Helmut Seidl

Program Optimization

TU MiUnchen
Winter 2013/14

Organization

Dates:
Lecture: Monday, 14:00-15:30

Wednesday, 8:30-10:00
Tutorials: Tuesday/Wednesday, 10:00-12:00

Stefan Schulze Friehlinghauschul zef @ n. t um de
Material: slides,recording :-)

Moodle

Program Analysis and Transformation

Springer, 2012

Grades: e Bonus for homeworks
e Written exam

Proposed Content:

1. Avoiding redundant computations

— available expressions
— constant propagation/array-bound checks

— code motion

2. Replacing expensive with cheaper computations
— peep hole optimization
— Inlining

— reduction of strength

3. Exploiting Hardware

%

RN

Instruction selection
Register allocation
Scheduling

Memory management

0 Introduction

Observation 1: Intuitive programsoftenare inefficient.

Example:
void swap (int i, int j) {

Int t;

i (afi] > a[j]) {
t =al[j];
a[]] = al[i];
a[i] =t;
}

Inefficiencies:

e Addresses|i],a[]] are computed three times:-(

e \Valuesa[i],a[]] areloaded twice :-(

Improvement:

e Use a pointer to traverse the array

e storethevaluesd[i],a[]]!

void swap (int *p, int *q) {
int t, ai, aj;

al = *p; a] = *q;
if (ai > aj) {
t = a;
*q = al;
xp = t; // t can al so be
} /1 elimnated!

Observation 2:

Higher programming languages (evén-) abstract from hardware and
efficiency.

It is up to the compiler to adapttuitively written program to hardware.

Examples:

Filling of delay slots;
Utilization of special instructions;
Re-organization of memory accesses for better cache @ahavi

Removal of (useless) overflow/range checks.

Observation 3:

Programmhkmprovementseed not always be correct:-(

Example:

y =1() +1(); — Yy =2 1();

ldea: Save second evaluation ©f)

10

Observation 3:

ProgrammHbnprovementsieed not always be correct-(

Example:

y =1() +1(); — Yy =2 1();

ldea: Save the second evaluationfaf) 2?72

Problem: The second evaluation may return a result different from the
first; (e.g., becauske() reads from the input :-)

11

Consequences:

Optimizations havessumptions

—
—> Theassumptiormust be:

e formalized,
e checked :-)

—> It must be proven that the optimizationasrreci i.e., preserves
thesemanticd!!

12

Observation 4:

Optimization techniques depend on thregramming language

— which inefficiencies occur;
— how analyzable programs are;

— how difficult/impossible it is to prove correctness ...

Example: Java

13

Unavoidable Inefficiencies:

x Array-bound checks;
x Dynamic method invocation;

x Bombastic object organization ...
Analyzability:

+ no pointer arithmetic;
-+ no pointer into the stack;

— dynamic class loading;

— reflection, exceptions, threads, ...

14

Correctness proofs:

4+ more or less well-defined semantics:
— features, features, features;

— libraries with changing behavior ...

15

... In this course:

a simpleimperativeprogramming language with:

e Variables
o R=c¢;
o R=Mle|;

o Mley| = es;
o if(e) s else s,

e (oto L;

//
//
//
//
//
//

16

registers
assignments

loads

stores

conditional branching
no loops :-)

Note:

e For the beginning, we omit procedures-)

e External procedures are taken into account through a statefit) for
an unknown procedurg.

—— Intra-procedural

—— kind of an intermediate language in which (almost) evenghi
can be translated.

Example: swap()

17

© 00 I D T R W N R O
AN
w

o — o
=& s
S

Ag+ 1 %x1;

18

AQ == &a
Rl == CL[Z]
Ry == alj]

Optimization 1. xR —— R

Optimization 2: Reuse of subexpressions

Ay == A5 == Aq
Ay == A3 == A,

19

By this, we obtain:

Ay = Ao+
R, = MJ[A];
Ay = Ao+ J;
Ry = M[As];
if (R > Rs) {
¢ —
M[A)] =
M4y =

20

Optimization 3: Contraction of chains of assignments-)

Gain:

before | after

+ 6 2
* 6 0)
load 4 2
store 2 2
> 1 1
6 2

21

1 Removing superfluous computations

1.1 Repeated computations
ldea:

If the same value is computedpeatedlythen
— storeit after the first computation;

— replace every further computation througloak-up

—— Availability of expressions

—— Memoization

22

Problem: Identify repeated computations!

Example:
z = 1
y = M17];
A: T = |y+ 2|

23

Note:

B Is arepeated computation of the valuewpf- z |, if:

(1) AisalwaysexecutedheforeB; and

(2) y andz at B have the same values asAt :-)

—— \We need:

— an operational semantics:-)
— amethod which identifies at leasimerepeated computations ...

24

Background 1. An Operational Semantics

we choose amall-stepoperational approach.
Programs are representedcastrol-flow graphs

In the example:

= Ao+ 1%x1
= M[A,]
Ay = Ag + 1%
Ry = M[A2];
Neg(R: > R2) Pos(R1 > R2)

Az = Ao + 1 *3;

25

Thereby, represent:

vertex | program point

start programm start

stop program exit

edge | step of computation

26

Thereby, represent:

vertex

program point

start

programm start

stop

program exit

edge

step of computation

Edge Labelings:

Test:

Pos(e) or Neg(e)

Assignment: R =e;

Load :
Store:
Nop :

R = Mlel;
M eq] = es;

)

27

Computations followpaths

Computations transform the curresitite

s=(p, 1)

where:

p: Vars — int | contents of registers

p: N — int contents of storage

Everyedgek = (u, lab, v) defines gartial transformation

k] = [lab]

of the state:

28

(p, 1)

/N N
~ o
= =
~—"

29

//

//
//

= (o)
) = (o) f [e] p # 0
(0;1) = (p 1) if [e] p=0
le] : evaluationof the expression, e.g.

