached :-))

53

• The expressione is evaluated at the edgek;

• The expressione is not removed from the set of available
expressions at any edge inπ2, i.e., no variable ofe receives a new
value :-)

==⇒

The registerTe contains the value ofe wheneveru is reached :-))

54

Warning:

Transformation 1.1 is only meaningful for assignmentsx = e; where:

→ e 6∈ Vars;

→ the evaluation ofe is non-trivial :-}

Which leaves open whether ...

55

Warning:

Transformation 1.1 is only meaningful for assignmentsx = e; where:

→ x 6∈ Vars(e);

→ e 6∈ Vars;

→ the evaluation ofe is non-trivial :- }

Which leaves us with the followingquestion...

56

Question:

How do we computeA[u] for every program pointu ??

Idea:

We collect all restrictions to the values ofA[u] into a system of
constraints:

A[start] ⊆ ∅

A[v] ⊆ [[k]]♯ (A[u]) k = (u, _, v) edge

57

Question:

How can we computeA[u] for every program pointu ??

Idea:

We collect all restrictions to the values ofA[u] into asystem of
constraints:

A[start] ⊆ ∅

A[v] ⊆ [[k]]♯ (A[u]) k = (u, _, v) edge

58

Wanted:

• a maximallylargesolution (??)

• an algorithm which computes this :-)

Example:

3

2

4

5

0

1

y = 1;

x = x− 1;

y = x ∗ y;

Pos(x > 1)Neg(x > 1)

59

Wanted:

• a maximallylargesolution (??)

• an algorithm which computes this :-)

Example:

3

2

4

5

0

1

y = 1;

x = x− 1;

y = x ∗ y;

Pos(x > 1)Neg(x > 1)

A[0] ⊆ ∅

60

Wanted:

• a maximallylargesolution (??)

• an algorithm which computes this :-)

Example:

3

2

4

5

0

1

y = 1;

x = x− 1;

y = x ∗ y;

Pos(x > 1)Neg(x > 1)

A[0] ⊆ ∅

A[1] ⊆ (A[0] ∪ {1})\Expry

A[1] ⊆ A[4]

61

Wanted:

• a maximallylargesolution (??)

• an algorithm which computes this :-)

Example:

3

2

4

5

0

1

y = 1;

x = x− 1;

y = x ∗ y;

Pos(x > 1)Neg(x > 1)

A[0] ⊆ ∅

A[1] ⊆ (A[0] ∪ {1})\Expry

A[1] ⊆ A[4]

A[2] ⊆ A[1] ∪ {x > 1}

62

Wanted:

• a maximallylargesolution (??)

• an algorithm which computes this :-)

Example:

3

2

4

5

0

1

y = 1;

x = x− 1;

y = x ∗ y;

Pos(x > 1)Neg(x > 1)

A[0] ⊆ ∅

A[1] ⊆ (A[0] ∪ {1})\Expry

A[1] ⊆ A[4]

A[2] ⊆ A[1] ∪ {x > 1}

A[3] ⊆ (A[2] ∪ {x ∗ y})\Expry

63

Wanted:

• a maximallylargesolution (??)

• an algorithm which computes this :-)

Example:

3

2

4

5

0

1

y = 1;

x = x− 1;

y = x ∗ y;

Pos(x > 1)Neg(x > 1)

A[0] ⊆ ∅

A[1] ⊆ (A[0] ∪ {1})\Expry

A[1] ⊆ A[4]

A[2] ⊆ A[1] ∪ {x > 1}

A[3] ⊆ (A[2] ∪ {x ∗ y})\Expry

A[4] ⊆ (A[3] ∪ {x− 1})\Exprx

64

Wanted:

• a maximallylargesolution (??)

• an algorithm which computes this :-)

Example:

3

2

4

5

0

1

y = 1;

x = x− 1;

y = x ∗ y;

Pos(x > 1)Neg(x > 1)

A[0] ⊆ ∅

A[1] ⊆ (A[0] ∪ {1})\Expry

A[1] ⊆ A[4]

A[2] ⊆ A[1] ∪ {x > 1}

A[3] ⊆ (A[2] ∪ {x ∗ y})\Expry

A[4] ⊆ (A[3] ∪ {x− 1})\Exprx

A[5] ⊆ A[1] ∪ {x > 1}

65

Wanted:

• a maximallylargesolution (??)

• an algorithm which computes this :-)

Example:

3

2

4

5

0

1

y = 1;

x = x− 1;

y = x ∗ y;

Pos(x > 1)Neg(x > 1)

Solution:

A[0] = ∅

A[1] = {1}

A[2] = {1, x > 1}

A[3] = {1, x > 1}

A[4] = {1}

A[5] = {1, x > 1}

66

Observation:

• The possible values forA[u] form acomplete lattice:

D = 2Expr with B1 ⊑ B2 iff B1 ⊇ B2

• The functions [[k]]♯ : D→ D are monotonic, i.e.,

[[k]]♯(B1) ⊑ [[k]]♯(B2) whenever B1 ⊑ B2

67

Observation:

• The possible values forA[u] form acomplete lattice:

D = 2Expr with B1 ⊑ B2 iff B1 ⊇ B2

• The functions [[k]]♯ : D→ D aremonotonic, i.e.,

[[k]]♯(B1) ⊑ [[k]]♯(B2) whenever B1 ⊑ B2

68

Background 2: Complete Lattices

A setD together with a relation ⊑ ⊆ D× D is apartial orderif for
all a, b, c ∈ D,

a ⊑ a reflexivity

a ⊑ b ∧ b ⊑ a =⇒ a = b anti−symmetry

a ⊑ b ∧ b ⊑ c =⇒ a ⊑ c transitivity

Examples:

1. D = 2{a,b,c} with the relation “⊆” :

a, b, c

a, b a, c b, c

a b c

69

2. Z with the relation “=” :

210-1-2

3. Z with the relation “≤” :

0
-1

1
2

4. Z⊥ = Z ∪ {⊥} with the ordering:

210-1-2

⊥

70

d ∈ D is calledupper boundfor X ⊆ D if

x ⊑ d for all x ∈ X

d is called least upper bound (lub) if

1. d is an upper bound and

2. d ⊑ y for every upper boundy of X.

Caveat:

• has no upper bound!

• has the upper bounds

71

d ∈ D is calledupper boundfor X ⊆ D if

x ⊑ d for all x ∈ X

d is calledleast upper bound (lub)if

1. d is an upper bound and

2. d ⊑ y for every upper boundy of X.

Caveat:

• has no upper bound!

• has the upper bounds

72

d ∈ D is calledupper boundfor X ⊆ D if

x ⊑ d for all x ∈ X

d is calledleast upper bound (lub)if

1. d is an upper bound and

2. d ⊑ y for every upper boundy of X.

Caveat:

• {0, 2, 4, . . .} ⊆ Z hasno upper bound!

• {0, 2, 4} ⊆ Z has the upper bounds4, 5, 6, . . .

73

A complete lattice (cl) D is a partial ordering whereevery subset
X ⊆ D has a least upper bound

⊔

X ∈ D .

Note:

Every complete lattice has

→ a leastelement ⊥ =
⊔

∅ ∈ D;

→ a greatestelement ⊤ =
⊔

D ∈ D.

74

Examples:

1. D = 2{a,b,c} is a cl :-)

2. D = Z with “=” is not.

3. D = Z with “≤” is neither.

4. D = Z⊥ is also not :-(

5. With an extra element⊤, we obtain theflat lattice
Z⊤

⊥ = Z ∪ {⊥,⊤} :

210-1-2

⊥

⊤

75

We have:

Theorem:

If D is a complete lattice, then every subsetX ⊆ D has agreatest
lower bound

⊔

X.

Proof:

Construct U = {u ∈ D | ∀ x ∈ X : u ⊑ x}.

// the set of all lower bounds ofX :-)

Set: g :=
⊔

U

Claim: g =

⊔

X

76

We have:

Theorem:

If D is a complete lattice, then every subsetX ⊆ D has agreatest
lower bound

⊔

X.

Proof:

Construct U = {u ∈ D | ∀ x ∈ X : u ⊑ x}.

// the set of all lower bounds ofX :-)

Set: g :=
⊔

U

Claim: g =

⊔

X

77

We have:

Theorem:

If D is a complete lattice, then every subsetX ⊆ D has agreatest
lower bound

⊔

X.

Proof:

Construct U = {u ∈ D | ∀ x ∈ X : u ⊑ x}.

// the set of all lower bounds ofX :-)

Set: g :=
⊔

U

Claim: g =

⊔

X

78

(1) g is alower boundof X :

Assume x ∈ X. Then:

u ⊑ x for all u ∈ U

==⇒ x is an upper bound ofU

==⇒ g ⊑ x :-)

(2) g is the greatest lower bound ofX :

Assume u is a lower bound ofX. Then:

u ∈ U

==⇒ u ⊑ g :-))

79

(1) g is alower boundof X :

Assume x ∈ X. Then:

u ⊑ x for all u ∈ U

==⇒ x is an upper bound ofU

==⇒ g ⊑ x :-)

(2) g is thegreatest lower boundof X :

Assume u is a lower bound ofX. Then:

u ∈ U

==⇒ u ⊑ g :-))

80

81

82

83

We are looking forsolutionsfor systems of constraints of the form:

xi ⊒ fi(x1, . . . , xn) (∗)

84

We are looking forsolutionsfor systems of constraints of the form:

xi ⊒ fi(x1, . . . , xn) (∗)

where:

xi unknown here: A[u]

D values here: 2Expr

⊑ ⊆ D× D ordering relation here: ⊇

fi: Dn → D constraint here: ...

Constraint for A[v] :

A[v] ⊆
⋂

{[[k]]♯ (A[u]) | k = (u, _, v) edge}

Because:

x ⊒ d1 ∧ . . . ∧ x ⊒ dk iff x ⊒
⊔

{d1, . . . , dk} :-)

85

We are looking forsolutionsfor systems of constraints of the form:

xi ⊒ fi(x1, . . . , xn) (∗)

where:

xi unknown here: A[u]

D values here: 2Expr

⊑ ⊆ D× D ordering relation here: ⊇

fi: Dn → D constraint here: ...

Constraint for A[v] (v 6= start):

A[v] ⊆
⋂

{[[k]]♯ (A[u]) | k = (u, _, v) edge}

Because:

x ⊒ d1 ∧ . . . ∧ x ⊒ dk iff x ⊒
⊔

{d1, . . . , dk} :-)

86

We are looking forsolutionsfor systems of constraints of the form:

xi ⊒ fi(x1, . . . , xn) (∗)

where:

xi unknown here: A[u]

D values here: 2Expr

⊑ ⊆ D× D ordering relation here: ⊇

fi: Dn → D constraint here: ...

Constraint for A[v] (v 6= start):

A[v] ⊆
⋂

{[[k]]♯ (A[u]) | k = (u, _, v) edge}

Because:

x ⊒ d1 ∧ . . . ∧ x ⊒ dk iff x ⊒
⊔

{d1, . . . , dk} :-)

87

A mapping f : D1 → D2 is calledmonotonic, if f(a) ⊑ f(b) for
all a ⊑ b.

88

A mapping f : D1 → D2 is calledmonotonic, if f(a) ⊑ f(b) for
all a ⊑ b.

Examples:

(1) D1 = D2 = 2U for a setU and f x = (x ∩ a) ∪ b.

Obviously, every suchf is monotonic :-)

89

A mapping f : D1 → D2 is calledmonotonic, if f(a) ⊑ f(b) for
all a ⊑ b.

Examples:

(1) D1 = D2 = 2U for a setU and f x = (x ∩ a) ∪ b.

Obviously, every suchf is monotonic :-)

(2) D1 = D2 = Z (with the ordering “≤”). Then:

• incx = x+ 1 is monotonic.

• dec x = x− 1 is monotonic.

textbullet

90

A mapping f : D1 → D2 is calledmonotonic, is f(a) ⊑ f(b) for
all a ⊑ b.

Examples:

(1) D1 = D2 = 2U for a setU and f x = (x ∩ a) ∪ b.

Obviously, every suchf is monotonic :-)

(2) D1 = D2 = Z (with the ordering “≤”). Then:

• incx = x+ 1 is monotonic.

• dec x = x− 1 is monotonic.

• inv x = −x is not monotonic :-)

91

Theorem:

If f1 : D1 → D2 and f2 : D2 → D3 are monotonic, then also
f2 ◦ f1 : D1 → D3 :-)

92

Theorem:

If f1 : D1 → D2 and f2 : D2 → D3 are monotonic, then also
f2 ◦ f1 : D1 → D3 :-)

Theorem:

If D2 is a complete lattice, then the set[D1 → D2] of monotonic
functions f : D1 → D2 is also a complete lattice where

f ⊑ g iff f x ⊑ g x for all x ∈ D1

93

Theorem:

If f1 : D1 → D2 and f2 : D2 → D3 are monotonic, then also
f2 ◦ f1 : D1 → D3 :-)

Theorem:

If D2 is a complete lattice, then the set[D1 → D2] of monotonic
functions f : D1 → D2 is also a complete lattice where

f ⊑ g iff f x ⊑ g x for all x ∈ D1

In particular for F ⊆ [D1 → D2],
⊔

F = f mit f x =
⊔

{g x | g ∈ F}

94

For functions fi x = ai ∩ x ∪ bi, the operations “◦”, “⊔” and “⊓”
can be explicitly defined by:

(f2 ◦ f1) x = a1 ∩ a2 ∩ x ∪ a2 ∩ b1 ∪ b2

(f1 ⊔ f2) x = (a1 ∪ a2) ∩ x ∪ b1 ∪ b2

(f1 ⊓ f2) x = (a1 ∪ b1) ∩ (a2 ∪ b2) ∩ x ∪ b1 ∩ b2

95

Wanted: minimally smallsolution for:

xi ⊒ fi(x1, . . . , xn), i = 1, . . . , n (∗)

where all fi : D
n → D are monotonic.

96

Wanted: minimally smallsolution for:

xi ⊒ fi(x1, . . . , xn), i = 1, . . . , n (∗)

where all fi : D
n → D are monotonic.

Idea:

• Consider F : Dn → Dn where

F (x1, . . . , xn) = (y1, . . . , yn) with yi = fi(x1, . . . , xn).

97

Wanted: minimally smallsolution for:

xi ⊒ fi(x1, . . . , xn), i = 1, . . . , n (∗)

where all fi : D
n → D are monotonic.

Idea:

• Consider F : Dn → Dn where

F (x1, . . . , xn) = (y1, . . . , yn) with yi = fi(x1, . . . , xn).

• If all fi are monotonic, then alsoF :-)

98

Wanted: minimally smallsolution for:

xi ⊒ fi(x1, . . . , xn), i = 1, . . . , n (∗)

where all fi : D
n → D are monotonic.

Idea:

• Consider F : Dn → Dn where

F (x1, . . . , xn) = (y1, . . . , yn) with yi = fi(x1, . . . , xn).

• If all fi are monotonic, then alsoF :-)

• We successivelyapproximatea solution. We construct:

⊥, F ⊥, F 2⊥, F 3⊥, . . .

Hope: We eventually reach a solution ...???

99

Example: D = 2{a,b,c}, ⊑ = ⊆

x1 ⊇ {a} ∪ x3

x2 ⊇ x3 ∩ {a, b}

x3 ⊇ x1 ∪ {c}

100

Example: D = 2{a,b,c}, ⊑ = ⊆

x1 ⊇ {a} ∪ x3

x2 ⊇ x3 ∩ {a, b}

x3 ⊇ x1 ∪ {c}

The Iteration:

0 1 2 3 4

x1 ∅ {a} {a, c} {a, c} ditto

x2 ∅ ∅ ∅ {a} ditto

x3 ∅ {c} {a, c} {a, c} ditto

101

Example: D = 2{a,b,c}, ⊑ = ⊆

x1 ⊇ {a} ∪ x3

x2 ⊇ x3 ∩ {a, b}

x3 ⊇ x1 ∪ {c}

The Iteration:

0 1 2 3 4

x1 ∅ {a} {a, c} {a, c} ditto

x2 ∅ ∅ ∅ {a} ditto

x3 ∅ {c} {a, c} {a, c} ditto

102

Example: D = 2{a,b,c}, ⊑ = ⊆

x1 ⊇ {a} ∪ x3

x2 ⊇ x3 ∩ {a, b}

x3 ⊇ x1 ∪ {c}

The Iteration:

0 1 2 3 4

x1 ∅ {a} {a, c} {a, c} ditto

x2 ∅ ∅ ∅ {a} ditto

x3 ∅ {c} {a, c} {a, c} ditto

103

Example: D = 2{a,b,c}, ⊑ = ⊆

x1 ⊇ {a} ∪ x3

x2 ⊇ x3 ∩ {a, b}

x3 ⊇ x1 ∪ {c}

The Iteration:

0 1 2 3 4

x1 ∅ {a} {a, c} {a, c} ditto

x2 ∅ ∅ ∅ {a}

x3 ∅ {c} {a, c} {a, c}

104

Example: D = 2{a,b,c}, ⊑ = ⊆

x1 ⊇ {a} ∪ x3

x2 ⊇ x3 ∩ {a, b}

x3 ⊇ x1 ∪ {c}

The Iteration:

0 1 2 3 4

x1 ∅ {a} {a, c} {a, c} ditto

x2 ∅ ∅ ∅ {a}

x3 ∅ {c} {a, c} {a, c}

105

Theorem

• ⊥, F ⊥, F 2⊥, . . . form anascending chain:

⊥ ⊑ F ⊥ ⊑ F 2⊥ ⊑ . . .

• If F k⊥ = F k+1⊥ , a solution is obtained which is the least one
:-)

• If all ascending chains are finite, such ak alwaysexists.

106

Theorem

• ⊥, F ⊥, F 2⊥, . . . form anascending chain:

⊥ ⊑ F ⊥ ⊑ F 2⊥ ⊑ . . .

• If F k⊥ = F k+1⊥ , a solution is obtained which is the least one
:-)

• If all ascending chains are finite, such ak alwaysexists.

Proof

The first claim follows bycomplete induction:

Foundation: F 0⊥ = ⊥ ⊑ F 1⊥ :-)

107

Step: Assume F i−1⊥ ⊑ F i⊥ . Then

F i⊥ = F (F i−1⊥) ⊑ F (F i⊥) = F i+1⊥

since F monotonic :-)

108

Step: Assume F i−1⊥ ⊑ F i⊥ . Then

F i⊥ = F (F i−1⊥) ⊑ F (F i⊥) = F i+1⊥

since F monotonic :-)

Conclusion:

If D is finite, a solution can be found which is definitely the least:-)

Question:

3. What, if D is not finite ???

109

Theorem Knaster – Tarski

Assume D is a complete lattice. Then everymonotonicfunction
f : D→ D has aleast fixpoint d0 ∈ D.

Let P = {d ∈ D | f d ⊑ d}.

Then d0 = ⊔

P .

110

111

Theorem Knaster – Tarski

Assume D is a complete lattice. Then everymonotonicfunction
f : D→ D has aleast fixpoint d0 ∈ D.

Let P = {d ∈ D | f d ⊑ d}.

Then d0 = ⊔

P .

Proof:

(1) d0 ∈ P :

112

Theorem Knaster – Tarski

Assume D is a complete lattice. Then everymonotonicfunction
f : D→ D has aleast fixpoint d0 ∈ D.

Let P = {d ∈ D | f d ⊑ d}.

Then d0 = ⊔

P .

Proof:

(1) d0 ∈ P :

f d0 ⊑ f d ⊑ d for all d ∈ P

==⇒ f d0 is a lower bound ofP

==⇒ f d0 ⊑ d0 sinced0 = ⊔

P

==⇒ d0 ∈ P :-)

113

(2) f d0 = d0 :

114

(2) f d0 = d0 :

f d0 ⊑ d0 by (1)

==⇒ f(f d0) ⊑ f d0 by monotonicity off

==⇒ f d0 ∈ P

==⇒ d0 ⊑ f d0 and the claim follows :-)

115

(2) f d0 = d0 :

f d0 ⊑ d0 by (1)

==⇒ f(f d0) ⊑ f d0 by monotonicity off

==⇒ f d0 ∈ P

==⇒ d0 ⊑ f d0 and the claim follows :-)

(3) d0 is leastfixpoint:

116

(2) f d0 = d0 :

f d0 ⊑ d0 by (1)

==⇒ f(f d0) ⊑ f d0 by monotonicity off

==⇒ f d0 ∈ P

==⇒ d0 ⊑ f d0 and the claim follows :-)

(3) d0 is leastfixpoint:

f d1 = d1 ⊑ d1 an other fixpoint

==⇒ d1 ∈ P

==⇒ d0 ⊑ d1 :-))

117

Remark:

The least fixpoint d0 is in P and alower bound :-)

==⇒ d0 is the least valuex with x ⊒ f x

118

Remark:

The least fixpoint d0 is in P and alower bound :-)

==⇒ d0 is the least valuex with x ⊒ f x

Application:

Assume xi ⊒ fi(x1, . . . , xn), i = 1, . . . , n (∗)

is asystem of constraintswhere all fi : D
n → D are monotonic.

119

Remark:

The least fixpoint d0 is in P and alower bound :-)

==⇒ d0 is the least valuex with x ⊒ f x

Application:

Assume xi ⊒ fi(x1, . . . , xn), i = 1, . . . , n (∗)

is asystem of constraintswhere all fi : D
n → D are monotonic.

==⇒ least solution of(∗) == least fixpoint ofF :-)

120

Example 1: D = 2U , f x = x ∩ a ∪ b

121

Example 1: D = 2U , f x = x ∩ a ∪ b

f fk⊥ fk⊤

0 ∅ U

122

Example 1: D = 2U , f x = x ∩ a ∪ b

f fk⊥ fk⊤

0 ∅ U

1 b a ∪ b

123

Example 1: D = 2U , f x = x ∩ a ∪ b

f fk⊥ fk⊤

0 ∅ U

1 b a ∪ b

2 b a ∪ b

124

Example 1: D = 2U , f x = x ∩ a ∪ b

f fk⊥ fk⊤

0 ∅ U

1 b a ∪ b

2 b a ∪ b

Example 2: D = N ∪ {∞}

Assume f x = x+ 1. Then

f i⊥ = f i 0 = i ⊏ i+ 1 = f i+1⊥

125

Example 1: D = 2U , f x = x ∩ a ∪ b

f fk⊥ fk⊤

0 ∅ U

1 b a ∪ b

2 b a ∪ b

Example 2: D = N ∪ {∞}

Assume f x = x+ 1. Then

f i⊥ = f i 0 = i ⊏ i+ 1 = f i+1⊥

==⇒ Ordinaryiteration will never reach a fixpoint :-(

==⇒ Sometimes, transfinite iteration is needed :-)

126

Conclusion:

Systems of inequations can be solved throughfixpoint iteration, i.e., by
repeated evaluation of right-hand sides:-)

127

Conclusion:

Systems of inequations can be solved throughfixpoint iteration, i.e., by
repeated evaluation of right-hand sides:-)

Caveat: Naive fixpoint iteration is ratherinefficient :-(

128

Conclusion:

Systems of inequations can be solved throughfixpoint iteration, i.e., by
repeated evaluation of right-hand sides:-)

Caveat: Naive fixpoint iteration is ratherinefficient :-(

Example:

3

2

4

5

0

1

y = 1;

x = x− 1;

y = x ∗ y;

Pos(x > 1)Neg(x > 1)

0

1

2

3

4

5

129

Conclusion:

Systems of inequations can be solved throughfixpoint iteration, i.e., by
repeated evaluation of right-hand sides:-)

Caveat: Naive fixpoint iteration is ratherinefficient :-(

Example:

3

2

4

5

0

1

y = 1;

x = x− 1;

y = x ∗ y;

Pos(x > 1)Neg(x > 1)

1

0 ∅

1 {1, x > 1, x − 1}

2 Expr

3 {1, x > 1, x − 1}

4 {1}

5 Expr

130

Conclusion:

Systems of inequations can be solved throughfixpoint iteration, i.e., by
repeated evaluation of right-hand sides:-)

Caveat: Naive fixpoint iteration is ratherinefficient :-(

Example:

3

2

4

5

0

1

y = 1;

x = x− 1;

y = x ∗ y;

Pos(x > 1)Neg(x > 1)

1 2

0 ∅ ∅

1 {1, x > 1, x − 1} {1}

2 Expr {1, x > 1, x − 1}

3 {1, x > 1, x − 1} {1, x > 1, x − 1}

4 {1} {1}

5 Expr {1, x > 1, x − 1}

131

Conclusion:

Systems of inequations can be solved throughfixpoint iteration, i.e., by
repeated evaluation of right-hand sides:-)

Caveat: Naive fixpoint iteration is ratherinefficient :-(

Example:

3

2

4

5

0

1

y = 1;

x = x− 1;

y = x ∗ y;

Pos(x > 1)Neg(x > 1)

1 2 3

0 ∅ ∅ ∅

1 {1, x > 1, x − 1} {1} {1}

2 Expr {1, x > 1, x − 1} {1, x > 1}

3 {1, x > 1, x − 1} {1, x > 1, x − 1} {1, x > 1, x − 1}

4 {1} {1} {1}

5 Expr {1, x > 1, x − 1} {1, x > 1}

132

Conclusion:

Systems of inequations can be solved throughfixpoint iteration, i.e., by
repeated evaluation of right-hand sides:-)

Caveat: Naive fixpoint iteration is ratherinefficient :-(

Example:

3

2

4

5

0

1

y = 1;

x = x− 1;

y = x ∗ y;

Pos(x > 1)Neg(x > 1)

1 2 3 4

0 ∅ ∅ ∅ ∅

1 {1, x > 1, x − 1} {1} {1} {1}

2 Expr {1, x > 1, x − 1} {1, x > 1} {1, x > 1}

3 {1, x > 1, x − 1} {1, x > 1, x − 1} {1, x > 1, x − 1} {1, x > 1}

4 {1} {1} {1} {1}

5 Expr {1, x > 1, x − 1} {1, x > 1} {1, x > 1}

133

Conclusion:

Systems of inequations can be solved throughfixpoint iteration, i.e., by
repeated evaluation of right-hand sides:-)

Caveat: Naive fixpoint iteration is ratherinefficient :-(

Example:

3

2

4

5

0

1

y = 1;

x = x− 1;

y = x ∗ y;

Pos(x > 1)Neg(x > 1)

1 2 3 4 5

0 ∅ ∅ ∅ ∅

1 {1, x > 1, x − 1} {1} {1} {1}

2 Expr {1, x > 1, x − 1} {1, x > 1} {1, x > 1}

3 {1, x > 1, x − 1} {1, x > 1, x − 1} {1, x > 1, x − 1} {1, x > 1} ditto

4 {1} {1} {1} {1}

5 Expr {1, x > 1, x − 1} {1, x > 1} {1, x > 1}

134

Idea: Round Robin Iteration

Instead of accessing the values of the last iteration, always use thecurrent
values of unknowns :-)

135

Idea: Round Robin Iteration

Instead of accessing the values of the last iteration, always use thecurrent
values of unknowns :-)

Example:

3

2

4

5

0

1

y = 1;

x = x− 1;

y = x ∗ y;

Pos(x > 1)Neg(x > 1)

0

1

2

3

4

5

136

Idea: Round Robin Iteration

Instead of accessing the values of the last iteration, always use thecurrent
values of unknowns :-)

Example:

3

2

4

5

0

1

y = 1;

x = x− 1;

y = x ∗ y;

Pos(x > 1)Neg(x > 1)

1

0 ∅

1 {1}

2 {1, x > 1}

3 {1, x > 1}

4 {1}

5 {1, x > 1}

137

Idea: Round Robin Iteration

Instead of accessing the values of the last iteration, always use thecurrent
values of unknowns :-)

Example:

3

2

4

5

0

1

y = 1;

x = x− 1;

y = x ∗ y;

Pos(x > 1)Neg(x > 1)

1 2

0 ∅

1 {1}

2 {1, x > 1}

3 {1, x > 1} ditto

4 {1}

5 {1, x > 1}

138

The code forRound RobinIteration inJavalooks as follows:

for (i = 1; i ≤ n; i++) xi = ⊥;

do {
finished = true;

for (i = 1; i ≤ n; i++) {
new = fi(x1, . . . , xn);

if (!(xi ⊒ new)) {
finished = false;

xi = xi ⊔ new ;
}

}
} while (!finished);

139

Correctness:

Assume y
(d)
i is thei-th component of F d ⊥.

Assume x
(d)
i is the value of xi after thed-th RR-iteration.

140

Correctness:

Assume y
(d)
i is thei-th component of F d ⊥.

Assume x
(d)
i is the value of xi after thei-th RR-iteration.

One proves:

(1) y
(d)
i ⊑ x

(d)
i :-)

141

Correctness:

Assume y
(d)
i is thei-th component of F d ⊥.

Assume x
(d)
i is the value of xi after thei-th RR-iteration.

One proves:

(1) y
(d)
i ⊑ x

(d)
i :-)

(2) x
(d)
i ⊑ zi for every solution (z1, . . . , zn) :-)

142

Correctness:

Assume y
(d)
i is thei-th component of F d ⊥.

Assume x
(d)
i is the value of xi after thei-th RR-iteration.

One proves:

(1) y
(d)
i ⊑ x

(d)
i :-)

(2) x
(d)
i ⊑ zi for every solution (z1, . . . , zn) :-)

(3) If RR-iteration terminates afterd rounds, then
(x

(d)
1 , . . . , x

(d)
n) is a solution :-))

143

Caveat:

The efficiency ofRR-iteration depends on theorderingof the unknowns
!!!

144

Caveat:

The efficiency ofRR-iteration depends on theorderingof the unknowns
!!!

Good:
→ u beforev, if u→∗ v;

→ entry condition before loop body:-)

145

Caveat:

The efficiency ofRR-iteration depends on theorderingof the unknowns
!!!

Good:
→ u beforev, if u→∗ v;

→ entry condition before loop body:-)

Bad:
e.g., post-order DFS of the CFG, starting atstart :-)

146

Good:

3

2

4

5

0

1

y = 1;

x = x− 1;

y = x ∗ y;

Pos(x > 1)Neg(x > 1)

Bad:

0

5

4

3

2

1
x = x− 1;

y = x ∗ y;

Pos(x > 1)Neg(x > 1)

y = 1;

147

Inefficient Round Robin Iteration:

0

5

4

3

2

1
x = x− 1;

y = x ∗ y;

Pos(x > 1)Neg(x > 1)

y = 1;

0

1

2

3

4

5

148

Inefficient Round Robin Iteration:

0

5

4

3

2

1
x = x− 1;

y = x ∗ y;

Pos(x > 1)Neg(x > 1)

y = 1; 1

0 Expr

1 {1}

2 {1, x − 1, x > 1}

3 Expr

4 {1}

5 ∅

149

Inefficient Round Robin Iteration:

0

5

4

3

2

1
x = x− 1;

y = x ∗ y;

Pos(x > 1)Neg(x > 1)

y = 1; 1 2

0 Expr {1, x > 1}

1 {1} {1}

2 {1, x − 1, x > 1} {1, x − 1, x > 1}

3 Expr {1, x > 1}

4 {1} {1}

5 ∅ ∅

150

Inefficient Round Robin Iteration:

0

5

4

3

2

1
x = x− 1;

y = x ∗ y;

Pos(x > 1)Neg(x > 1)

y = 1; 1 2 3

0 Expr {1, x > 1} {1, x > 1}

1 {1} {1} {1}

2 {1, x − 1, x > 1} {1, x − 1, x > 1} {1, x > 1}

3 Expr {1, x > 1} {1, x > 1}

4 {1} {1} {1}

5 ∅ ∅ ∅

151

Inefficient Round Robin Iteration:

0

5

4

3

2

1
x = x− 1;

y = x ∗ y;

Pos(x > 1)Neg(x > 1)

y = 1; 1 2 3 4

0 Expr {1, x > 1} {1, x > 1}

1 {1} {1} {1}

2 {1, x − 1, x > 1} {1, x − 1, x > 1} {1, x > 1} ditto

3 Expr {1, x > 1} {1, x > 1}

4 {1} {1} {1}

5 ∅ ∅ ∅

==⇒ significantly less efficient :-)

152

... end of background on: Complete Lattices

153

... end of background on: Complete Lattices

Final Question:

Why is a (or the least) solution of the constraint system useful ???

154

... end of background on: Complete Lattices

Final Question:

Why is a (or the least) solution of the constraint system useful ???

For a complete lattice D, consider systems:

I[start] ⊒ d0

I[v] ⊒ [[k]]♯ (I[u]) k = (u, _, v) edge

where d0 ∈ D and all [[k]]♯ : D→ D are monotonic...

155

... end of background on: Complete Lattices

Final Question:

Why is a (or the least) solution of the constraint system useful ???

For a complete lattice D, consider systems:

I[start] ⊒ d0

I[v] ⊒ [[k]]♯ (I[u]) k = (u, _, v) edge

where d0 ∈ D and all [[k]]♯ : D→ D are monotonic...

==⇒ Monotonic Analysis Framework

156

Wanted: MOP (Merge Over all Paths)

I∗[v] =
⊔

{[[π]]♯ d0 | π : start →∗ v}

157

Wanted: MOP (Merge Over all Paths)

I∗[v] =
⊔

{[[π]]♯ d0 | π : start →∗ v}

Theorem Kam, Ullman 1975

Assume I is a solution of the constraint system. Then:

I[v] ⊒ I∗[v] for every v

158

Jeffrey D. Ullman, Stanford

159

Wanted: MOP (Merge Over all Paths)

I∗[v] =
⊔

{[[π]]♯ d0 | π : start →∗ v}

Theorem Kam, Ullman 1975

Assume I is a solution of the constraint system. Then:

I[v] ⊒ I∗[v] for every v

In particular: I[v] ⊒ [[π]]♯ d0 for every π : start →∗ v

160

Proof: Induction on the length of π.

161

Proof: Induction on the length of π.

Foundation: π = ǫ (empty path)

162

Proof: Induction on the length of π.

Foundation: π = ǫ (empty path)

Then:

[[π]]♯ d0 = [[ǫ]]♯ d0 = d0 ⊑ I[start]

163

Proof: Induction on the length of π.

Foundation: π = ǫ (empty path)

Then:

[[π]]♯ d0 = [[ǫ]]♯ d0 = d0 ⊑ I[start]

Step: π = π′k for k = (u, _, v) edge.

164

Proof: Induction on the length of π.

Foundation: π = ǫ (empty path)

Then:

[[π]]♯ d0 = [[ǫ]]♯ d0 = d0 ⊑ I[start]

Step: π = π′k for k = (u, _, v) edge.

Then:

[[π′]]♯ d0 ⊑ I[u] by I.H. for π

==⇒ [[π]]♯ d0 = [[k]]♯ ([[π′]]♯ d0)

⊑ [[k]]♯ (I[u]) since [[k]]♯ monotonic

⊑ I[v] since I solution :-))

165

Disappointment:

Are solutions of the constraint systemjust upper bounds???

166

Disappointment:

Are solutions of the constraint systemjust upper bounds???

Answer:

In general:yes :-(

167

Disappointment:

Are solutions of the constraint systemjust upper bounds???

Answer:

In general:yes :-(

With the notable exception when all functions[[k]]♯ aredistributive...
:-)

168

The function f : D1 → D2 is called

• distributive, if f (
⊔

X) =
⊔

{f x | x ∈ X} for all ∅ 6= X ⊆ D;

• strict, if f ⊥ = ⊥.

• totally distributive, if f is distributive and strict.

169

The function f : D1 → D2 is called

• distributive, if f (
⊔

X) =
⊔

{f x | x ∈ X} for all ∅ 6= X ⊆ D;

• strict, if f ⊥ = ⊥.

• totally distributive, if f is distributive and strict.

Examples:

• f x = x ∩ a ∪ b for a, b ⊆ U .

170

The function f : D1 → D2 is called

• distributive, if f (
⊔

X) =
⊔

{f x | x ∈ X} for all ∅ 6= X ⊆ D;

• strict, if f ⊥ = ⊥.

• totally distributive, if f is distributive and strict.

Examples:

• f x = x ∩ a ∪ b for a, b ⊆ U .