[t +y]{x—T,y— -1} =6

['(z ==4)][{z — 5} =1

30

[1 (o,) = (p, 1)

s
D o
Oq 05
—_
)
S =
N
= =
I |
N N
= =
N——
iy —h
/4
() Q)
e =
D
| e
(@) o

/| le] : evaluationof the expression, e.g.

/) [x+yl{z—T,y— -1} =6
/| Do =— D] a5} = 1

[R=e](p,n) = (pD{R= [e]p}|, 1)

// where ‘©" modifies a mapping at a given argument

31

N

[R=Mle;](p,p) = (pS{Rw ple]p)})

[Mleid] = e] (o) = (ps| e @ {le] p = [ea] p})

Example:

[t=x+1;]{x— 5}, u)=(p,n) where:
p = {z—=5td{r— [z+1]{z— 5}}

= {r—5}d{r— 6}
= {x— 6}

32

Apath 7w =kky...k, IsSacomputatiorforthe statesif:

s € def ([kn]o...o[k])

Theresultof the computation is:

[7]s = ([kn]o...0[k])s

Application:

Assume that we have computed the value ef y at program point::
X+y
O——@
We perform a computation along patrand reach) where we evaluate
againx + vy ...

33

ldea:

If + andy have not been modified i, then evaluation of + y atv must
return the same value as evaluation at:-)

We can check this property at every edgerin :-}

34

ldea:

If + andy have not been modified i, then evaluation of + y atv must
return the same value as evaluation at:-)

We can check this property at every edgerin :-}

More generally:

Assume that the values of the expressians {¢4,...,¢,.} are available
atu.

35

ldea:

If + andy have not been modified i, then evaluation of + y atv must
return the same value as evaluation at:-)

We can check this property at every edgerin :-}

More generally:

Assume that the values of the expressians {¢4,...,¢,.} are available
atu.

Every edge: transforms this set into a set[k]* A of expressions
whose values are availaldétierexecution of ...

36

... which transformations can be composed todfiectof a path
T =]{71 ce]f,,n:

[7]F = [k,]F o. ..o [k]

37

... which transformations can be composed todfiectof a path
T = kl c.]f,,n:

[7]F = [k,]F o. ..o [k]

The effect [k]* ofanedge k= (u,lab,v) only depends on the
labellab, i.e., [k]* = [lab]?

38

... which transformations can be composed todfiectof a path
T=ky... k.
[7]F = [k,]F o. ..o [k]

The effect [k]* ofanedge k= (u,lab,v) only depends on the
labellab, i.e., [k]* = [lab]* where:

[]* A = A
[Pos(e)]FA = [Neg(e)]* A = AU {e}
[r=¢e]f!A = (AU{e})\Expr, where

FExpr . all expressions which contain

39

= (AU{e})\Eapr,

A U {61, 62}

40

[2 = MleFA = (AU{e})\Ezpr,
[Mlei] = e]PA = AU{ep,es}

By that,every pathcan be analyzed :-)
A given program may admsgeveral paths :-(

For any given input, another path may be choseri(

41

[2 = MleFA = (AU{e})\Ezpr,
[Mlei] = e]PA = AU{ep,es}

By that,every pathcan be analyzed :-)
A given program may admsgeveral paths :-(

For any given input, another path may be choseri(

—— We require the set:

Alv] = m{[[ﬂ']]ﬂ@ | 72 start —* v}

42

Concretely:

d

We considerll pathst which reachw.

— For every pathr, we determine the set of expressions which are
available alongr.

d

Initially at program startnothingis available :-)

d

We compute thentersection —= safe information

43

Concretely:

d

We considerll pathst which reachw.

— For every pathr, we determine the set of expressions which are
available alongr.

d

Initially at program startnothingis available :-)

d

We compute thentersection —= safe information

How do we exploit this informatio???

44

Transformation 1.1:

We provide novel registers. asstorageor thee:

45

Transformation 1.1:

We provide novel registers. asstorageor thee:

Neg(e) Pos(e)

46

... analogously for R = Mle|; and Mle;| = es;.

Transformation 1.2:

If ¢ is available at program point, thene need not be re-evaluated:

We replace the assignment withop :-)

47

Example:

Y + 3;

Y + 3;

48

r =1y -+ 3;
x="1;
Z=1y+3;

Example:

Y + 3;

Y + 3;

49

Example:

50

Example:

r = Y-+ 3;
x = T
z = y+3;

51

Correctness: (ldea)

Transformation 1.1 preserves the semantics.4nd for all program
pointsu :-)

Assumer : start —* u IS the path taken by a computation.

If ¢ € A[u], then also: € [x] 0.

Therefore;r can be decomposed into:

Ciaa (D (Ve Oy

with the following properties:

52

The expression is evaluated at the edde

The expression is not removed from the set of available
expressions at any edgesin, i.e., no variable of receives a new
value :-)

53

e The expression is evaluated at the edde

e The expression is not removed from the set of available
expressions at any edgesin, i.e., no variable of receives a new
value :-)

The registefl. contains the value of whenever: is reached :-))

54

Warning:

Transformation 1.1 is only meaningful for assignments ¢; where:

— e & Vars;

— the evaluation of is non-trivial :-}

55

Warning:

Transformation 1.1 is only meaningful for assignments ¢; where:

— o & Vars(e);
— e & Vars;

— the evaluation of is non-trivial :-}

Which leaves us with the followinguestion...

56

Question:

How do we computed|u] for every program point 7?7

57

Question:

How can we computel|u] for every program point. ?7?

We collect all restrictions to the values df«| into asystem of
constraints

IAENI

[K]* (Alu]) k= (u,_,v) edge

58

Wanted:

e a maximallylargesolution (??)

e an algorithm which computes this :-)

Example:

59

Wanted:

e a maximallylargesolution (??)

e an algorithm which computes this :-)

Example:

60

Wanted:

e a maximallylargesolution (??)

e an algorithm which computes this :-)

Example:

A0 <€ 0
Alll < (A[0]JU{1})\Ezpr,
All] € A[4]

61

Wanted:

e a maximallylargesolution (??)

e an algorithm which computes this :-)

Example:

62

IORNIARNIA NG

Wanted:

e a maximallylargesolution (??)

e an algorithm which computes this :-)

Example:

63

N 1N NI IN

Wanted:

e a maximallylargesolution (??)

e an algorithm which computes this :-)

Example:

64

NI N I NN

Wanted:

e a maximallylargesolution (??)

e an algorithm which computes this :-)

Example:

65

ARG AN AENIANNIAENIG

Wanted:

e a maximallylargesolution (??)

e an algorithm which computes this :-)

Example:

Solution:

Al0] = 0

Alll = {1}
A2l = {1,z > 1}
A[Bl = {1,z > 1}
A4l = {1}
A5l = {1,z > 1}

66

Observation:

e The possible values fod|u] form acomplete lattice

D= 28" with By C B, iff B; D B,

67

Observation:

e The possible values fod |u| form acomplete lattice

D= 28" with By C B, iff B; D B,

e Thefunctions [k]*:D — D aremonotonigi.e.,

[K]4(By) C [k]*(Bs) whenever By C By

68

Background 2: Complete Lattices

A setD together with arelation C C D x D is apartial ordenf for
alla,b,c e D,

alC a reflexivity
aCObANbCa — a=0 antt—symmetry

aCbADCE ¢ — alc transitivity

b
Examples: e

1. D = 2{=bet with the relation < :

69

2. 7 with the relation =" :

3. 7 with the relation K" :

2/"‘

a9

4. 7, =7 J{L} with the ordering:

70

d € D is calledupper boundor X C D if

xCd forallz € X

71

d € D is calledupper boundor X C D if

xCd forallz € X

d is calledleast upper bound (lubf
1. d is an upper bound and

2. d C y for every upper boung of X.

72

d € D is calledupper boundor X C D if

xCd forallz € X

d is calledleast upper bound (lubf
1. d is an upper bound and

2. d C y for every upper boung of X.

Caveat:

e {0,2,4,...} C Z hasnoupper bound!
e {0,2,4} C Z has the upper bounds5, 6, . ..

73

A complete lattice (cl) D is a partial ordering wherevery subset
X CD hasaleastupperbound| | X € D

Note:

Every complete lattice has

— aleastelement | =||0 € D

— agreateselement T = |D < D.

74

Examples:

1. D =2{*>disacl :-)
2. D = Z with “="is not.
3. D = Z with “<” Is neither.

4. D =7, isalso not -

5. With an extra element, we obtain thdlat lattice
Z, =7U{L, T}

75

We have:

Theorem:

If D isacomplete lattice, then every subseX’ C D has agreatest
lower bound [] X.

76

We have:

Theorem:

If D isacomplete lattice, then every subset C D has agreatest
lower bound [] X.

Proof:

Construct U={ueD|VxeX: uluzx}.
// the set of all lower bounds of :-)

77

We have:

Theorem:

If D isacomplete lattice, then every subset C D has agreatest
lower bound [] X.

Proof:

Construct U={ueD|VrecX: ulCa}.
// the set of all lower bounds of :-)

Set: g:=|U

Claim: g=[1]X

78

(1) g isalower boundof X :

Assume z € X. Then:

uwCxforallueU

—— zis an upper bound df

— gL« -)

79

(1) g isalower boundof X :

Assume z € X. Then:
uwCxforallueU

x 1S an upper bound af
gCax)

—
—
(2) g isthegreatest lower bounaof X :

Assume wu Is a lower bound ofY. Then:
uelU

— ulyg)

80

We are looking forsolutionsfor systems of constraints of the form:

v, 3 filwy, .) (%)

84

We are looking forsolutionsfor systems of constraints of the form:

v 3 filzy,..., 1) ()
where:
T; unknown here: Alu]
D values here: 2Ezpr

C C DxD | orderingrelation here: D

fi:D" - D constraint here:

85

We are looking forsolutionsfor systems of constraints of the form:

v 3 filzy,..., 1) ()
where:
T unknown here: Alu]
D values here: 2&pr

C C DxD | orderingrelation here: D
fi:D" - D constraint here:

Constraint for Alv] (v # start):

Al S (IRF (Alu)) | k= (u, _v) edgd

86

We are looking forsolutionsfor systems of constraints of the form:

v 3 filzy,..., 1) ()
where:
T unknown here: Alu|
D values here: 2&pr

C C DxD | orderingrelation here: D
fi:D" - D constraint here:

Constraint for Alv] (v # start):

Al € (WIF) (A[u]) | k= (u,_,v) edgd
Because:
rddyAN...A Nz Dd it 3| Hdy,. .., dp} -)

87

A mapping f:D; — Dy iscalledmonotonigif f(a) C f(b) for
all aLCb.

88

A mapping f:D; — Dy iscalledmonotonigif f(a) C f(b) for
all aLCb.

Examples:

(1) D;=Dy=2Y forasetUand fz= (zxNa)Ub.
Obviously, every suclt is monotonic :-)

89

A mapping f:D; — Dy iscalledmonotonigif f(a) C f(b) for
all aLCb.

Examples:

(1) D;=Dy=2Y forasetUand fz= (zxNa)Ub.
Obviously, every suclt is monotonic :-)

(2) Dy =Dy, =Z (with the ordering ¥”). Then:

e incx=x-+1 IS monotonic.

e decz=x—1 IS monotonic.

90

A mapping f:D; — Dy iscalledmonotonigis f(a) E f(b) for
all aCb.