Strictness: f ∅ = a ∩ ∅ ∪ b = b = ∅ whenever b = ∅ :-(

171

The function f : D1 → D2 is called

• distributive, if f (
⊔

X) =
⊔

{f x | x ∈ X} for all ∅ 6= X ⊆ D;

• strict, if f ⊥ = ⊥.

• totally distributive, if f is distributive and strict.

Examples:

• f x = x ∩ a ∪ b for a, b ⊆ U .

Strictness: f ∅ = a ∩ ∅ ∪ b = b = ∅ whenever b = ∅ :-(

Distributivity:

f (x1 ∪ x2) = a ∩ (x1 ∪ x2) ∪ b

= a ∩ x1 ∪ a ∩ x2 ∪ b

= f x1 ∪ f x2 :-)

172

• D1 = D2 = N ∪ {∞}, incx = x+ 1

173

• D1 = D2 = N ∪ {∞}, incx = x+ 1

Strictness: f ⊥ = inc 0 = 1 6= ⊥ :-(

174

• D1 = D2 = N ∪ {∞}, incx = x+ 1

Strictness: f ⊥ = inc 0 = 1 6= ⊥ :-(

Distributivity: f (
⊔

X) =
⊔

{x+ 1 | x ∈ X} for ∅ 6= X

:-)

175

• D1 = D2 = N ∪ {∞}, incx = x+ 1

Strictness: f ⊥ = inc 0 = 1 6= ⊥ :-(

Distributivity: f (
⊔

X) =
⊔

{x+ 1 | x ∈ X} for ∅ 6= X

:-)

• D1 = (N ∪ {∞})2, D2 = N ∪ {∞}, f(x1, x2) = x1 + x2

176

• D1 = D2 = N ∪ {∞}, incx = x+ 1

Strictness: f ⊥ = inc 0 = 1 6= ⊥ :-(

Distributivity: f (
⊔

X) =
⊔

{x+ 1 | x ∈ X} for ∅ 6= X

:-)

• D1 = (N ∪ {∞})2, D2 = N ∪ {∞}, f(x1, x2) = x1 + x2 :

Strictness: f ⊥ = 0 + 0 = 0 :-)

177

• D1 = D2 = N ∪ {∞}, incx = x+ 1

Strictness: f ⊥ = inc 0 = 1 6= ⊥ :-(

Distributivity: f (
⊔

X) =
⊔

{x+ 1 | x ∈ X} for ∅ 6= X

:-)

• D1 = (N ∪ {∞})2, D2 = N ∪ {∞}, f(x1, x2) = x1 + x2 :

Strictness: f ⊥ = 0 + 0 = 0 :-)

Distributivity:

f ((1, 4) ⊔ (4, 1)) = f (4, 4) = 8

6= 5 = f (1, 4) ⊔ f (4, 1) :-)

178

Remark:

If f : D1 → D2 is distributive, then also monotonic:-)

179

Remark:

If f : D1 → D2 is distributive, then also monotonic:-)

Obviously: a ⊑ b iff a ⊔ b = b.

180

Remark:

If f : D1 → D2 is distributive, then also monotonic:-)

Obviously: a ⊑ b iff a ⊔ b = b.

From that follows:

f b = f (a ⊔ b)

= f a ⊔ f b

==⇒ f a ⊑ f b :-)

181

Assumption: all v are reachable from start .

182

Assumption: all v are reachable from start .
Then:

Theorem Kildall 1972

If all effects of edges [[k]]♯ are distributive, then: I∗[v] = I[v]

for all v .

183

Gary A. Kildall (1942-1994).

Has developed the operating system CP/M and GUIs for PCs.

184

Assumption: all v are reachable from start .
Then:

Theorem Kildall 1972

If all effects of edges [[k]]♯ are distributive, then: I∗[v] = I[v]

for all v .

185

Assumption: all v are reachable from start .
Then:

Theorem Kildall 1972

If all effects of edges [[k]]♯ are distributive, then: I∗[v] = I[v]

for all v .

Proof:

It suffices to prove that I∗ is a solution :-)

For this, we show that I∗ satisfies all constraints:-))

186

(1) We prove for start :

I∗[start] =
⊔

{[[π]]♯ d0 | π : start →∗ start}

⊒ [[ǫ]]♯ d0

⊒ d0 :-)

187

(1) We prove for start :

I∗[start] =
⊔

{[[π]]♯ d0 | π : start →∗ start}

⊒ [[ǫ]]♯ d0

⊒ d0 :-)

(2) For every k = (u, _, v) we prove:

I∗[v] =
⊔

{[[π]]♯ d0 | π : start →∗ v}

⊒
⊔

{[[π′k]]♯ d0 | π
′ : start →∗ u}

=
⊔

{[[k]]♯ ([[π′]]♯ d0) | π
′ : start →∗ u}

= [[k]]♯ (
⊔

{[[π′]]♯ d0 | π
′ : start →∗ u})

= [[k]]♯ (I∗[u])

since {π′ | π′ : start →∗ u} is non-empty :-)

188

Caveat:

• Reachabilityof all program points cannot be abandoned! Consider:

0 1 2
inc7

where D = N ∪ {∞}

189

Caveat:

• Reachabilityof all program points cannot be abandoned! Consider:

0 1 2
inc7

where D = N ∪ {∞}

Then:

I[2] = inc 0 = 1

I∗[2] =
⊔

∅ = 0

190

Caveat:

• Reachabilityof all program points cannot be abandoned! Consider:

0 1 2
inc7

where D = N ∪ {∞}

Then:

I[2] = inc 0 = 1

I∗[2] =
⊔

∅ = 0

• Unreachableprogram points can always be thrown away:-)

191

Summary and Application:

→ The effects of edges of the analysis ofavailability of expressions
are distributive:

(a ∪ (x1 ∩ x2))\b = ((a ∪ x1) ∩ (a ∪ x2))\b

= ((a ∪ x1)\b) ∩ ((a ∪ x2)\b)

192

Summary and Application:

→ The effects of edges of the analysis ofavailability of expressions
are distributive:

(a ∪ (x1 ∩ x2))\b = ((a ∪ x1) ∩ (a ∪ x2))\b

= ((a ∪ x1)\b) ∩ ((a ∪ x2)\b)

→ If all effects of edges aredistributive, then theMOP can be
computed by means of the constraint system andRR-iteration. :-)

193

Summary and Application:

→ The effects of edges of the analysis ofavailability of expressions
are distributive:

(a ∪ (x1 ∩ x2))\b = ((a ∪ x1) ∩ (a ∪ x2))\b

= ((a ∪ x1)\b) ∩ ((a ∪ x2)\b)

→ If all effects of edges aredistributive, then theMOP can be
computed by means of the constraint system andRR-iteration. :-)

→ If not all effects of edges aredistributive, thenRR-iterationfor the
constraint system at least returns asafeupper bound to the MOP
:-)

194

1.2 Removing Assignments to Dead Variables

Example:

1 : x = y + 2;

2 : y = 5;

3 : x = y + 3;

The value of x at program points 1, 2 is over-written before it can
be used.

Therefore, we call the variablex deadat these program points:-)

195

Note:

→ Assignments to dead variables can be removed;-)

→ Such inefficiencies may originate from other transformations.

196

Note:

→ Assignments to dead variables can be removed;-)

→ Such inefficiencies may originate from other transformations.

Formal Definition:

The variable x is calledlive at u along the path π starting at
u relative to a set X of variables either:

if x ∈ X and π does not contain adefinitionof x; or:

if π can be decomposed into:π = π1 k π2 such that:

• k is auseof x ; and

• π1 does not contain adefinitionof x.

197

u
π1 k

Thereby, the set of all defined or used variables at an edge
k = (_, lab, _) is defined by:

lab used defined

; ∅ ∅

Pos (e) Vars (e) ∅

Neg (e) Vars (e) ∅

x = e; Vars (e) {x}

x =M [e]; Vars (e) {x}

M [e1] = e2; Vars (e1) ∪ Vars (e2) ∅

198

A variable x which is not live at u along π (relative toX) is
called dead at u along π (relative toX).

Example:

10 2 3

x = y + 2; y = 5; x = y + 3;

whereX = ∅. Then we observe:

live dead

0 {y} {x}

1 ∅ {x, y}

2 {y} {x}

3 ∅ {x, y}

199

The variable x is live at u (relative toX) if x is live at u

alongsomepath to the exit (relative toX). Otherwise, x is calleddead
at u (relative toX).

200

The variable x is live at u (relative toX) if x is live at u

alongsomepath to the exit (relative toX). Otherwise, x is calleddead
at u (relative toX).

Question:

How can the sets of all dead/live variables be computed for every u ???

201

The variable x is live at u (relative toX) if x is live at u

alongsomepath to the exit (relative toX). Otherwise, x is calleddead
at u (relative toX).

Question:

How can the sets of all dead/live variables be computed for every u ???

Idea:

For every edge k = (u, _, v) , define a function [[k]]♯ which transforms
the set of variables which are live atv into the set of variables which
are live at u ...

202

Let L = 2Vars .

For k = (_, lab, _) , define [[k]]♯ = [[lab]]♯ by:

[[;]]♯ L = L

[[Pos(e)]]♯ L = [[Neg(e)]]♯ L = L ∪ Vars(e)

[[x = e;]]♯ L = (L\{x}) ∪ Vars(e)

[[x =M [e];]]♯ L = (L\{x}) ∪ Vars(e)

[[M [e1] = e2;]]
♯ L = L ∪ Vars(e1) ∪ Vars(e2)

203

Let L = 2Vars .

For k = (_, lab, _) , define [[k]]♯ = [[lab]]♯ by:

[[;]]♯ L = L

[[Pos(e)]]♯ L = [[Neg(e)]]♯ L = L ∪ Vars(e)

[[x = e;]]♯ L = (L\{x}) ∪ Vars(e)

[[x =M [e];]]♯ L = (L\{x}) ∪ Vars(e)

[[M [e1] = e2;]]
♯ L = L ∪ Vars(e1) ∪ Vars(e2)

[[k]]♯ can again be composed to the effects of[[π]]♯ of paths
π = k1 . . . kr by:

[[π]]♯ = [[k1]]
♯ ◦ . . . ◦ [[kr]]

♯

204

We verify that these definitions aremeaningful :-)

4 5321

M [y] = x;x = y + 2;y = 5;x = y + 2;

205

We verify that these definitions aremeaningful :-)

4 5321

M [y] = x;x = y + 2;y = 5;x = y + 2;

∅

206

We verify that these definitions aremeaningful :-)

4 5321

M [y] = x;x = y + 2;y = 5;x = y + 2;

∅{x, y}

207

We verify that these definitions aremeaningful :-)

4 5321

M [y] = x;x = y + 2;y = 5;x = y + 2;

∅{x, y}{y}

208

We verify that these definitions aremeaningful :-)

4 5321

M [y] = x;x = y + 2;y = 5;x = y + 2;

∅{x, y}{y}∅

209

We verify that these definitions aremeaningful :-)

4 5321

M [y] = x;x = y + 2;y = 5;x = y + 2;

∅{x, y}{y}∅{y}

210

The set of variables which are live atu then is given by:

L∗[u] =
⋃

{[[π]]♯X | π : u→∗ stop}

... literally:

• The pathsstartin u :-)

==⇒ As partial ordering for L we use ⊑ = ⊆ .

• The set of variables which are live at program exit is given bythe set
X :-)

211

Transformation 2:

;

v v

x = e;

x 6∈ L∗[v]

;

v v

x 6∈ L∗[v]

x =M [e];

212

Correctness Proof:

→ Correctness of the effects of edges:If L is the set of variables
which are live at the exit of the pathπ , then [[π]]♯ L is the set
of variables which are live at the beginning ofπ :-)

→ Correctness of the transformation along a path:If the value of a
variable is accessed, this variable is necessarily live. The value of
dead variables thus isirrelevant :-)

→ Correctness of the transformation:In any execution of the
transformed programs, the live variables always receive the same
values :-))

213

Computation of the setsL∗[u] :

(1) Collecting constraints:

L[stop] ⊇ X

L[u] ⊇ [[k]]♯ (L[v]) k = (u, _, v) edge

(2) Solving the constraint system by means of RR iteration.

Since L is finite, the iteration will terminate :-)

(3) If the exit is (formally) reachable from every program
point, then the smallest solutionL of the constraint
system equals L∗ since all [[k]]♯ are distributive :-))

214

Computation of the setsL∗[u] :

(1) Collecting constraints:

L[stop] ⊇ X

L[u] ⊇ [[k]]♯ (L[v]) k = (u, _, v) edge

(2) Solving the constraint system by means of RR iteration.

Since L is finite, the iteration will terminate :-)

(3) If the exit is (formally) reachable from every program
point, then the smallest solutionL of the constraint
system equals L∗ since all [[k]]♯ are distributive :-))

Caveat: The information is propagatedbackwards !!!

215

Example:

7
x = x− 1;

y = x ∗ y;

Pos(x > 1)Neg(x > 1)

36

4

5

2

y = 1;

1

x =M [I];

0

M [R] = y;

L[0] ⊇ (L[1]\{x}) ∪ {I}

L[1] ⊇ L[2]\{y}

L[2] ⊇ (L[6] ∪ {x}) ∪ (L[3] ∪ {x})

L[3] ⊇ (L[4]\{y}) ∪ {x, y}

L[4] ⊇ (L[5]\{x}) ∪ {x}

L[5] ⊇ L[2]

L[6] ⊇ L[7] ∪ {y, R}

L[7] ⊇ ∅

216

Example:

7
x = x− 1;

y = x ∗ y;

Pos(x > 1)Neg(x > 1)

36

4

5

2

y = 1;

1

x =M [I];

0

M [R] = y;

1 2

7 ∅

6 {y, R}

2 {x, y, R} ditto

5 {x, y, R}

4 {x, y, R}

3 {x, y, R}

1 {x,R}

0 {I, R}

217

The left-hand side of no assignment isdead :-)

Caveat:

Removal of assignments to dead variables may kill further variables:

2

3

1

4

x = y + 1;

z = 2 ∗ x;

M [R] = y;

∅

218

The left-hand side of no assignment isdead :-)

Caveat:

Removal of assignments to dead variables may kill further variables:

2

3

1

4

x = y + 1;

z = 2 ∗ x;

M [R] = y;

∅

y, R

219

The left-hand side of no assignment isdead :-)

Caveat:

Removal of assignments to dead variables may kill further variables:

2

3

1

4

x = y + 1;

z = 2 ∗ x;

M [R] = y;

∅

y, R

x, y, R

220

The left-hand side of no assignment isdead :-)

Caveat:

Removal of assignments to dead variables may kill further variables:

2

3

1

4

x = y + 1;

z = 2 ∗ x;

M [R] = y;

y, R

∅

y, R

x, y, R

221

The left-hand side of no assignment isdead :-)

Caveat:

Removal of assignments to dead variables may kill further variables:

2

3

1

4

2

3

1

4

x = y + 1;

z = 2 ∗ x;

M [R] = y;

y, R

∅

y, R

x, y, R

x = y + 1;

;

M [R] = y;

222

The left-hand side of no assignment isdead :-)

Caveat:

Removal of assignments to dead variables may kill further variables:

2

3

1

4

2

3

1

4

x = y + 1;

z = 2 ∗ x;

M [R] = y;

y, R

∅

y, R

x, y, R

x = y + 1;

;

M [R] = y;

y, R

∅

y, R

y,R

223

The left-hand side of no assignment isdead :-)

Caveat:

Removal of assignments to dead variables may kill further variables:

2

3

1

4

2

3

1

4

2

3

1

4

x = y + 1;

z = 2 ∗ x;

M [R] = y;

y, R

∅

y, R

x, y, R

x = y + 1;

;

M [R] = y;

y, R

∅

y, R

y,R

;

;

M [R] = y;

224

Re-analyzing the program is inconvenient:-(

Idea: Analyzetrueliveness!

x is calledtruly live at u along a path π (relative toX), either

if x ∈ X , π does not contain a definition ofx; or

if π can be decomposed intoπ = π1 k π2 such that:

• k is atrueuse ofx relative toπ2;

• π1 does not contain anydefinitionof x.

225

u v
kπ2

The set of truely used variables at an edgek = (_, lab, v) is defined as:

lab truely used

; ∅

Pos (e) Vars (e)

Neg (e) Vars (e)

x = e; Vars (e) (∗)

x =M [e]; Vars (e) (∗)

M [e1] = e2; Vars(e1) ∪ Vars(e2)

(∗) – given that x is truely live at v w.r.t.π2 :-)

226

Example:

2

3

1

4

x = y + 1;

z = 2 ∗ x;

M [R] = y;

∅

227

Example:

2

3

1

4

x = y + 1;

z = 2 ∗ x;

M [R] = y;

∅

y, R

228

Example:

2

3

1

4

x = y + 1;

z = 2 ∗ x;

M [R] = y;

∅

y, R

y,R

229

Example:

2

3

1

4

x = y + 1;

z = 2 ∗ x;

M [R] = y;

y, R

∅

y, R

y,R

230

Example:

2

3

1

4

2

3

1

4

x = y + 1;

z = 2 ∗ x;

M [R] = y;

;

;

M [R] = y;

y, R

∅

y, R

y,R

231

The Effects of Edges:

[[;]]♯ L = L

[[Pos(e)]]♯ L = [[Neg(e)]]♯ L = L ∪ Vars(e)

[[x = e;]]♯ L = (L\{x}) ∪ (x ∈ L) ?Vars(e) : ∅

[[x =M [e];]]♯ L = (L\{x}) ∪ Vars(e)

[[M [e1] = e2;]]
♯ L = L ∪ Vars(e1) ∪ Vars(e2)

232

The Effects of Edges:

[[;]]♯ L = L

[[Pos(e)]]♯ L = [[Neg(e)]]♯ L = L ∪ Vars(e)

[[x = e;]]♯ L = (L\{x}) ∪ (x ∈ L) ?Vars(e) : ∅

[[x =M [e];]]♯ L = (L\{x}) ∪ (x ∈ L) ?Vars(e) : ∅

[[M [e1] = e2;]]
♯ L = L ∪ Vars(e1) ∪ Vars(e2)

233

Note:

• The effects of edges for truely live variables aremore complicated
than for live variables :-)

• Nonetheless, they aredistributive!!

234

Note:

• The effects of edges for truely live variables aremore complicated
than for live variables :-)

• Nonetheless, they aredistributive!!

To see this, consider forD = 2U , f y = (u ∈ y) ? b : ∅ We
verify:

f (y1 ∪ y2) = (u ∈ y1 ∪ y2) ? b : ∅

= (u ∈ y1 ∨ u ∈ y2) ? b : ∅

= (u ∈ y1) ? b : ∅ ∪ (u ∈ y2) ? b : ∅

= f y1 ∪ f y2

235

Note:

• The effects of edges for truely live variables aremore complicated
than for live variables :-)

• Nonetheless, they aredistributive!!

To see this, consider forD = 2U , f y = (u ∈ y) ? b : ∅ We
verify:

f (y1 ∪ y2) = (u ∈ y1 ∪ y2) ? b : ∅

= (u ∈ y1 ∨ u ∈ y2) ? b : ∅

= (u ∈ y1) ? b : ∅ ∪ (u ∈ y2) ? b : ∅

= f y1 ∪ f y2

==⇒ the constraint system yields theMOP :-))

236

• True liveness detectsmoresuperfluous assignments than repeated
liveness!!!

True Liveness:

x = x− 1;

;

237

• True liveness detectsmoresuperfluous assignments than repeated
liveness!!!

TrueLiveness:

x = x− 1;

;

∅

{x}

238

• True liveness detectsmoresuperfluous assignments than repeated
liveness!!!

True Liveness:

x = x− 1;

;

∅

∅

239

1.3 Removing Superfluous Moves

Example:

2

3

1

4

T = x+ 1;

y = T ;

M [R] = y;

This variable-variable assignment is obviously useless:-(

240

1.3 Removing Superfluous Moves

Example:

2

3

1

4

T = x+ 1;

y = T ;

M [R] = y;

This variable-variable assignment is obviously useless:-(

Instead of y, we could also store T :-)

241

1.3 Removing Superfluous Moves

Example:

2

3

1

4

2

3

1

4

T = x+ 1;

y = T ;

M [R] = y;

T = x+ 1;

y = T ;

M [R] = T ;

This variable-variable assignment is obviously useless:-(

Instead of y, we could also store T :-)

242

1.3 Removing Superfluous Moves

Example:

2

3

1

4

2

3

1

4

T = x+ 1;

y = T ;

M [R] = y;

T = x+ 1;

y = T ;

M [R] = T ;

Advantage: Now, y has becomedead :-))

243

1.3 Removing Superfluous Moves

Example:

2

3

1

4

2

3

1

4

2

3

1

4

T = x+ 1;

y = T ;

M [R] = y;

T = x+ 1;

y = T ;

M [R] = T ;

T = x+ 1;

;

M [R] = T ;

Advantage: Now, y has becomedead :-))

244

Idea:

For each expression, we record the variable which currentlycontains its
value :-)

We use: V = (Expr \ Vars)→ 2Vars ...

245

Idea:

For each expression, we record the variable which currentlycontains its
value :-)

We use: V = Expr → 2Vars and define:

[[;]]♯ V = V

[[Pos(e)]]♯ V e′ = [[Neg(e)]]♯ V e′ =

{

∅ if e′ = e

V e′ otherwise

. . .

246

[[x = c;]]♯ V e′ =

{

(V c) ∪ {x} if e′ = c

(V e′)\{x} otherwise

[[x = y;]]♯ V e =

{

(V e) ∪ {x} if y ∈ V e

(V e)\{x} otherwise

[[x = e;]]♯ V e′ =

{

{x} if e′ = e

(V e′)\{x} otherwise

[[x =M [c];]]♯ V e′ = (V e′)\{x}

[[x =M [y];]]♯ V e′ = (V e′)\{x}

[[x =M [e];]]♯ V e′ =

{

∅ if e′ = e

(V e′)\{x} otherwise

// analogously for the diverse stores

247

In the Example:

2

3

1

4

T = x+ 1;

y = T ;

M [R] = y;

{x+ 1 7→ {T}}

{x+ 1 7→ {y, T}}

{x+ 1 7→ {y, T}}

∅

248

In the Example:

2

3

1

4

T = x+ 1;

y = T ;

M [R] = y;

{x+ 1 7→ {T}}

{x+ 1 7→ {y, T}}

{x+ 1 7→ {y, T}}

∅

→ We propagate information inforwarddirection :-)

At start , V0 e = ∅ for all e;

→ ⊑ ⊆ V× V is defined by:

V1 ⊑ V2 iff V1 e ⊇ V2 e for all e

249

Observation:

The new effects of edges aredistributive:

To show this, we consider the functions:

(1) fx1 V e = (V e)\{x}

(2) f e,a2 V = V ⊕ {e 7→ a}}

(3) fx,y3 V e = (y ∈ V e) ? (V e ∪ {x}) : ((V e)\{x})

Obviously, we have:

[[x = e;]]♯ = f
e,{x}
2 ◦ fx1

[[x = y;]]♯ = fx,y3

[[x =M [e];]]♯ = f e,∅2 ◦ f
x
1

By closure undercomposition, the assertion follows :-))

250

(1) For f V e = (V e)\{x}, we have:

f (V1 ⊔ V2) e = ((V1 ⊔ V2) e)\{x}

= ((V1 e) ∩ (V2 e))\{x}

= ((V1 e)\{x}) ∩ ((V2 e)\{x})

= (f V1 e) ∩ (f V2 e)

= (f V1 ⊔ f V2) e :-)

251

(2) For f V = V ⊕ {e 7→ a}, we have:

f (V1 ⊔ V2) e
′ = ((V1 ⊔ V2)⊕ {e 7→ a}) e′

= (V1 ⊔ V2) e
′

= (f V1 ⊔ f V2) e
′ given that e 6= e′

f (V1 ⊔ V2) e = ((V1 ⊔ V2)⊕ {e 7→ a}) e

= a

= ((V1 ⊕ {e 7→ a}) e) ∩ ((V2 ⊕ {e 7→ a}) e)

= (f V1 ⊔ f V2) e :-)

252

(3) For f V e = (y ∈ V e) ? (V e ∪ {x}) : ((V e)\{x}), we have:

f (V1 ⊔ V2) e = (((V1 ⊔ V2) e)\{x}) ∪ (y ∈ (V1 ⊔ V2) e) ? {x} : ∅

= ((V1 e ∩ V2 e)\{x}) ∪ (y ∈ (V1 e ∩ V2 e)) ? {x} : ∅

= ((V1 e ∩ V2 e)\{x}) ∪

((y ∈V1 e) ? {x} : ∅) ∩ ((y ∈V2 e) ? {x} : ∅)

= (((V1 e)\{x}) ∪ (y ∈V1 e) ? {x} : ∅) ∩

(((V2 e)\{x}) ∪ (y ∈V2 e) ? {x} : ∅)

= (f V1 ⊔ f V2) e :-)

253

We conclude:

→ Solving the constraint system returns the MOP solution:-)

→ Let V denote this solution.

If x ∈ V[u] e , then x at u contains the value of e —
which we have stored inTe

==⇒

the access to x can be replaced by the access toTe :-)

For V ∈ V , let V − denote thevariable substitutionwith:

V − x =

{

Te if x ∈ V e

x otherwise

if V e ∩ V e′ = ∅ for e 6= e′ . Otherwise: V − x = x :-)

254

Transformation 3:

u u

Pos(e) Pos(σ(e))

σ = V[u]−

... analogously for edges withNeg(e)

x = e;

u uσ = V[u]−

x = σ(e);

255

Transformation 3 (cont.):

u uσ = V[u]−

x =M [e]; x =M [σ(e)];

u uσ = V[u]−

M [e1] = e2; M [σ(e1)] = σ(e2);

256

Procedure as a whole:

(1) Availability of expressions: T1

+ removes arithmetic operations

– inserts superfluous moves

(2) Values of variables: T3

+ creates dead variables

(3) (true) liveness of variables: T2

+ removes assignments to dead variables

257

Example: a[7]--;

B1 = M [A1];

A1 = A + 7;

B2 = B1 − 1;

A2 = A + 7;

M [A2] = B2; T1 = A + 7;

A2 = T1;

M [A2] = B2;

B2 = T2;

T2 = B1 − 1;

B1 = M [A1];

A1 = T1;

T1 = A + 7;

T1.1

258

Example: a[7]--;

B1 = M [A1];

A1 = A + 7;

B2 = B1 − 1;

A2 = A + 7;

M [A2] = B2; T1 = A + 7;

A2 = T1;

M [A2] = B2;

B2 = T2;

T2 = B1 − 1;

B1 = M [A1];

A1 = T1;

T1 = A + 7;

;

A2 = T1;

M [A2] = B2;

B2 = T2;

T2 = B1 − 1;

B1 = M [A1];

A1 = T1;

T1 = A + 7;

T1.1 T1.2

259

Example (cont.): a[7]--;

;

A2 = T1;

M [A2] = B2;

B2 = T2;

T2 = B1 − 1;

B1 = M [A1];

A1 = T1;

T1 = A + 7;

A2 = T1;

B2 = T2;

T2 = B1 − 1;

T1 = A + 7;

;

A1 = T1;

B1 = M [T1];

M [T1] = T2;

T3

260

Example (cont.): a[7]--;

;

A2 = T1;

M [A2] = B2;

B2 = T2;

T2 = B1 − 1;

B1 = M [A1];

A1 = T1;

T1 = A + 7;

;

;

M [T1] = T2;

;

T2 = B1 − 1;

B1 = M [T1];

;

T1 = A + 7;

A2 = T1;

B2 = T2;

T2 = B1 − 1;

T1 = A + 7;

;

A1 = T1;

B1 = M [T1];

M [T1] = T2;

T3 T2

261

1.4 Constant Propagation

Idea:
Execute as much of the code at compile-time as possible!

Example:

x = 7;

if (x > 0)

M [A] = B;

2

1

3

4

5

x = 7;

Pos(x > 0)

M [A] = B;

Neg(x > 0)

;

262

Obviously, x has always the value 7:-)

Thus, the memory access isalwaysexecuted :-))

Goal:

2

1

3

4

5

x = 7;

Pos(x > 0)

M [A] = B;

Neg(x > 0)

;

263

Obviously, x has always the value 7:-)

Thus, the memory access isalwaysexecuted :-))

Goal:

2

1

3

4

5

2

1

3

4

5

;

M [A] = B;

;

;x = 7;

Pos(x > 0)

M [A] = B;

Neg(x > 0)

;

264

Generalization: Partial Evaluation

Neil D. Jones, DIKU, Kopenhagen

265

Idea:

Design an analysis which for everyu,

• determines the values which variablesdefinitelyhave;

• tells whether u can be reached at all:-)

266

Idea:

Design an analysis which for everyu,

• determines the values which variablesdefinitelyhave;

• tells whether u can be reached at all:-)

The complete lattice is constructed in two steps.

(1) The potentialvalues of variables:

Z⊤ = Z ∪ {⊤} with x ⊑ y iff y = ⊤ or x = y

210-1-2

⊤

267

Caveat: Z⊤ is nota complete lattice in itself :-(

(2) D = (Vars → Z⊤)⊥ = (Vars → Z⊤) ∪ {⊥}

// ⊥ denotes: “not reachable”:-))

with D1 ⊑ D2 iff ⊥ = D1 or

D1 x ⊑ D2 x (x ∈ Vars)

Remark: D is a complete lattice :-)

268

Caveat: Z⊤ is nota complete lattice in itself :-(

(2) D = (Vars → Z⊤)⊥ = (Vars → Z⊤) ∪ {⊥}

// ⊥ denotes: “not reachable”:-))

with D1 ⊑ D2 iff ⊥ = D1 or

D1 x ⊑ D2 x (x ∈ Vars)

Remark: D is a complete lattice :-)

Consider X ⊆ D . W.l.o.g., ⊥ 6∈ X .

Then X ⊆ Vars → Z⊤ .

If X = ∅ , then
⊔

X = ⊥ ∈ D :-)

269

If X 6= ∅ , then
⊔

X = D with

Dx =
⊔

{f x | f ∈ X}

=

{

z if f x = z (f ∈ X)

⊤ otherwise

:-))

270

If X 6= ∅ , then
⊔

X = D with

Dx =
⊔

{f x | f ∈ X}

=

{

z if f x = z (f ∈ X)

⊤ otherwise

:-))

For every edge k = (_, lab, _) , construct an effect function
[[k]]♯ = [[lab]]♯ : D→ D which simulates theconcretecomputation.

Obviously, [[lab]]♯⊥ = ⊥ for all lab :-)

Now let ⊥ 6= D ∈ Vars → Z⊤.

271

Idea:

• We use D to determine the values of expressions.

272

Idea:

• We use D to determine the values of expressions.

• For some sub-expressions, we obtain⊤ :-)

273

Idea:

• We use D to determine the values of expressions.

• For some sub-expressions, we obtain⊤ :-)

==⇒

We must replace the concrete operators✷ by abstractoperators
✷
♯ which can handle ⊤ :

a✷♯ b =

{

⊤ if a = ⊤ or b = ⊤

a✷ b otherwise

274

Idea:

• We use D to determine the values of expressions.

• For some sub-expressions, we obtain⊤ :-)

==⇒

We must replace the concrete operators✷ by abstractoperators
✷
♯ which can handle ⊤ :

a✷♯ b =

{

⊤ if a = ⊤ or b = ⊤

a✷ b otherwise

• The abstract operators allow to define anabstractevaluation of
expressions:

[[e]]♯ : (Vars → Z⊤)→ Z⊤

275

Abstract evaluationof expressions is like theconcreteevaluation — but
with abstract values and operators. Here:

[[c]]♯D = c

[[e1 ✷ e2]]
♯D = [[e1]]

♯D✷
♯ [[e2]]

♯D

... analogously forunaryoperators :-)

276

Abstract evaluationof expressions is like theconcreteevaluation — but
with abstract values and operators. Here:

[[c]]♯D = c

[[e1 ✷ e2]]
♯D = [[e1]]

♯D✷
♯ [[e2]]

♯D

... analogously forunaryoperators :-)

Example: D = {x 7→ 2, y 7→ ⊤}

[[x+ 7]]♯D = [[x]]♯D +♯ [[7]]♯D

= 2 +♯ 7

= 9

[[x− y]]♯D = 2 −♯ ⊤

= ⊤

277

Thus, we obtain the following effects of edges[[lab]]♯ :

[[;]]♯ D = D

[[Pos (e)]]♯D =

{

⊥ if 0 = [[e]]♯D

D otherwise

[[Neg (e)]]♯D =

{

D if 0 ⊑ [[e]]♯D

⊥ otherwise

[[x = e;]]♯D = D ⊕ {x 7→ [[e]]♯D}

[[x =M [e];]]♯D = D ⊕ {x 7→ ⊤}

[[M [e1] = e2;]]
♯D = D

... whenever D 6= ⊥ :-)

278

At start, we have D⊤ = {x 7→ ⊤ | x ∈ Vars} .

Example:

2

1

3

4

5

x = 7;

Pos(x > 0)

M [A] = B;

Neg(x > 0)

;

279

At start, we have D⊤ = {x 7→ ⊤ | x ∈ Vars} .

Example:

2

1

3

4

5

x = 7;

Pos(x > 0)

M [A] = B;

Neg(x > 0)

;

1 {x 7→ ⊤}

2 {x 7→ 7}

3 {x 7→ 7}

4 {x 7→ 7}

5 ⊥ ⊔ {x 7→ 7} = {x 7→ 7}

280

The abstract effects of edges[[k]]♯ are again composed to the effects of
paths π = k1 . . . kr by:

[[π]]♯ = [[kr]]
♯ ◦ . . . ◦ [[k1]]

♯ : D→ D

Idea for Correctness: Abstract Interpretation

Cousot, Cousot 1977

281

Patrick Cousot, ENS, Paris

282

The abstract effects of edges[[k]]♯ are again composed to the effects of
paths π = k1 . . . kr by:

[[π]]♯ = [[kr]]
♯ ◦ . . . ◦ [[k1]]

♯ : D→ D

Idea for Correctness: Abstract Interpretation

Cousot, Cousot 1977

Establish a description relation∆ between theconcretevalues and
their descriptions with:

x∆ a1 ∧ a1 ⊑ a2 ==⇒ x∆ a2

Concretization: γ a = {x | x∆ a}

// returns the set of described values:-)

283

(1) Values: ∆ ⊆ Z× Z⊤

z∆ a iff z = a ∨ a = ⊤

Concretization:

γ a =

{

{a} if a ⊏ ⊤

Z if a = ⊤

284

(1) Values: ∆ ⊆ Z× Z⊤

z∆ a iff z = a ∨ a = ⊤

Concretization:

γ a =

{

{a} if a ⊏ ⊤

Z if a = ⊤

(2) Variable Assignments: ∆ ⊆ (Vars → Z)× (Vars → Z⊤)⊥

ρ ∆ D iff D 6= ⊥ ∧ ρ x ⊑ Dx (x ∈ Vars)

Concretization:

γ D =

{

∅ if D = ⊥

{ρ | ∀ x : (ρ x) ∆ (Dx)} otherwise

285

Example: {x 7→ 1, y 7→ −7} ∆ {x 7→ ⊤, y 7→ −7}

(3) States:

∆ ⊆ ((Vars → Z)× (N→ Z))× (Vars → Z⊤)⊥

(ρ, µ) ∆ D iff ρ ∆ D

Concretization:

γ D =

{

∅ if D = ⊥

{(ρ, µ) | ∀ x : (ρ x) ∆ (Dx)} otherwise

286

We show:

(∗) If s ∆ D and [[π]] s is defined, then:

([[π]] s) ∆ ([[π]]♯D)

s

D D1

s1

∆ ∆

[[π]]

[[π]]♯

287

(∗) The abstract semantics simulates the concrete semantics:-)

In particular:

[[π]] s ∈ γ ([[π]]♯D)

288

(∗) The abstract semantics simulates the concrete semantics:-)

In particular:

[[π]] s ∈ γ ([[π]]♯D)

In practice, this means,e.g., that Dx = −7 implies:

ρ′ x = −7 for all ρ′ ∈ γ D

==⇒ ρ1 x = −7 for (ρ1, _) = [[π]] s

289

To prove (∗), we show for every edgek :

(∗∗)

s

D D1

s1

∆ ∆

[[k]]

[[k]]♯

Then (∗) follows by induction :-)

290

To prove (∗∗), we show for every expressione :

(∗ ∗ ∗) ([[e]] ρ) ∆ ([[e]]♯D) whenever ρ ∆ D

291

To prove (∗∗), we show for every expressione :

(∗ ∗ ∗) ([[e]] ρ) ∆ ([[e]]♯D) whenever ρ ∆ D

To prove (∗ ∗ ∗), we show for every operator✷ :

(x✷ y) ∆ (x♯✷♯ y♯) whenever x ∆ x♯ ∧ y ∆ y♯

292

To prove (∗∗), we show for every expressione :

(∗ ∗ ∗) ([[e]] ρ) ∆ ([[e]]♯D) whenever ρ ∆ D

To prove (∗ ∗ ∗), we show for every operator✷ :

(x✷ y) ∆ (x♯✷♯ y♯) whenever x ∆ x♯ ∧ y ∆ y♯

This precisely was how we have defined the operators✷♯ :-)

293

Now, (∗∗) is proved by case distinction on the edge labelslab .