Examples:

(1) D;=Dy=2Y forasetUand fz= (zxNa)Ub.
Obviously, every suclt is monotonic :-)

(2) Dy =Dy, =Z (with the ordering ¥”). Then:

e incx=x-+1 IS monotonic.
e decz=x—1 IS monotonic.

e invx = —x ISnotmonotonic :-)

91

Theorem:

If f:D; —D;, and f,: Dy — D3 are monotonic, then also
Joo fi: Dy — Dy -)

92

Theorem:

If f:D; —D;, and f,: Dy — D3 are monotonic, then also
Joo fi: Dy — Dy -)

Theorem:

If Dy isacomplete lattice, then the sefD; — ;| of monotonic
functions f :ID; — D, Is also a complete lattice where

fEg iff fxCgax forallx e,

93

Theorem:

If f:D; —D;, and f,: Dy — D3 are monotonic, then also
Joo fi: Dy — Dy -)

Theorem:

If Dy isacomplete lattice, then the sefD; — ;| of monotonic
functions f :ID; — D, Is also a complete lattice where

fEg iff fxCgax forallx e,

In particular for F' C [D; — Ds],

|_|F:f mit fx:U{gx]gEF}

94

For functions f; x = a; N x U b;, the operations ¢”, “LI" and “I”
can be explicitly defined by:

(foofi)x = |lagNag|NaxUlasNby Ub,y
(filfy)x = |[(aqUas) | NazU|[by Uby
(f1|_|f2).’13 = (CL1Ub1)ﬂ(CL2Ubg) Nx U blﬂbg

95

Wanted: minimally smallsolution for:

in;fi(ﬂfl,...,%n), ZZl,

where all f; : D" — D are monotonic.

96

, N

Wanted: minimally smallsolution for:

in;fi(ﬂfl,...,mn), iZl,...,n (*)

where all f; : D" — D are monotonic.

ldea:

e Consider F:D™ — D" where

F(xy,...,xn) = (Y1, -, yn) WIith y; = fi(xq, ..., 2,).

97

Wanted: minimally smallsolution for:

in;fi(ﬂfl,...,%n), iZl,...,n (*)

where all f; : D" — D are monotonic.

ldea:

e Consider F:D™ — D" where

F(xy,...,xn) = (Y1, -, yn) WIith y; = fi(xq, ..., 2,).
e Ifall f; are monotonic,then alsoF :-)

98

Wanted: minimally smallsolution for:

in;fi(ﬂfl,...,%n), iZl,...,n (*)

where all f; : D" — D are monotonic.

ldea:

e Consider F:D™ — D" where

F(xy,...,xn) = (Y1, -, yn) WIith y; = fi(xq, ..., 2,).
e Ifall f; are monotonic,then alsoF :-)

e We successivelgpproximate solution. We construct:

L, FL, F°L1, F°L,

Hope: We eventually reach a solution 2.2?

99

Example: D =2lebdt T =C

8
w
U
8
—_
C
—~—
o
——

100

Example: D = 2tebet T =C

rs 2 x1U{c}
The Iteration:
0] 1 2 3
1 @
X9 @
X3 @

101

Example: D = 2tebet T =C

rs 2 x1U{c}
The lteration:
0] 1 2 3
1 @ {a}
) @ @
z3 || 0] {c}

102

Example: D = 2tebet T =C

r1 2 {a}Uuxs
)) T3 {CL, b}
rs 2 x1U{c}
The lteration:
0] 1 2 3
21 || 0| {a} | {a,c}
X9 @ @ @
z3 || 0| {c} | {a,c}

103

Example: D = 2tebet T =C

r1 2 {a}Uuxs

)) T3 {Cl, b}

rs 2 x1U{c}

The Iteration:
0] 1 2 3

L1 @ {a} {av C} {av C}
o || O] 0 0 {a}
L3 @ {C} {CL, C} {CL, C}

104

Example: D = 2tebet T =C

r1 2 {a}Uuxs

L9 2 T3 M {CL, b}

rs 2 w1 U{c}

The Iteration:
0| 1 2 3 4

x| 0| {a} | {a,c} | {a,c} | ditto
o || O] 0 0 {a}
L3 @ {C} {CL, C} {CL, C}

105

Theorem

e | F1,F?1, ... formanascending chain

1l £ FL1L C F*1L LC

e If FF1 =FFT11 asolutionis obtained which is the least one
=)

e If all ascending chains are finite, such & alwaysexists.

106

Theorem

e | F1,F?1, ... formanascending chain

1l £ FL1L C F*1L LC

e If FF1 =FFT11 asolutionis obtained which is the least one
=)

e If all ascending chains are finite, such & alwaysexists.

Proof

The first claim follows bycomplete induction

Foundation: FO1L =1 C F'l :)

107

Step: Assume ' 1 C F*1. Then
Fi'l=FF 'O CF((F1L)=F"_1

since F monotonic :-)

108

Step: Assume ' 1 C F*1. Then

Fi'l=FF 'O CF((F1L)=F"_1

since F monotonic :-)

Conclusion:

If DD isfinite, a solution can be found which is definitely the leas

Question:

What, if D Is not finite 7?7

109

Theorem Knaster — Tarski

Assume D is a complete lattice. Then evemyonotonicfunction
f:D—D hasadeastfixpoint d, € D.

let P={deD|fdCd}
Then dy =[P

110

Theorem Knaster — Tarski

Assume D is a complete lattice. Then evemyonotonicfunction
f:D—D hasadeastfixpoint d, € D.

let P={deD|fdCd}
Then dy =[P

Proof:
(1) do e P:

112

Theorem Knaster — Tarski

Assume D is a complete lattice. Then evemyonotonicfunction
f:D—D hasadeastfixpoint d, € D.

let P={deD|fdCd}
Then dy =[P

Proof:
(1) dy € P
fdoC fdEd forallde P
—— fdy Isalower bound off
—— fdyCdy, sincedy,=][]P
— dp€P :-)

113

(2) Jdo=dp:

114

(2) Jdo=dp:

fdoCdyg by (1)

f(fdy) T fdy by monotonicity off
fd() e P

do C fdy and the claim follows :-)

L1

115

(2) fdo=do:

fdo Edy by (1)

f(fdy) T fdy by monotonicity off
fdyeP

do C fdy and the claim follows :-)

L1

(3) dy Is leastfixpoint:

116

(2) fdo=do:

fdo Edy by (1)

f(fdy) T fdy by monotonicity off
fdyeP

do C fdy and the claim follows :-)

L1

(3) dy Is leastfixpoint:
fdy =d; Edy an other fixpoint
— di e P
— doC dy -))

117

Remark:

The least fixpoint d, isin P and aower bound :-)

—— dy Istheleastvalue with 3 fx

118

Remark:

The least fixpoint d, isin P and alower bound :-)

—— dy Istheleastvalue with 3 fx

Application:

Assume r; J filry,...,xn), 1=1,....n (%)

Is asystem of constraintwhere all f; : D™ — D are monotonic.

119

Remark:

The least fixpoint d, isin P and aower bound :-)

—— dy Istheleastvalue with 3 fx

Application:

Assume r; J filry,...,xn), 1=1,....n (%)

Is asystem of constraintwhere all f; : D™ — D are monotonic.

—— least solution dfx) — least fixpoint of " :-)

120

Example l: D=2V, fr=2naUb

121

Examplel: D=2V, fz=xznaUb

122

Examplel: D=2V, fz=xznaUb

0] 0 U
1 b |aUb

123

Examplel: D=2V, fz=xznaUb

FLfLfrT
0] 0 U
Il b |aUb
21 b |aUDd

124

Examplel: D=2V, fz=xznaUb

FLfLfrT
0] 0 U
Il b |aUb
21 b |aUDd

Example 2. D=NU/{oo}
Assume fx =x+ 1. Then

flfl=Ff0=i C i+1=f"_1

125

Examplel: D=2V, fz=xznaUb

fLL T
0] 0 U
Il b |aUb
21 b |aUDd

Example 2. D=NU/{oo}
Assume fx =z -+ 1. Then

fil=fl0=i C i+1=f*1

—— Ordinaryiteration will never reach a fixpoint :-(

—— Sometimes, transfinite iteration is needed :-)

126

Conclusion:

Systems of inequations can be solved throfigoint iteration i.e., by
repeated evaluation of right-hand sides)

127

Conclusion:

Systems of inequations can be solved throfigoint iteration i.e., by
repeated evaluation of right-hand sides)

Caveat: Naive fixpoint iteration is rathenefficient :-(

128

Conclusion:

Systems of inequations can be solved throfigoint iteration i.e., by
repeated evaluation of right-hand sides)

Caveat: Naive fixpoint iteration is rathdnefficient :-(

o ks W N = O

129

Conclusion:

Systems of inequations can be solved throfigoint iteration i.e., by
repeated evaluation of right-hand sides)

Caveat: Naive fixpoint iteration is rathdnefficient :-(

1
0
{1,z > 1,z — 1}
Expr
{1,z > 1,z — 1}
{1}

Expr

o ks W N = O

130

Conclusion:

Systems of inequations can be solved throfigoint iteration i.e., by
repeated evaluation of right-hand sides)

Caveat: Naive fixpoint iteration is rathdnefficient :-(

1 2
0 0 0
1| {1,z >1,2—1} {1}
2 Expr {1,z > 1,z — 1}
3|1 {L,z>1,z—1} | {1,z > 1,z — 1}
4 {1} {1}
5 Expr {1,z > 1,z — 1}

131

Conclusion:

Systems of inequations can be solved throfigoint iteration i.e., by

repeated evaluation of right-hand sides)

Caveat: Naive fixpoint iteration is rathdnefficient :-(

Example:

1

2

3

o ks W N = O

0
{1,z > 1,z — 1}
Expr
{1,z > 1,z — 1}
{1}

Expr

0

{1}
{1,z > 1,z — 1}
{1,z > 1,z — 1}

{1}
{1,z > 1,z — 1}

0
{1}

{1,z >1}
{1,z > 1,z — 1}
{1}

{1,z >1}

132

Conclusion:

Systems of inequations can be solved throfigoint iteration i.e., by
repeated evaluation of right-hand sides)

Caveat: Naive fixpoint iteration is rathdnefficient :-(

Example:

1 2 3 4
0 0 0 0 0
1| {1,2>1,z—1} {1} {1} {1}
2 Expr {1,z > 1,z — 1} {1,z > 1} {1,z > 1}
3|1 {L,z>1,z—1} | {l,z> 1,2 —1} | {1,z > 1,z —1} | {1, > 1}
4 {1} {1} {1} {1}
5 Expr {1,z > 1,z — 1} {1,z > 1} {1,z > 1}

133

Conclusion:

Systems of inequations can be solved throfigoint iteration i.e., by
repeated evaluation of right-hand sides)

Caveat: Naive fixpoint iteration is rathdnefficient :-(

Example:

1 2 3 4 5%
0 0 0 0 0
1| {1,2>1,z—1} {1} {1} {1}
2 Expr {1,z > 1,z — 1} {1,z > 1} {1,z > 1}
3|1 {L,ze>1,z—1} | {l,z>1,z—1} | {1,z > 1,z — 1} | {1,z > 1} | ditto
4 {1} {1} {1} {1}
5 Expr {1,z > 1,z — 1} {1,z > 1} {1,z > 1}

134

ldea: Round Robin lteration

Instead of accessing the values of the last iteration, awag theurrent
values of unknowns :-)

135

ldea: Round Robin lteration

Instead of accessing the values of the last iteration, awag theurrent
values of unknowns :-)

Example:

U N W NN = O

136

ldea: Round Robin lteration

Instead of accessing the values of the last iteration, awag theurrent
values of unknowns :-)

Example:

{1}
{1,z > 1}
{1,z > 1}

{1}
{1,z > 1}

U N WD = O

137

ldea: Round Robin lteration

Instead of accessing the values of the last iteration, awag theurrent
values of unknowns :-)

Example:
1 2

0 0

1 {1}

2 | {1,z > 1}

31 {l,z > 1} | ditto
4 {1}

51 {1,z > 1}

138

The code folRound Robinteration inJavalooks as follows:

for(t=1;1 < nji++) z; = L;
do {
finished = true;
for (i = 1;i < nji++) {
new = fi(r1,...,Tn);
if ('(x; 3 new)) {
finished = false;

T, = x; L new,

}
} while (!finished);

139

Correctness:

Assume y” s thei-th component of F? L.

d)

Assume :cf IS the value of z; after thed-th RR-iteration.