Let s = (ρ, µ) ∆ D . In particular, ⊥ 6= D : Vars → Z⊤

Case x = e; :

ρ1 = ρ⊕ {x 7→ [[e]] ρ} µ1 = µ

D1 = D ⊕ {x 7→ [[e]]♯D}

==⇒ (ρ1, µ1) ∆ D1

294

Case x =M [e]; :

ρ1 = ρ⊕ {x 7→ µ ([[e]]♯ρ)} µ1 = µ

D1 = D ⊕ {x 7→ ⊤}

==⇒ (ρ1, µ1) ∆ D1

Case M [e1] = e2; :

ρ1 = ρ µ1 = µ⊕ {[[e1]]
♯ρ 7→ [[e2]]

♯ρ}

D1 = D

==⇒ (ρ1, µ1) ∆ D1

295

Case Neg(e) : (ρ1, µ1) = s where:

0 = [[e]] ρ

∆ [[e]]♯D

==⇒ 0 ⊑ [[e]]♯D

==⇒ ⊥ 6= D1 = D

==⇒ (ρ1, µ1) ∆ D1

:-)

296

Case Pos(e) : (ρ1, µ1) = s where:

0 6= [[e]] ρ

∆ [[e]]♯D

==⇒ 0 6= [[e]]♯D

==⇒ ⊥ 6= D1 = D

==⇒ (ρ1, µ1) ∆ D1

:-)

297

We conclude: The assertion (∗) is true :-))

The MOP-Solution:

D∗[v] =
⊔

{[[π]]♯ D⊤ | π : start →∗ v}

where D⊤ x = ⊤ (x ∈ Vars) .

298

We conclude: The assertion (∗) is true :-))

The MOP-Solution:

D∗[v] =
⊔

{[[π]]♯ D⊤ | π : start →∗ v}

where D⊤ x = ⊤ (x ∈ Vars) .

By (∗), we have for all initial states s and all program executions
π which reach v :

([[π]] s) ∆ (D∗[v])

299

We conclude: The assertion (∗) is true :-))

The MOP-Solution

D∗[v] =
⊔

{[[π]]♯ D⊤ | π : start →∗ v}

where D⊤ x = ⊤ (x ∈ Vars) .

By (∗), we have for all initial states s and all program executions
π which reach v :

([[π]] s) ∆ (D∗[v])

In order to approximate the MOP, we use our constraint system:-))

300

Example:

7
x = x− 1;

y = x ∗ y;

Pos(x > 1)Neg(x > 1)

36

4

5

2

y = 1;

1

0

M [R] = y;

x = 10;

301

Example:

7
x = x− 1;

y = x ∗ y;

Pos(x > 1)Neg(x > 1)

36

4

5

2

y = 1;

1

0

M [R] = y;

x = 10;
1

x y

0 ⊤ ⊤

1 10 ⊤

2 10 1

3 10 1

4 10 10

5 9 10

6 ⊥

7 ⊥

302

Example:

7
x = x− 1;

y = x ∗ y;

Pos(x > 1)Neg(x > 1)

36

4

5

2

y = 1;

1

0

M [R] = y;

x = 10;
1 2

x y x y

0 ⊤ ⊤ ⊤ ⊤

1 10 ⊤ 10 ⊤

2 10 1 ⊤ ⊤

3 10 1 ⊤ ⊤

4 10 10 ⊤ ⊤

5 9 10 ⊤ ⊤

6 ⊥ ⊤ ⊤

7 ⊥ ⊤ ⊤

303

Example:

7
x = x− 1;

y = x ∗ y;

Pos(x > 1)Neg(x > 1)

36

4

5

2

y = 1;

1

0

M [R] = y;

x = 10;
1 2 3

x y x y x y

0 ⊤ ⊤ ⊤ ⊤

1 10 ⊤ 10 ⊤

2 10 1 ⊤ ⊤

3 10 1 ⊤ ⊤

4 10 10 ⊤ ⊤ ditto

5 9 10 ⊤ ⊤

6 ⊥ ⊤ ⊤

7 ⊥ ⊤ ⊤

304

Conclusion:

Although we compute with concrete values, we fail to compute
everything :-(

The fixpoint iteration, at least, is guaranteed to terminate:

For n program points andm variables, we maximally need:
n · (m+ 1) rounds :-)

Caveat:

The effects of edge arenot distributive!!!

305

Counter Example: f = [[x = x+ y;]]♯

Let D1 = {x 7→ 2, y 7→ 3}

D2 = {x 7→ 3, y 7→ 2}

Dann f D1 ⊔ f D2 = {x 7→ 5, y 7→ 3} ⊔ {x 7→ 5, y 7→ 2}

= {x 7→ 5, y 7→ ⊤}

6= {x 7→ ⊤, y 7→ ⊤}

= f {x 7→ ⊤, y 7→ ⊤}

= f (D1 ⊔D2)

:-((

306

We conclude:

The least solution D of the constraint system in general yields only an
upper approximationof the MOP, i.e.,

D∗[v] ⊑ D[v]

307

We conclude:

The least solution D of the constraint system in general yields only an
upper approximationof the MOP, i.e.,

D∗[v] ⊑ D[v]

As an upper approximation, D[v] nonetheless describes the result of
every program execution π which reaches v :

([[π]] (ρ, µ)) ∆ (D[v])

whenever [[π]] (ρ, µ) is defined ;-))

308

Transformation 4: Removal ofDeadCode

D[u] = ⊥

u

u

lab

[[lab]]♯(D[u]) = ⊥ u

309

Transformation 4 (cont.): Removal ofDeadCode

u u

Neg(e) ;

[[e]]♯D = 0

⊥ 6= D[u] = D

u u

;Pos(e)

[[e]]♯D 6∈ {0,⊤}

⊥ 6= D[u] = D

310

Transformation 4 (cont.): Simplified Expressions

u u

⊥ 6= D[u] = D

x = c;

[[e]]♯D = c

x = e;

311

Extensions:

• Instead of complete right-hand sides, also subexpressionscould be
simplified:

x+ (3 ∗ y)
{x 7→⊤,y 7→5}
=========⇒ x+ 15

... and further simplifications be applied, e.g.:

x ∗ 0 ==⇒ 0

x ∗ 1 ==⇒ x

x+ 0 ==⇒ x

x− 0 ==⇒ x

. . .

312

• So far, the information ofconditionshas not yet be optimally
exploited:

if (x == 7)

y = x+ 3;

Even if the value of x before theif statement is unknown, we at
least know that x definitely has the value 7 — whenever the
then-part isentered :-)

Therefore, we can define:

[[Pos (x == e)]]♯D =















D if [[x == e]]♯D = 1

⊥ if [[x == e]]♯D = 0

D1 otherwise

where

D1 = D ⊕ {x 7→ (Dx ⊓ [[e]]♯D)}

313

The effect of an edge labeledNeg (x 6= e) is analogous :-)

Our Example:

0

1

2

3
;

Pos(x == 7)

y = x+ 3;

Neg(x == 7)

314

The effect of an edge labeledNeg (x 6= e) is analogous :-)

Our Example:

0

1

2

3
;

Pos(x == 7)

y = x+ 3;

Neg(x == 7)

x 7→ ⊤

x 7→ 7

x 7→ 7

x 7→ ⊤

315

The effect of an edge labeledNeg (x 6= e) is analogous :-)

Our Example:

0

1

2

3

0

1

2

3
;

Pos(x == 7)

y = x+ 3;

Neg(x == 7)

;

Pos(x == 7)

y = 10;

Neg(x == 7)

316

1.5 Interval Analysis

Observation:

• Programmers often use global constants for switching debugging
code on/off.

==⇒

Constant propagation is useful:-)

• In general, precise values of variables will be unknown — perhaps,
however, a tightinterval!!!

317

Example:

for (i = 0; i < 42; i++)

if (0 ≤ i ∧ i < 42){

A1 = A+ i;

M [A1] = i;

}

// A start address of an array

// if the array-bound check

Obviously, the inner check is superfluous:-)

318

Idea 1:

Determine for every variablex an (as tight as possible:-) interval of
possible values:

I = {[l, u] | l ∈ Z ∪ {−∞}, u ∈ Z ∪ {+∞}, l ≤ u}

Partial Ordering:

[l1, u1] ⊑ [l2, u2] iff l2 ≤ l1 ∧ u1 ≤ u2

l1 u1

l2 u2

319

Thus:

[l1, u1] ⊔ [l2, u2] = [l1 ⊓ l2, u1 ⊔ u2]

[l1, u1] ⊓ [l2, u2] = [l1 ⊔ l2, u1 ⊓ u2] whenever(l1 ⊔ l2) ≤ (u1 ⊓u2)

l1 u1

l2 u2

320

Thus:

[l1, u1] ⊔ [l2, u2] = [l1 ⊓ l2, u1 ⊔ u2]

[l1, u1] ⊓ [l2, u2] = [l1 ⊔ l2, u1 ⊓ u2] whenever(l1 ⊔ l2) ≤ (u1 ⊓ u2)

l1 u1

l2 u2

321

Caveat:

→ I is not a complete lattice :-)

→ I hasinfinite ascending chains, e.g.,

[0, 0] ⊏ [0, 1] ⊏ [−1, 1] ⊏ [−1, 2] ⊏ . . .

322

Caveat:

→ I is not a complete lattice :-)

→ I hasinfinite ascending chains, e.g.,

[0, 0] ⊏ [0, 1] ⊏ [−1, 1] ⊏ [−1, 2] ⊏ . . .

Description Relation:

z ∆ [l, u] iff l ≤ z ≤ u

Concretization:

γ [l, u] = {z ∈ Z | l ≤ z ≤ u}

323

Example:

γ [0, 7] = {0, . . . , 7}

γ [0,∞] = {0, 1, 2, . . . , }

Computing with intervals: Interval Arithmetic :-)

Addition:

[l1, u1] +
♯ [l2, u2] = [l1 + l2, u1 + u2] where

−∞+ _ = −∞

+∞+ _ = +∞

// −∞+∞ cannot occur :-)

324

Negation:

−♯ [l, u] = [−u,−l]

Multiplication:

[l1, u1] ∗
♯ [l2, u2] = [a, b] where

a = l1l2 ⊓ l1u2 ⊓ u1l2 ⊓ u1u2

b = l1l2 ⊔ l1u2 ⊔ u1l2 ⊔ u1u2

Example:

[0, 2] ∗♯ [3, 4] = [0, 8]

[−1, 2] ∗♯ [3, 4] = [−4, 8]

[−1, 2] ∗♯ [−3, 4] = [−6, 8]

[−1, 2] ∗♯ [−4,−3] = [−8, 4]

325

Division: [l1, u1] /
♯ [l2, u2] = [a, b]

• If 0 is not contained in the interval of the denominator, then:

a = l1/l2 ⊓ l1/u2 ⊓ u1/l2 ⊓ u1/u2

b = l1/l2 ⊔ l1/u2 ⊔ u1/l2 ⊔ u1/u2

• If: l2 ≤ 0 ≤ u2 , we define:

[a, b] = [−∞,+∞]

326

Equality:

[l1, u1] ==♯ [l2, u2] =















[1, 1] if l1 = u1 = l2 = u2

[0, 0] if u1 < l2 ∨ u2 < l1

[0, 1] otherwise

327

Equality:

[l1, u1] ==♯ [l2, u2] =















[1, 1] if l1 = u1 = l2 = u2

[0, 0] if u1 < l2 ∨ u2 < l1

[0, 1] otherwise

Example:
[42, 42]==♯[42, 42] = [1, 1]

[0, 7]==♯ [0, 7] = [0, 1]

[1, 2]==♯ [3, 4] = [0, 0]

328

Less:

[l1, u1] <
♯ [l2, u2] =















[1, 1] if u1 < l2

[0, 0] if u2 ≤ l1

[0, 1] otherwise

329

Less:

[l1, u1] <
♯ [l2, u2] =















[1, 1] if u1 < l2

[0, 0] if u2 ≤ l1

[0, 1] otherwise

Example:
[1, 2] <♯ [9, 42] = [1, 1]

[0, 7] <♯ [0, 7] = [0, 1]

[3, 4] <♯ [1, 2] = [0, 0]

330

By means of I we construct the complete lattice:

DI = (Vars → I)⊥

Description Relation:

ρ ∆ D iff D 6= ⊥ ∧ ∀ x ∈ Vars : (ρ x) ∆ (D x)

Theabstract evaluationof expressions is defined analogously to constant
propagation. We have:

([[e]] ρ) ∆ ([[e]]♯ D) whenever ρ ∆ D

331

The Effects of Edges:

[[;]]♯ D = D

[[x = e;]]♯D = D ⊕ {x 7→ [[e]]♯D}

[[x =M [e];]]♯D = D ⊕ {x 7→ ⊤}

[[M [e1] = e2;]]
♯D = D

[[Pos (e)]]♯D =

{

⊥ if [0, 0] = [[e]]♯D

D otherwise

[[Neg (e)]]♯D =

{

D if [0, 0] ⊑ [[e]]♯D

⊥ otherwise

... given that D 6= ⊥ :-)

332

Better Exploitation of Conditions:

[[Pos (e)]]♯D =

{

⊥ if [0, 0] = [[e]]♯D

D1 otherwise

where :

D1 =















D ⊕ {x 7→ (Dx) ⊓ ([[e1]]
♯D)} if e ≡ x== e1

D ⊕ {x 7→ (Dx) ⊓ [−∞, u]} if e ≡ x ≤ e1, [[e1]]
♯D = [_, u]

D ⊕ {x 7→ (Dx) ⊓ [l,∞]} if e ≡ x ≥ e1, [[e1]]
♯D = [l, _]

333

Better Exploitation of Conditions (cont.):

[[Neg (e)]]♯D =

{

⊥ if [0, 0] 6⊑ [[e]]♯D

D1 otherwise

where :

D1 =















D ⊕ {x 7→ (Dx) ⊓ ([[e1]]
♯D)} if e ≡ x 6= e1

D ⊕ {x 7→ (Dx) ⊓ [−∞, u]} if e ≡ x > e1, [[e1]]
♯D = [_, u]

D ⊕ {x 7→ (Dx) ⊓ [l,∞]} if e ≡ x < e1, [[e1]]
♯D = [l, _]

334

Example:

0

1

7

8

6

5

4

i = 0;

Pos(i < 42)

Neg(0 ≤ i < 42)

i = i+ 1;

Neg(i < 42)

M [A1] = i;

A1 = A+ i;

2

3

Pos(0 ≤ i < 42)

i

l u

0 −∞ +∞

1 0 42

2 0 41

3 0 41

4 0 41

5 0 41

6 1 42

7 ⊥

8 42 42

335

Problem:

→ The solution can be computed with RR-iteration —
after about 42 rounds:-(

→ On some programs, iteration mayneverterminate :-((

Idea 1: Widening

• Accelerate the iteration — at theprize of imprecision :-)

• Allow only a bounded number of modifications of values!!!

... in the Example:

• dis-allow updates of interval bounds inZ ...

==⇒ a maximal chain:

[3, 17] ⊏ [3,+∞] ⊏ [−∞,+∞]

336

Formalization of the Approach:

Let xi ⊒ fi (x1, . . . , xn) , i = 1, . . . , n (1)

denote a system of constraints overD where the fi arenot
necessarilymonotonic.

Nonetheless, anaccumulatingiteration can be defined. Consider the
system of equations:

xi = xi ⊔ fi (x1, . . . , xn) , i = 1, . . . , n (2)

We obviously have:

(a) x is a solution of(1) iff x is a solution of(2).

(b) The function G : Dn → Dn with
G (x1, . . . , xn) = (y1, . . . , yn) , yi = xi ⊔ fi (x1, . . . , xn)

is increasing, i.e., x ⊑ Gx for all x ∈ Dn .

337

(c) The sequenceGk⊥ , k ≥ 0, is an ascending chain:

⊥ ⊑ G⊥ ⊑ . . . ⊑ Gk⊥ ⊑ . . .

(d) If Gk⊥ = Gk+1⊥ = y , then y is a solution of(1).

(e) If D has infinite strictly ascending chains, then(d) is not yet
sufficient...

but: we could consider the modified system of equations:

xi = xi ⊔– fi(x1, . . . , xn) , i = 1, . . . , n (3)

for a binary operationwidening:

⊔– : D2 → D with v1 ⊔ v2 ⊑ v1 ⊔– v2

(RR)-iteration for(3) still will compute a solution of(1) :-)

338

... for Interval Analysis:

• The complete lattice is: DI = (Vars → I)⊥

• the widening ⊔– is defined by:

⊥⊔–D = D⊔–⊥ = D and for D1 6= ⊥ 6= D2:

(D1 ⊔–D2) x = (D1 x)⊔– (D2 x) where

[l1, u1]⊔– [l2, u2] = [l, u] with

l =

{

l1 if l1 ≤ l2

−∞ otherwise

u =

{

u1 if u1 ≥ u2

+∞ otherwise

==⇒ ⊔– is not commutative!!!

339

Example:

[0, 2]⊔– [1, 2] = [0, 2]

[1, 2]⊔– [0, 2] = [−∞, 2]

[1, 5]⊔– [3, 7] = [1,+∞]

→ Widening returns larger valuesmore quickly.

→ It should be constructed in such a way that termination of iteration
is guaranteed :-)

→ For interval analysis, widening bounds the number of iterations by:

#points · (1 + 2 ·#Vars)

340

Conclusion:

• In order to determine a solution of(1) over a complete lattice
with infinite ascending chains, we define a suitable wideningand
then solve (3) :-)

• Caveat: The construction of suitable widenings is adark art!!!

Often ⊔– is chosendynamicallyduring iteration such that

→ the abstract values do not get toocomplicated;

→ the number of updates remains bounded ...

341

Our Example:

0

1

7

8

6

5

4

i = 0;

Pos(i < 42)

Neg(0 ≤ i < 42)

i = i+ 1;

Neg(i < 42)

M [A1] = i;

A1 = A+ i;

2

3

Pos(0 ≤ i < 42)

1

l u

0 −∞ +∞

1 0 0

2 0 0

3 0 0

4 0 0

5 0 0

6 1 1

7 ⊥

8 ⊥

342

Our Example:

0

1

7

8

6

5

4

i = 0;

Pos(i < 42)

Neg(0 ≤ i < 42)

i = i+ 1;

Neg(i < 42)

M [A1] = i;

A1 = A+ i;

2

3

Pos(0 ≤ i < 42)

1 2 3

l u l u l u

0 −∞ +∞ −∞ +∞

1 0 0 0 +∞

2 0 0 0 +∞

3 0 0 0 +∞

4 0 0 0 +∞ ditto

5 0 0 0 +∞

6 1 1 1 +∞

7 ⊥ 42 +∞

8 ⊥ 42 +∞

343

... obviously, the result is disappointing:-(

Idea 2:

In fact, acceleration with ⊔– need only be applied atsufficiently many
places!

A set I is aloop separator, if every loop contains at least one point
from I :-)

If we apply widening only at program points from such a setI , then
RR-iteration still terminates!!!

344

In our Example:

0

1

7

8

6

5

4

i = 0;

Pos(i < 42)

Neg(0 ≤ i < 42)

i = i+ 1;

Neg(i < 42)

M [A1] = i;

A1 = A+ i;

2

3

Pos(0 ≤ i < 42)

I1 = {1} or:

I2 = {2} or:

I3 = {3}

345

The Analysis with I = {1} :

0

1

7

8

6

5

4

i = 0;

Pos(i < 42)

Neg(0 ≤ i < 42)

i = i+ 1;

Neg(i < 42)

M [A1] = i;

A1 = A+ i;

2

3

Pos(0 ≤ i < 42)

1 2 3

l u l u l u

0 −∞ +∞ −∞ +∞

1 0 0 0 +∞

2 0 0 0 41

3 0 0 0 41

4 0 0 0 41 ditto

5 0 0 0 41

6 1 1 1 42

7 ⊥ ⊥

8 ⊥ 42 +∞

346

The Analysis with I = {2} :

0

1

7

8

6

5

4

i = 0;

Pos(i < 42)

Neg(0 ≤ i < 42)

i = i+ 1;

Neg(i < 42)

M [A1] = i;

A1 = A+ i;

2

3

Pos(0 ≤ i < 42)

1 2 3 4

l u l u l u

0 −∞ +∞ −∞ +∞ −∞ +∞

1 0 0 0 1 0 42

2 0 0 0 +∞ 0 +∞

3 0 0 0 41 0 41

4 0 0 0 41 0 41 ditto

5 0 0 0 41 0 41

6 1 1 1 42 1 42

7 ⊥ 42 +∞ 42 +∞

8 ⊥ ⊥ 42 42

347

Discussion:

• Both runs of the analysis determine interesting information :-)

• The run with I = {2} proves that always i = 42 after
leaving the loop.

• Only the run with I = {1} finds, however, that the outer check
makes the inner check superfluous:-(

How can we find a suitable loop separatorI ???

348

Idea 3: Narrowing

Let x denote any solution of (1) , i.e.,

xi ⊒ fi x , i = 1, . . . , n

Then for monotonic fi ,

x ⊒ F x ⊒ F 2 x ⊒ . . . ⊒ F k x ⊒ . . .

// NarrowingIteration

349

Idea 3: Narrowing

Let x denote any solution of (1) , i.e.,

xi ⊒ fi x , i = 1, . . . , n

Then for monotonic fi ,

x ⊒ F x ⊒ F 2 x ⊒ . . . ⊒ F k x ⊒ . . .

// NarrowingIteration

Every tuple F k x is a solution of (1) :-)

==⇒

Termination is no problem anymore:
we stop whenever we want:-))

// The same also holds for RR-iteration.

350

Narrowing Iteration in the Example:

0

1

7

8

6

5

4

i = 0;

Pos(i < 42)

Neg(0 ≤ i < 42)

i = i+ 1;

Neg(i < 42)

M [A1] = i;

A1 = A+ i;

2

3

Pos(0 ≤ i < 42)

0

l u

0 −∞ +∞

1 0 +∞

2 0 +∞

3 0 +∞

4 0 +∞

5 0 +∞

6 1 +∞

7 42 +∞

8 42 +∞

351

Narrowing Iteration in the Example:

0

1

7

8

6

5

4

i = 0;

Pos(i < 42)

Neg(0 ≤ i < 42)

i = i+ 1;

Neg(i < 42)

M [A1] = i;

A1 = A+ i;

2

3

Pos(0 ≤ i < 42)

0 1

l u l u

0 −∞ +∞ −∞ +∞

1 0 +∞ 0 +∞

2 0 +∞ 0 41

3 0 +∞ 0 41

4 0 +∞ 0 41

5 0 +∞ 0 41

6 1 +∞ 1 42

7 42 +∞ ⊥

8 42 +∞ 42 +∞

352

Narrowing Iteration in the Example:

0

1

7

8

6

5

4

i = 0;

Pos(i < 42)

Neg(0 ≤ i < 42)

i = i+ 1;

Neg(i < 42)

M [A1] = i;

A1 = A+ i;

2

3

Pos(0 ≤ i < 42)

0 1 2

l u l u l u

0 −∞ +∞ −∞ +∞ −∞ +∞

1 0 +∞ 0 +∞ 0 42

2 0 +∞ 0 41 0 41

3 0 +∞ 0 41 0 41

4 0 +∞ 0 41 0 41

5 0 +∞ 0 41 0 41

6 1 +∞ 1 42 1 42

7 42 +∞ ⊥ ⊥

8 42 +∞ 42 +∞ 42 42

353

Discussion:

→ We start with a safe approximation.

→ We find that the inner check is redundant:-)

→ We find that at exit from the loop, alwaysi = 42 :-))

→ It was not necessary to construct an optimal loop separator:-)))

Last Question:

Do we have to accept that narrowing may not terminate???

354

4. Idea: Accelerated Narrowing

Assume that we have a solutionx = (x1, . . . , xn) of the system of
constraints:

xi ⊒ fi (x1, . . . , xn) , i = 1, . . . , n (1)

Then consider the system of equations:

xi = xi ⊓ fi (x1, . . . , xn) , i = 1, . . . , n (4)

Obviously, we have for monotonicfi : Hk x = F k x :-)

where H (x1, . . . , xn) = (y1, . . . , yn) , yi = xi ⊓ fi (x1, . . . , xn).

In (4) , we replace ⊓ durch by the novel operator⊓– where:

a1 ⊓ a2 ⊑ a1 ⊓– a2 ⊑ a1

355

... for Interval Analysis:

We preserve finite interval bounds:-)

Therefore, ⊥⊓–D = D⊓–⊥ = ⊥ and for D1 6= ⊥ 6= D2:

(D1 ⊓–D2) x = (D1 x)⊓– (D2 x) where

[l1, u1]⊓– [l2, u2] = [l, u] with

l =

{

l2 if l1 = −∞

l1 otherwise

u =

{

u2 if u1 =∞

u1 otherwise

==⇒ ⊓– is not commutative!!!

356

Accelerated Narrowing in the Example:

0

1

7

8

6

5

4

i = 0;

Pos(i < 42)

Neg(0 ≤ i < 42)

i = i+ 1;

Neg(i < 42)

M [A1] = i;

A1 = A+ i;

2

3

Pos(0 ≤ i < 42)

0 1 2

l u l u l u

0 −∞ +∞ −∞ +∞ −∞ +∞

1 0 +∞ 0 +∞ 0 42

2 0 +∞ 0 41 0 41

3 0 +∞ 0 41 0 41

4 0 +∞ 0 41 0 41

5 0 +∞ 0 41 0 41

6 1 +∞ 1 42 1 42

7 42 +∞ ⊥ ⊥

8 42 +∞ 42 +∞ 42 42

357

Discussion:

→ Caveat: Widening also returns for non-monotonicfi a
solution. Narrowing is only applicable to monotonicfi !!

→ In the example, accelerated narrowing already returns the optimal
result :-)

→ If the operator ⊓– only allows for finitely many improvements
of values, we may execute narrowing until stabilization.

→ In case of interval analysis these are at most:

#points · (1 + 2 ·#Vars)

358

1.6 Pointer Analysis

Questions:

→ Are two addressespossiblyequal? May Alias

→ Are two addressesdefinitivelyequal? Must Alias

==⇒ Alias Analysis

359

1.6 Pointer Analysis

Questions:

→ Are two addressespossiblyequal? May Alias

→ Are two addressesdefinitivelyequal? Must Alias

==⇒ Alias Analysis

360

The analyses so farwithout alias information:

(1) Available Expressions:

• Extend the set Expr of expressions by occurring loadsM [e] .

• Extend the Effects of Edges:

[[x = e;]]♯A = (A ∪ {e})\Exprx

[[x =M [e];]]♯A = (A ∪ {e,M [e]})\Exprx

[[M [e1] = e2;]]
♯A = (A ∪ {e1, e2})\Loads

361

(2) Values of Variables:

• Extend the set Expr of expressions by occurring loadsM [e] .

• Extend the Effects of Edges:

[[x =M [e];]]♯ V e′ =















{x} if e′ =M [e]

∅ if e′ = e

V e′\{x} otherwise

[[M [e1] = e2;]]
♯ V e′ =

{

∅ if e′ ∈ {e1, e2}

V e′ otherwise

362

(3) Constant Propagation:

• Extend the abstract state by an abstract storeM

• Execute accesses to known memory locations!

[[x =M [e];]]♯ (D,M) =















(D ⊕ {x 7→M a},M) if

[[e]]♯D = a⊏⊤

(D ⊕ {x 7→ ⊤},M) otherwise

[[M [e1] = e2;]]
♯ (D,M) =















(D,M ⊕ {a 7→ [[e2]]
♯D}) if

[[e1]]
♯D = a⊏⊤

(D,⊤) otherwise where

⊤ a = ⊤ (a ∈ N)

363

Problems:

• Addresses are fromN :-(

There areno infinitestrictly ascending chains, but...

• Exact addresses at compile-time arerarelyknown :-(

• At the same program point, typically different addresses are
accessed...

• Storing at anunknownaddress destroys all informationM :-(

==⇒ constant propagation fails:-(

==⇒ memory accesses/pointerskill precision :-(

364

Simplification:

• We consider pointers to the beginning ofblocks A which allow
indexed accessesA[i] :-)

• We ignore well-typedness of the blocks.

• New statements:

x = new(); // allocation of a new block

x = y[e]; // indexed read access to a block

y[e1] = e2; // indexed write access to a block

• Blocks are possibly infinite :-)

• For simplicity, all pointers point to the beginning of a block.

365

Simple Example:

x = new();

y = new();

x[0] = y;

y[1] = 7;
y[1] = 7;

x[0] = y;

1
y = new();

2

3

4

0
x = new();

366

The Semantics:

y

x

367

The Semantics:

y

x
1

0

368

The Semantics:

y

x

0

1

0

1

369

The Semantics:

y

x

0

1

0

1

370

The Semantics:

y

x

7

0

1

0

1

371

More Complex Example:

r = Null;

while (t 6= Null) {

h = t;

t = t[0];

h[0] = r;

r = h;

}

r = Null;

Pos(t 6= Null)Neg(t 6= Null)

7

r = h;

3

4

5

6

2
h = t;

1

0

t = t[0];

h[0] = r;

372

Concrete Semantics:

A store consists of afinite collection of blocks.

After h new-operations we obtain:

Addrh = {ref a | 0 ≤ a < h} // addresses

Valh = Addrh ∪ Z // values

Storeh = (Addrh × N0)→ Valh // store

Stateh = (Vars → Valh)× Storeh // states

For simplicity, we set: 0 = Null

373

Let (ρ, µ) ∈ Stateh . Then we obtain for the new edges:

[[x = new();]] (ρ, µ) = (ρ⊕ {x 7→ ref h},

µ⊕ {(ref h, i) 7→ 0 | i ∈ N0})

[[x = y[e];]] (ρ, µ) = (ρ⊕ {x 7→ µ (ρ y, [[e]] ρ)}, µ)

[[y[e1] = e2;]] (ρ, µ) = (ρ, µ⊕ {(ρ y, [[e1]] ρ) 7→ [[e2]] ρ})

374

Caveat:

This semantics istoodetailled in that it computes withabsolute
Addresses. Accordingly, the two programs:

x = new();

y = new();

y = new();

x = new();

arenot considered as equivalent!!?

Possible Solution:

Define equivalence onlyup to permutation of addresses:-)

375

Alias Analysis 1. Idea:

• Distinguishfinitely manyclasses of blocks.

• Collect all addresses of a block into one set!

• Use sets of addresses as abstract values!

==⇒ Points-to-Analysis

Addr♯ = Edges // creation edges

Val♯ = 2Addr
♯

// abstract values

Store♯ = Addr ♯ → Val ♯ // abstract store

State♯ = (Vars → Val ♯)× Store♯ // abstract states

// complete lattice!!!

376

... in the Simple Example:

y[1] = 7;

x[0] = y;

1
y = new();

2

3

4

0
x = new();

x y (0, 1)

0 ∅ ∅ ∅

1 {(0, 1)} ∅ ∅

2 {(0, 1)} {(1, 2)} ∅

3 {(0, 1)} {(1, 2)} {(1, 2)}

4 {(0, 1)} {(1, 2)} {(1, 2)}

377

The Effects of Edges:

[[(_, ;, _)]]♯ (D,M) = (D,M)

[[(_,Pos(e), _)]]♯ (D,M) = (D,M)

[[(_, x = y;, _)]]♯ (D,M) = (D ⊕ {x 7→ D y},M)

[[(_, x = e;, _)]]♯ (D,M) = (D ⊕ {x 7→ ∅},M) , e 6∈ Vars

[[(u, x = new();, v)]]♯ (D,M) = (D ⊕ {x 7→ {(u, v)}},M)

[[(_, x = y[e];, _)]]♯ (D,M) = (D ⊕ {x 7→
⋃

{M(f) | f ∈ Dy}},M)

[[(_, y[e1] = x;, _)]]♯ (D,M) = (D,M ⊕ {f 7→ (M f ∪Dx) | f ∈ Dy})

378

Caveat:

• The value Null has been ignored. Dereferencing ofNull or
negative indices are not detected:-(

• Destructive updatesare only possible for variables, not for blocks in
storage!

==⇒ no information, if not all block entries are initialized before
use :-((

• The effects now depend on the edge itself.

The analysis cannot be proven correct w.r.t. the reference semantics
:-(

In order to prove correctness, we firstinstrumentthe concrete
semantics with extra information which records where a block has
been created.

379

• ...

• We computepossiblepoints-to information.

• From that, we can extractmay-aliasinformation.

• The analysis can be rather expensive — without finding very much
:-(

• Separate information for each program point can perhaps be
abandoned??

380

Alias Analysis 2. Idea:

Compute for each variable and address a value which safely approximates
the values at every program point simultaneously!

... in the Simple Example:

y[1] = 7;

x[0] = y;

1
y = new();

2

3

4

0
x = new();

x {(0, 1)}

y {(1, 2)}

(0, 1) {(1, 2)}

(1, 2) ∅

381

Each edge (u, lab, v) gives rise to constraints:

lab Constraint

x = y; P [x] ⊇ P [y]

x = new(); P [x] ⊇ {(u, v)}

x = y[e]; P [x] ⊇
⋃

{P [f] | f ∈ P [y]}

y[e1] = x; P [f] ⊇ (f ∈ P [y]) ?P [x] : ∅

for all f ∈ Addr ♯

Other edges have no effect:-)

382

Discussion:

• The resulting constraint system has sizeO(k · n) for k

abstract addresses andn edges :-(

• The number of necessary iterations isO(k(̇k +#Vars)) ...

• The computed information is perhaps still toozu precise!!?

• In order to prove correctness of a solutions♯ ∈ States♯ we show:

s s1

s♯

[[k]]

∆ ∆

383

Alias Analysis 3. Idea:

Determineoneequivalence relation≡ on variables x and memory
accesses y[] with s1≡ s2 whenever s1, s2 may contain the
same address atsome u1, u2

... in the Simple Example:

y[1] = 7;

x[0] = y;

1
y = new();

2

3

4

0
x = new();

≡ = {{x},

{y, x[]},

{y[]}}

384

Discussion:

→ We compute asingle informationfo the whole program.

→ The computation of this information maintainspartitions
π = {P1, . . . , Pm} :-)

→ Individual sets Pi are identified by means ofrepresentatives
pi ∈ Pi.

→ The operations on a partitionπ are:

find (π, p) = pi if p ∈ Pi

// returns the representative

union (π, pi1, pi2) = {Pi1 ∪ Pi2} ∪ {Pj | i1 6= j 6= i2}

// unions the represented classes

385

→ If x1, x2 ∈ Vars are equivalent, then alsox1[] and x2[]

must be equivalent :-)

→ If Pi ∩ Vars 6= ∅ , then we choose pi ∈ Vars . Then we can
apply union recursively:

union∗ (π, q1, q2) = let pi1 = find (π, q1)

pi2 = find (π, q2)

in if pi1 == pi2 then π

else let π = union (π, pi1, pi2)

in if pi1, pi2 ∈ Vars then

union∗ (π, pi1[], pi2[])

else π

386

The analysis iterates over all edgesonce:

π = {{x}, {x[]} | x ∈ Vars};

forall k = (_, lab, _) do π = [[lab]]♯ π;

where:

[[x = y;]]♯ π = union∗ (π, x, y)

[[x = y[e];]]♯ π = union∗ (π, x, y[])

[[y[e] = x;]]♯ π = union∗ (π, x, y[])

[[lab]]♯ π = π otherwise

387

... in the Simple Example:

y[1] = 7;

x[0] = y;

1
y = new();

2

3

4

0
x = new(); {{x}, {y}, {x[]}, {y[]}}

(0, 1) {{x}, {y}, {x[]}, {y[]}}

(1, 2) {{x}, {y}, {x[]}, {y[]}}

(2, 3) {{x}, {y, x[]} , {y[]}}

(3, 4) {{x}, {y, x[]}, {y[]}}

388

... in the More Complex Example:

r = Null;

Pos(t 6= Null)Neg(t 6= Null)

7

r = h;

3

4

5

6

2
h = t;

1

0

t = t[0];

h[0] = r;

{{h}, {r}, {t}, {h[]}, {t[]}}

(2, 3) { {h, t} , {r}, {h[], t[]} }

(3, 4) { {h, t, h[], t[]} , {r}}

(4, 5) { {h, t, r, h[], t[]} }

(5, 6) {{h, t, r, h[], t[]}}

389

Caveat:

In order to find something, we must assume that variables / addresses
always receive a value before they are accessed.

Complexity:

we have:

O(# edges +#Vars) calls of union∗

O(# edges +#Vars) calls of find

O(#Vars) calls of union

==⇒ We require efficientUnion-Find data-structure :-)

390

Idea:

Represent partition of U as directed forest:

• For u ∈ U a reference F [u] to the father is maintained;

• Roots are elementsu with F [u] = u .

Single trees represent equivalence classes.

Their roots are their representatives ...

391

0 1 2 3 6 74 50 1 2 3 6 74 5

1 1 3 1 4 7 5 7

0

1

3

2

4 7

5

6

→ find (π, u) follows the father references:-)

→ union (π, u1, u2) re-directs the father reference of oneui ...

392

0 1 2 3 6 74 50 1 2 3 6 74 5

1 1 3 1 4 7 5 7

0

1

3

2

4 7

5

6

393

0 1 2 3 6 74 50 1 2 3 6 74 5

0

1

3

2

4

7

1 1 3 1 7 7 5 7

5

6

394

The Costs:

union : O(1) :-)

find : O(depth(π)) :-(

Strategy to Avoid Deep Trees:

• Put thesmallertree below thebigger!

• Use find to compress paths...

395

0 1 2 3 6 74 50 1 2 3 6 74 5

1 1 3 1 4 7 5 7

0

1

3

2

4 7

5

6

396

0 1 2 3 6 74 50 1 2 3 6 74 5

0

1

3

2

4

7

1 1 3 1 7 7 5 7

5

6

397

3

4

7

5

2

60

0 1 2 3 6 74 50 1 2 3 6 74 5

5 1 3 1 7 7 5 3

1

398

3

4

7

5

2

60

0 1 2 3 6 74 50 1 2 3 6 74 5

5 1 3 1 7 7 5 3

1

399

3

4

7

5

2

60

0 1 2 3 6 74 50 1 2 3 6 74 5

5 1 3 1 7 7 5 3

1

400

3

4

7

5

2

60

0 1 2 3 6 74 50 1 2 3 6 74 5

5 1 3 1 7 7 5 3

1

401

3

4

7

5

2

60

0 1 2 3 6 74 50 1 2 3 6 74 5

5 1 3 1 1 7 1 1

1

402

Robert Endre Tarjan, Princeton

403

Note:

• By this data-structure, n union- und m find operations
require time O(n+m · α(n, n))

// α theinverse Ackermann-function :-)

• For our application, we only must modifyunion such that roots
are from Vars whenever possible.

• This modification does not increase the asymptotic run-time. :-)

Summary:

The analysis is extremely fast — but may not find very much.

404

Background 3: Fixpoint Algorithms

Consider: xi ⊒ fi (x1, . . . , xn) , i = 1, . . . , n

Observation:

RR-Iteration isinefficient:

→ We require a complete round in order to detect termination:-(

→ If in some round, the value of just one unknown is changed, then
we still re-compute all :-(

→ The practical run-time depends on the ordering on the variables
:-(

405

Idea: Worklist Iteration

If an unknown xi changes its value, we re-compute all unknowns
which depend on xi . Technically, we require:

→ the lists Dep fi of unknowns which are accessed during
evaluation of fi. From that, we compute the lists:

I[xi] = {xj | xi ∈ Dep fj}

i.e., a list of all xj which depend on the value ofxi ;

→ the values D[xi] of the xi where initially D[xi] = ⊥ ;

→ a list W of all unknowns whose value must be recomputed ...

406

The Algorithm:

W = [x1, . . . , xn];

while (W 6= []) {

xi = extractW ;

t = fi eval;

if (t 6⊑ D[xi]) {

D[xi] = D[xi] ⊔ t;

W = append I[xi]W ;

}

}

where : eval xj = D[xj]

407

Example:

x1 ⊇ {a} ∪ x3

x2 ⊇ x3 ∩ {a, b}

x3 ⊇ x1 ∪ {c}

I

x1 {x3}

x2 ∅

x3 {x1, x2}

D[x1] D[x2] D[x3] W

∅ ∅ ∅ x1 , x2, x3

{a} ∅ ∅ x2 , x3

{a} ∅ ∅ x3

{a} ∅ {a, c} x1 , x2

{a, c} ∅ {a, c} x3 , x2

{a, c} ∅ {a, c} x2

{a, c} {a} {a, c} ∅

408

Example:

x1 ⊇ {a} ∪ x3

x2 ⊇ x3 ∩ {a, b}

x3 ⊇ x1 ∪ {c}

I

x1 {x3}

x2 ∅

x3 {x1, x2}

D[x1] D[x2] D[x3] W

∅ ∅ ∅ x1 , x2, x3

{a} ∅ ∅ x2 , x3

{a} ∅ ∅ x3

{a} ∅ {a, c} x1 , x2

{a, c} ∅ {a, c} x3 , x2

{a, c} ∅ {a, c} x2

{a, c} {a} {a, c} []

409

Theorem

Let xi ⊒ fi (x1, . . . , xn) , i = 1, . . . , n denote a constraint system
over the complete latticeD of height h > 0 .

(1) The algorithm terminates after at mosth ·N evaluations of
right-hand sides where

N =
n

∑

i=1

(1 + # (Dep fi)) // size of the system :-)

(2) The algorithm returns a solution.
If all fi are monotonic, it returns the least one.

410

Proof:

Ad (1):

Every unknown xi may change its value at mosth times :-)

Each time, the list I[xi] is added to W .

Thus, the total number of evaluations is:

≤ n+
∑n

i=1(h ·#(I[xi]))

= n+ h ·
∑n

i=1#(I[xi])

= n+ h ·
∑n

i=1#(Dep fi)

≤ h ·
∑n

i=1(1 + # (Dep fi))

= h ·N

411

Ad (2):

We only consider the assertion for monotonicfi .

Let D0 denote the least solution. We show:

• D0[xi] ⊒ D[xi] (all the time)

• D[xi] 6⊒ fi eval ==⇒ xi ∈ W (at exit of the loop body)

• On termination, the algo returns a solution:-))

412

Discussion:

• In the example, fewer evaluations of right-hand sides are required
than for RR-iteration :-)

• The algo also works for non-monotonicfi :-)

• For monotonic fi, the algo can be simplified:

D[xi] = D[xi] ⊔ t; ==⇒ ;

• In presence ofwidening, we replace:

D[xi] = D[xi] ⊔ t; ==⇒ D[xi] = D[xi]⊔– t;

• In presence ofNarrowing, we replace:

D[xi] = D[xi] ⊔ t; ==⇒ D[xi] = D[xi]⊓– t;

... and update the test tot ⊏ D[xi].

413

Warning:

• The algorithm relies on explicit dependencies among the unknowns.

So far in our applications, these wereobvious. This need not always
be the case :-(

• We need somestrategyfor extract which determines the next
unknown to be evaluated.

• It would be ingenious if we always evaluatedfirst and then accessed
the result ... :-)

==⇒ recursive evaluation...

414

Idea:

→ If during evaluation of fi , an unknown xj is accessed, xj
is first solved recursively. Thenxi is added to I[xj] :-)

eval xi xj = solve xj;

I[xj] = I[xj] ∪ {xi};

D[xj];

→ In order to prevent recursion to descend infinitely, a setStable

of unknown is maintained for whichsolve just looks up their
values :-)

Initially, Stable = ∅ ...

415

The Function solve :

solve xi = if (xi 6∈ Stable) {

Stable = Stable ∪ {xi};

t = fi (eval xi);

if (t 6⊑ D[xi]) {

D[xi] = D[xi] ⊔ t;

W = I[xi]; I[xi] = ∅;

Stable = Stable\W ;

app solve W ;

}

}

416

Helmut Seidl, TU München ;-)

417

Example:

Consider our standard example:

x1 ⊇ {a} ∪ x3

x2 ⊇ x3 ∩ {a, b}

x3 ⊇ x1 ∪ {c}

A trace of the fixpoint algorithm then looks as follows:

418

solve x2 eval x2 x3 solve x3 eval x3 x1 solve x1 eval x1 x3 solve x3

stable!

I[x3] = {x1}

⇒ ∅

D[x1] = {a}

I[x1] = {x3}

⇒ {a}

D[x3] = {a, c}

I[x3] = ∅

solve x1 eval x1 x3 solve x3

stable!

I[x3] = {x1}

⇒ {a, c}

D[x1] = {a, c}

I[x1] = ∅

solve x3 eval x3 x1 solve x1

stable!

I[x1] = {x3}

⇒ {a, c}

ok

I[x3] = {x1, x2}

⇒ {a, c}

D[x2] = {a}

419

→ Evaluation starts with aninterestingunknown xi (e.g., the
value at stop)

→ Thenautomaticallyall unknowns are evaluated which influence
xi :-)

→ The number of evaluations is often smaller than during worklist
iteration ;-)

→ The algorithm is more complex but does not rely on
pre-computationof variable dependencies:-))

→ It also works if variable dependencies during iterationchange!!!

==⇒ interprocedural analysis

420

Warning II:

• The recursive algorithm may not evaluate right-hand sides atomicly.

• Evaluations of right-hand sides may be continued which havebeen
started with out-dated data.==⇒ in some cases, it may fail to
determine theleastsolution!?!

Idea:

• Identify outdated computations...

• Abort !!

421

Idea (cont.):

→ Record when evaluation of a variable has started by means of aset
Called.

→ Whenever during evaluation of a rhsfi, we detect that no longer
xi ∈ Called , we abort...

eval xi xj = solve xj;

if (xi 6∈ Called) raise Abort;

I[xj] = I[xj] ∪ {xi};

D[xj];

→ Initially, Called = ∅ ...

422

The new Function solve :

solve xi = if (xi 6∈ Stable) {

Stable = Stable ∪ {xi};Called = Called ∪ {xi};

t = try fi (eval xi)

with Abort→ D[xi];

Called = Called\{xi};

if (t 6⊑ D[xi]) {

D[xi] = D[xi] ⊔ t;

W = I[xi]; I[xi] = ∅;

Stable = Stable\W ;

app solve W ;

} }

423

Aleks Karbyshev, TU München :-))

424

1.7 Eliminating Partial Redundancies

Example:

1

0

3

7

6

5

2 4

x =M [a]; y1 = x+ 1;

y2 = x+ 1;

M [x] = y1 + y2;

// x+ 1 is evaluated on every path...

// on one path, however, even twice:-(

425

Goal:

1

0

3

7

6

5

2 4

1

0

3

7

6

5

2 4

y1 = x+ 1;

y2 = x+ 1;

x =M [a];

M [x] = y1 + y2;

T = x+ 1;x =M [a];

M [x] = y1 + T ;

T = x+ 1;

;

y1 = T ;

426

Idea:

(1) Insert assignmentsTe = e; such thate is available at all points
where the value ofe is required.

(2) Thereby spare program points wheree either is alreadyavailable
or will definitely be computedin future.

Expressions with the latter property are calledvery busy.

(3) Replace the original evaluations ofe by accesses to the variableTe.

==⇒ we require a novel analysis:-))

427

An expression e is calledbusyalong a path π , if the expression e

is evaluated before any of the variablesx ∈ Vars(e) is overwritten.

// backward analysis!

e is calledvery busyat u , if e is busy along every path
π : u→∗ stop .

428

An expression e is calledbusyalong a path π , if the expression e

is evaluated before any of the variablesx ∈ Vars(e) is overwriten.

// backward analysis!

e is calledvery busyat u , if e is busy along every path
π : u→∗ stop .

Accordingly, we require:

B[u] =
⋂

{[[π]]♯ ∅ | π : u→∗ stop}

where for π = k1 . . . km :

[[π]]♯ = [[k1]]
♯ ◦ . . . ◦ [[km]]

♯

429

Our complete lattice is given by:

B = 2Expr\Vars with ⊑ = ⊇

The effect [[k]]♯ of an edge k = (u, lab, v) only depends on lab ,
i.e., [[k]]♯ = [[lab]]♯ where:

[[;]]♯B = B

[[Pos(e)]]♯B = [[Neg(e)]]♯B = B ∪ {e}

[[x = e;]]♯B = (B\Exprx) ∪ {e}

[[x =M [e];]]♯B = (B\Exprx) ∪ {e}

[[M [e1] = e2;]]
♯B = B ∪ {e1, e2}

430

These effects are alldistributive. Thus, the least solution of the constraint
system yields precisely the MOP — given thatstop is reachable from
every program point :-)

Example:

1

0

3

7

6

5

2 4

x =M [a]; y1 = x+ 1;

y2 = x+ 1;

M [x] = y1 + y2;

7 ∅

6 {y1 + y2}

5 {x+ 1}

4 {x+ 1}

3 {x+ 1}

2 {x+ 1}

1 ∅

0 ∅

431

A point u is calledsafefor e , if e ∈ A[u] ∪ B[u] , i.e., e is
either available or very busy.

Idea:

• We insert computations ofe such that e becomes available at
all safe program points :-)

• We insertTe = e; after every edge(u, lab, v) with

e ∈ B[v]\[[lab]]♯A(A[u] ∪ B[u])

432

Transformation 5.1:

v

u

v v

v

u

lab

Te = e; (e ∈ B[v])

Te = e;

lab

(e ∈ B[v]\[[lab]]♯A (A[u] ∪ B[u]))

433

Transformation 5.2:

uu

x = e; x = Te;

// analogously for the other uses ofe

// at old edges of the program.

434

Bernhard Steffen, Dortmund Jens Knoop, Wien

435

In the Example:

1

0

3

7

6

5

2 4

x =M [a]; y1 = x+ 1;

y2 = x+ 1;

M [x] = y1 + y2;

A B

0 ∅ ∅

1 ∅ ∅

2 ∅ {x+ 1}

3 ∅ {x+ 1}

4 {x+ 1} {x+ 1}

5 ∅ {x+ 1}

6 {x+ 1} {y1 + y2}

7 {x+ 1, y1 + y2} ∅

436

In the Example:

1

0

3

7

6

5

2 4

x =M [a]; y1 = x+ 1;

y2 = x+ 1;

M [x] = y1 + y2;

A B

0 ∅ ∅

1 ∅ ∅

2 ∅ {x+ 1}

3 ∅ {x+ 1}

4 {x+ 1} {x+ 1}

5 ∅ {x+ 1}

6 {x+ 1} {y1 + y2}

7 {x+ 1, y1 + y2} ∅

437

Im Example:

0

2

1

3

4

7

6

5

x =M [a];

T = x+ 1;

T = x+ 1;

y1 = T ;

y2 = T ;

M [x] = y1 + y2;

A B

0 ∅ ∅

1 ∅ ∅

2 ∅ {x+ 1}

3 ∅ {x+ 1}

4 {x+ 1} {x+ 1}

5 ∅ {x+ 1}

6 {x+ 1} {y1 + y2}

7 {x+ 1, y1 + y2} ∅

438

Correctness:

Let π denote a path reachingv after which a computation of an
edge with e follows.

Then there is a maximal suffix ofπ such that for every edge
k = (u, lab, u′) in the suffix:

e ∈ [[lab]]♯A(A[u] ∪ B[u])

B

v

A ∨B A ∨B A ∨BA ∨B

439

Correctness:

Let π denote a path reachingv after which a computation of an
edge with e follows.

Then there is a maximal suffix ofπ such that for every edge
k = (u, lab, u′) in the suffix:

e ∈ [[lab]]♯A(A[u] ∪ B[u])

In particular, no variable in e receives a new value:-)

Then Te = e; is inserted before the suffix :-))

T = e;

A A A A A

v

440

We conclude:

• Whenever the value of e is required, e is available :-)

==⇒ correctnessof the transformation

• Every T = e; which is inserted into a path corresponds to ane
which is replaced with T :-))

==⇒ non-degradationof the efficiency

441

1.8 Application: Loop-invariant Code

Example:

for (i = 0; i < n; i++)

a[i] = b+ 3;

// The expression b+ 3 is recomputed in every iteration:-(

// This should be avoided:-)

442

The Control-flow Graph:

3

2

4

5

7

6

0

1

i = 0;

Neg(i < n) Pos(i < n)

y = b+ 3;

A1 = A+ i;

i = i+ 1;

M [A1] = y;

443

Warning: T = b+ 3; may not be placedbeforethe loop:

3

4

5

7

6

2

1

0

i = 0;

Neg(i < n) Pos(i < n)

A1 = A+ i;

i = i+ 1;

T = b+ 3;

y = T ;

M [A1] = y;

==⇒ There is nodecentplace for T = b+ 3; :-(

444

Idea: Transform into a do-while-loop ...

3

2

4

5

0

1

i = 0;

67

Pos(i < n)

A1 = A+ i;

i = i+ 1;

Neg(i < n)

Neg(i < n) Pos(i < n)

y = b+ 3;

M [A1] = y;

445

... now there is a place for T = e; :-)

3

2

4

5

67

0

1

i = 0;

A1 = A+ i;

i = i+ 1;

Neg(i < n) Pos(i < n)

Neg(i < n)

Pos(i < n)

T = b+ 3;

y = T ;

M [A1] = y;

446

Application of T5 (PRE) :

3

2

4

5

0

1

i = 0;

67

Pos(i < n)

A1 = A+ i;

i = i+ 1;

Neg(i < n)

Neg(i < n) Pos(i < n)

y = b+ 3;

M [A1] = y;

A B

0 ∅ ∅

1 ∅ ∅

2 ∅ {b+ 3}

3 {b+ 3} ∅

4 {b+ 3} ∅

5 {b+ 3} ∅

6 {b+ 3} ∅

7 ∅ ∅

447

Application of T5 (PRE) :

3

2

4

5

0

1

i = 0;

67

Pos(i < n)

A1 = A+ i;

i = i+ 1;

Neg(i < n)

Neg(i < n) Pos(i < n)

y = b+ 3;

M [A1] = y;

A B

0 ∅ ∅

1 ∅ ∅

2 ∅ {b+ 3}

3 {b+ 3} ∅

4 {b+ 3} ∅

5 {b+ 3} ∅

6 {b+ 3} ∅

7 ∅ ∅

448

Conclusion:

• Elimination of partial redundancies may move loop-invariant code
out of the loop :-))

• This only works properly for do-while-loops :-(

• To optimize other loops, we transform them intodo-while-loops
before-hand:

while (b) stmt ==⇒ if (b)

do stmt

while (b);

==⇒ Loop Rotation

449

Problem:

If we do not have the source program at hand, we must re-construct
potential loop headers;-)

==⇒ Pre-dominators

u pre-dominates v , if every path π : start →∗ v contains u. We
write: u⇒ v .

“⇒” is reflexive, transitive and anti-symmetric :-)

450

Computation:

We collect the nodes along paths by means of the analysis:

P = 2Nodes , ⊑ = ⊇

[[(_, _, v)]]♯ P = P ∪ {v}

Then the set P [v] of pre-dominators is given by:

P [v] =
⋂

{[[π]]♯ {start} | π : start →∗ v}

451

Since [[k]]♯ are distributive, the P [v] can computed by means of
fixpoint iteration :-)

Example:

3

2

4

5

0

1

P

0 {0}

1 {0, 1}

2 {0, 1, 2}

3 {0, 1, 2, 3}

4 {0, 1, 2, 3, 4}

5 {0, 1, 5}

452

The partial ordering “⇒” in the example:

3

2

4

0

1

5

P

0 {0}

1 {0, 1}

2 {0, 1, 2}

3 {0, 1, 2, 3}

4 {0, 1, 2, 3, 4}

5 {0, 1, 5}

453

Apparently, the result is atree :-)

In fact, we have:

Theorem:

Every node v has at most one immediate pre-dominator.

Proof:

Assume:

there are u1 6= u2 which immediately pre-dominatev.

If u1 ⇒ u2 then u1 not immediate.

Consequently, u1, u2 are incomparable :-)

454

Now for every π : start →∗ v :

π = π1 π2 with π1 : start →
∗ u1

π2 : u1 →
∗ v

If, however, u1, u2 are incomparable, then there is path:start →∗ v

avoiding u2 :

start u1

u2 u2

v

455

Now for every π : start →∗ v :

π = π1 π2 with π1 : start →
∗ u1

π2 : u1 →
∗ v

If, however, u1, u2 are incomparable, then there is path:start →∗ v

avoiding u2 :

start u1

u2u2

v

456

Observation:

The loop head of awhile-loop pre-dominates every node in the body.

A back edge from the exit u to the loop head v can be identified
through

v ∈ P [u]

:-)

Accordingly, we define:

457

Transformation 6:

u

v

uu2 u2

lab

Pos(e)Neg(e)
v

lab

Pos(e)Neg(e)

Neg(e) Pos(e)

u2, v ∈ P [u]

u1 6∈ P [u]

u1 u1

We duplicate the entry check to all back edges:-)

458

... in the Example:

3

2

4

5

7

0

1

i = 0;

6

Neg(i < n) Pos(i < n)

A1 = A+ i;

i = i+ 1;

y = b+ 3;

M [A1] = y;

459

... in the Example:

3

2

4

5

7

0

1

i = 0;

6

Neg(i < n) Pos(i < n)

A1 = A+ i;

0, 1

0, 1, 2

0, 1, 2, 3, 4

0, 1, 2, 3

0, 1, 7

0

0, 1, 2, 3, 4, 5

0, 1, 2, 3, 4, 5, 6
i = i+ 1;

y = b+ 3;

M [A1] = y;

460

... in the Example:

3

2

4

5

7

0

1

i = 0;

6

Neg(i < n) Pos(i < n)

A1 = A+ i;

0, 1

0, 1, 2

0, 1, 2, 3, 4

0, 1, 2, 3

0, 1, 7

0

0, 1, 2, 3, 4, 5

0, 1, 2, 3, 4, 5, 6
i = i+ 1;

M [A1] = y;

y = b+ 3;

461

... in the Example:

3

2

4

5

7

0

1

i = 0;

6

Neg(i < n) Pos(i < n)

y = b+ 3;

A1 = A+ i;

0, 1

0, 1, 2

0, 1, 2, 3, 4

0, 1, 2, 3

0, 1, 7

0

0, 1, 2, 3, 4, 5

0, 1, 2, 3, 4, 5, 6
i = i+ 1;

Pos(i < n)Neg(i < n)

M [A1] = y;

462

Warning:

There areunusualloops which cannot be rotated:

3

2

0

4

1

3

2

0

1

4

Pre-dominators:

463

... but alsocommon oneswhich cannot be rotated:

3

2

4

5

0

1

3

2

4

0

1

5

Here, the complete block between back edge and conditional jump should
be duplicated :-(

464

... but alsocommon oneswhich cannot be rotated:

3

2

4

5

0

1

3

2

4

0

1

5

Here, the complete block between back edge and conditional jump should
be duplicated :-(

465

... but alsocommon oneswhich cannot be rotated:

3

2

4

5

0

1

5

3

2

4

1

0

Here, the complete block between back edge and conditional jump should
be duplicated :-(

466

1.9 Eliminating Partially Dead Code

Example:
0

1

2

3

4

T = x+ 1;

M [x] = T ;

x+ 1 need only be computed along one path;-(

467

Idea:

0

1

2

3

4

0

1

2

3

4

T = x+ 1;

M [x] = T ; M [x] = T ;

T = x+ 1;

468

Problem:

• The definition x = e; (x 6∈ Varse) may only be moved to an
edge where e is safe ;-)

• The definition must still be available for uses ofx ;-)

==⇒

We define an analysis which maximally delays computations:

[[;]]♯D = D

[[x = e;]]♯D =

{

D\(Usee ∪ Def x) ∪ {x = e;} if x 6∈ Varse

D\(Usee ∪ Def x) if x ∈ Varse

469

... where:

Usee = {y = e′; | y ∈ Varse}

Def x = {y = e′; | y ≡ x ∨ x ∈ Varse′}

470

... where:

Usee = {y = e′; | y ∈ Varse}

Def x = {y = e′; | y ≡ x ∨ x ∈ Varse′}

For the remaining edges, we define:

[[x =M [e];]]♯D = D\(Usee ∪ Def x)

[[M [e1] = e2;]]
♯D = D\(Usee1 ∪ Usee2)

[[Pos(e)]]♯D = [[Neg(e)]]♯D = D\Usee

471

Warning:

We may move y = e; beyond a join only if y = e; can be delayed
along all joining edges:

0

1

2

3

4

T = x+ 1;

x =M [T];

Here, T = x+ 1; cannot be moved beyond1 !!!

472

We conclude:

• The partial ordering of the lattice for delayability is given by “⊇”.

• At program start: D0 = ∅.

Therefore, the setsD[u] of at u delayable assignments can
be computed by solving a system of constraints.

• We delay only assignmentsa where a a has the same effect
as a alone.

• The extra insertions render the original assignments as assignments
to dead variables...

473

Transformation 7:

v

u

lab lab

v

u

a ∈ D[u]\[[lab]]♯(D[u])

a ∈ [[lab]]♯(D[u])\D[v]

474

v1 v2

uu

v1 v2

Pos(e)Neg(e)

u

Pos(e)Neg(e)

a ∈ D[u]\[[Pos(e)]]♯(D[u])

a ∈ [[Neg(e)]]♯(D[u])\D[v1] a ∈ [[Pos(e)]]♯(D[u])\D[v2]

Note:

Transformation T7 is only meaningful, if we subsequently eliminate
assignments to dead variables by means of transformationT2 :-)

In the example, the partially dead code is eliminated:

475

0

1

2

3

4

T = x+ 1;

M [x] = T ;

D

0 ∅

1 {T = x+ 1;}

2 {T = x+ 1;}

3 ∅

4 ∅

476

0

1

4

2

3

M [x] = T ;

T = x+ 1;T = x+ 1;

T = x+ 1;
D

0 ∅

1 {T = x+ 1;}

2 {T = x+ 1;}

3 ∅

4 ∅

477

0

1

4

2

3

M [x] = T ;

T = x+ 1;

;

;

L

0 {x}

1 {x}

2 {x}

2′ {x, T}

3 ∅

4 ∅

478

Remarks:

• After T7 , all original assignments y = e; with y 6∈ Varse are
assignments to dead variables and thus can always be eliminated
:-)

• By this, it can be proven that the transformation is guaranteed to be
non-degradating efficiency of the code:-))

• Similar to the elimination of partial redundancies, the
transformation can be repeated:-}

479

Conclusion:

→ The design of ameaningfuloptimization is non-trivial.

→ Many transformations are advantageous only in connection with
other optimizations :-)

→ Theorderingof applied optimizations matters!!

→ Some optimizations can be iterated!!!

480

... a meaningful ordering:

T4 Constant Propagation

Interval Analysis

Alias Analysis

T6 Loop Rotation

T1, T3, T2 Available Expressions

T2 Dead Variables

T7, T2 Partially Dead Code

T5, T3, T2 Partially Redundant Code

481

2 Replacing Expensive Operations by Cheaper

Ones

2.1 Reduction of Strength

(1) Evaluation of Polynomials

f (x) = an · x
n + an−1 · x

n−1 + . . .+ a1 · x+ a0

Multiplications Additions

naive 1
2
n(n+ 1) n

re-use 2n− 1 n

Horner-Scheme n n

482

Idea:

f (x) = (. . . ((an · x+ an−1) · x+ an−2) . . .) · x+ a0

(2) Tabulation of a polynomial f(x) of degree n :

→ To recompute f(x) for every argumentx is too expensive :-)

→ Luckily, the n-th differences areconstant!!!

483

Example: f(x) = 3x3 − 5x2 + 4x+ 13

n f(n) ∆ ∆2 ∆3

0 13 2 8 18

1 15 10 26

2 25 36

3 61

4 . . .

Here, then-th difference isalways

∆n
h(f) = n! · an · h

n (h step width)

484

Costs:

• n times evaluation of f ;

• 1
2
· (n− 1) · n subtractions to determine the∆k ;

• n additions for every further value:-)

==⇒

Number of multiplications only depends onn :-))

485

Simple Case: f (x) = a1 · x+ a0

• ... naturally occurs in many numerical loops:-)

• Thefirst differences are already constant:

f (x+ h)− f (x) = a1 · h

• Instead of the sequence: yi = f (x0 + i · h) , i ≥ 0

we compute: y0 = f (x0) , ∆ = a1 · h

yi = yi−1 +∆ , i > 0

486

Example:

for (i = i0; i < n; i = i+ h) {

A = A0 + b · i;

M [A] = . . . ;

}

2

0

1

5

6

3

4

i = i0;

Pos(i < n)Neg(i < n)

A = A0 + b · i;

i = i+ h;

M [A] = . . . ;

487

... or, after loop rotation:

i = i0;

if (i < n) do {

A = A0 + b · i;

M [A] = . . . ;

i = i+ h;

} while (i < n);

2

0

5

6

3

4

1
Pos(i < n)Neg(i < n)

i = i0;

A = A0 + b · i;

i = i+ h;

M [A] = . . . ;

Neg(i < n) Pos(i < n)

488

... and reduction of strength:

i = i0;

if (i < n) {

∆ = b · h;

A = A0 + b · i0;

do {

M [A] = . . . ;

i = i+ h;

A = A+∆;

} while (i < n);

}

2

5

6

3

4

0

1

Neg(i < n) Pos(i < n)

i = i0;

Neg(i < n)

Pos(i < n)

M [A] = . . . ;

i = i+ h;

A = A+∆;

∆ = b · h;

A = A0 + b · i;

489

Warning:

• The values b, h, A0 must not change their values during the loop.

• i, A may be modified at exactly one position in the loop:-(

• One may try to eliminate the variablei altogether:

→ i may not be used else-where.

→ The initialization must be transformed into:
A = A0 + b · i0 .

→ The loop condition i < n must be transformed into:
A < N for N = A0 + b · n .

→ b must always be different fromzero!!!

490

Approach:

Identify

. . . loops;

. . . iteration variables;

. . . constants;

. . . the matching use structures.

491

Loops:

... are identified through the nodev with back edge (_, _, v) :-)

For the sub-graphGv of the cfg on {w | v ⇒ w}, we define:

Loop[v] = {w | w →∗ v in Gv}

492

Example:

3

2

4

5

0

1

P

0 {0}

1 {0, 1}

2 {0, 1, 2}

3 {0, 1, 2, 3}

4 {0, 1, 2, 3, 4}

5 {0, 1, 5}

493

Example:

3

2

4

0

1

5

P

0 {0}

1 {0, 1}

2 {0, 1, 2}

3 {0, 1, 2, 3}

4 {0, 1, 2, 3, 4}

5 {0, 1, 5}

494

Example:

0

1

2

3

4

5

P

0 {0}

1 {0, 1}

2 {0, 1, 2}

3 {0, 1, 2, 3}

4 {0, 1, 2, 3, 4}

5 {0, 1, 5}

495

We are interested in edges which during each iteration are executed
exactly once:

u

v

This property can be expressed by means of the pre-dominatorrelation...

496

Assume that(u, _, v) is the back edge.

Then edges k = (u1, _, v1) could be selected such that:

• v pre-dominatesu1;

• u1 pre-dominatesv1;

• v1 predominatesu.

497

Assume that(u, _, v) is the back edge.

Then edges k = (u1, _, v1) could be selected such that:

• v pre-dominatesu1;

• u1 pre-dominatesv1;

• v1 predominatesu.

On the level of source programs, this istrivial:

do { s1 . . . sk

} while (e);

The desired assignments must be among thesi :-)

498

Iteration Variable:

i is an iteration variable if the onlydefinitionof i inside the loop occurs
at an edge which separates the body and is of the form:

i = i+ h;

for someloop constant h .

A loop constant is simply a constant (e.g.,42), or slightly more libaral,
an expression which only depends on variables which are not modified
during the loop :-)

499

(3) Differences for Sets

Consider the fixpoint computation:

x = ∅;

for (t = F x; t 6⊆ x; t = F x;)

x = x ∪ t;

If F is distributive, it could be replaced by:

x = ∅;

for (∆ = F x; ∆ 6= ∅; ∆ = (F ∆) \ x;)

x = x ∪∆;

The function F must only be computed for thesmallersets ∆ :-)
semi-naive iteration

500

Instead of the sequence: ∅ ⊆ F (∅) ⊆ F 2 (∅) ⊆ . . .

we compute: ∆1 ∪ ∆2 ∪ . . .

where: ∆i+1 = F (F i(∅))\F i(∅)

= F (∆i)\(∆1 ∪ . . . ∪∆i) with ∆0 = ∅

Assume that the costs ofF x is 1 + #x .

Then the costs may sum up to:

naive 1 + 2 + . . .+ n+ n = 1
2
n(n+ 3)

semi-naive 2n

where n is the cardinality of the result.

==⇒ A linear factor is saved :-)

501

2.2 Peephole Optimization

Idea:

• Slide asmallwindow over the program.

• Optimize agressively inside the window, i.e.,

→ Eliminate redundancies!

→ Replace expensive operations inside the window by cheaper
ones!

502

Examples:

y =M [x]; x = x+ 1; ==⇒ y =M [x++];

// given that there is a specific post-increment instruction:-)

z = y − a+ a; ==⇒ z = y;

// algebraic simplifications :-)

x = x; ==⇒ ;

x = 0; ==⇒ x = x⊕ x;

x = 2 · x; ==⇒ x = x+ x;

503

Important Subproblem: nop-Optimization

v

u

;

lab

v

u

lab

→ If (v1, ;, v) is an edge, v1 has no further out-going edge.

→ Consequently, we can identifyv1 and v :-)

→ The ordering of the identifications does not matter:-))

504

Implementation:

• We construct a function next : Nodes → Nodes with:

next u =

{

next v if (u, ;, v) edge

u otherwise

Warning: This definition is only recursive if there are;-loops
???

• We replace every edge:

(u, lab, v) ==⇒ (u, lab, next v)

... whenever lab 6= ;

• All ;-edges are removed;-)

505

Example:

3

2

4

5

6

1

7

0

;

;

next 1 = 1

next 3 = 4

next 5 = 6

506

Example:

2

4

6

1

7

0

3

5

next 1 = 1

next 3 = 4

next 5 = 6

507

2. Subproblem: Linearization

After optimization, the CFG must again be brought into alinearly
arrangementof instructions :-)

Warning:

Not every linearization is equally efficient!!!

508

Example:

0

1

2

3

4

Pos(e1)Neg(e1)

Pos(e2)

Neg(e2)

0:

1: if (e1) goto 2;

4: halt

2: Rumpf

3: if (e2) goto 4;

goto 1;

Bad: The loop body is jumped into :-(

509

Example:

0

1

2

3

4

Pos(e1)Neg(e1)

Pos(e2)

Neg(e2)

0:

1: if (!e1) goto 4;

2: Rumpf

3: if (!e2) goto 1;

4: halt

goto

// better cache behavior:-)

510

Idea:

• Assign to each node atemperature!

• always jumps to

(1) nodes which have already been handled;

(2) coldernodes.

• Temperature≈ nesting-depth

For the computation, we use the pre-dominator tree and strongly
connected components ...

511

... in the Example:

0

1

2

3

4

Pos(e1)Neg(e1)

Pos(e2)

Neg(e2)

1

2

3

0

4

The sub-tree with back edge ishotter...