140

Correctness:

Assume y” s thei-th component of F? L.

d)

Assume :cf IS the value of x; after thei-th RR-iteration.

One proves:
d d .
1) ¢)

141

Correctness:

Assume y” s thei-th component of F? L.

1

Assume x§d> IS the value of x; after thei-th RR-iteration.

One proves:
d d .
1) ¢)

2) =Y Cz foreverysolution (z,...,2,) :-)

142

Correctness:

Assume y” s thei-th component of F? L.

d)

Assume :cf IS the value of x; after thei-th RR-iteration.

One proves:
1) a1
2) =Y Cz foreverysolution (z,...,2,) :-)

(3) If RR-iteration terminates aftet rounds, then
2\, ..., 2!P) isasolution)

143

Caveat:

The efficiency ofRR-iteration depends on thederingof the unknowns
1

144

Caveat:

The efficiency ofRR-iteration depends on thederingof the unknowns
1

Good:
— u beforev, If uw—*uv;

— entry condition before loop body:-)

145

Caveat:

The efficiency ofRR-iteration depends on thederingof the unknowns
1

Good:
— u beforev, If uw—*uv;

— entry condition before loop body:-)

Bad:
e.g., post-order DFS of the CFG, starting astart :-)

146

147

Inefficient Round Robin Iteration:

Ot o W NN = O

148

Inefficient Round Robin Iteration:

1

Ezxpr
{1}
{1,z — 1, > 1}
Ezxpr
{1}
0

Ot o W NN = O

149

Inefficient Round Robin Iteration:

1 2
0 Expr {1,z > 1}
| {1} {1}
ol {1z —1Le>1} | {1,0—1,2>1}
3 Expr {1,z > 1}
4 {1} {1}
5 0 0

150

Inefficient Round Robin Iteration:

1 2 3
0 Expr {1,z > 1} {1,z > 1}
i {1 {1 {1
2 | {lL,ze—1,z>1} | {L,e—1,z>1} | {1,z > 1}
3 Expr {1,z > 1} {1,z > 1}
4 {1 {1 {1
5 0 0 0

151

Inefficient Round Robin Iteration:

—

1 2 3 4
0 Expr {1,z > 1} {1,z > 1}
i {1 {1} {1}
2 | {1,z —1,z>1} | {1,z — 1,z > 1} | {1,z > 1} | ditto
3 Expr {1,z > 1} {1,z > 1}
4 {1} {1} {1}
5 0 0 0

152

significantly less efficient :-)

... end of background on: Complete Lattices

153

... end of background on: Complete Lattices

Final Question:

Why is a (or the least) solution of the constraint systemuls&f?

154

... end of background on: Complete Lattices

Final Question:

Why is a (or the least) solution of the constraint systemuls&f?

For a complete lattice D, consider systems:

Z|start]

_
Z|v]]

[k (Z[u]) k= (u,_v) edge

where dy €D andall [k]*: D — D are monotonic..

155

... end of background on: Complete Lattices

Final Question:

Why is a (or the least) solution of the constraint systemuls&f?

For a complete lattice D, consider systems:

Z|start]

_
Z|v]]

[(Zlu]) k= (u,_,v) edge
where dy €D andall [k]*:D— D are monotonic..

— Monotonic Analysis Framework

156

Wanted: MOP (Merge Over all Paths)

) =| [[x]*do | 7 : start —* v}

157

Wanted: MOP (Merge Over all Paths)

) =| [[x]*do | 7 : start —* v}

Theorem Kam, Ullman 1975

Assume 7 is a solution of the constraint system. Then:

Zv] 3 I%v] for every v

158

Jeffrey D. Ullman, Stanford

159

Wanted: MOP (Merge Over all Paths)

) =| [[x]*do | 7 : start —* v}

Theorem Kam, Ullman 1975

Assume 7 is a solution of the constraint system. Then:
Zv] 3 I%v] for every v

In particular: Z[v] 3 [r]*d, forevery m: start —* v

160

Proof: Induction on the length of 7.

161

Proof: Induction on the length of 7.

Foundation: 7w =¢ (empty path)

162

Proof: Induction on the length of 7.

Foundation: 7w =¢ (empty path)
Then:
[7]* do = [€]* do = do T Z]start]

163

Proof: Induction on the length of 7.

Foundation: 7w =¢ (empty path)
Then:
[7]* do = [€]* do = do T Z]start]

Step: w=7'k for k= (u, ,v) edge.

164

Proof: Induction on the length of 7.

Foundation: 7w =¢ (empty path)
Then:
[7]F do = [€]* do = dy T I|[start]
Step: w=7'k for k= (u, ,v) edge.
Then:

[7']* dy

N
Anl
=

by I.H. for =«

— [r]*d
Y (ZTu]) since [k]* monotonic

I

Z|v] since Z solution :-))

165

Disappointment:

Are solutions of the constraint systeost upper bound8??

166

Disappointment:

Are solutions of the constraint systeost upper bound8??

Answer:

In generalyes :-(

167

Disappointment:

Are solutions of the constraint systeost upper bound8??

Answer:

In generalyes :-(
With the notable exception when all functiongk]* aredistributive...

)

168

The function f:D; — D, is called

e distributiveif f(| |X)=|[{fx|x € X}forall() #X C D
e strictif fL=_1.
e totally distributive if f is distributive and strict.

169

The function f:D; — D, is called

e distributiveif f(| |X)=|[{fx|x € X}forall() #X C D
e strictif fL=_1.
e totally distributive if f is distributive and strict.

Examples:

e fax=xznNnaUb for a,bCU.

170

The function f:D; — D, is called

e distributiveif f(| |X)=|[{fx|x € X}forall() #X C D
e strictif fL=_1.
e totally distributive if f is distributive and strict.