512

... in the Example:

0

1

2

3

4

Pos(e1)Neg(e1)

Pos(e2)

Neg(e2)

1

1

1

0

0

1

2

3

0

4

513

More Complicated Example:

1

2

0

7

3

4

5

6

3

4

5

6

0

1

27

514

More Complicated Example:

1

2

0

7

3

4

5

6

3

4

5

6

0

1

27

515

More Complicated Example:

1

2

0

7

3

4

5

6

2

1

3

4

5

6

0

1

27

Loop[3]

Loop[1]

516

Our definition of Loop implies that (detected) loops are necessarily
nested :-)

Is is also meaningful fordo-while-loops withbreaks ...

1

2

0

3

4

5

0

1

4 532

517

Our definition of Loop implies that (detected) loops are necessarily
nested :-)

Is is also meaningful fordo-while-loops withbreaks ...

1

2

0

3

4

5

0

1

4 532

2

1

518

Summary: The Approach

(1) For every node, determine a temperature;

(2) Pre-order-DFS over the CFG;

→ If an edge leads to a node we already have generated code
for, then we insert a jump.

→ If a node has two successors with different temperature,
then we insert a jump to thecolderof the two.

→ If both successors are equally warm, then it does not matter
;-)

519

2.3 Procedures

We extend our mini-programming language by procedures without
parameters and procedure calls.

For that, we introduce a new statement:

f();

Every procedure f has a definition:

f () { stmt∗ }

Additionally, we distinguish betweenglobalandlocal variables.

Program execution starts with the call of a proceduremain () .

520

Example:

int a, ret;

main () {

a = 3;

f();

M [17] = ret;

ret = 0;

}

f () {

int b;

if (a ≤ 1) {ret = 1; goto exit; }

b = a;

a = b− 1;

f();

ret = b · ret;

exit :

}

Such programs can be represented by asetof CFGs: one for each
procedure...

521

... in the Example:

0

2

1

3

4

5

6

7

8

9

10

11

main()

a = 3;

f();

M [17] = ret;

ret = 0;

ret = 1;

f ()

Neg(a ≤ 1) Pos(a ≤ 1)

b = a;

ret = b ∗ ret;

f();

a = b− 1;

522

In order to optimize such programs, we require an extended operational
semantics ;-)

Program executions are no longerpaths, but forests:

f();

g1(); g2();

523

... in the Example:

43210

9 118765

9 118765

5 10 11

f()

f()

f()

524

The function [[.]] is extended to computation forests:w :

[[w]] : (Vars → Z)× (N→ Z)→ (Vars → Z)× (N→ Z)

For a call k = (u, f();, v) we must:

• determine the initial values for the locals:

enter ρ = {x 7→ 0 | x ∈ Locals} ⊕ (ρ|Globals)

• ... combine the new values for the globals with the old valuesfor the
locals:

combine (ρ1, ρ2) = (ρ1|Locals)⊕ (ρ2|Globals)

• ... evaluate the computation forest inbetween:

[[k 〈w〉]] (ρ, µ) = let (ρ1, µ1) = [[w]] (enter ρ, µ)

in (combine (ρ, ρ1), µ1)

525

Warning:

• In general, [[w]] is only partially defined :-)

• Dedicated global/local variablesai, bi, ret can be used to
simulate specific calling conventions.

• Thestandardoperational semantics relies on configurations which
maintain acall stack.

• Computation forests are better suited for the constructionof
analyses and correctness proofs:-)

• It is an awkward (but useful) exercise to prove the equivalence of
the two approaches ...

526

Configurations:

configuration == stack × store

store == globals × (N→ Z)

globals == (Globals → Z)

stack == frame · frame∗

frame == point × locals

locals == (Locals → Z)

A frame specifies the local state of computation inside a procedure
call :-)

Theleftmostframe corresponds to the current call.

527

Computation steps refer to the current call:-)

The novel kinds of steps:

call k = (u, f ();, v) :

((u, ρ) · σ, 〈γ, µ〉) =⇒ ((uf , {x→ 0 | x ∈ Locals}) · (v, ρ) · σ, 〈γ, µ〉)

uf entry point of f

return:

((rf , _) · σ, 〈γ, µ〉) =⇒ (σ, 〈γ, µ〉)

rf return point of f

528

The call stack explicitly implements the DFS traversal through the
computation forest :-)

... in the Example:

1

529

The call stack explicitly implements the DFS traversal through the
computation forest :-)

... in the Example:

2

5 b 7→ 0

530

The call stack explicitly implements the DFS traversal through the
computation forest :-)

... in the Example:

2

7 b 7→ 3

531

The call stack explicitly implements the DFS traversal through the
computation forest :-)

... in the Example:

2

5

9 b 7→ 3

b 7→ 0

532

The call stack explicitly implements the DFS traversal through the
computation forest :-)

... in the Example:

2

9

7

b 7→ 3

b 7→ 2

533

The call stack explicitly implements the DFS traversal through the
computation forest :-)

... in the Example:

2

5

9

9 b 7→ 3

b 7→ 2

b 7→ 0

534

The call stack explicitly implements the DFS traversal through the
computation forest :-)

... in the Example:

2

9

9

11

b 7→ 2

b 7→ 3

b 7→ 0

535

The call stack explicitly implements the DFS traversal through the
computation forest :-)

... in the Example:

2

9

9

b 7→ 3

b 7→ 2

536

The call stack explicitly implements the DFS traversal through the
computation forest :-)

... in the Example:

2

9

11

b 7→ 3

b 7→ 2

537

The call stack explicitly implements the DFS traversal through the
computation forest :-)

... in the Example:

2

9 b 7→ 3

538

The call stack explicitly implements the DFS traversal through the
computation forest :-)

... in the Example:

2

11 b 7→ 3

539

The call stack explicitly implements the DFS traversal through the
computation forest :-)

... in the Example:

2

540

This operational semantics is quiterealistic :-)

Costs for a Procedure Call:

Before entering the body: • Creating a stack frame;

• assigning of the parameters;

• Saving the registers;

• Saving the return address;

• Jump to the body.

At procedure exit: • Freeing the stack frame.

• Restoring the registers.

• Passing of the result.

• Return behind the call.

==⇒ ... quite expensive !!!

541

1. Idea: Inlining

Copy the procedure body at every call site!!!

Example:

abs () {

a2 = −a1;

max ();

}

max () {

if (a1 < a2) { ret = a2; goto _exit ; }

ret = a1;

_exit :

}

542

... yields:

abs () {

a2 = −a1;

if (a1 < a2) { ret = a2; goto _exit ; }

ret = a1;

_exit :

}

543

Problems:

• The copied block may modify the locals of the calling procedure
???

• More general: Multiple use of local variable names may lead to
errors.

• Multiple calls of a procedure may lead to code duplication:-((

• How can we handlerecursion???

544

Detection of Recursion:

We construct thecall-graphof the program.

In the Examples:

main f

abs max

545

Call-Graph:

• The nodes are the procedures.

• An edge connexts g with h , whenever the body of g
contains a call of h .

Strategies for Inlining:

• Just copy nurleaf-procedures, i.e., procedures without further calls
:-)

• Copy all non-recursive procedures!

... here, we consider just leaf-procedures;-)

546

Transformation 9:

u

v

v

u

xf = 0; (x ∈ Locals)

;

f();

copy
of f

547

Note:

• TheNop-edge can be eliminated if thestop-node of f has no
out-going edges ...

• The xf are the copies of the locals of the proceduref .

• According to our semantics of procedure calls, these must be
initialized with 0 :-)

548

2. Idea: Elimination of Tail Recursion

f () { int b;

if (a2 ≤ 1) { ret = a1; goto _exit ; }

b = a1 · a2;

a2 = a2 − 1;

a1 = b;

f ();

_exit :

}

After the procedure call, nothing in the body remains to be done.

==⇒ We maydirectly jump to the beginning :-)

... after having reset the locals to 0.

549

... this yields in the Example:

f () { int b;

_f : if (a2 ≤ 1) { ret = a1; goto _exit ; }

b = a1 · a2;

a2 = a2 − 1;

a1 = b;

b = 0; goto _f ;

_exit :

}

// It works, since we have ruled outreferences to variables!

550

Transformation 11:

v

u

f() :v

u

f();

f() :

x = 0; (x ∈ Locals)

551

Warning:

→ This optimization is crucial for programming languages without
iteration constructs!!!

→ Duplication of code is not necessary:-)

→ No variable renaming is necessary:-)

→ The optimization may also be profitable for non-recursive tail calls
:-)

→ The corresponding code may contain jumps from the body of one
procedure into the body of another???

552

Background 4: Interprocedural Analysis

So far, we can analyze each procedure separately.

→ The costs are moderate:-)

→ The methods also work in presence of separate compilation:-)

→ At procedure calls, we must assume the worst case:-(

→ Constant propagation only works for local constants:-((

Question:

How can recursive programs be analyzed???

553

Example: Constant Propagation

main() { int t;

t = 0;

if (t) M [17] = 3;

a1 = t;

work ();

ret = 1− ret;

}

work() {

if (a1) work();

ret = a1;

}

554

Example: Constant Propagation

7

8

0

4

5

1

2

3

6

ret = 1− ret;

work();

9

10

main()

t = 0;

Pos(t)Neg(t)

M [17] = 3;

a1 = t;

work();

Neg(a1) Pos(a1)

ret = a1;

work ()

555

Example: Constant Propagation

70

4

5

1

3

9

10

6

ret = 1;

main()

t = 0;

2

work0();

work0 ()

8

ret = 0;

a1 = 0;

556

(1) Functional Approach:

Let D denote a complete lattice of (abstract) states.

Idea:

Represent the effect off() by a function:

[[f]]♯ : D→ D

557

Micha Sharir, Tel Aviv University Amir Pnueli, Weizmann Institute

558

In order to determine the effect of a call edgek = (u, f ();, v) we
require abstract functions:

enter♯ : D→ D

combine♯ : D2 → D

Then we define:

[[k]]♯ D = combine♯ (D, [[f]]♯ (enter♯ D))

559

... for Constant Propagation:

D = (Vars → Z⊤)⊥

enter♯ D =

{

⊥ if D = ⊥

D|Globals ⊕ {x 7→ 0 | x ∈ Locals} otherwise

combine♯ (D1, D2) =

{

⊥ if D1 = ⊥ ∨D2 = ⊥

D1|Locals ⊕D2|Globals otherwise

560

The effects [[f]]♯ then can be determined by a system of constraints
over the complete latticeD→ D :

[[v]]♯ ⊒ Id v entry point

[[v]]♯ ⊒ [[k]]♯ ◦ [[u]]♯ k = (u, _, v) edge

[[f]]♯ ⊒ [[stopf]]
♯ stopf end point of f

[[v]]♯ : D→ D describes the effect of all prefixes of computation
forests w of a procedure which lead from the entry point tov :-)

561

Problems:

• How can we represent functionsf : D→ D ???

• If #D =∞ , then D→ D hasinfinite strictly increasing
chains :-(

Simplification: Copy-Constants

→ Conditions are interpreted as; :-)

→ Only assignments x = e; with e ∈ Vars ∪ Z are treated
exactly :-)

562

Observation:

→ The effects of assignments are:

[[x = e;]]♯ D =















D ⊕ {x 7→ c} if e = c ∈ Z

D ⊕ {x 7→ (D y)} if e = y ∈ Vars

D ⊕ {x 7→ ⊤} otherwise

→ Let V denote the (finite!!!) set ofconstantright-hand sides.
Then variables may only take values fromV⊤ :-))

→ The occurring effects can be taken from

Df → Df with Df = (Vars → V⊤)⊥

→ The complete lattice is huge, butfinite !!!

563

Improvement:

→ Not all functions from Df → Df will occur :-)

→ All occurring functions λD.⊥ 6= M are of the form:

M = {x 7→ (bx ⊔
⊔

y∈Ix
y) | x ∈ Vars} where:

M D = {x 7→ (bx ⊔
⊔

y∈Ix
D y) | x ∈ Vars} für D 6= ⊥

→ Let M denote the set of all these functions. Then for
M1,M2 ∈M (M1 6= λD. ⊥ 6=M2) :

(M1 ⊔M2) x = (M1 x) ⊔ (M2 x)

→ For k = #Vars , M has height O(k2) :-)

564

Improvement (Cont.):

→ Also, composition can be directly implemented:

(M1 ◦M2) x = b′ ⊔
⊔

y∈I′ y with

b′ = b ⊔
⊔

z∈I bz

I ′ =
⋃

z∈I Iz where

M1 x = b ⊔
⊔

y∈I y

M2 z = bz ⊔
⊔

y∈Iz
y

→ The effects of assignments then are:

[[x = e;]]♯ =















IdVars ⊕ {x 7→ c} if e = c ∈ Z

IdVars ⊕ {x 7→ y} if e = y ∈ Vars

IdVars ⊕ {x 7→ ⊤} otherwise

565

... in the Example:

[[t = 0;]]♯ = {a1 7→ a1, ret 7→ ret, t 7→ 0 }

[[a1 = t;]]♯ = { a1 7→ t , ret 7→ ret, t 7→ t}

In order to implement the analysis, we additionally must construct the
effect of a call k = (_, f ();, _) from the effect of a proceduref :

[[k]]♯ = H ([[f]]♯) where:

H (M) = Id|Locals ⊕ (M ◦ enter♯)|Globals

enter♯ x =

{

x if x ∈ Globals

0 otherwise

566

... in the Example:

If [[work]]♯ = {a1 7→ a1, ret 7→ a1, t 7→ t}

then H [[work]]♯ = Id{t} ⊕ {a1 7→ a1, ret 7→ a1}

= {a1 7→ a1, ret 7→ a1, t 7→ t}

Now we can perform fixpoint iteration:-)

567

7

8

work();

9

10

Neg(a1) Pos(a1)

ret = a1;

work ()

1

7 {a1 7→ a1, ret 7→ ret, t 7→ t}

9 {a1 7→ a1, ret 7→ ret, t 7→ t}

10 {a1 7→ a1, ret 7→ a1, t 7→ t}

8 {a1 7→ a1, ret 7→ ret, t 7→ t}

[[(8, . . ., 9)]]♯ ◦ [[8]]♯ = {a1 7→ a1, ret 7→ a1, t 7→ t} ◦

{a1 7→ a1, ret 7→ ret, t 7→ t}

= {a1 7→ a1, ret 7→ a1, t 7→ t}

568

7

8

work();

9

10

Neg(a1) Pos(a1)

ret = a1;

work ()

2

7 {a1 7→ a1, ret 7→ ret, t 7→ t}

9 {a1 7→ a1, ret 7→ a1 ⊔ ret, t 7→ t}

10 {a1 7→ a1, ret 7→ a1, t 7→ t}

8 {a1 7→ a1, ret 7→ ret, t 7→ t}

[[(8, . . ., 9)]]♯ ◦ [[8]]♯ = {a1 7→ a1, ret 7→ a1, t 7→ t} ◦

{a1 7→ a1, ret 7→ ret, t 7→ t}

= {a1 7→ a1, ret 7→ a1, t 7→ t}

569

If we know the effects of procedure calls, we can put up a constraint
system for determining the abstract state when reaching a program point:

R[main] ⊒ enter♯ d0

R[f] ⊒ enter♯ (R[u]) k = (u, f ();, _) call

R[v] ⊒ R[f] v entry point of f

R[v] ⊒ [[k]]♯ (R[u]) k = (u, _, v) edge

570

... in the Example:

0

4

5

1

2

3

6

ret = 1− ret;

main()

t = 0;

Pos(t)Neg(t)

M [17] = 3;

a1 = t;

work();

0 {a1 7→ ⊤, ret 7→ ⊤, t 7→ 0}

1 {a1 7→ ⊤, ret 7→ ⊤, t 7→ 0}

2 {a1 7→ ⊤, ret 7→ ⊤, t 7→ 0}

3 {a1 7→ ⊤, ret 7→ ⊤, t 7→ 0}

4 {a1 7→ 0, ret 7→ ⊤, t 7→ 0}

5 {a1 7→ 0, ret 7→ 0, t 7→ 0}

6 {a1 7→ 0, ret 7→ ⊤, t 7→ 0}

571

Discussion:

• At leastcopy-constantscan be determined interprocedurally.

• For that, we had to ignore conditions and complex assignments :-(

• In the second phase, however, we could have been more precise:-)

• The extra abstractions were necessary for two reasons:

(1) The set of occurring transformersM ⊆ D→ D must be
finite;

(2) The functions M ∈M must beefficiently implementable
:-)

• The second condition can, sometimes, be abandoned ...

572

Observation: Sharir/Pnueli, Cousot

→ Often, procedures are only called forfew distinct abstract
arguments.

→ Each procedure need only to be analyzed for these:-)

→ Put up a constraint system:

[[v, a]]♯ ⊒ a v entry point

[[v, a]]♯ ⊒ combine♯ ([[u, a]], [[f, enter♯ [[u, a]]♯]]♯)

(u, f ();, v) call

[[v, a]]♯ ⊒ [[lab]]♯ [[u, a]]♯ k = (u, lab, v) edge

[[f, a]]♯ ⊒ [[stopf , a]]
♯ stopf end point of f

// [[v, a]]♯ == value for the argument a .

573

Discussion:

• This constraint system may behuge :-(

• We do not want to solve it completely!!!

• It is sufficient to compute the correct values for all calls which
occur, i.e., which are necessary to determine the value
[[main(), a0]]

♯ ==⇒ We apply ourlocal fixpoint algorithm
:-))

• The fixpoint algo provides us also with thesetof actual parameters
a ∈ D for which procedures are (possibly) called and all abstract
values at their program points for each of these calls:-)

574

... in the Example:

Let us try afull constant propagation ...

0

4

5

1

2

3

6

ret = 1 − ret;

7

8

work();

9

10

main()

t = 0;

Pos(t)Neg(t)

M [17] = 3;

a1 = t;

work();

Pos(a1)

ret = a1;

work ()

Neg(a1)

a1 ret a1 ret

0 ⊤ ⊤ ⊤ ⊤

1 ⊤ ⊤ ⊤ ⊤

2 ⊤ ⊤ ⊥

3 ⊤ ⊤ ⊤ ⊤

4 ⊤ ⊤ 0 ⊤

7 0 ⊤ 0 ⊤

8 0 ⊤ ⊥

9 0 ⊤ 0 ⊤

10 0 ⊤ 0 0

5 ⊤ ⊤ 0 0

main() ⊤ ⊤ 0 1

575

Discussion:

• In the Example, the analysis terminatesquickly :-)

• If D has finite height, the analysis terminates if each procedure
is only analyzed forfinitely manyarguments :-))

• Analogous analysis algorithms have proved very effective for the
analysis ofProlog :-)

• Together with a points-to analysis and propagation of negative
constant information, this algorithm is the heart of a very successful
race analyzer forC with Posixthreads :-)

576

(2) The Call-String Approach:

Idea:

→ Compute the set of all reachable call stacks!

→ In general, this is infinite :-(

→ Only treat stacks up to a fixed depthd precisely! From longer
stacks, we only keep the upper prefix of lengthd :-)

→ Important special case:d = 0.

==⇒ Just track the current stack frame ...

577

... in the Example:

7

8

0

4

5

1

2

3

6

ret = 1− ret;

work();

9

10

main()

t = 0;

Pos(t)Neg(t)

M [17] = 3;

a1 = t;

work();

Neg(a1) Pos(a1)

ret = a1;

work ()

578

... in the Example:

7

8

0

4

5

1

2

3

6

10

9

ret = a1;

main()

t = 0;

Pos(t)Neg(t)

ret = 1− ret;

combine

enter

enter

M [17] = 3;

a1 = t;

work ()

Neg(a1) Pos(a1)

combine

579

The conditions for 5, 7, 10 , e.g., are:

R[5] ⊒ combine♯ (R[4],R[10])

R[7] ⊒ enter♯ (R[4])

R[7] ⊒ enter♯ (R[8])

R[9] ⊒ combine♯ (R[8],R[10])

Warning:

The resulting super-graph contains obviouslyimpossible paths...

580

... in the Example this is:

7

8

0

4

5

1

2

3

6

10

9

ret = a1;

main()

t = 0;

Pos(t)Neg(t)

ret = 1− ret;

combine

enter

enter

M [17] = 3;

a1 = t;

work ()

Neg(a1) Pos(a1)

combine

581

... in the Example this is:

7

8

0

4

5

1

2

3

6

10

9

ret = a1;

main()

t = 0;

Pos(t)Neg(t)

ret = 1− ret;

combine

enter

enter

M [17] = 3;

a1 = t;

work ()

Neg(a1) Pos(a1)

combine

582

Note:

→ In the example, we find the same results:
more paths render the resultsless precise.

In particular, we provide for each procedure the result justfor one
(possibly very boring) argument:-(

→ The analysis terminates — wheneverD has no infinite strictly
ascending chains:-)

→ The correctness is easily shown w.r.t. the operational semantics
with call stacks.

→ For the correctness of the functional approach, the semantics with
computation forests is better suited:-)

583

3 Exploiting Hardware Features

Question: How can we optimally use:

... Registers

... Pipelines

... Caches

... Processors???

584

3.1 Registers

Example:

read();

x =M [A];

y = x+ 1;

if (y) {

z = x · x;

M [A] = z;

} else {

t = −y · y;

M [A] = t;

}
8

0

1

2

3

64

5 7

read();

x =M [A];

y = x+ 1;

z = x · x

Neg(y) Pos(y)

M [A] = t; M [A] = z;

t = −y · y;

585

The program uses5 variables ...

Problem:

What if the program uses more variables than there are registers :-(

Idea:

Use one register forseveralvariables :-)

In the example, e.g., one forx, t, z ...

586

read();

x =M [A];

y = x+ 1;

if (y) {

z = x · x;

M [A] = z;

} else {

t = −y · y;

M [A] = t;

}
8

0

1

2

3

64

5 7

read();

x =M [A];

y = x+ 1;

z = x · x

Neg(y) Pos(y)

M [A] = t; M [A] = z;

t = −y · y;

587

read();

R =M [A];

y = R+ 1;

if (y) {

R = R ·R;

M [A] = R;

} else {

R = −y · y;

M [A] = R;

}
8

0

1

2

3

64

5 7

read();

R =M [A];

y = R+ 1;

Neg(y) Pos(y)

R = −y · y;

M [A] = R; M [A] = R;

R = R ·R

588

Warning:

This is only possible if thelive rangesdo not overlap :-)

The (true) live range of x is defined by:

L[x] = {u | x ∈ L[u]}

... in the Example:

589

8

0

1

2

3

64

5 7

read();

x =M [A];

y = x+ 1;

z = x · x

Neg(y) Pos(y)

M [A] = t; M [A] = z;

t = −y · y;

L

8 ∅

7 {A, z}

6 {A, x}

5 {A, t}

4 {A, y}

3 {A, x, y}

2 {A, x}

1 {A}

0 ∅

590

8

0

1

2

3

64

5 7

read();

x =M [A];

y = x+ 1;

z = x · x

Neg(y) Pos(y)

M [A] = t; M [A] = z;

t = −y · y;

zt

x

y

L

8 ∅

7 {A, z}

6 {A, x}

5 {A, t}

4 {A, y}

3 {A, x, y}

2 {A, x}

1 {A}

0 {A}

591

8

0

1

2

3

64

5 7

read();

x =M [A];

y = x+ 1;

z = x · x

Neg(y) Pos(y)

M [A] = t; M [A] = z;

t = −y · y;

zt

x

y

Live Ranges:

A {0, . . . , 7}

x {2, 3, 6}

y {2, 4}

t {5}

z {7}

592

In order to determine sets of compatible variables, we construct the
Interference Graph I = (Vars , EI) where:

EI = {{x, y} | x 6= y,L[x] ∩ L[y] 6= ∅}

EI has an edge forx 6= y iff x, y are jointly live at some program
point :-)

... in the Example:

593

8

0

1

2

3

64

5 7

read();

x =M [A];

y = x+ 1;

z = x · x

Neg(y) Pos(y)

M [A] = t; M [A] = z;

t = −y · y;

zt

x

y

Interference Graph:

A

t z

y x

594

Variables which arenot connected with an edge can be assigned to the
same register :-)

A

t z

y x

Color == Register

595

Variables which arenot connected with an edge can be assigned to the
same register :-)

A

t z

y x

Color == Register

596

Sviatoslav Sergeevich Lavrov,
Russian Academy of Sciences (1962)

597

Gregory J. Chaitin, University of Maine (1981)

598

Abstract Problem:

Given: Undirected Graph (V,E) .

Wanted: Minimal coloring, i.e., mapping c : V → N mit

(1) c(u) 6= c(v) for {u, v} ∈ E;

(2)
⊔

{c(u) | u ∈ V } minimal!

• In the example, 3 colors suffice:-) But:

• In general, the minimal coloring is not unique:-(

• It is NP-complete to determine whether there is a coloring with at
most k colors :-((

==⇒

We must rely on heuristics or special cases:-)

599

Greedy Heuristics:

• Start somewhere with color 1;

• Next choose the smallest color which is different from the colors of
all already colored neighbors;

• If a node is colored, color all neighbors which not yet have colors;

• Deal with one component after the other ...

600

... more concretely:

forall (v ∈ V) c[v] = 0;

forall (v ∈ V) color (v);

void color (v) {

if (c[v] 6= 0) return;

neighbors = {u ∈ V | {u, v} ∈ E};

c[v] =

⊔

{k > 0 | ∀ u ∈ neighbors : k 6= c(u)};

forall (u ∈ neighbors)

if (c(u) == 0) color (u);

}

The new color can be easily determined once the neighbors aresorted
according to their colors :-)

601

Discussion:

→ Essentially, this is aPre-order DFS :-)

→ In theory, the result may arbitrarily far from the optimum:-(

→ ... in practice, it may not be as bad :-)

→ ... Anecdote: different variants have beenpatented!!!

602

Discussion:

→ Essentially, this is aPre-order DFS :-)

→ In theory, the result may arbitrarily far from the optimum:-(

→ ... in practice, it may not be as bad :-)

→ ... Anecdote: different variants have beenpatented!!!

The algorithm works the better the smaller life ranges are...

Idea: Life Range Splitting

603

Special Case: Basic Blocks

L

x, y, z

A1 = x+ y; x, z

M [A1] = z; x

x = x+ 1; x

z =M [A1]; x, z

t =M [x]; x, z, t

A2 = x+ t; x, z, t

M [A2] = z; x, t

y =M [x]; y, t

M [y] = t;

x

t

z y

604

Special Case: Basic Blocks

L

x, y, z

A1 = x+ y; x, z

M [A1] = z; x

x = x+ 1; x

z =M [A1]; x, z

t =M [x]; x, z, t

A2 = x+ t; x, z, t

M [A2] = z; x, t

y =M [x]; y, t

M [y] = t;

x

t

z y

605

The live ranges of x and z can be split:

L

x, y, z

A1 = x+ y; x, z

M [A1] = z; x

x1 = x+ 1; x1

z1 =M [A1]; x1, z1

t =M [x1]; x1, z1, t

A2 = x1 + t; x1, z1, t

M [A2] = z1; x1, t

y1 =M [x1]; y1, t

M [y1] = t;

x

z y

t

x1

y1z1

606

The live ranges of x and z can be split:

L

x, y, z

A1 = x+ y; x, z

M [A1] = z; x

x1 = x+ 1; x1

z1 =M [A1]; x1, z1

t =M [x1]; x1, z1, t

A2 = x1 + t; x1, z1, t

M [A2] = z1; x1, t

y1 =M [x1]; y1, t

M [y1] = t;

x

z y

t

x1

z1 y1

607

Interference graphs for minimal live ranges on basic blocksare known as
interval graphs:

vertex === interval

edge === joint vertex

608

Thecovering numberof a vertex is given by the number of incident
intervals.

Theorem:

maximal covering number

=== size of the maximal clique

=== minimally necessary number of colors:-)

Graphs with this property (for every sub-graph) are calledperfect...

A minimal coloring can be found in polynomial time:-))

609

Idea:

→ Conceptually iterate over the vertices0, . . . , m− 1 !

→ Maintain a list of currently free colors.

→ If an interval starts, allocate the next free color.

→ If an interval ends, free its color.

This results in the following algorithm:

610

free = [1, . . . , k];

for (i = 0; i < m; i++) {

init[i] = []; exit[i] = [];

}

forall (I = [u, v] ∈ Intervals) {

init[u] = (I :: init[u]); exit[v] = (I :: exit[v]);

}

for (i = 0; i < m; i++) {

forall (I ∈ init[i]) {

color[I] = hd free; free = tl free;

}

forall (I ∈ exit[i]) free = color[I] :: free;

}

611

Discussion:

→ For arbitrary programs, we thus may apply some heuristics for
graph coloring...

→ If the number ofrealregister does not suffice, the remaining
variables are spilled into a fixed area on the stack.

→ Generally, variables from inner loops are preferably held in
registers.

→ For basic blocks we have succeeded to derive an optimal register
allocation :-)

The number of required registers could even be determined
before-hand!

→ This works only once live ranges have been split.

→ Splitting of live ranges for full programs results programsin static
single assignmentform ...

612

Discussion

• Every live variable should be defined at most once??

• Every live variable should have at most one definition?

• All definitions of the same variable should have a common end
point !!!

==⇒ Static Single Assignment Form

613

How to arrive at SSA Form:

We proceed in two phases:

Step 1:

Transform the program such that each program pointv is reached
by at most one definition of a variablex which islive at v.

Step 2:

• Introduce a separate variantxi for every occurrence of a
definition of a variable x !

• Replace every use ofx with the use of the reaching variant
xh ...

614

Implementing Step 1:

• Determine for every program point the set ofreaching definitions.

• Assumption

All incoming edges of a join pointv are labeled with the same
parallel assignment x = x | x ∈ Lv for some setLv.

Initially, Lv = ∅ for all v.

• If the join point v is reached by more than one definition for the
same variable x which is live at program point v , insertx into
Lv, i.e., add definitions x = x; at the end of each incoming edge
of v.

615

Example

Reaching Definitions

7
x = x− 1;

y = x ∗ y;

Pos(x > 1)Neg(x > 1)

36

4

5

2

y = 1;

1

x =M [I];

0

M [R] = y;

R

0 〈x, 0〉, 〈y, 0〉

1 〈x, 1〉, 〈y, 0〉

2 〈x, 1〉, 〈x, 5〉, 〈y, 2〉, 〈y, 4〉

3 〈x, 1〉, 〈x, 5〉, 〈y, 2〉, 〈y, 4〉

4 〈x, 1〉, 〈x, 5〉, 〈y, 4〉

5 〈x, 5〉, 〈y, 4〉

6 〈x, 1〉, 〈x, 5〉, 〈y, 2〉, 〈y, 4〉

7 〈x, 1〉, 〈x, 5〉, 〈y, 2〉, 〈y, 4〉

where ψ ≡ x = x | y = y

616

Example

Reaching Definitions

7

1

x = x− 1;

y = x ∗ y;

Pos(x > 1)Neg(x > 1)

36

4

5

2

0

M [R] = y;

y = 1;

x =M [I];

ψψ

R

0 〈x, 0〉, 〈y, 0〉

1 〈x, 1〉, 〈y, 0〉

2 〈x, 1〉, 〈x, 5〉, 〈y, 2〉, 〈y, 4〉

3 〈x, 1〉, 〈x, 5〉, 〈y, 2〉, 〈y, 4〉

4 〈x, 1〉, 〈x, 5〉, 〈y, 4〉

5 〈x, 5〉, 〈y, 4〉

6 〈x, 1〉, 〈x, 5〉, 〈y, 2〉, 〈y, 4〉

7 〈x, 1〉, 〈x, 5〉, 〈y, 2〉, 〈y, 4〉

where ψ ≡ x = x | y = y

617

Reaching Definitions

The complete latticeR for this analysis is given by:

R = 2Defs

where

Defs = Vars × Nodes Defs(x) = {x} × Nodes

Then:

[[(_, x = r;, v)]]♯R = R\Defs(x) ∪ {〈x, v〉}

[[(_, x = x | x ∈ L, v)]]♯R = R\
⋃

x∈LDefs(x) ∪ {〈x, v〉 | x ∈ L}

The ordering on R is given by subset inclusion ⊆ where the value
at program start is given byR0 = {〈x, start〉 | x ∈ Vars}.

618

The TransformationSSA, Step 1:

v

uk

u1

l1

lk

v

u1
l1

uk

lkψ

ψ

wherek ≥ 2.

The labelψ of the new in-going edges for v is given by:

ψ ≡ {x = x | x ∈ L[v],#(R[v] ∩ Defs(x)) > 1}

619

If the nodev is the start point of the program, we add auxiliary edges
whenever there are further ingoing edges intov:

The TransformationSSA, Step 1 (cont.):

v

u1
l1

uk

lk

v

uk

u1

l1

lk

ψ

ψ

ψ

wherek ≥ 1 and ψ of the new in-going edges for v is given by:

ψ ≡ {x = x | x ∈ L[v],#(R[v] ∩ Defs(x)) > 1}

620

Discussion

• Program start is interpreted as (the end point of) a definition of
every variable x :-)

• At some edges,paralleldefinitionsψ are introduced!

• Some of them may be useless:-(

621

Discussion

• Program start is interpreted as (the end point of) a definition of
every variable x :-)

• At some edges,paralleldefinitionsψ are introduced!

• Some of them may be useless:-(

Improvement:

• We introduce assignmentsx = x beforev only if the sets of
reaching definitions forx at incoming edges ofv differ !

• This introduction is repeated until everyv is reached by exactly one
definition for each variable live atv.

622

Theorem

Assume that every program point in the controlflow graph is reachable
from start and that every left-hand side of a definition is live. Then:

1. The algorithm for inserting definitions x = x terminates after at
most n · (m+ 1) rounds were m is the number of program
points with more than one in-going edges andn is the number of
variables.

2. After termination, for every program pointu, the setR[u] has exactly
one definition for every variablex which is live atu.

623

Discussion

The efficiency crucially depends on the number of iterations. If the cfg is
well-structured, it terminates already afteroneiteration!

624

Discussion

The efficiency crucially depends on the number of iterations. If the cfg is
well-structured, it terminates already afteroneiteration!

A well-structuredcfg can be reduced to a single vertex or edge by:

v0

v1

v0

v1

v v

625

Discussion

The efficiency crucially depends on the number of iterations. If the cfg is
well-structured, it terminates already afteroneiteration!

A well-structuredcfg can be reduced to a single vertex or edge by:

v0

v1

v0

v1

v v

v0

u

v1 v1

v0

626

Discussion (cont.)

• Reducible cfgs are not the exception — but the rule:-)

• In Java, reducibility is only violated by loops with breaks/continues.

• If the insertion of definitions does not terminate afterk iterations,
we may immediately terminate the procedure by inserting
definitions x = x before all nodes which are reached by more
than one definition of x.

Assume now that every program pointu is reached by exactly one
definition for each variable which is live atu ...

627

The TransformationSSA, Step 2:

Each edge (u, lab, v) is replaced with (u, Tv,φ[lab], v) where
φ x = xu′ if 〈x, u′〉 ∈ R[u] and:

Tv,φ[;] = ;

Tv,φ[Neg(e)] = Neg(φ(e))

Tv,φ[Pos(e)] = Pos(φ(e))

Tv,φ[x = e] = xv = φ(e)

Tv,φ[x =M [e]] = xv =M [φ(e)]

Tv,φ[M [e1] = e2] = M [φ(e1)] = φ(e2)]

Tv,φ[{x = x | x ∈ L}] = {xv = φ(x) | x ∈ L}

628

Remark

The multiple assignments:

pa = x(1)v = x(1)v1 | . . . | x
(k)
v = x(k)vk

in the last row are thought to be executedin parallel, i.e.,

[[pa]] (ρ, µ) = (ρ⊕ {x(i)v 7→ ρ(x(i)vi) | i = 1, . . . , k}, µ)

629

Example

7

1

36

4

5

2

0
x1 =M [I];

y1 = 1;

Pos(x3 > 1)Neg(x3 > 1)

x2 = x3 − 1;

M [R] = y3;

ψ1 ψ2

y2 = x3 ∗ y3;

ψ1 = x3 = x1 | y3 = y1

ψ2 = x3 = x2 | y3 = y2

630

Theorem

Assume that every program point is reachable fromstart and the
program is in SSA form without assignments to dead variables.

Let λ denote the maximal number of simultaneously live variables
and G the interference graph of the program variables. Then:

λ = ω(G) = χ(G)

where ω(G), χ(G) are the maximal size of a clique inG and the
minimal number of colors forG, respectively.

A minimal coloring ofG, i.e., an optimal register allocation can be found
in polynomial time.

631

Discussion

• By the theorem, the numberλ of required registers can be easily
computed :-)

• Thus variables which are to be spilled to memory, can be
determined ahead of the subsequent assignment of registers!

• Thus here, we may, e.g., insist on keeping iteration variables from
inner loops.

632

Discussion

• By the theorem, the numberλ of required registers can be easily
computed :-)

• Thus variables which are to be spilled to memory, can be
determined ahead of the subsequent assignment of registers!

• Thus here, we may, e.g., insist on keeping iteration variables from
inner loops.

• Clearly, always λ ≤ ω(G) ≤ χ(G) :-)

Therefore, it suffices to color the interference graph withλ
colors.

• Instead, we provide an algorithm which directly operates onthe cfg
...

633

Observation

• Live ranges of variables in programs in SSA form behave similar to
live ranges in basic blocks!

• Consider some dfs spanning treeT of the cfg with root start.

• For each variable x, the live range L[x] forms atree fragment
of T !

• A tree fragment is a subtree from which some subtrees have been
removed...

634

Example

7

36

4

5

2

1

0

x = x− 1;

Neg(x > 1)

x =M [i];

y = 1;

y = x ∗ y;M [a] = y;

Pos(x > 1)
3

4

5

6

2

1

0

7

635

Discussion

• Although the example program is not in SSA form, all live ranges
still form tree fragments :-)

• The intersection of tree fragments is again a tree fragment!

• A setC of tree fragments forms a clique iff their intersection is
non-empty!!!

• Thegreedy algorithmwill find an optimal coloring...

636

Proof of the Intersection Property

(1) Assume I1 ∩ I2 6= ∅ and vi is the root of Ii. Then:

v1 ∈ I2 or v2 ∈ I1

(2) Let C denote a clique of tree fragments.

Then there is an enumerationC = {I1, . . . , Ir} with roots
v1,. . . ,vr such that

vi ∈ Ij for all j ≤ i

In particular, vr ∈ Ii for all i. :-)

637

The Greedy Algorithm

forall (u ∈ Nodes) visited [u] = false;

forall (x ∈ L[start]) Γ(x) = extract(free);

alloc(start);

void alloc (Node u) {

visited [u] = true;

forall ((lab, v) ∈ edges [u])

if (¬visited [v]) {

forall (x ∈ L[u]\L[v]) insert(free,Γ(x));

forall (x ∈ L[v]\L[u]) Γ(x) = extract(free);

alloc (v);

}

}

638

Example

8

0

1

2

3

64

5 7

read();

x =M [A];

y = x+ 1;

Neg(y) Pos(y)

z = x · x

M [A] = z;

t = −y · y;

M [A] = t;

639

Example

8

0

1

2

3

64

5 7

read();

x =M [A];

y = x+ 1;

Neg(y) Pos(y)

z = x · x

M [A] = z;

t = −y · y;

M [A] = t;

8

0

1

2

3

64

5 7

read();

R1 =M [A];

R2 = R1 + 1;

Pos(R2)

M [A] = R1;

Neg(R2)

R1 = −R2 ·R2;

M [A] = R1;

R1 = R1 ·R1

640

Remark:

• Intersection graphs for tree fragments are also known ascordal
graphs...

• A cordal graph is an undirected graph where every cycle with more
than three nodes contains acord :-)

• Cordal graphs are another sub-class ofperfect graphs :-))

• Cheap register allocation comes at a price:

when transforming intoSSAform, we have introduced parallel
register-register moves :-(

641

Problem

The parallel register assignment:

ψ1 = R1 = R2 | R2 = R1

is meant to exchange the registersR1 andR2 :-)

There are at least two ways of implementing this exchange...

642

Problem

The parallel register assignment:

ψ1 = R1 = R2 | R2 = R1

is meant to exchange the registersR1 andR2 :-)

There are at least two ways of implementing this exchange...

(1) Using an auxiliary register:

R = R1;

R1 = R2;

R2 = R;

643

(2) XOR:
R1 = R1 ⊕R2;

R2 = R1 ⊕R2;

R1 = R1 ⊕R2;

644

(2) XOR:
R1 = R1 ⊕R2;

R2 = R1 ⊕R2;

R1 = R1 ⊕R2;

But what about cyclic shifts such as:

ψk = R1 = R2 | . . . | Rk−1 = Rk | Rk = R1

for k > 2 ??

645

(2) XOR:
R1 = R1 ⊕R2;

R2 = R1 ⊕R2;

R1 = R1 ⊕R2;

But what about cyclic shifts such as:

ψk = R1 = R2 | . . . | Rk−1 = Rk | Rk = R1

for k > 2 ??

Then at mostk − 1 swaps of two registers are needed:

ψk = R1 ↔ R2;

R2 ↔ R3;

. . .

Rk−1 ↔ Rk;

646

Next complicated case: permutations.

• Every permutation can be decomposed into a set of disjoint shifts
:-)

• Any permutation ofn registers withr shifts can be realized byn− r
swaps...

647

Next complicated case: permutations.

• Every permutation can be decomposed into a set of disjoint shifts
:-)

• Any permutation ofn registers withr shifts can be realized byn− r
swaps...

Example

ψ = R1 = R2 | R2 = R5 | R3 = R4 | R4 = R3 | R5 = R1

consists of the cycles(R1, R2, R5) and(R3, R4). Therefore:

ψ = R1 ↔ R2;

R2 ↔ R5;

R3 ↔ R4;

648

The general case:

• Every register receives its value at most once.

• The assignment therefore can be decomposed into a permutation
together with tree-like assignments (directed towards theleaves)...

Example

ψ = R1 = R2 | R2 = R4 | R3 = R5 | R5 = R3

The parallel assignment realizes the linear register movesfor R1, R2 and
R4 together with the cyclic shift forR3 andR5:

ψ = R1 = R2;

R2 = R4;

R3 ↔ R5;

649

Interprocedural Register Allocation:

→ For every local variable, there is an entry in the stack frame.

→ Before calling a function, the locals must be saved into the stack
frame and be restored after the call.

→ Sometimes there is hardware support:-)

Then the call istransparentfor all registers.

→ If it is our responsibility to save and restore, we may...

• save only registers which are over-written:-)

• restore overwritten registers only.

→ Alternatively, we save only registers which are still live after the
call — and then possibly into different registers==⇒
reduction of life ranges :-)

650

3.2 Instruction Level Parallelism

Modern processors do not execute one instruction after the other strictly
sequentially.

Here, we consider two approaches:

(1) VLIW (Very Large Instruction Words)
(2) Pipelining

651

VLIW:

One instruction simultaneously executes up tok (e.g., 4:-)
elementary Instructions.

Pipelining:

Instruction execution may overlap.

Example:

w = (R1 = R2 + R3 | D = D1 ∗D2 | R3 =M [R4])

652

Warning:

• Instructions occupy hardware ressources.

• Instructions may access the same busses/registers==⇒ hazards

• Results of an instruction may be available only after some delay.

• During execution, different parts of the hardware are involved:

Fetch Decode Execute Write

• During ExecuteandWrite different internal registers/busses/alus
may be used.

653

We conclude:

Distributing the instruction sequence into sequences of words is amenable
to various constraints...

In the following, we ignore the phasesFetchundDecode :-)

Examples for Constraints:

(1) at most one load/store per word;
(2) at most one jump;
(3) at most one write into the same register.

654

Example Timing:
Floating-point Operation 3

Load/Store 2

Integer Arithmetic 1

Timing Diagram:

���
���
���

���
���
���

5 −1 2 0.3

R1 R2 R3 D

17.4

49

1

0

1

2

3

R3 is over-written,afterthe addition has fetched2 :-)

655

If a register is accessed simultaneously (here:R3), a strategy ofconflict
solvingis required...

Conflicts:

Read-Read: A register is simultaneously read.

==⇒ in general, unproblematic:-)

Read-Write: A register is simultaneously read and written.

Conflict Resolution:

• ... ruled out!

• Read is delayed (stalls), until write has terminated!

• Readbeforewrite returns old value!

656

Write-Write: A register is simultaneously written to.

==⇒ in general, unproblematic:-)

Conflict Resolutions:

• ... ruled out!

• ...

In Our Examples ...

• simultaneous read is permitted;

• simultaneous write/read and write/write is ruled out;

• no stalls are injected.

We first consider basic blocks only, i.e., linear sequences of assignments
...

657

Idea: Data Dependence Graph

Vertices Instructions

Edges Dependencies

Example:

(1) x = x+ 1;

(2) y =M [A];

(3) t = z;

(4) z =M [A+ x];

(5) t = y + z;

658

Possible Dependencies:

Definition → Use // Reaching Definitions

Use → Definition // ???

Definition → Definition // Reaching Definitions

Reaching Definitions:

Determine for each u which definitions may reach ==⇒ can be
determined by means of a system of constraints:-)

... in the Example:

659

3

4

1

2

6

5

x = x+ 1;

y =M [A];

t = z;

z =M [A+ x];

t = y + z;

R

1 {〈x, 1〉, 〈y, 1〉, 〈z, 1〉, 〈t, 1〉}

2 {〈x, 2〉, 〈y, 1〉, 〈z, 1〉, 〈t, 1〉}

3 {〈x, 2〉, 〈y, 3〉, 〈z, 1〉, 〈t, 1〉}

4 {〈x, 2〉, 〈y, 3〉, 〈z, 1〉, 〈t, 4〉}

5 {〈x, 2〉, 〈y, 3〉, 〈z, 5〉, 〈t, 4〉}

6 {〈x, 2〉, 〈y, 3〉, 〈z, 5〉, 〈t, 6〉}

660

Let Ui, Di denote the sets of variables which are used or defined at
the edge outgoing from ui . Then:

(u1, u2) ∈ DD if u1 ∈ R[u2] ∧D1 ∩D2 6= ∅

(u1, u2) ∈ DU if u1 ∈ R[u2] ∧D1 ∩ U2 6= ∅

... in the Example:

Def Use

1 x = x+ 1; {x} {x}

2 y =M [A]; {y} {A}

3 t = z; {t} {z}

4 z =M [A+ x]; {z} {A, x}

5 t = y + z; {t} {y, z}
DU

DU DD

DU UD

DDDD DD DD

1 2 3

4

5

t = z;

z = M [A+ x];

t = y + z;

x = x+ 1; y = M [A];

•

661

TheUD-edge (3, 4) has been inserted to exclude thatz is
over-written before use :-)

In the next step, each instruction is annotated with its(required
ressources, in particular, its) execution time.

Our goal is a maximally parallelcorrectsequence of words.

For that, we maintain the current system state:

Σ : Vars → N

Σ(x) =̂ expected delay untilx is available

Initially:

Σ(x) = 0

As aninvariant, we guarantee on entry of the basic block, that all
operations are terminated:-)

662

Then the slots of the word sequence are successively filled:

• We start with the minimal nodes in the dependence graph.

• If we fail to fill all slots of a word, we insert ; :-)

• After every inserted instruction, we re-computeΣ .

Warning:

→ The execution of twoVLIW s can overlap!!!

→ Determining anoptimalsequence, is NP-hard...

663

Example: Word width k = 2

Word State

1 2 x y z t

0 0 0 0

x = x+ 1 y =M [A] 0 1 0 0

t = z z =M [A+ x] 0 0 1 0

0 0 0 0

t = y + z 0 0 0 0

In each cycle, the execution of a new word is triggered.

The state just records the number of cycles still to be waitedfor the result
:-)

664

Note:

• If instructions put constraints on future selection, we also record
these in Σ .

• Overall, we still distinuish justfinitely manysystem states :-)

• The computation of the effect of aVLIW onto Σ can be
compiled into afinite automaton!!!

• This automaton, though, could be quite huge:-(

• The challenge of making choices still remains:-(

• Basic blocks usually are not very large

==⇒ opportunities for parallelization are limited:-((

665

Extension 1: Acyclic Code

if (x > 1) {

y =M [A];

z = x− 1;

} else {

y =M [A+ 1];

z = x− 1;

}

y = y + 1;

The dependence graph must be enriched with extra control-dependencies
...

666

DUDU

Pos Neg
z = x− 1;

y =M [A];

y = y + 1;

x > 1

y =M [A+ 1];

•

The statement z = x− 1; is executed with the same arguments in both
branches and does not modify any of the remaining variables:-)

We could have moved itbeforethe if anyway :-))

667

The following code could be generated:

z = x− 1 if (!(x > 0)) goto A

y =M [A]

goto B

A : y =M [A+ 1]

B : y = y + 1

At every jump target, we guarantee theinvariant :-(

668

If we allow several (known) states on entry of a sub-block, wecan
generate code which complies with all of these.

... in the Example:

z = x− 1 if (!(x > 0)) goto A

y =M [A] goto B

A : y =M [A+ 1]

B :

y = y + 1

669

If this parallelism is not yet sufficient, we could try to speculatively
execute possibly useful tasks...

For that, we require:

• an idea which alternative is executed more frequently;

• the wrong execution may not end in acatastrophy, i.e., run-time
errors such as, e.g., division by 0;

• the wrong execution must allow roll-back (e.g., by delayinga
commit) or may not have any observational effects...

670

... in the Example:

z = x− 1 y =M [A] if (x > 0) goto B

y =M [A+ 1]

B :

y = y + 1

In the case x ≤ 0 we have y =M [A] executed in advance.

This value, however, is overwritten in the next step:-)

In general:

x = e; has no observable effect in a branch ifx is deadin this
branch :-)

671

Extension 2: Unrolling of Loops

We may unroleimportant, i.e., inner loops several times:

PosNeg Pos

Pos
Neg

Neg

672

Now it is clear which side of tests to prefer:

the side which stays within the unroled body of the loop:-)

Warning:

• The different instances of the body are translated relativeto possibly
different initial states :-)

• The code behind the loop must be correct relative to the exit state
corresponding to every jump out of the loop!

673

Example:

for (x = 0; x < n; x++)

M [A+ x] = z;

1

0

2

3

4

5

x = 0;

Neg(x < n) Pos(x < n)

M [A+ x] = z;

x = x+ 1;

Duplication of the body yields:

674

for (x = 0; x < n; x++) {

M [A+ x] = z;

x = x+ 1;

if (!(x < n)) break;

M [A+ x] = z;

}
8

1

0

2

3

4

6

7

5

x = 0;

Neg(x < n) Pos(x < n)

M [A+ x] = z;

x = x+ 1;

Pos(x < n)Neg(x < n)

M [A+ x] = z;

x = x+ 1;

675

It would be better if we could remove the assignmentx = x+ 1;

together with the test in the middle — since these serialize the execution
of the copies!!

This is possible if we substitute x+ 1 for x in the second copy,
transform the condition and add a compensation code:

for (x = 0; x+ 1 < n; x = x+ 2) {

M [A+ x] = z;

M [A+ x+ 1] = z;

}

if (x < n) {

M [A+ x] = z;

x = x+ 1;

}

2

4

6

0

3

5

1

M [A+ x] = z;

x = x+ 2;

M [A+ x] = z;

x = x+ 1;

x = 0;

M [A+ x+ 1] = z;

Neg(x+ 1 < n) Pos(x+ 1 < n)

Pos(x < n)Neg(x < n)

676

Discussion:

• Elimination of the intermediate test together with the the fusion of
all increments at the end reveals that the different loop iterations are
in fact independent :-)

• Nonetheless, we do not gain much since we only allow one storeper
word :-(

• If right-hand sides, however, are more complex, we can interleave
their evaluation with the stores :-)

677

Extension 3:

Sometimes, one loop alone does not provide enough opportunities for
parallelization :-(

... but perhaps two successively in a row:-)

Example:

for (x = 0; x < n; x++) {

R = B[x];

S = C[x];

T1 = R + S;

A[x] = T1;

}

for (x = 0; x < n; x++) {

R = B[x];

S = C[x];

T2 = R− S;

C[x] = T2;

}

678

In order to fuse two loops into one, we require that:

• the iteration schemes coincide;

• the two loops access different data.

In case of individual variables, this can easily be verified.

This is more difficult in presence of arrays.

Taking the source program into account, accesses to distinct statically
allocated arrays can be identified.

An analysis of accesses to the same array is significantly more difficult ...

679

Assume that the blocks A, B, C are distinct.

Then we can combine the two loops into:

for (x = 0; x < n; x++) {

R = B[x];

S = C[x];

T1 = R + S;

A[x] = T1;

R = B[x];

S = C[x];

T2 = R− S;

C[x] = T2;

}

680

The first loop may in iteration x not read data which the second loop
writes to in iterations < x .

The second loop may in iterationx not read data which the first loop
writes to in iterations > x .

If the index expressions of jointly accessed arrays arelinear, the given
constraints can be verified throughinteger linear programming...

i ≥ 0

i ≤ x− 1

xwrite = i

xread = x

xread = xwrite

// xread read access toC by 1st loop
// xwrite write access toC by 2nd loop

... obviously has no solution:-)

681

General Form:

s ≥ t1

t2 ≥ s

y1 = s1

y2 = s2

y1 = y2

for linear expressions s, t1, t2, s1, s2 overi and the iteration variables.

This can be simplified to:

0 ≤ s− t1 0 ≤ t2 − s 0 = s1 − s2

What should we do with it???

682

Simple Case:

The two inequations have no solution overQ.

Then they also have no solution overZ :-)

... in Our Example:

x = i

0 ≤ i = x

0 ≤ x− 1− i = −1

The second inequation has no solution:-)

683

One Variable:

The inequations wherex occurs positive, providelower bounds.

The inequations wherex occurs negative, provideupper bounds.

If G,L are the greatest lower and the least upper bound, respectively,
then all (integer) solution are in the interval[G,L] :-)

Example:

0 ≤ 13− 7 · x

0 ≤ −1 + 5 · x
⇐⇒

x ≤ 13
7

x ≥ 1
5

The onlyintegersolution of the system isx = 1 :-)

684

Discussion:

• Solutions only matter within the bounds to the iteration variables.

• Everyintegersolution there provides a conflict.

• Fusion of loops is possible ifnoconflicts occur :-)

• The given special case suffices to solve the case one variableover
Z :-)

• The number of variables in the inequations corresponds to the
nesting-depth offor-loops ==⇒ in general, is quitesmall :-)

685

Discussion:

• Integer Linear Programming(ILP) can decide satisfiability of a
finite set of equations/inequations overZ of the form:

n
∑

i=1

ai · xi = b bzw.
n

∑

i=1

ai · xi ≥ b , ai ∈ Z

• Moreover, a (linear) cost function can be optimized:-)

• Warning: The decision problem is in general, already NP-hard!!!

• Notwithstanding that, surprisingly efficient implementations exist.

• Not just loop fusion, but also other re-organizations of loops yield
ILP problems...

686

Background 5: Presburger Arithmetic

Many problems in computer science can be formulatedwithout
multiplication :-)

Let us first consider twosimplespecial cases...

1. Linear Equations

2x + 3y = 24

x − y + 5z = 3

687

Question:

• Is there a solution overQ ?

• Is there a solution overZ ?

• Is there a solution overN ?

Let us reconsider the equations:

2x + 3y = 24

x − y + 5z = 3

688

Answers:

• Is there a solution overQ ? Yes

• Is there a solution overZ ? No

• Is there a solution overN ? No

Complexity:

• Is there a solution overQ ? Polynomial

• Is there a solution overZ ? Polynomial

• Is there a solution overN ? NP-hard

689

Solution Method for Integers:

Observation 1:

a1x1 + . . .+ akxk = b (∀ i : ai 6= 0)

has a solution iff

gcd{a1, . . . , ak} | b

690

Example:

5y − 10z = 18

hasnosolution overZ :-)

Observation 2:

Adding a multiple of one equation to another does not change the set of
solutions.

691

Example:

5y − 10z = 18

hasnosolution overZ :-)

Observation 2:

Adding a multiple of one equation to another does not change the set of
solutions :-)

692

Example:

2x + 3y = 24

x − y + 5z = 3

==⇒

5y − 10z = 18

x − y + 5z = 3

693

Example:

2x + 3y = 24

x − y + 5z = 3

==⇒

5y − 10z = 18

x − y + 5z = 3

694

Observation 3:

Adding multiples of columns to another column is an invertible
transformation which we keep track of in a separate matrix...

1 0 0 5y − 10z = 18

0 1 0 x − y + 5z = 3

0 0 1

==⇒

1 0 0 5y = 18

0 1 2 x − y + 3z = 3

0 0 1

695

Observation 3:

Adding multiples of columns to another column is an invertible
transformation which we keep track of in a separate matrix...

1 0 0 5y = 18

0 1 2 x − y + 3z = 3

0 0 1

==⇒

1 0 −3 5y = 18

0 1 2 x − y = 3

0 0 1

==⇒ triangular form!!

696

Observation 4:

• A special solution of a triangular system can be directly read off
:-)

• All solutions of a homogeneous triangular system can be directly
read off :-)

• All solutions of the original system can be recovered from the
solutions of the triangular system by means of the accumulated
transformation matrix:-))

697

Example

1 0 −3 5y = 15

0 1 2 x − y = 3

0 0 1

One special solution:

[6, 3, 0]⊤

All solutions of the homogeneous system are spanned by:

[0, 0, 1]⊤

698

Solving overN

• ... is of major practical importance;

• ... has led to the development of many new techniques;

• ... easily allows to encodeNP-hardproblems;

• ... remains difficult if justthreevariables are allowed per equation.

699

2. One Polynomial Special Case:

x ≥ y + 5

19 ≥ x

y ≥ 13

y ≥ x− 7

• There are at most 2 variables perin-equation;

• no scaling factors.

700

Idea: Represent the system by agraph:

x y

5

−7

13

19

701

The in-equations aresatisfiableiff

• the weight of everycycleare at most 0;

• the weights of pathsreachingx are bounded by the weights of edges
from x into thesink.

==⇒

Compute the reflexive and transitive closure of the edge weights!

702

x y

5

−7

13

19

703

x y

5

−7

13

19

704

x y

≤ 05−7

5

−7

13

19

705

y

5

−7

13

19

x

706

y

13+5 ≤ 19

5

−7

13

19

x

707

The in-equations aresatisfiableiff

• the weight of everycycleare at most 0;

• the weights of pathsreachingx are bounded by the weights of edges
from x into thesink.

==⇒

Compute thereflexiveandtransitiveclosure of the edge weights!

708

3. A General Solution Method:

Idea: Fourier-Motzkin Elimination

• Successively remove individual variablesx !

• All in-equations withpositiveoccurrences of x yield lower
bounds.

• All in-equations withnegativeoccurrences of x yield upper
bounds.

• All lower bounds must be at most as big as all upper bounds;-))

709

Jean Baptiste Joseph Fourier, 1768–1830

710

Example:

9 ≤ 4x1 + x2 (1)

4 ≤ x1 + 2x2 (2)

0 ≤ 2x1 − x2 (3)

6 ≤ x1 + 6x2 (4)

−11 ≤ −x1 − 2x2 (5)

−17 ≤ −6x1 + 2x2 (6)

−4 ≤ −x2 (7)

1

2

3

1 2 3 4 5

4

5

1

2

3

6

5
7

711

For x1 we obtain:

9 ≤ 4x1 + x2 (1)

4 ≤ x1 + 2x2 (2)

0 ≤ 2x1 − x2 (3)

6 ≤ x1 + 6x2 (4)

−11 ≤ −x1 − 2x2 (5)

−17 ≤ −6x1 + 2x2 (6)

−4 ≤ −x2 (7)

9
4
− 1

4
x2 ≤ x1 (1)

4− 2x2 ≤ x1 (2)

1
2
x2 ≤ x1 (3)

6− 6x2 ≤ x1 (4)

x1 ≤ 11− 2x2 (5)

x1 ≤ 17
6
+ 1

3
x2 (6)

−4 ≤ −x2 (7)

If such anx1 exists, all lower bounds must be bounded by all upper
bounds, i.e.,

712

9
4
− 1

4
x2 ≤ 11− 2x2 (1, 5)

9
4
− 1

4
x2 ≤

17
6
+ 1

3
x2 (1, 6)

4− 2x2 ≤ 11− 2x2 (2, 5)

4− 2x2 ≤
17
6
+ 1

3
x2 (2, 6)

1
2
x2 ≤ 11− 2x2 (3, 5)

1
2
x2 ≤

17
6
+ 1

3
x2 (3, 6)

6− 6x2 ≤ 11− 2x2 (4, 5)

6− 6x2 ≤
17
6
+ 1

3
x2 (4, 6)

−4 ≤ −x2 (7)

or

−35 ≤ −7x2 (1, 5)

− 7
12
≤ 7

12
x2 (1, 6)

−7 ≤ 0 (2, 5)

7
6
≤ 7

3
x2 (2, 6)

−22 ≤ −5x2 (3, 5)

−17
6
≤ −1

6
x2 (3, 6)

−5 ≤ 4x2 (4, 5)

19
6
≤ 19

3
x2 (4, 6)

−4 ≤ −x2 (7)

This is the one-variable case which we can solve exactly:

713

9
4
− 1

4
x2 ≤ 11− 2x2 (1, 5)

9
4
− 1

4
x2 ≤

17
6
+ 1

3
x2 (1, 6)

4− 2x2 ≤ 11− 2x2 (2, 5)

4− 2x2 ≤
17
6
+ 1

3
x2 (2, 6)

1
2
x2 ≤ 11− 2x2 (3, 5)

1
2
x2 ≤

17
6
+ 1

3
x2 (3, 6)

6− 6x2 ≤ 11− 2x2 (4, 5)

6− 6x2 ≤
17
6
+ 1

3
x2 (4, 6)

−4 ≤ −x2 (7)

or

−5 ≤ −x2 (1, 5)

−1 ≤ x2 (1, 6)

−7 ≤ 0 (2, 5)

1
2
≤ x2 (2, 6)

−22
5
≤ −x2 (3, 5)

−17 ≤ −x2 (3, 6)

−5
4
≤ x2 (4, 5)

1
2
≤ x2 (4, 6)

−4 ≤ −x2 (7)

This is theone-variable casewhich we can solve exactly:

714

max {−1, 1
2
,−5

4
, 1
2
} ≤ x2 ≤ min {5, 22

5
, 17, 4 }

From which we conclude: x2 ∈ [1
2
, 4] :-)

In General:

• The original system has a solution overQ iff the system after
elimination of one variable has a solution overQ :-)

• Every elimination step maysquarethe number of in-equations
==⇒ exponentialrun-time :-((

• It can be modified such that it also decides satisfiability over Z
==⇒ Omega Test

715

William Worthington Pugh, Jr.
University of Maryland, College Park

716

Idea:

• We successively remove variables. Thereby we omit division...

• If x only occurs with coefficient ±1, we apply Fourier-Motzkin
elimination :-)

• Otherwise, we provide a bound for apositivemultiple ofx ...

Consider, e.g., (1) and(6) :

6 · x1 ≤ 17 + 2x2

9− x2 ≤ 4 · x1

717

W.l.o.g., we only considerstrict in-equations:

6 · x1 < 18 + 2x2

8− x2 < 4 · x1

... where we always divide by gcds:

3 · x1 < 9 + x2

8− x2 < 4 · x1

This implies:

3 · (8− x2) < 4 · (9 + x2)

718

We thereby obtain:

• If one derived in-equation isunsatisfiable, then also the overall
system :-)

• If all derived in-equations are satisfiable, then there is a solution
which, however, need not beinteger :-(

• An integer solution is guaranteed to exist if there issufficient
separationbetween lower and upper bound...

• Assume α < a · x b · x < β .

Then it should hold that:

b · α < a · β

and moreover:

a · b < a · β − b · α

719

... in the Example:

12 < 4 · (9 + x2)− 3 · (8− x2)

or:

12 < 12 + 7x2

or:

0 < x2

In the example, also thesestrengthenedin-equations are satisfiable

==⇒ the system has a solution overZ :-)

720

Discussion:

• If the strengthened in-equations are satisfiable, then alsothe original
system. The reverse implication may be wrong:-(

• In the case where upper and lower bound arenot sufficiently
separated, we have:

a · β ≤ b · α+ a · b

or:

b · α < ab · x < b · α + a · b

Division with b yields:

α < a · x < α + a

==⇒ α + i = a · x for some i ∈ {1, . . . , a− 1} !!!

721

Discussion (cont.):

→ Fourier-Motzkin Elimination isnot the best method for rational
systems of in-equations.

→ TheOmega testis necessarily exponential:-)

If the system issolvable, the test generally terminates rapidly.

It may have problems withunsolvablesystems :-(

→ Also for ILP, there are other/smarter algorithms...

→ For programming language problems, however, it seems to behave
quite well :-)

722

4. Generalization to a Logic

Disjunction:

(x− 2y = 15 ∧ x+ y = 7) ∨

(x+ y = 6 ∧ 3x+ z = −8)

Quantors:

∃ x : z − 2x = 42 ∧ z + x = 19

==⇒ Presburger Arithmetic

723

4. Generalization to a Logic

Disjunction:

(x− 2y = 15 ∧ x+ y = 7) ∨

(x+ y = 6 ∧ 3x+ z = −8)

Quantors:

∃ x : z − 2x = 42 ∧ z + x = 19

==⇒ Presburger Arithmetic

724

Mojzesz Presburger, 1904–1943 (?)

725

Presburger Arithmetic == full arithmetic

withoutmultiplication

Arithmetik : highly undecidable :-(

even incomplete :-((

==⇒ Hilbert’s 10th Problem

==⇒ Gödel’s Theorem

726

Presburger Arithmetic == full arithmetic

withoutmultiplication

Arithmetic : highly undecidable :-(

evenincomplete :-((

==⇒ Hilbert’s 10th Problem

==⇒ Gödel’s Theorem

727

Presburger Arithmetic == full arithmetic

withoutmultiplication

Arithmetic : highly undecidable :-(

evenincomplete :-((

==⇒ Hilbert’s 10th Problem

==⇒ Gödel’s Theorem

728

Presburger Formulas overN:

φ ::= x+ y = z | x = n |

φ1 ∧ φ2 | ¬φ |

∃ x : φ

Goal: Satisfiability

Find values for the free variables inN such thatφ holds ...

729

Presburger Formulas overN:

φ ::= x+ y = z | x = n |

φ1 ∧ φ2 | ¬φ |

∃ x : φ

Goal: PSAT

Find values for thefreevariables inN such thatφ holds ...

730

Idea: Code the values of the variables asWords :-)

1

1

1

0

1 1 1

111

1 1 1

1

10 0 0

0 0

0

0000

0 0

0

0

00

0 0

t

x

y

z

213

42

89

17

731

Idea: Code the values of the variables asWords :-)

1

1

1

0

1 1 1

111

1 1 1

1

10 0 0

0 0

0

0000

0 0

0

0

00

0 0

t

x

y

z

213

42

89

17

732

Idea: Code the values of the variables asWords :-)

1

1

1

0

1 1 1

111

1 1 1

1

10 0 0

0 0

0

0000

0 0

0

0

00

0 0

t

x

y

z

213

42

89

17

733

Idea: Code the values of the variables asWords :-)

1

1

1

0

1 1 1

111

1 1 1

1

10 0 0

0 0

0

0000

0 0

0

0

00

0 0

t

x

y

z

213

42

89

17

734

Idea: Code the values of the variables asWords :-)

1

1

1

0

1 1 1

111

1 1 1

1

10 0 0

0 0

0

0000

0 0

0

0

00

0 0

t

x

y

z

213

42

89

17

735

Idea: Code the values of the variables asWords :-)

1

1

1

0

1 1 1

111

1 1 1

1

10 0 0

0 0

0

0000

0 0

0

0

00

0 0

t

x

y

z

213

42

89

17

736

Idea: Code the values of the variables asWords :-)

1

1

1

0

1 1 1

111

1 1 1

1

10 0 0

0 0

0

0000

0 0

0

0

00

0 0

t

x

y

z

213

42

89

17

737

Idea: Code the values of the variables asWords :-)

1

1

1

0

1 1 1

111

1 1 1

1

10 0 0

0 0

0

0000

0 0

0

0

00

0 0

t

x

y

z

213

42

89

17

738

Idea: Code the values of the variables asWords :-)

1

1

1

0

1 1 1

111

1 1 1

1

10 0 0

0 0

0

0000

0 0

0

0

00

0 0

t

x

y

z

213

42

89

17

739

Idea: Code the values of the variables asWords :-)

1

1

1

0

1 1 1

111

1 1 1

1

10 0 0

0 0

0

0000

0 0

0

0

00

0 0

t

x

y

z

213

42

89

17

740

Observation:

The set of satisfying variable assignments isregular :-))

741

Observation:

The set of satisfying variable assignments isregular :-))

φ1 ∧ φ2 ==⇒ L(φ1) ∩ L(φ2) (Intersection)

¬φ ==⇒ L(φ) (Complement)

∃ x : φ ==⇒ πx(L(φ)) (Projection)

742

Projecting away thex-component:

1

1

1

0

1 1 1

111

1 1 1

1

10 0 0

0 0

0

0000

0 0

0

0

00

0 0

t

x

y

z

213

42

89

17

743

Projecting away thex-component:

1

1

1

0

1 1 1

111

1 1 1

1

10 0 0

0 0

0

0000

0 0

0

0

00

0 0

t

x

y

z

213

42

89

17

744

Warning:

• Our representation of numbers is not unique:011101 should be
accepted iff every word from011101 · 0∗ is accepted!

• This property is preserved by union, intersection and complement
:-)

• It is lost by projection!!!

==⇒ The automaton for projection must be enriched such that the
property is re-established!!

745

Automata for Basic Predicates:

0 1 2 3

x = 5

0
1 10

746

Automata for Basic Predicates:

0 100 11

x+x = y

10

01

747

Automata for Basic Predicates:

0 1
111
010
100

000
011
101

110

001

x+y = z

748

Results:

Ferrante, Rackoff,1973: PSAT ≤ DSPACE(22
c·n

)

Fischer, Rabin,1974 : PSAT ≥ NTIME(22
c·n

)

749

Results:

Ferrante, Rackoff,1973: PSAT ≤ DSPACE(22
c·n

)

Fischer, Rabin,1974 : PSAT ≥ NTIME(22
c·n

)

750

3.3 Improving the Memory Layout

Goal:

• Better utilization of caches

==⇒ reduction of the number of cache misses

• Reduction of allocation/de-allocation costs

==⇒ replacing heap allocation by stack allocation

==⇒ support to free superfluous heap objects

• Reduction of access costs

==⇒ short-circuiting indirection chains (Unboxing)

751

1. Cache Optimization:

Idea: local memory access

• Loading from memory fetches not just one byte but fills a complete
cache line.

• Access to neighbored cells become cheaper.

• If all data of an inner loop fits into the cache, the iteration becomes
maximally memory-efficient ...

752

Possible Solutions:

→ Reorganize the data accesses!

→ Reorganize the data!

Such optimizations can be made fully automatic only forarrays :-(

Example:

for (j = 1; j < n; j++)

for (i = 1; i < m; i++)

a[i][j] = a[i− 1][j − 1] + a[i][j];

753

==⇒ At first, always iterate over therows!

==⇒ Exchange the ordering of the iterations:

for (i = 1; i < m; i++)

for (j = 1; j < n; j++)

a[i][j] = a[i− 1][j − 1] + a[i][j];

When is this permitted???

754

Iteration Scheme: before:

755

Iteration Scheme: after:

756

Iteration Scheme: allowed dependencies:

757

In our case, we must check that the following equation systems haveno
solution:

Write Read

(i1, j1) = (i2 − 1, j2 − 1)

i1 ≤ i2

j2 ≤ j1

(i1, j1) = (i2 − 1, j2 − 1)

i2 ≤ i1

j1 ≤ j2

The first implies: j2 ≤ j2 − 1 Hurra!

The second implies: i2 ≤ i2 − 1 Hurra!

758

Example: Matrix-Matrix Multiplication

for (i = 0; i < N ; i++)

for (j = 0; j < M ; j++)

for (k = 0; k < K; k++)

c[i][j] = c[i][j] + a[i][k] · b[k][j];

Over b[][] the iteration iscolumnwise :-(

759

1 2 3 4

1

2

3

4

30

760

Exchange the two inner loops:

for (i = 0; i < N ; i++)

for (k = 0; k < K; k++)

for (j = 0; j < M ; j++)

c[i][j] = c[i][j] + a[i][k] · b[k][j];

Is this permitted???