Examples:

e fax=xznNnaUb for a,bCU.

Strictness: fl=an@uUb=b=0 whenever b=0 :-(

171

The function f:D; — D, is called

e distributiveif f(| |X)=|[{fx|x € X}forall() #X C D
e strictif fL=_1.

e totally distributive if f is distributive and strict.

Examples:

e fax=xznNnaUb for a,bCU.
Strictness: f0=an@uUb=>b=0 whenever b=0
Distributivity:

fx1Uxy) = an(x1Uxy)UDb
— aNziUaNxzaUb

= Jfoi U [fa =)

172

e D =Dy,=NU{o0}, incx=x+1

173

e D =Dy,=NU{o0}, incx=x+1
Strictness: fL=incO0=1 # 1

174

e D =Dy,=NU{o0}, incx=x+1

Strictness: fL=incO0=1 # 1
Distributivity: (| JX) = |[{z+1|xze X} for D#X
-)

175

Dy =Dy =NU{c0}, incx=x+1
Strictness: fL=incO0=1 # 1

Distributivity: (| JX) = |[{z+1|xze X} for D#X
-)

Dy = (NU{co})?, Dy=NU{co}, [f(x1,22) =21+ 29

176

Dy =Dy =NU{o0}, incx=x+1

Strictness: fL=incO0=1 # 1
Distributivity: (| JX) = |[{z+1|xze X} for D#X
-)

Dy = (NU{c0})?, Dy=NU{co}, f(a1,22)=m1+z5:
Strictness: fL=04+0 = 0 -)

177

e D =Dy,=NU{o0}, incx=x+1

Strictness: fL=incO0=1 # 1
Distributivity: (| JX) = |[{z+1|xze X} for D#X
-)

o D =(NU{xx})) Dy,=NU{x}, flx,22)=1m1+z5:

Strictness: fL=04+0 = 0 -)
Distributivity:
% 5 — f(74)|—|f(471) :')

178

Remark:

If f:ID; — Dy isdistributive, then also monotonic:-)

179

Remark:

If f:ID; — Dy isdistributive, then also monotonic:-)

Obviously: a b iff allb=0b.

180

Remark:

If f:ID; — Dy isdistributive, then also monotonic:-)

Obviously: a b iff allb=0b.

From that follows:

fo f(alub)
fal fb

—— fa C fb -)

181

Assumption: all v are reachable from start.

182

Assumption: all v are reachable from start.
Then:

Theorem Kildall 1972

If all effects of edges [k]* are distributive, then: Z*[v] = Z[v]
forall v.

183

Gary A. Kildall (1942-1994).
Has developed the operating system CP/M and GUIs for PCs.

184

Assumption: all v are reachable from start.
Then:

Theorem Kildall 1972

If all effects of edges [k]* are distributive, then: Z*[v] = Z[v]
forall v.

185

Assumption: all v are reachable from start.
Then:

Theorem Kildall 1972

If all effects of edges [k]* are distributive, then: Z*[v] = Z[v]
forall v.

Proof:

It suffices to prove that Z* is a solution :-)

For this, we show that Z* satisfies all constraints:-))

186

(1) We prove for start:

|_|{[[7T]]Jj do | 7 : start —* start}

Hﬂ do
do :-)

T*|start]

|

187

(1) We prove for start:

T*|start]

|_|{[[7T]]Jj do | 7 : start —* start}

[e]* do
do :-)

|

(2) Forevery k= (u, ,v) we prove:

T*|v] | |{[7]*dy | 7 : start —* v}
| {['k]*dy | ®' : start —* u}

{1

{TEDE ([7')F do) | 7 2 start —* u}
]
[k

1L

EI* (| {[7')*do | 7 : start —* u})
RJ*(Z7[u])

since {r' |7’ :start =* u} isnon-empty :-)

188

Caveat:

e Reachabilityof all program points cannot be abandoned! Consider:

7 .
\@ @Eﬁ@ where D =NU {oo}

189

Caveat:

e Reachabilityof all program points cannot be abandoned! Consider:

7 .
\@ @Eﬁ@ where D =NU {oo}

Then:
Z|2] = incO = 1

2] = |0 = 0

190

Caveat:

e Reachabilityof all program points cannot be abandoned! Consider:

7 .
\@ @Eﬁ@ where D =NU {oo}

Then:
Z|2] = incO = 1

2] = |0 = 0

e Unreachablgrogram points can always be thrown away)

191

Summary and Application:

— The effects of edges of the analysisanfailability of expressions
are distributive:

(aU(x1Nax))\b = ((aUz)N(aUxz))\b
= ((aUz1)\b) N ((aUz2)\D)

192

Summary and Application:

— The effects of edges of the analysisanfailability of expressions
are distributive:

(aU(x1Nax))\b = ((aUz)N(aUxz))\b
= ((aUz1)\b) N ((aUz2)\D)

— If all effects of edges ardistributive then theMlOP can be
computed by means of the constraint systemfRditeration :-)

193

Summary and Application:

— The effects of edges of the analysisanfailability of expressions
are distributive:

(aU(x1Nax))\b = ((aUz)N(aUxz))\b
= ((aUz1)\b) N ((aUz2)\D)

— If all effects of edges ardistributive then theMlOP can be
computed by means of the constraint systemfRditeration :-)

— If not all effects of edges amdistributive thenRR-iterationfor the
constraint system at least returnsadeupper bound to the MOP

)

194

1.2 Removing Assignments to Dead Variables

Example:

1: T =1y -+ 2;
2 Yy = ;
3 r =1y +3;

The value of » at program points 1, 2 is over-written before it can
be used.

Therefore, we call the variabler deadat these program points:-)

195

Note:

— Assignments to dead variables can be removgd

— Such inefficiencies may originate from other transformagio

196

Note:

— Assignments to dead variables can be removed

— Such inefficiencies may originate from other transformagio

Formal Definition:

The variable = is calledlive at « alongthe path = starting at
u relative toaset X of variables either:

if € X and 7 doesnotcontaindefinitionof x; or:

If 7 canbedecomposed into:r = m; km, such that:

e Lk Isauseof z;and

e m; does notcontain definitionof .