761

1 32 4

1 2 3 4 1 4 9 16

762

Discussion:

• Correctness follows as before:-)

• A similar idea can also be used for the implementation of
multiplication forrow compressedmatrices :-))

• Sometimes, the program must bemassagedsuch that the
transformation becomes applicable:-(

• Matrix-matrix multiplication perhaps requires initialization of the
result matrix first...

763

for (i = 0; i < N ; i++)

for (j = 0; j < M ; j++) {

c[i][j] = 0;

for (k = 0; k < K; k++)

c[i][j] = c[i][j] + a[i][k] · b[k][j];

}

• Now, the two iterations can no longer be exchanged:-(

• The iteration overj, however, can beduplicated...

764

for (i = 0; i < N ; i++) {

for (j = 0; j < M ; j++) c[i][j] = 0;

for (j = 0; j < M ; j++)

for (k = 0; k < K; k++)

c[i][j] = c[i][j] + a[i][k] · b[k][j];

}

Correctness:

==⇒ The read entries (here: no) may not be modified in the
remaining body of the loop!!!

==⇒ The ordering of the write accesses to a memory cell may not be
changed :-)

765

We obtain:

for (i = 0; i < N ; i++) {

for (j = 0; j < M ; j++) c[i][j] = 0;

for (k = 0; k < K; k++)

for (j = 0; j < M ; j++)

c[i][j] = c[i][j] + a[i][k] · b[k][j];

}

Discussion:

• Instead of fusing several loops, we now havedistributedthe loops
:-)

• Accordingly, conditionals may be moved out of the loop==⇒
if-distribution...

766

Warning:

Instead of using this transformation, the inner loop could also be
optimized as follows:

for (i = 0; i < N ; i++)

for (j = 0; j < M ; j++) {

t = 0;

for (k = 0; k < K; k++)

t = t+ a[i][k] · b[k][j];

c[i][j] = t;

}

767

Idea:

If we find heavily usedarray elements a[e1] . . . [er] whose index
expressions stayconstantwithin the inner loop, we could instead also
provide auxiliary registers :-)

Warning:

The latter optimization prohibits the former and vice versa...

768

Discussion:

• so far, the optimizations are concerned with iterations over arrays.

• Cache-aware organization of other data-structures is possible, but in
general not fully automatic...

Example: Stacks

1 2 3 4

l

769

Advantage:

+ The implementation is simple:-)

+ The operationspush/ poprequire constant time :-)

+ The data-structure may grow arbitrarily:-)

Disadvantage:

− The individual list objects may be arbitrarily dispersed over the
memory :-(

770

Alternative:

a

sp

1 2 3 4

s

Advantage:

+ The implementation is also simple:-)

+ The operationspush/ popstill require constant time :-)

+ The data are consequtively allocated; stack oscillations are typically
small

==⇒ better Cache behavior!!!

771

Disadvantage:

− The data-structure isbounded :-(

Improvement:

• If the array isfull , replace it with another ofdoublesize!!!

• If the array drops empty toa quarter, halvethe array again!!!

==⇒ The extraamortizedcosts are constant:-)

==⇒ The implementation is no longer so trivial:-}

772

Discussion:

→ The same idea also works forqueues :-)

→ Other data-structures are attempted to organize blockwise.

Problem: how can accesses be organized such that they refer
mostlyto the same block???

==⇒ Algorithms for external data

773

2. Stack Allocation instead of Heap Allocation

Problem:

• Programming languages such asJavaallocateall data-structures in
the heap — even if they are only used within the current method
:-(

• If no reference to these data survives the call, we want to allocate
these on the stack:-)

==⇒ Escape Analysis

774

Idea:

Determinepoints-toinformation.

Determine if a created object is possibly reachable from theout side...

Example: Our Pointer Language

x = new();

y = new();

x[A] = y;

z = y;

ret = z;

... could be a possible method body;-)

775

Accessible from the outside world are memory blocks which:

• are assigned to a global variable such asret; or

• arereachablefrom global variables.

... in the Example:

x = new();

y = new();

x[A] = y;

z = y;

ret = z ;

776

Accessible from the outside world are memory blocks which:

• are assigned to a global variable such asret; or

• arereachablefrom global variables.

... in the Example:

x = new();

y = new();

x[A] = y;

z = y ;

ret = z ;

777

Accessible from the outside world are memory blocks which:

• are assigned to a global variable such asret; or

• arereachablefrom global variables.

... in the Example:

x = new();

y = new() ;

x[A] = y;

z = y ;

ret = z ;

778

Accessible from the outside world are memory blocks which:

• are assigned to a global variable such asret; or

• arereachablefrom global variables.

... in the Example:

x = new();

y = new() ;

x[A] = y;

z = y ;

ret = z ;

779

We conclude:

• The objects which have been allocated by the firstnew() may
never escape.

• They can be allocated on the stack:-)

Warning:

This is onlymeaningfulif only few such objects are allocated during a
method call :-(

If a local new() occurs within a loop, we still may allocate the objects
in the heap ;-)

780

Extension: Procedures

• We require aninterproceduralpoints-to analysis :-)

• We know the whole program, we can, e.g., merge the control-flow
graphs of all procedures into one and compute the points-to
information for this.

• Warning: If we always usethe sameglobal variables y1, y2, . . .

for (the simulation of) parameter passing, the computed information
is necessarily imprecise:-(

• If the whole program isnot known, we must assume thateach
reference which is known to a procedure escapes:-((

781

3.4 Wrap-Up

We have considered various optimizations for improving hardware
utilization.

Arrangement of the Optimizations:

• First, global restructuring of procedures/functions and of loops for
better memory behavior ;-)

• Then local restructuring for better utilization of the instruction set
and the processor parallelism:-)

• Then register allocation and finally,

• Peephole optimization for the final kick...

782

Procedures: Tail Recursion+ Inlining

Stack Allocation

Loops: Iteration Reordering

→ if-Distribution

→ for-Distribution

Value Caching

Bodies: Life-Range Splitting (SSA)

Instruction Selection

Instruction Scheduling with

→ Loop Unrolling

→ Loop Fusion

Instructions: Register Allocation

Peephole Optimization

783

4 Optimization of Functional Programs

Example:

let rec fac x = if x ≤ 1 then 1

else x · fac (x− 1)

• There are no basic blocks:-(

• There are no loops :-(

• Virtually all functions are recursive :-((

784

Strategies for Optimization:

==⇒ Improvespecific inefficienciessuch as:

• Pattern matching

• Lazy evaluation (if supported;-)

• Indirections— Unboxing/ Escape Analysis

• Intermediate data-structures— Deforestation

==⇒ Detect and/orgenerateloops with basic blocks :-)

• Tail recursion

• Inlining

• let-Floating

Then applygeneraloptimization techniques

... e.g., by translation intoC ;-)

785

Warning:

Novel analysis techniques are needed to collect information about
functional programs.

Example: Inlining

let max (x, y) = if x > y then x

else y

let abs z = max (z,−z)

As result of the optimization we expect...

786

let max (x, y) = if x > y then x

else y

let abs z = let x = z

in let y = −z

in if x > y then x

else y

Discussion:

For the beginning,max is just aname. We must find out which value it
takes at run-time

==⇒ Value Analysisrequired!!

787

Nevin Heintze in the Australian team
of theProlog-Programming-Contest, 1998

788

The complete picture:

789

4.1 A Simple Functional Language

For simplicity, we consider:

e ::= b | (e1, . . . , ek) | c e1 . . . ek | funx→ e

| (e1 e2) | (✷1 e) | (e1✷2 e2) |

let x1 = e1 in e0 |

match e0 with p1 → e1 | . . . | pk → ek

p ::= b | x | c x1 . . . xk | (x1, . . . , xk)

t ::= let rec x1 = e1 and . . .and xk = ek in e

where b is a constant, x is a variable, c is a (data-)constructor
and ✷i arei-ary operators.

790

Discussion:

• let rec only occurs on top-level.

• Functions are alwaysunary. Instead, there are explicittuples :-)

• if -expressions and case distinction in function definitions is reduced
to match-expressions.

• In case distinctions, we allow justsimple patterns.

==⇒ Complex patterns must be decomposed...

• let-definitions correspond to basic blocks:-)

• Type-annotationsat variables, patterns or expressions could provide
further useful information
— which we ignore :-)

791

... in the Example:

A definition of max may look as follows:

let max = fun x→ match x with (x1, x2) → (

match x1 < x2

with True → x2

| False → x1

)

792

Accordingly, we have for abs :

let abs = fun x→ let z = (x,−x)

in max z

4.2 A Simple Value Analysis

Idea:

For every subexpressione we collect the set [[e]]♯ of possible
valuesof e ...

793

Let V denote the set of occurring (classes of) constants, functions as
well as applications of constructors and operators. As our lattice, we
choose:

V = 2V

As usual, we put up aconstraint system:

• If e is a value, i.e., of the form: b, c e1 . . . ek, (e1, . . . , ek), an
operator application or funx → e we generate the
constraint:

[[e]]♯ ⊇ {e}

• If e ≡ (e1 e2) and f ≡ fun x → e′, then

[[e]]♯ ⊇ (f ∈ [[e1]]
♯) ? [[e′]]♯ : ∅

[[x]]♯ ⊇ (f ∈ [[e1]]
♯) ? [[e2]]

♯ : ∅

...

794

• If e ≡ let x1 = e1 in e0, then we generate:

[[x1]]
♯ ⊇ [[e1]]

♯

[[e]]♯ ⊇ [[e0]]
♯

• Analogously for t ≡ letrec x1 = e1 . . . xk = ek in e0:

[[xi]]
♯ ⊇ [[ei]]

♯

[[t]]♯ ⊇ [[e0]]
♯

795

• int-values returned by operators are described by the unevaluated
expression;

Operator applications might return Boolean values or otherbasic
values. Therefore, we do replace tests for basic values by
non-deterministicchoice...

• Assume e ≡match e0 with p1 → e1 | . . . | pk → ek .
Then we generate forpi ≡ b (basic value),

[[e]]♯ ⊇ [[ei]]
♯ : ∅

...

796

• If pi ≡ c y1 . . . yk and v ≡ c e′1 . . . e
′
k is a value, then

[[e]]♯ ⊇ (v ∈ [[e0]]
♯) ? [[ei]]

♯ : ∅

[[yj]]
♯ ⊇ (v ∈ [[e0]]

♯) ? [[e′j]]
♯ : ∅

If pi ≡ (y1, . . . , yk) and v ≡ (e′1, . . . , e
′
k) is a value, then

[[e]]♯ ⊇ (v ∈ [[e0]]
♯) ? [[ei]]

♯ : ∅

[[yj]]
♯ ⊇ (v ∈ [[e0]]

♯) ? [[e′j]]
♯ : ∅

If pi ≡ y , then

[[e]]♯ ⊇ [[ei]]
♯

[[y]]♯ ⊇ [[e0]]
♯

797

Example Theappend-Function

Consider the concatenation of two lists. InOcaml, we would write:

let rec app = fun x → match x with

[] → fun y → y

| h :: t → fun y → h :: app t y

in app [1; 2] [3]

The analysis then results in:

[[app]]♯ = {funx →match . . .}

[[x]]♯ = {[1; 2], [2], []}

[[match . . .]]♯ = {fun y → y, fun y → h :: app . . .}

[[y]]♯ = {[3]}

. . .

798

. . .

[[h]]♯ = {1, 2}

[[t]]♯ = {[2], []}

[[app t]]♯ =

[[app [1; 2]]]♯ = {fun y → y, fun y → h :: app . . .}

[[app t y]]♯ =

[[app [1; 2] [3]]]♯ = {[3], h :: app . . .}

Values c e1 . . . ek, (e1, . . . , ek) or operator applications e1✷e2
now are interpreted asrecursivecalls c [[e1]]

♯ . . . [[ek]]
♯, ([[e1]]♯, . . . , [[ek]]♯)

or [[e1]]
♯
✷[[e2]]

♯, respectively.

==⇒ regular tree grammar

799

... in the Example:

We obtain for A = [[app t y]]♯ :

A → [3] | [[h]]♯ ::A

[[h]]♯ → 1 | 2

LetL(e) denote the set of terms derivable from[[e]]♯ w.r.t. the regular tree
grammar. Thus, e.g.,

L(h) = {1, 2}

L(app t y) = {[a1; . . . , ar; 3] | r ≥ 0, ai ∈ {1, 2}}

800

4.3 An Operational Semantics

Idea:

We construct aBig-Stepoperational semantics which evaluates
expressions w.r.t. an environment:-)

Valuesare of the form:

v ::= b | c v1 . . . ck | (v1, . . . , vk) | (funx → e, η)

Examples for Values:

c 1

[1; 2] = :: 1 (:: 2 [])

(funx→ x::y, {y 7→ [5]})

801

Expressions are evaluated w.r.t. anenvironment η : Vars → Values .

TheBig-Stepoperational semantics provides rules to infer the value to
which an expression is evaluated w.r.t. a given environment, i.e., deals
with statements of the form:

(e, η) =⇒ v

Values:
(b, η) =⇒ b

(funx → e, η) =⇒ (funx → e, η)

(e1, η) =⇒ v1 . . . (ek, η) =⇒ vk

(c e1 . . . ek, η) =⇒ c v1 . . . vk

Operator applications are treated analogously!

802

(e1, η) =⇒ v1 . . . (ek, η) =⇒ vk

((e1, . . . , ek), η) =⇒ (v1, . . . , vk)

Global Definition:

let rec . . . x = e . . . in . . .

(e, ∅) =⇒ v

(x, η) =⇒ v

803

Function Application:

(e1, η) =⇒ (fun x → e, η1)

(e2, η) =⇒ v2

(e, η1 ⊕ {x 7→ v2}) =⇒ v3

(e1 e2, η) =⇒ v3

804

Case Distinction 1:

(e, η) =⇒ b

(ei, η) =⇒ v

(match e with p1 → e1 | . . . | pk → ek, η) =⇒ v

if pi ≡ b is the first pattern which matchesb :-)

805

Case Distinction 2:

(e, η) =⇒ c v1 . . . vk

(ei, η ⊕ {z1 7→ v1, . . . , zk 7→ vk}) =⇒ v

(match e with p1 → e1 | . . . | pk → ek, η) =⇒ v

if pi ≡ c z1 . . . zk is the first pattern which matchesc v1 . . . vk :-)

806

Case Distinction 3:

(e, η) =⇒ (v1, . . . , vk)

(ei, η ⊕ {y1 7→ v1, . . . , y1 7→ vk}) =⇒ v

(match e with p1 → e1 | . . . | pk → ek, η) =⇒ v

if pi ≡ (y1, . . . , yk) is the first pattern which matches(v1, . . . , vk)
:-)

807

Case Distinction 4:

(e, η) =⇒ v′

(ei, η ⊕ {x 7→ v′}) =⇒ v

(match e with p1 → e1 | . . . | pk → ek, η) =⇒ v

if pi ≡ x is the first pattern which matchesv′ :-)

808

Local Definitions:

(e1, η) =⇒ v1

(e0, η ⊕ {x1 7→ v1}) =⇒ v0

(let x1 = e1 in e0, η) =⇒ v0

Variables:

(x, η) ==⇒ η(x)

809

Correctness of the Analysis:

For every (e, η) occurring in a proof for the program, it should hold:

• If η (x) = v , then [v] ∆ L(x).

• If (e, η) ==⇒ v , then [v] ∆ L(e) ...

• where[v] is thestrippedexpression corresponding tov, i.e.,
obtained by removing all environments, and

• v∆L iff v ∈ L orL has an expressionv′ which evaluates tov.

Conclusion:

L(e) returns asupersetof the values to which e is evaluated :-)

810

4.4 Application: Inlining

Problem:

• global variables. The program:

let x = 1

in let f = let x = 2

in fun y → y + x

in f x

811

• ... computes something else than:

let x = 1

in let f = let x = 2

in fun y → y + x

in let y = x

in y + x

• recursive functions. In the definition:

foo = fun y → foo y

foo should better not be substituted:-)

812

Idea 1:

→ First, we introduceuniquevariable names.

→ Then, we only substitute functions which arestaticlywithin the
scope of thesameglobal variables as the application:-)

→ For every expression, we determine all function definitionswith
this property :-)

813

Let D = D[e] denote the set of definitions which staticly arrive ate.

•• If e ≡ let x1 = e1 in e0 then:

D[e1] = D

D[e0] = D ∪ {x1}

•• If e ≡ funx → e1 then:

D[e1] = D ∪ {x}

•• Similarly, for e ≡ match . . . c x1 . . . xk → ei . . .,

D[ei] = D ∪ {x1, . . . , xk}

814

In all other cases, D is propagated to the sub-expressions unchanged
:-)

... in the Example:

let x = 1

in let f = let x1 = 2

in fun y → y + x1

in f x

... the application f x is not in the scope ofx1

==⇒ we first duplicate the definition ofx1 :

815

... in the Example:

let x = 1

in let x1 = 2

in let f = let x1 = 2

in fun y → y + x1

in f x

==⇒ the inner definition becomes redundant!!!

816

... in the Example:

let x = 1

in let x1 = 2

in let f = fun y → y + x1

in f x

==⇒ now we can apply inlining :

817

... in the Example:

let x = 1

in let x1 = 2

in let f = fun y → y + x1

in let y = x

in y + x1

Removingvariable-variable-assignments, we arrive at:

818

... in the Example:

let x = 1

in let x1 = 2

in let f = fun y → y + x1

in x+ x1

819

Idea 2:

→ We apply our value analysis.

→ Weignoreglobal variables :-)

→ We only substitute functionswithout free variables :-))

Example: Themap-Function

let rec f = fun x → x · x

and map = fun g → fun x → match x

with [] → []

| x::xs → g x ::map g xs

in map f list

820

• Theactualparameter f in the application map g is always
fun x → x · x :-)

• Therefore, map g can be specialized to a new functionh
defined by:

h = let g = fun x → x · x

in fun x → match x

with [] → []

| x::xs → g x :: map g xs

821

The inner occurrence ofmap g can be replaced with h

==⇒ fold-Transformation :-)

h = let g = fun x → x · x

in fun x → match x

with [] → []

| x::xs → g x :: h xs

822

Inlining the function g yields:

h = let g = fun x → x · x

in fun x → match x

with [] → []

| x::xs → (let x = x

in x ∗ x) :: h xs

823

Removing useless definitions and variable-variable assignments yields:

h = fun x → match x

with [] → []

| x::xs → x ∗ x :: h xs

824

4.5 Deforestation

• Functional programmers love to collect intermediate results in lists
which are processed by higher-order functions.

• Examples of such higher-order functions are:

map = fun f → fun l → match l with [] → []

| x::xs → f x :: map f xs)

825

filter = fun p → fun l → match l with [] → []

| x::xs → if p x then x :: filter p xs

else filter p xs)

foldl = fun f → fun a → fun l → match l with [] → a

| x::xs → foldl f (f a x) xs)

826

id = fun x → x

comp = fun f → fun g → fun x → f (g x)

comp1 = fun f → fun g → fun x1 → fun x2 →

f (g x1) x2

comp2 = fun f → fun g → fun x1 → fun x2 →

f x1 (g x2)

827

Example:

sum = foldl (+) 0

length = let f = map (fun x→ 1)

in comp sum f

dev = fun l → let s1 = sum l

n = length l

mean = s1/n

l1 = map (fun x→ x−mean) l

l2 = map (fun x→ x · x) l1

s2 = sum l2

in s2/n

828

Observations:

• Explicit recursion does no longer occur!

• The implementation creates unnecessary intermediate
data-structures!

length could also be implemented as:

length = let f = fun a → fun x → a+ 1

in foldl f 0

• This implementation avoids to create intermediate lists!!!

829

Simplification Rules:

comp id f = comp f id = f

comp1 f id = comp2 f id = f

map id = id

comp (map f) (map g) = map (comp f g)

comp (foldl f a) (map g) = foldl (comp2 f g) a

830

Simplification Rules:

comp id f = comp f id = f

comp1 f id = comp2 f id = f

map id = id

comp (map f) (map g) = map (comp f g)

comp (foldl f a) (map g) = foldl (comp2 f g) a

comp (filter p1) (filter p2) = filter (funx → if p2 x then p1 x

else false)

comp (foldl f a) (filter p) = let h = fun a→ fun x→ if p x then f a x

else a

in foldl h a

831

Warning:

Function compositions also could occur as nested function calls ...

idx = x

map id l = l

map f (map g l) = map (comp f g) l

foldl f a (map g l) = foldl (comp2 f g) a l

filter p1 (filter p2 l) = filter (funx → p1 x ∧ p2 x) l

foldl f a (filter p l) = let h = fun a→ fun x→ if p x then f a x

else a

in foldl h a l

832

Example, optimized:

sum = foldl (+) 0

length = let f = comp2 (+) (fun x→ 1)

in foldl f 0

dev = fun l → let s1 = sum l

n = length l

mean = s1/n

f = comp (fun x→ x · x)

(fun x→ x−mean)

g = comp2 (+) f

s2 = foldl g 0 l

in s2/n

833

Remarks:

• All intermediate lists have disappeared:-)

• Only foldl remain — i.e., loops :-))

• Compositions of functions can be further simplified in the next step
by Inlining.

• Insidedev, we then obtain:

g = fun a → fun x → let x1 = x−mean

x2 = x1 · x1

in a+ x2

• The result is a sequence oflet-definitions!!!

834

Extension: Tabulation

If the list has been created by tabulation of a function, the creation of the
list sometimes can be avoided...

tabulate′ = fun j → fun f → fun n →

if j ≥ n then []

else (f j) :: tabulate′ (j + 1) f n

tabulate = tabulate′ 0

835

Then we have:

comp (map f) (tabulate g) = tabulate (comp f g)

comp (foldl f a) (tabulate g) = loop (comp2 f g) a

where:

loop′ = fun j → fun f → fun a → fun n →

if j ≥ n then a

else loop′ (j + 1) f (f a j)) n

loop = loop′ 0

836

Extension (2): List Reversals

Sometimes, the ordering of lists or arguments is reversed:

rev′ = fun a → fun l →

match l with [] → a

| x ::xs → rev′ (x :: a) xs

rev = rev′ []

comp rev rev = id

swap = fun f → fun x → fun y → f y x

comp swap swap = id

837

foldr f a = comp (foldl (swap f) a) rev

Discussion:

• The standard implementation offoldr is not tail-recursive.

• The last equation decomposes afoldr into two tail-recursive
functions — at the price that an intermediate list is created.

• Therefore, the standard implementation is probably faster:-)

• Sometimes, the operationrev can also be optimized away...

838

We have:

comp rev (map f) = comp (map f) rev

comp rev (filter p) = comp (filter p) rev

comp rev (tabulate f) = rev_tabulate f

Here,rev_tabulate tabulates in reverse ordering. This function has
properties quite analogous totabulate:

comp (map f) (rev_tabulate g) = rev_tabulate (comp2 f g)

comp (foldl f a) (rev_tabulate g) = rev_loop (comp2 f g) a

839

Extension (3): Dependencies on the Index

• Correctness is proven by induction on the lengthes of occurring lists.

• Similar composition results also hold for transformationswhich take
the current indices into account:

mapi′ = fun i → fun f → fun l → match l with [] → []

| x ::xs → f i x) :: mapi′ (i+ 1) f xs

mapi = mapi′ 0

840

Analogously, there is index-dependent accumulation:

foldli′ = fun i → fun f → fun a → fun l →

match l with [] → a

| x ::xs → foldli′ (i+ 1) f (f i a x) xs

foldli = foldli′ 0

For composition, we must take care that always the same indices are used.
This is achieved by:

841

compi = fun f → fun g → fun i → fun x → f i (g i x)

compi1 = fun f → fun g → fun i → fun x1 → fun x2 →

f i (g i x1) x2

compi2 = fun f → fun g → fun i → fun x1 → fun x2 →

f i x1 (g i x2)

cmp1 = fun f → fun g → fun i → fun x1 → fun x2 →

f i x1 (g x2)

cmp2 = fun f → fun g → fun i → fun x1 → fun x2 →

f x1 (g i x2)

842

Then:

comp (mapi f) (map g) = mapi (comp2 f g)

comp (map f) (mapi g) = mapi (comp f g)

comp (mapi f) (mapi g) = mapi (compi f g)

comp (foldli f a) (map g) = foldli (cmp1 f g) a

comp (foldl f a) (mapi g) = foldli (cmp2 f g) a

comp (foldli f a) (mapi g) = foldli (compi2 f g) a

comp (foldli f a) (tabulate g) = let h = fun a → fun i →

f i a (g i)

in loop h a

843

Discussion:

• Warning: index-dependent transformations may not commute
with rev or filter.

• All our rules can only be applied if the functionsid, map, mapi,
foldl, foldli, filter, rev, tabulate, rev_tabulate, loop, rev_loop, ... are
provided by astandard library: Only then the algebraic properties
can be guaranteed!!!

• Similar simplification rules can be derived for any kind of tree-like
data-structure tree α .

• These also provide operationsmap, mapi andfoldl, foldli with
corresponding rules.

• Further opportunities are opened up by functionsto_list and
from_list ...

844

Example

type tree α = Leaf | Node α (tree α) (tree α)

map = fun f → fun t → match t with Leaf → Leaf

| Node x l r → let l′ = map f l

r′ = map f r

in Node (f x) l′ r′

foldl = fun f → fun a → fun t → match t with Leaf → a

| Node x l r → let a′ = foldl f a l

in foldl f (f a′ x) r

845

to_list′ = fun a → fun t → match t with Leaf → a

| Node x t1 t2 → let a′ = to_list′ a t2

in to_list′ (x :: a′) t1

to_list = to_list′ []

from_list = fun l → match l

with [] → Leaf

| x ::xs → Node x Leaf (from_list xs)

846

Warning:

Not every natural equation is valid:

comp to_list from_list = id

comp from_list to_list 6= id

comp to_list (map f) = comp (map f) to_list

comp from_list (map f) = comp (map f) from_list

comp (foldl f a) to_list = foldl f a

comp (foldl f a) from_list = foldl f a

847

In this case, there is even arev:

rev = fun t →

match t with Leaf → Leaf

| Node x t1 t2 → let s1 = rev t1

s2 = rev t2

in Node x s2 s1

comp to_list rev = comp rev to_list

comp from_list rev 6= comp rev from_list

848

4.6 CBN vs. CBV: Strictness Analysis

Problem:

• Programming languages such asHaskellevaluate expressions for
let-defined variables and actual parameters not before their values
are accessed.

• This allows for an elegant treatment of (possibly) infinite lists of
which only small initial segments are required for computing the
result :-)

• Delaying evaluation by default incures, though, a non-trivial
overhead...

849

Example

from = fun n → n :: from (n+ 1)

take = fun k → fun s → if k ≤ 0 then []

else match s with [] → []

| x ::xs → x :: take (k − 1) xs

850

Then CBN yields:

take 5 (from 0) = [0, 1, 2, 3, 4]

— whereas evaluation with CBV does not terminate!!!

851

Then CBN yields:

take 5 (from 0) = [0, 1, 2, 3, 4]

— whereas evaluation with CBV does not terminate!!!

On the other hand, for CBN, tail-recursive functions may require
non-constant space???

fac2 = fun x → fun a → if x ≤ 0 then a

else fac2 (x− 1) (a · x)

852

Discussion:

• The multiplications are collected in the accumulating parameter
through nested closures.

• Only when the value of a callfac2 x 1 is accessed, this dynamic
data structure is evaluated.

• Instead, the accumulating parameter should have been passed
directly by-value!!!

• This is the goal of the following optimization...

853

Simplification:

• At first, we rule out data structures, higher-order functions, and local
function definitions.

• We introduce an unary operator# which forces the evaluation of a
variable.

• Goal of the transformation is to place# at as many places as
possible...

854

Simplification:

• At first, we rule out data structures, higher-order functions, and local
function definitions.

• We introduce an unary operator# which forces the evaluation of a
variable.

• Goal of the transformation is to place# at as many places as
possible...

e ::= c | x | e1 ✷2 e2 | ✷1 e | f e1 . . . ek | if e0 then e1 else e2

| let r1 = e1 in e

r ::= x | #x

d ::= f x1 . . . xk = e

p ::= letrec and d1 . . . and dn in e

855

Idea:

• Describe ak-ary function

f : int→ . . .→ int

by a function

[[f]]♯ : B→ . . .→ B

• 0 means: evaluation does definitely not terminate.

• 1 means: evaluation may terminate.

• [[f]]♯ 0 = 0 means: If the function call returns a value, then the
evaluation of the argument must have terminated and returned a
value.

==⇒ f is strict.

856

Idea (cont.):

• We determine the abstract semantics of all functions:-)

• For that, we put up a system of equations...

Auxiliary Function:

[[e]]♯ : (Vars → B)→ B

[[c]]♯ ρ = 1

[[x]]♯ ρ = ρ x

[[✷1 e]]
♯ ρ = [[e]]♯ ρ

[[e1 ✷2 e2]]
♯ ρ = [[e1]]

♯ ρ ∧ [[e2]]
♯ ρ

[[if e0 then e1 else e2]]
♯ ρ = [[e0]]

♯ ρ ∧ ([[e1]]
♯ ρ ∨ [[e2]]

♯ ρ)

[[f e1 . . . ek]]
♯ ρ = [[f]]♯ ([[e1]]

♯ ρ) . . . ([[ek]]
♯ ρ)

. . .

857

[[let x1 = e1 in e]]
♯ ρ = [[e]]♯ (ρ⊕ {x1 7→ [[e1]]

♯ ρ})

[[let #x1 = e1 in e]]
♯ ρ = ([[e1]]

♯ ρ) ∧ ([[e]]♯ (ρ⊕ {x1 7→ 1}))

System of Equations:

[[fi]]
♯b1 . . . bk = [[ei]]

♯ {xj 7→ bj | j = 1, . . . , k}, i = 1, . . . , n, b1, . . . , bk ∈ B

• The unkowns of the system of equations are the functions[[fi]]
♯ or

the individual entries[[fi]]♯b1 . . . bk in the value table.

• All right-hand sides aremonotonic!

• Consequently, there is a least solution:-)

• The complete latticeB→ . . .→ B has heightO(2k) :-(

858

Example:

For fac2, we obtain:

[[fac2]]♯ b1 b2 = b1 ∧ (b2∨

[[fac2]]♯ b1 (b1 ∧ b2))

Fixpoint iteration yields:

0 funx→ fun a→ 0

1 funx→ fun a→ x ∧ a

2 funx→ fun a→ x ∧ a

859

We conclude:

• The functionfac2 is strict in both arguments, i.e., if evaluation
terminates, then also the evaluation of its arguments.

• Accordingly, we transform:

fac2 = fun x → fun a → if x ≤ 0 then a

else let #x′ = x− 1

a′ = x · a

in fac2 x′ a′

860

Correctness of the Analysis:

• The system of equations is an abstractdenotationalsemantics.

• The denotational semantics characterizes the meaning of functions
as least solution of the corresponding equations for the concrete
semantics.

• For values, the denotational semantics relies on thecompletepartial
ordering Z⊥.

• For complete partial orderings,Kleene’s fixpoint theorem is
applicable :-)

• As description relation ∆ we use:

⊥ ∆ 0 and z ∆ 1 for z ∈ Z

861

Extension: Data Structures

• Functions may vary in the parts which they require from a data
structure...

hd = fun l → match l with x ::xs → x

• hd only accesses the first element of a list.

• length only accesses the backbone of its argument.

• rev forces the evaluation of the complete argument — given that the
result is required completely...

862

Extension of the Syntax:

We additionally consider expression of the form:

e ::= . . . | [] | e1 :: e2 |match e0 with [] → e1 | x ::xs → e2

| (e1, e2) |match e0 with (x1, x2) → e1

Top Strictness

• We assume that the program is well-typed.

• We are only interested in top constructors.

• Again, we model this property with (monotonic) Boolean functions.

• For int -values, this coincides with strictness:-)

• We extend the abstract evaluation[[e]]♯ ρ with rules for
case-distinction...

863

[[match e0 with [] → e1 | x ::xs → e2]]
♯ ρ =

[[e0]]
♯ ρ∧ ([[e1]]

♯ ρ∨ [[e2]]
♯ (ρ⊕ {x, xs 7→ 1}))

[[match e0 with (x1, x2) → e1]]
♯ ρ =

[[e0]]
♯ ρ ∧ [[e1]]

♯ (ρ⊕ {x1, x2 7→ 1})

[[[]]]♯ ρ = [[e1 :: e2]]
♯ ρ = [[(e1, e2)]]

♯ ρ = 1

• The rules formatch are analogous to those forif .

• In case of::, we know nothing about the values beneath the
constructor; therefore {x, xs 7→ 1}.

• We check our analysis on the functionapp ...

864

Example:

app = fun x → fun y → match x with [] → y

| x ::xs → x :: app xs y

Abstract interpretation yields the system of equations:

[[app]]♯ b1 b2 = b1 ∧ (b2 ∨ 1)

= b1

We conclude that we may conclude for sure only for the first argument
that its top constructor is required:-)

865

Total Strictness

Assume that the result of the function application istotally required.
Which arguments then are also totally required?

We again refer to Boolean functions...

[[match e0 with [] → e1 | x, ::xs → e2]]
♯ ρ = let b = [[e0]]

♯ ρ in

b∧ [[e1]]
♯ ρ∨ [[e2]]

♯ (ρ⊕ {x 7→ b, xs 7→ 1}) ∨ [[e2]]
♯ (ρ⊕ {x 7→ 1, xs 7→ b})

[[match e0 with (x1, x2) → e1]]
♯ ρ = let b = [[e0]]

♯ ρ in

[[e1]]
♯ (ρ⊕ {x1 7→ 1, x2 7→ b}) ∨ [[e1]]

♯ (ρ⊕ {x1 7→ b, x2 7→ 1})

[[[]]]♯ ρ = 1

[[e1 :: e2]]
♯ ρ = [[e1]]

♯ ρ ∧ [[e2]]
♯ ρ

[[(e1, e2)]]
♯ ρ = [[e1]]

♯ ρ ∧ [[e2]]
♯ ρ

866

Discussion:

• The rules for constructor applications have changed.

• Also the treatment ofmatch now involves the componentsz and
x1, x2.

• Again, we check the approach for the functionapp.

Example:

Abstract interpretation yields the system of equations:

[[app]]♯ b1 b2 = b1 ∧ b2 ∨ b1 ∧ [[app]]♯ 1 b2 ∨ 1 ∧ [[app]]♯ b1 b2

= b1 ∧ b2 ∨ b1 ∧ [[app]]♯ 1 b2 ∨ [[app]]♯ b1 b2

867

This results in the following fixpoint iteration:

0 funx→ fun y → 0

1 funx→ fun y → x ∧ y

2 funx→ fun y → x ∧ y

We deduce that both arguments are definitely totally required if the result
is totally required :-)

Warning:

Whether or not the result is totally required, depends on thecontext of the
function call!

In such a context, a specialized function may be called...

868

app# = fun x → fun y → let #x′ = x and #y′ = y in

match ′x with [] → y′

| x ::xs → let # r = x :: app# xs y

in r

Discussion:

• Both strictness analyses employ the same complete lattice.

• Results and application, though, are quite different:-)

• Thereby, we use the following description relations:

Top Strictness : ⊥ ∆ 0

Total Strictness : z ∆ 0 if ⊥ occurs inz.

• Both analyses can also be combined to an a joint analysis...

869

Combined Strictness Analysis

• We use the complete lattice:

T = {0 ⊏ 1 ⊏ 2}

• The description relation is given by:

⊥ ∆ 0 z ∆ 1 (z contains⊥) z ∆ 2 (z value)

• The lattice is more informative, the functions, though, areno longer
as efficiently representable, e.g., through Boolean expressions :-(

• We require the auxiliary functions:

(i ⊑ x); y =

{

y if i ⊑ x

0 otherwise

870

The Combined Evaluation Function:

[[match e0 with [] → e1 | x ::xs → e2]]
♯ ρ = let b = [[e0]]

♯ ρ in

(2⊑ b) ; [[e1]]
♯ ρ ⊔

(1⊑ b) ; ([[e2]]
♯ (ρ⊕ {x 7→ 2, xs 7→ b})

⊔ [[e2]]
♯ (ρ⊕ {x 7→ b, xs 7→ 2}))

[[match e0 with (x1, x2) → e1]]
♯ ρ = let b = [[e0]]

♯ ρ in

(1⊑ b) ; ([[e1]]
♯ (ρ⊕ {x1 7→ 2, x2 7→ b})

⊔ [[e1]]
♯ (ρ⊕ {x1 7→ b, x2 7→ 2}))

[[[]]]♯ ρ = 2

[[e1:: e2]]
♯ ρ =

[[(e1, e2)]]
♯ ρ = 1 ⊔ ([[e1]]

♯ ρ ⊓ [[e2]]
♯ ρ)

871

Example:

For our beloved functionapp, we obtain:

[[app]]♯ d1 d2 = (2⊑ d1) ; d2 ⊔

(1⊑ d1) ; (1 ⊔ [[app]]♯ d1 d2 ⊔ d1 ⊓ [[app]]
♯ 2 d2)

= (2⊑ d1) ; d2 ⊔

(1⊑ d1) ; 1 ⊔

(1⊑ d1) ; [[app]]
♯ d1 d2 ⊔

d1 ⊓ [[app]]
♯ 2 d2

this results in the fixpoint computation:

872

0 fun x→ fun y → 0

1 fun x→ fun y → (2⊑ x); y ⊔ (1⊑ x); 1

2 fun x→ fun y → (2⊑ x); y ⊔ (1⊑ x); 1

We conclude

• that both arguments are totally required if the result is totally
required; and

• that the root of the first argument is required if the root of the result
is required :-)

Remark:

The analysis can be easily generalized such that it guarantees evaluation
up to a depth d ;-)

873

Further Directions:

• Our Approach is also applicable to other data structures.

• In principle, also higher-order (monomorphic) functions can be
analyzed in this way :-)

• Then, however, we require higher-order abstract functions— of
which there are many :-(

• Such functions therefore are approximated by:

fun x1 → . . . fun xr → ⊤

:-)

• For some known higher-order functions such asmap, foldl, loop, ...
only unary or binary functional arguments are required — of which
there are sufficiently few :-))

874

5 Optimization of Logic Programs

We only consider the mini languagePuP(“Pure Prolog”). In particular,
we do not consider:

• arithmetic;

• the cut-operator.

• Self-modification by means ofassertandretract.

875

Example:

bigger(X, Y) ← X = elephant , Y = horse

bigger(X, Y) ← X = horse, Y = donkey

bigger(X, Y) ← X = donkey , Y = dog

bigger(X, Y) ← X = donkey , Y = monkey

is_bigger(X, Y) ← bigger(X, Y)

is_bigger(X, Y) ← bigger(X,Z), is_bigger(Z, Y)

← is_bigger(elephant , dog)

876

A more realisticExample:

app(X, Y, Z) ← X = [], Y = Z

app(X, Y, Z) ← X = [H|X ′], Z = [H|Z ′], app(X ′, Y, Z ′)

← app(X, [Y, c], [a, b, Z])

Remark:

[] === the atom empty list

[H|Z] === binary constructor application

[a, b, Z] === abbreviation for: [a|[b|[Z|[]]]]

877

A more realisticExample:

app(X, Y, Z) ← X = [], Y = Z

app(X, Y, Z) ← X = [H|X ′], Z = [H|Z ′], app(X ′, Y, Z ′)

← app(X, [Y, c], [a, b, Z])

Remark:

[] === the atomempty list

[H|Z] === binaryconstructor application

[a, b, Z] === Abbreviation for: [a|[b|[Z|[]]]]

878

Accordingly, a programp is constructed as follows:

t ::= a | X | _ | f(t1, . . . , tn)

g ::= p(t1, . . . , tk) | X = t

c ::= p(X1, . . . , Xk)← g1, . . . , gr

q ::= ← g1, . . . , gr

p ::= c1 . . . cmq

• A termt either is an atom, a (possibly anonymous) variable or a
constructor application.

• A goalg either is a literal, i.e., a predicate call, or a unification.

• A clausec consists of aheadp(X1, . . . , Xk) together withbody
consisting of a sequence of goals.

• A programconsists of a sequence of clauses together with a
sequence of goals asquery.

879

Procedural View ofPuP-Programs:

literal === procedure call

predicate === procedure

definition === body

term === value

unification === basic computation step

binding of variables === side effect

Warning: Predicate calls ...

• do not return results!

• modify the caller solely through side effects:-)

• mayfail. Then, the following definition is tried ==⇒

backtracking

880

Inefficiencies:

Backtracking: • The matching alternative must be searched for
==⇒ Indexing

• Since a successful call may still fail later, the stack can only be
cleared if there are no pending alternatives.

Unification: • The translation possibly must switch between build
and check several times.

• In case of unification with a variable, anOccur Checkmust be
performed.

Type Checking: • Since Prolog is untyped, it must be checked at
run-time whether or not a term is of the desired form.

• Otherwise, ugly errors could show up.

881

Some Optimizations:

• Replacing last calls with jumps;

• Compile-time type inference;

• Identification of deterministic predicates...

Example:

app(X, Y, Z) ← X = [], Y = Z

app(X, Y, Z) ← X = [H|X ′], Z = [H|Z ′], app(X ′, Y, Z ′)

← app([a, b], [Y, c], Z)

882

Observation:

• In PuP, functions must be simulated through predicates.

• These then have designatedinput-and output parameters.

• Input parameters are those which are instantiated with a
variable-free term whenever the predicate is called.

These are also calledground.

• In the example, the first parameter ofapp is an input parameter.

• Unification with such a parameter can be implemented aspattern
matching!

• Then we see thatapp in fact is deterministic!!!

883

5.1 Groundness Analysis

A variableX is calledgroundw.r.t. a program executionπ starting
program entry and entering a program pointv, if X is bound to a
variable-free term.

Goal:

• Find all variables which are ground whenever a particular program
point is reached!

• Find all arguments of a predicate which are ground whenever the
predicate is called!

884

Idea:

• Describe groundness by values fromB:

1 == variable-free term;

0 == term which contains variables.

• A set of variable assignments is described by Boolean functions :-)

X ↔ Y == X is ground iffY is ground.

X ∧ Y == X andY are ground.

885

Idea (cont.):

• The constant function0 denotes an unreachable program point.

• Occurring sets of variable assignments are closed under substitution.

This means that for every occurring functionφ 6= 0,

φ(1, . . . , 1) = 1

These functions are calledpositive.

• The set of all positive functions is calledPos.

Ordering: φ1 ⊑ φ2 if φ1 ⇒ φ2.

• In particular, the least element is0 :-)

886

Example:

X ↔ Y

X ∨ Y X → YY → X

1

X Y

0

X ∧ Y

01, 1110, 11

11

00, 10, 11 00, 01, 1101, 10, 11

00, 11

00, 01, 10, 11

887

Remarks:

• Not all positive functions are monotonic!!!

• Fork variables, there are22
k−1 + 1 many functions.

• The height of the complete lattice is2k.

• We construct an interprocedural analysis which for every predicatep
determines a (monotonic) transformation

[[p]]♯ : Pos→ Pos

• For every clause, p(X1, . . . , Xk)⇐ g1, . . . , gn we obtain the
constraint:

[[p]]♯ ψ ⊒ ∃Xk+1, . . . , Xm. [[gn]]
♯ (. . . ([[g1]]

♯ ψ) . . .)

// m number of clause variables

888

Abstract Unification:

[[X = t]]♯ψ = ψ ∧ (X ↔ X1 ∧ . . . ∧Xr)

if Vars(t) = {X1, . . . , Xr}.

Abstract Literal:

[[q(s1, . . . , sk)]]
♯ψ = combine♯s1,...,sk(ψ, [[q]]

♯ (enter♯s1,...,skψ))

// analogous to procedure call!!

889

Thereby:

enter♯s1,...,skψ = ren (∃X1, . . . , Xm. [[X̄1 = s1, . . . , X̄k = sk]]
♯ψ)

combine♯s1,...,sk(ψ, ψ1) = ∃ X̄1, . . . , X̄r. ψ ∧ [[X̄1 = s1, . . . , X̄k = sk]]
♯(renψ1)

where

∃X. φ = φ[0/X]∨φ[1/X]

renφ = φ[X1/X̄1, . . . , Xk/X̄k]

renφ = φ[X̄1/X1, . . . , X̄r/Xr]

890

Example:

app(X, Y, Z) ← X = [], Y = Z

app(X, Y, Z) ← X = [H|X ′], Z = [H|Z ′], app(X ′, Y, Z ′)

Then

[[app]]♯(X) ⊒ X ∧ (Y ↔ Z)

[[app]]♯(X) ⊒ let ψ = X ∧H ∧X ′ ∧ (Z ↔ Z ′)

in ∃H,X ′, Z ′. combine♯... (ψ, [[app]]
♯(enter♯...(ψ)))

where for ψ = X ∧H ∧X ′ ∧ (Z ↔ Z ′):

enter♯...(ψ) = X

combine♯...(ψ,X ∧ (Y ↔ Z)) = (X ∧H ∧X ′ ∧ (Z ↔ Z ′) ∧ (Y ↔ Z ′)

891

Example (Cont.):

Furthermore,

[[app]]♯(Z) ⊒ X ∧ Y ∧ Z

[[app]]♯(Z) ⊒ let ψ = H ∧ Z ∧ Z ′ ∧ (X ↔ X ′)

in ∃H,X ′, Z ′. combine♯... (ψ, [[app]]
♯(enter♯...(ψ)))

where for ψ = Z ∧H ∧ Z ′ ∧ (X ↔ X ′):

enter♯...(ψ) = Z

combine♯...(ψ,X ∧ Y ∧ Z) = X ∧H ∧X ′ ∧ Y ∧ Z ∧ Z ′

Fixpoint iteration therefore yields:

[[app]]♯ (X) = X ∧ (Y ↔ Z) [[app]]♯ (Z) = X ∧ Y ∧ Z

892

Discussion:

• Exhaustive tabulation of the transformation[[app]]♯ is not feasible.

• Therefore, we rely ondemand-drivenfixpoint iteration!

• The evaluation starts with the evaluation of the queryg, i.e., with
the evaluation of [[g]]♯ 1.

• The set of inspected fixpoint variables[[p]]♯ ψ yields a
description of all possible calls:-))

• For an efficient representation of functionsψ ∈ Pos we rely on
binary decision diagrams (BDDs).

893

Background 6: Binary Decision Diagrams

Idea (1):

• Choose an orderingx1, . . . , xk on the arguments...

• Represent the function f : B→ . . .→ B by [f]0 where:

[b]k = b

[f]i−1 = fun xi → if xi then [f 1]i

else [f 0]i

Example: f x1 x2 x3 = x1 ∧ (x2 ↔ x3)

894

... yields the tree:

x3x3 x3x3

x2x2

x1

895

Idea (2):

• Decision trees are exponentially large:-(

• Often, however, many sub-trees areisomorphic :-)

• Isomorphic sub-trees need to be represented only once...

x2x2

x1

x3 x3 x3

896

Idea (3):

• Nodes whose test is irrelevant, can also be abandoned...

x2

x1

x3 x3

897

Discussion:

• This representation of the Boolean functionf is unique!

==⇒

Equality of functions is efficiently decidable!!

• For the representation to be useful, it should support the basic
operations:∧,∨,¬,⇒, ∃ xj ...

[b1 ∧ b2]k = b1 ∧ b2

[f ∧ g]i−1 = fun xi → if xi then [f 1 ∧ g 1]i

else [f 0 ∧ g 0]i

// analogous for the remaining operators

898

[∃ xj. f]i−1 = fun xi → if xi then [∃ xj. f 1]i

else [∃ xj. f 0]i if i < j

[∃ xj. f]j−1 = [f 0 ∨ f 1]j

• Operations are executed bottom-up.

• Root nodes of already constructed sub-graphs are stored in a
unique-table

==⇒

Isomorphy can be tested in constant time!

• The operations thus arepolynomialin the size of the inputBDDs :-)

899

Discussion:

• Originally, BDDshave been developped for circuit verification.

• Today, they are also applied to the verification of software...

• A system state is encoded by a sequence of bits.

• A BDD then describes thesetof all reachable system states.

• Warning: Repeated application of Boolean operations may increase
the size dramatically!

• The variable ordering may have a dramatic impact...

900

Example: (x1 ↔ x2) ∧ (x3 ↔ x4)

x1

x2

x3

x2 x2 x2

x3

x1

x3

x2x2

x4x4 x4 x4

901

Discussion (2):

• In general, consider the function:

(x1 ↔ x2) ∧ . . . ∧ (x2n−1 ↔ x2n)

W.r.t. the variable ordering:

x1 < x2 < . . . < x2n

theBDD has 3n internal nodes.

W.r.t. the variable ordering:

x1 < x3 < . . . < x2n−1 < x2 < x4 < . . . < x2n

theBDD has more than 2n internal nodes!!

• A similar result holds for the implementation of Addition through
BDDs.

902

Discussion (3):

• Not all Boolean functions have smallBDDs :-(

• Difficult functions:

✷ multiplication;

✷ indirect addressing...

==⇒ data-intensive programs cannot be analyzed in this way:-(

903

Perspectives: Further Properties of Programs

Freeness: IsXi possibly/always unbound?

==⇒

If Xi is always unbound, no indexing forXi is required:-)

If Xi is never unbound, indexing forXi is complete:-)

Pair Sharing: AreXi, Xj possibly bound to termsti, tj with

Vars(ti) ∩ Vars(tj) 6= ∅ ?

==⇒

Literals without sharing can be executed in parallel:-)

Remark:

Both analyses may profit fromGroundness !

904

5.2 Types for Prolog

Example:

nat(X) ← X = 0

nat(X) ← X = s(Y), nat(Y)

nat_list(X) ← X = []

nat_list(X) ← X = [H|T], nat(H), nat_list(T)

905

Discussion

• In Prolog, atypeis a set of ground terms with asimpledescription.

• There is no common agreement whatsimplemeans :-)

• One possibility are (non-deterministic)finite tree automataor
normalHorn clauses:

nat_list([H|T]) ← nat(H), nat_list(T) normal

bin(node(T, T)) ← bin(T) nicht normal

tree(node(T1, T2)) ← tree(T1), tree(T2) normal

906

Comparison:

Normal clauses Tree automaton

unary predicate state

normal clause transition

constructor in the head input symbol

body pre-condition

General Form:

p(a(X1, . . . , Xk)) ← p1(X1), . . . , pk(Xk)

p(X) ←

p(b) ←

907

Properties:

• Types then are in factregular tree languages;-)

• Types are closed under intersection:

〈p, q〉(a(X1, . . . , Xk)) ← 〈p1, q1〉(X1), . . . , 〈pk, qk〉(Xk) if

p(a(X1, . . . , Xk)) ← p1(X1), . . . , pk(Xk) and

q(a(X1, . . . , Xk)) ← q1(X1), . . . , qk(Xk)

• Types are also closed under union:-)

• Queriesp(X) andp(t) can be decided in polynomial timebut:

• ... only in presence of tabulation!

• Or the program istopdowndeterministic...

908

Example: Topdown vs. Bottom-up

p(a(X1, X2)) ← p1(X1), p2(X2)

p(a(X1, X2)) ← p2(X1), p1(X2)

p1(b) ←

p2(c) ←

... is bottom-up, but nottopdowndeterministic.

There is no topdown deterministic program for this type!

==⇒

Topdown deterministic types are closed under intersection, but not under
union!!!

909

For a set T of terms, we define the setΠ(T) of pathsin terms
from T :

Π(T) =
⋃

{Π(t) | t ∈ T}

Π(b) = {b}

Π(a(t1, . . . , tk)) = {ajw | w ∈ Π(tj)} (k > 0)

// for new unary constructorsaj

Example

T = {a(b, c), a(c, b)}

Π(T) = {a1b, a2c, a1c, a2b}

910

Vice versa from a set P of paths, a set Π−(P) of terms can be
recovered:

Π−(P) = {t | Π(t) ⊆ P}

Example (Cont.):

P = {a1b, a2c, a1c, a2b}

Π−(P) = {a(b, b), a(b, c), a(c, b), a(c, c)}

The set has become larger!!

911

Theorem:

Assume that T is a regular set of terms. Then:

• Π(T) is regular :-)

• T ⊆ Π−(Π(T)) :-)

• T = Π−(Π(T)) iff T is topdown deterministic :-)

• Π−(Π(T)) is thesmallestsuperset of T which is topdown
deterministic. :-)

Consequence:

If we are interested in topdown deterministic types, it suffices to
determine the set of paths in terms!!!

912

Example (Cont.):

add(X, Y, Z) ← X = 0, nat(Y), Y = Z

add(X, Y, Z) ← nat(X), X = s(X ′), Z = s(Z ′), add(X ′, Y, Z ′)

mult(X, Y, Z) ← X = 0, nat(Y), Z = 0

mult(X, Y, Z) ← nat(X), X = s(X ′),mult(X ′, Y, Z ′), add(Z ′, Y, Z)

Question:

Which run-time checks are necessary?

913

Idea:

• Approximate the semantics of predicates by means of
topdown-deterministic regular tree languages!

• Alternatively: Approximate the set of paths in the semantics of
predicates by regular word languages!

Idea:

• All predicatesp/k, k > 0, are split into predicatesp1/1, . . . , pk/1.

914

Semantics:

Let C denote a set of clauses.

The set [[p]]C is the set of tuples of ground terms(s1, . . . , sk), for
which p(s1, . . . , sk) is provable :-)

[[p]]C (p predicate) thus is the smallest collection of sets of tuplesfor
which:

σ(t) ∈ [[p]]C when ever ∀ i. σ(ti) ∈ [[pi]]C

for clauses p(t)← p1(t1), . . . , pn(tn) ∈ C and ground substitutionsσ.

915

Approximation of Paths:

Every clause

p(t1, . . . , tk) ← α

is approximated by the clauses:

pj(w) ←
∧

Π(α) where

Π(g1, . . . , gm) = Π(g1) ∪ . . . ∪ Π(gm)

Π(q(s1, . . . , sn)) = {qi(w) | w ∈ Π(si)}

(j = 1, . . . , k, w ∈ Π(tj)).

Example:

add(0, Y, Y) ← nat(Y)

add(s(X), Y, s(Z)) ← add(X, Y, Z)

916

yields:

add1(0) ← nat1(Y)

add2(Y) ← nat1(Y)

add3(Y) ← nat1(Y)

add1(s1X) ← add1(X), add2(Y),

add3(Z)

add2(Y) ← add1(X), add2(Y),

add3(Z)

add3(s1 Z) ← add1(X), add2(Y),

add3(Z)

917

Discussion:

• Every literal has at most one occurrence of a variable.

• The literals qj(wjY) where the variable Y does not occur in
the head, representtests:

If there is aw with wjw ∈ [[qj]]C♯ for all suchj, then we can
cancel these literals.

If there is no suchw, then we can cancel the clause...

... in the Example:

The literals:

add1(X), add2(Y), add3(Z)

are all satisfiable :-)

918

We conclude:
add1(0) ←

add2(Y) ← nat1(Y)

add3(Y) ← nat1(Y)

add1(s1X) ← add1(X)

add2(Y) ← add2(Y)

add3(s1 Z) ← add3(Z)

919

We conclude:
add1(0) ←

add2(Y) ← nat1(Y)

add3(Y) ← nat1(Y)

add1(s1X) ← add1(X)

add3(s1 Z) ← add3(Z)

920

We verify:

Theorem

Assume that C is a set of clauses.

Let C♯ denote the corresponding set of clauses for the paths.

Then for all predicatesp/k:

Π([[p]]C) ⊆ [[p1]]C♯ ∪ . . . ∪ [[pk]]C♯

Proof:

Induction on the approximations of the respective fixpoints:-)

921

A set of clauses with unary predicates and unary constructors is called
Alternating Pushdown System(APS).

Theorem

• Every APS is equivalent to asimpleAPS of the form:

p(aX) ← p1(X), . . . , pr(X)

p(X) ←

p(b) ←

• Every APS is equivalent to a normal APS of the form:

p(aX) ← p1(X)

p(X) ←

p(b) ←

922

Step 1: Removal of complicated heads:

For w = a(1) . . . a(m) (m > 1) we replace

p(wX) ← rhs with:

p(a(1)X) ← p2(X)

p2(a
(2)X) ← p3(X)

. . .

pm−1(a
(m−1)X) ← pm(X)

pm(a
(m)X) ← rhs

// pj all new

923

Step 1 (Cont.): Removal of complicated heads:

For w = a(1) . . . a(m)b (m > 0) we replace

p(w) ← rhs with:

p(a(1)X) ← p2(X)

p2(a
(2)X) ← p3(X)

. . .

pm−1(a
(m−1)X) ← pm(X)

pm(a
(m)X) ← pm+1(X)

pm+1(b) ← rhs

// pj all new

924

Step 2: Splitting

We separate independent parts of pre-conditions into auxiliary predicates:

head ← rest , p1(w1X), . . . , pm(wmX)

(X does not occur inhead , rest)

is replaced with:

head ← rest , q()

q() ← p1(w1X), . . . , pm(wmX)

for a new predicate q/0.

925

Step 3: Normalization

We add simpler derived clauses:

head ← p(aw), rest

p(aX) ← p1(X), . . . , pr(X)

implies:

head ← p1(w), . . . , pr(w), rest

p(X) ← p1(X), . . . , pm(X)

pi(aX) ← pi1(X), . . . , piri(X)

implies:

p(aX) ← p11(X), . . . , pmrm(X)

926

Step 3 (Cont.): Normalization

head ← p(w), rest

p(X) ← implies:

head ← rest

head ← p(b), rest

p(b) ← implies:

head ← rest

p() ← p1(X), . . . , pm(X)

pi(aX) ← pi1(X), . . . , piri(X)

implies:

p() ← p11(X), . . . , pmrm(X)

927

Example:

add1(X) ← add0(X)

add0(0) ←

add1(X) ← add1(X)

add1(s1X) ← add1(X)

... results in the new clause:

add1(0) ←

928

Theorem

Assume that C is a finite set of clauses for which steps 1 and 2 have
been executed and which then has been saturated according tostep 3.

Assume that C0 ⊆ C is the subset of normal clauses ofC. Then for
all occurring predicates p,

[[p]]C0 = [[p]]C

Proof:

Induction on the depth of terms in[[p]]C :-)

929

... in the Example:

For add1(X) we obtain the following clauses:

add1(0) ←

add1(s1X) ← add1(X)

These clauses are already normal:-)

930

Transforming into Normal Clauses:

Introduce new predicates forconjunctionsof predicates.

Assume that A = {p1, . . . , pm}. Then:

[A](b)← whenever pi(b)← for all i.

[A](aX)← [B](X) whenever B = {pij | i = 1, . . . , m} for

pi(aX)← pi1(X), . . . , piri(X)

931

Last Step: Transformation into a Type

• First, the automaton is determinized...

932

Last Step: Transformation into a Type

• First, the automaton is determinized...

• Then transitions for the components of constructorsa:

p(ajX)← p(j)(X)

are joined into a transition fora:

p(a(X1, . . . , Xk))← p(1)(X1), . . . , p
(k)(Xk)

• Finally, the predicatespj for the components of the predicatep/k
are joined to a transition:

p(X1, . . . , Xk)← p1(X1), . . . , pk(Xk)

933

In the Example we find:

add(X, Y, Z) ← add1(X), nat(Y), q′(Z) where

q′(0) ←

q′(sX) ← q′(X)

q′ = {nat, add2}

934

In the Example we find:

add(X, Y, Z) ← add1(X), nat(Y), q′(Z) where

q′(0) ←

q′(sX) ← q′(X)

q′ = {nat, add2}

The types add1, q
′, nat are all equivalent :-)

935

Discussion:

• For type-checking, it suffices to check for every predicatep/k that

[[pi]]C♯ ⊆ Π(Ti)

• Since the Ti are topdown deterministic, we have a deterministic
automaton for Π(Ti) :-)

• Therefore, we caneasilyconstruct a DFA for the complement
Π(Ti) !!

• Then we check whether

[[pi]]C♯ ∩ Π(Ti) = ∅

==⇒ this saves us determinization:-))

936

Warning:

• The emptiness problem forAPSis DEXPTIME-complete!

• In many cases, though, our method terminates quickly;-)

937

Warning:

• The emptiness problem forAPSis DEXPTIME-complete!

• In many cases, though, our method terminates quickly;-)

• Inferred types can also be used to understand legacy code.

• Then, however, they are only useful if they are not too complicated!

• Our type inference provides very precise information:-)

• In practical applications, furtherwideningsare applied to accelerate
the analysis, e.g., by reducing the number of occurring sets.

938

5.3 Goal-directed Type Inference

Prolog programs explore predicates only insofar as they contribute to
answer a query.

Example: append

app([], Y, Y) ←

app([H|T], Y, [H|Z]) ← app(T, Y, Z)

← app([1, 2], [3], Z)

... results in:

939

TheAPS-Approximation

app1([|]1(H)) ← app1(T), app2(Y), app3(Z).

app1([|]2(T)) ← app1(T), app2(Y), app3(Z).

app2(Y) ← app1(T), app2(Y), app3(Z).

app3([|]1(H)) ← app1(T), app2(Y), app3(Z).

app3([|]2(Z)) ← app1(T), app2(Y), app3(Z).

app1([]) ←

app2(X) ←

app3(X)) ←

← app1([|]1(1)), app1([|]2([|]1(2))), app1([|]2([|]2([]))),

app2([|]1(3)), app2([|]2([])), app3(X)

940

Ignoring the query, we find via normalization:

app2(X) ←

app3(X) ←

app1([]) ←

app1([|]2X) ← q0(X)

app1([|]2X) ← q1(X)

app1([|]2X) ← q2(X)

app1([|]1X) ←

q0([]) ←

q1([|]2X) ← q0(X)

q1([|]2X) ← q1(X)

q1([|]2X) ← q2(X)

q2([|]1X) ←

941

Discussion

• The second and third argument can be arbitrary.

• The first argument is a list where nothing is known about the
elements :-)

• Ignoring the query, this result is the best we can hope for:-(

• Better results can be obtained if additionallycall patternsare
tracked!

==⇒ Magic Set Transformation

942

Magic Sets

• For every predicatep/k, we introduce a new predicatecalledp/k with
the clauses

calledp(t) ← for the query ← p(t)

•

calledpi(ti) ← calledp(t), p1(t1), . . . , pi−1(ti−1)

p(t) ← calledp(t), p1(t1), . . . , pm(tm)

for every clause:

p(t)← p1(t1), . . . , pm(tm)

943

Example: append (Cont.)

app([], Y, Y) ← called([], Y, Y)

app([H|T], Y, [H|Z]) ← called([H|T], Y, [H|Z]),

app(T, Y, Z)

called(T, Y, Z) ← called([H|T], Y, [H|Z])

called([1, 2], [3], Z) ←

944

TheAPS-Approximation:

app1([]) ← called1([]), called2(X), called3(X)

app2(X) ← called1([]), called2(X), called3(X)

app3(X) ← called1([]), called2(X), called3(X)

app1([|]1H) ← called1([|]1H), called1([|]2T), called2(Y), called3([|]1H), called3([|]2Z),

app1(T), app2(Y), app3(Z)

app1([|]2T) ← called1([|]1H), called1([|]2T), called2(Y), called3([|]1H), called3([|]2Z),

app1(T), app2(Y), app3(Z)

app2(Y) ← called1([|]1H), called1([|]2T), called2(Y), called3([|]1H), called3([|]2Z),

app1(T), app2(Y), app3(Z)

app3([|]1H) ← called1([|]1H), called1([|]2T), called2(Y), called3([|]1H), called3([|]2Z),

app1(T), app2(Y), app3(Z)

app3([|]2Z) ← called1([|]1H), called1([|]2T), called2(Y), called3([|]1H), called3([|]2Z),

app1(T), app2(Y), app3(Z)

945

. . .

called1(T) ← called1([|]1H), called1([|]2T), called2(Y), called3([|]1H), called3([|]2Z)

called2(Y) ← called1([|]1H), called1([|]2T), called2(Y), called3([|]1H), called3([|]2Z)

called3(Z) ← called1([|]1H), called1([|]2T), called2(Y), called3([|]1H), called3([|]2Z)

called1([|]11) ←

called1([|]2([|]12) ←

called1([|]2[|]2[]) ←

called2([|]13) ←

called2([|]2[]) ←

called3(X) ←

946

The NormalizedAPS-Approximation (Cont.)

app1([|]1X) ← q1(X)

app1([|]1X) ← q2(X)

app1([]) ←

app1([|]2X) ← q4(X)

app1([|]2X) ← q0(X)

app1([|]2X) ← q5(X)

app2([|]1X) ← q3(X)

app2([|]2X) ← q0(X)

app3([|]1X) ← q1(X)

app3([|]1X) ← q2(X)

app3([|]1X) ← q3(X)

app3([|]2X) ← q0(X)

app3([|]2X) ← q4(X)

app3([|]2X) ← q6(X)

app3([|]2X) ← q7(X)

app3([|]2X) ← q8(X)

q0([]) ←

q1(1) ←

q2(2) ←

q3(3) ←

q4([|]2X) ← q0(X)

q5([|]1X) ← q2(X)

q6([|]1X) ← q3(X)

q7([|]1X) ← q1(X)

q7([|]1X) ← q2(X)

q8([|]2X) ← q4(X)

q8([|]2X) ← q7(X)

q8([|]2X) ← q8(X)

q8([|]2X) ← q6(X)

947

Discussion

• The result now is amazingly precise!!

• The correct values for the second parameter is inferred.

• For the result parameter, a list containing 1,2 and 3 is inferred.

• It only fails to infer that this list is finite and of length 3 :-)

948

Perspective: Normal Horn Clauses

• Prolog may no longer be the sexiest programming language:-)

• Horn clauses, though, are very well suited for thespecificationof
analysis problems.

• It is a separate problem then tosolvethe stated analysis problem
:-)

• If the least solution cannot be computed exactly, approximate
solutions may at least yield approximative answers...

Example: Cryptographic Protocols

949

Rules for the Exchange of Messages:

{Nb}pub(Bob)

{Na,Nb}pub(Alice)

{Alice,Na}pub(Bob)

Alice Bob

Properties to be verified:

secrecy, authenticity,...

950

The Dolev-Yao Model:

• Messages are terms:
Representation

{m}k encrypt(m, k)

〈m1, m2〉 pair(m1, m2)

==⇒ Distinct terms represent distinct messages:-)

==⇒ perfect cryptography. Therefore, we have:

{m}k = {m
′}k′ iff m = m′ andk = k′

• The attacker hasfull control over the network:

All messages are exchanged with the attacker.

951

Example: TheNeedham-SchroederProtocol

1. A −→ B : {a, na}kb

2. B −→ A : {na, nb}ka

3. A −→ B : {nb}kb

Abstraction:

• Unbounded number of sessions!!

• Nonces are not necessarilyfresh??

952

Idea:

Characterize the knowledge of the attacker by means of Horn clauses...

1. A −→ B : {a, na}kb known({a, na}kb) ←

2. B −→ A : {na, nb}ka known({X, nb}ka)← known({a,X}kb)

3. A −→ B : {nb}kb known({X}kb)← known({na, X}ka)

Secrecyof Nb : ← known(nb).

953

Discussion:

• We have abstracted all nonces with finitely many.

• Less restrictive (though still correct) abstractions are still possible...

1. A −→ B : {a, na}kb . . .

2. B −→ A : {na, nb}ka known({X, nb(X)}ka)← known({a,X}kb)

3. A −→ B : {nb}kb . . .

The fresh nonce is afunctionof the received nonce :-)

Blanchet 2001

954

Further capabilities of the attacker:

known({X}Y) ← known(X), known(Y)

// The attacker can encode

known(〈X, Y 〉) ← known(X), known(Y)

// The attacker can construct pairs

known(X) ← known({X}Y), known(Y)

// The attacker can decode

known(X) ← known(〈X, Y 〉)

known(Y) ← known(〈X, Y 〉)

// The attacker can project

955

Discussion

• Type inference for Prolog computed a regular abstraction ofthe set
of paths of the denotational semantics.

• Sometimes, this is too imprecise:-(

• Instead, we now approximate the denotational semantics directly
:-)

• This, however, can be quite expensive

==⇒ not well suited for compilers :-(

==⇒ in general, much more precise:-)

956

Simplification:

We only consider clauses whose heads are of the form:

p(f(X1, . . . , Xk)) or p(b) or p(X1, . . . , Xk)

Such clauses are calledH1.

Theorem

• Every finite set of H1-clauses is equivalent to a finite set ofsimple
H1-clauses of the form:

p(f(X1, . . . , Xk)) ← p1(Xi1), . . . , pr(Xi1)

p(X1, . . . , Xk) ← p1(Xi1), . . . , pr(Xi1)

p(b) ←

• ... or even to a finite set ofnormalH1-clauses.

957

Idea:

We successively introduce simpler clauses until the complicated ones
becomesuperfluous...

Rule 1: Splitting

We separate independent parts from the pre-conditions:

head ← rest , p1(X), . . . , pm(X)

(X does not occur inhead , rest)

is replaced with:

head ← rest , q()

q() ← p1(X), . . . , pm(X)

for a new predicate q/0.

958

Rule 2: Simplification

We introduce simpler derived clauses:

head ← p(f(t1, . . . , tk)), rest

p(f(X1, . . . , Xk)) ← p1(Xi1), . . . , pr(Xir)

implies:

head ← p1(ti1), . . . , pr(tir), rest

head ← p(t1, . . . , tk), rest

p(X1, . . . , Xk) ← p1(Xi1), . . . , pr(Xir)

implies:

head ← p1(ti1), . . . , pr(tir), rest

959

Rule 3 (Cont.): Simplification

p(X) ← p1(X), . . . , pm(X)

pi(f(X1, . . . , Xk)) ← pi1(Xi1), . . . , piri(Xiri)

implies:

p(f(X1, . . . , Xk))) ← p11(X11), . . . , pmrm(Xmrm)

head ← p(b), rest

p(b) ← implies:

head ← rest

960

Rule 4: Guard Simplification

p() ← p1(X), . . . , pm(X)

pi(f(X1, . . . , Xk)) ← pi1(Xi1), . . . , piri(Xiri)

implies:

p() ← p11(X11), . . . , pmrm(Xmrm)

p() ← p1(X), . . . , pm(X)

pi(b) ← implies:

p() ←

961

Theorem

Assume that C is a finite set of clauses which is closed under splitting
and simplification and guard simplification.

Let C0 ⊆ C denote the subset of simple clauses ofC. Then for all
occurring predicates p,

[[p]]C0 = [[p]]C

Proof:

Induction on the depth of terms in tuples of[[p]]C :-)

962

Transformation into normal clauses:

Introduce fresh predicates forconjunctionsof unary predicates.

Assume A = {p1, . . . , pm}. Then:

[A](b) ← whenever pi(b)← for all i.

[A](f(X1, . . . , Xk)) ← [B1](X1), . . . , [Bk](Xk)

whenever Bi = {pjl | Xijl = Xi} for

pj(f(X1, . . . , Xk))← pj1(Xij1), . . . , pjrj(Xijrj
)

963

Warning:

• The emptiness problem for Horn clauses inH1 is
DEXPTIME-complete!

• In many cases, our method still terminates quickly;-)

• Not all Horn clauses are in H1 :-(

==⇒ an approximation technique is required...

964

Approximation of Horn Clauses

Step 1:

Simplification of pre-conditions by splitting, simplification and guard
simplification (as before :-)

Step 2:

Introduction of copies of variablesX. Every copy receives all literals of
X as pre-condition.

p(f(X,X)) ← q(X) yields :

p(f(X,X ′)) ← q(X), q(X ′)

965

Step 3:

Introduction of an auxiliary predicate for every non-variable subterm of
the head.

p(f(g(X, Y), Z)) ← q1(X), q2(Y), q3(Z) yields :

p1(g(X, Y)) ← q1(X), q2(Y), q3(Z)

p(f(H,Z)) ← p1(H), q1(X), q2(Y), q3(Z)

966