197

k

O————=O~0—0O

Thereby, the set of all defined or used variables at an edge
k= (_lab,) isdefined by:

lab used defined
, 0 0
Pos (e) Vars (e) 0
Neg (e) Vars (e))

T = e; Vars (e) {x}

r = Mlel; Vars (e) {x}
Mleq] = eq; | Vars (e1) U Vars (e5) 0

198

A variable » whichisnotliveat « along = (relative toX) is
called dead at u« along = (relative toX).

Example:

whereX = (). Then we observe;

live | dead

{y} | {z}
0 | {z,y}

{y} | {z}
0 | {z, v}

woNn = O

199

The variable = isliveat u (relativetoX)if « Iisliveat u
alongsomepath to the exit (relative t&). Otherwise, = s calleddead
at w (relative toX).

200

The variable = isliveat u (relativetoX)if « Iisliveat u

alongsomepath to the exit (relative t&). Otherwise, = s calleddead
at w (relative toX).

Question:

How can the sets of all dead/live variables be computed feryevu ?77?

201

The variable = isliveat u (relativetoX)if « Iisliveat u
alongsomepath to the exit (relative t&). Otherwise, = s calleddead
at w (relative toX).

Question:

How can the sets of all dead/live variables be computed feryevu ?77?

ldea:

For every edge k = (u, ,v), define a function [k]* which transforms
the set of variables which are live at/ into the set of variables which
are liveat w« ...

202

Let L =2V,
For k= (_,lab,),define [k]* = [lab]* by:

[L = L
I [Neg(e)]* L = LU Vars(e)
[+ = e]F L = (L\{z}) U Vars(e)
(L\{z}) U Vars(e)
[Mle)] =ey;]FL = LU Vars(e;) U Vars(es)

203

Let L =2"s,
For k= (_lab,),define [k]* = [lab]* by:

[]F L = L

I [Neg(e)]* L = LU Vars(e)
[+ = e;]* L = (L\{z}) U Vars(e)

__ (L\{}) U Vars(e)

[Mle)] =ey;]FL = LU Vars(e;) U Vars(es)

[£]* can again be composed to the effects ¢f]* of paths
=k ...k by:

[7)F = [kf o...o [k]

204

We verify that these definitions amneeaningful :-)

205

We verify that these definitions amneeaningful :-)

206

We verify that these definitions amneeaningful :-)

207

We verify that these definitions amneeaningful :-)

208

We verify that these definitions amneeaningful :-)

209

We verify that these definitions amneeaningful :-)

210

The set of variables which are live at: then is given by:

L u] = U{[[ﬂ']]ﬂX | 7 u —" stop}

... literally:

e The pathstartin « :-)
—— As partial ordering for . weuse C =C.

e The set of variables which are live at program exit is givenhzyset
X)

211

Transformation 2:

212

Correctness Proof:

— Correctness of the effects of edgedf L is the set of variables
which are live at the exit of the pathr , then [7]* L isthe set
of variables which are live at the beginningof :-)

— Correctness of the transformation along a patfithe value of a
variable is accessed, this variable is necessarily live.viiue of
dead variables thus iselevant :-)

— Correctness of the transformationtn any execution of the
transformed programs, the live variables always receigesime
values :-))

213

Computation of the setsL*|u] :

(1) Collecting constraints:

X
[K[F (£[v]) k= (u,_v) edge

L|stop]

»
L|u] D

(2) Solving the constraint system by means of RR iteration.

Since L isfinite, the iteration will terminate :-)

(3) If the exitis (formally) reachable from every program
point, then the smallest solution of the constraint
system equals £* since all [k]* are distributive :-))

214

Computation of the setsL*|u] :

(1) Collecting constraints:

L[stop] 2 X
Llu] 2 [KF(L[]) k= (u,_v) edge

(2) Solving the constraint system by means of RR iteration.

Since L isfinite, the iteration will terminate :-)

(3) If the exitis (formally) reachable from every program
point, then the smallest solution of the constraint
system equals £* since all [k]* are distributive :-))

Caveat. The information is propagatdshckwards !!!

215

(L[IN{z}) UL
L2y}
(L[6]U {zy) U (L3 Ue})
(LA} Uiz, v
(LN{zy) Ut}

L[2
L7

D

]
J Uy, R}

Y S S W W N W S
A R e =)

IV VN (O (O (O (O (O |

=

216

= |

{y. R}
{z,y, R} | ditto
{z,y, R}
{z,y, R}
{z,y, R}

{z, R}

{1. R}

S = W = Ot N O

217

The left-hand side of no assignmentsad :-)

Caveat:

Removal of assignments to dead variables may Kill furthealbes:

r =1+ 1;
(2

z = 2%
©

MI|R] = y;

218

The left-hand side of no assignmentsad :-)

Caveat:

Removal of assignments to dead variables may Kill furthealbes:

219

The left-hand side of no assignmentsad :-)

Caveat:

Removal of assignments to dead variables may Kill furthealbes:

220

The left-hand side of no assignmentsad :-)

Caveat:

Removal of assignments to dead variables may kill furtheattes:

221

The left-hand side of no assignmentsad :-)

Caveat:

Removal of assignments to dead variables may kill furtheattes:

222

The left-hand side of no assignmentsad :-)

Caveat:

Removal of assignments to dead variables may kill furtheattes:

223

The left-hand side of no assignmentsad :-)

Caveat:

Removal of assignments to dead variables may kill furtheattes:

224

Re-analyzing the program is inconvenient(

ldea: Analyzetrueliveness!

x Is calledtruly live at « along a path = (relative to.X), either
if x € X, = doesnotcontain a definition af or

if 7 canbe decomposed intor = m; k75 such that:

e Lk Isatrueuse ofr relative torm,;

e m; does notcontain anyefinitionof .

225

O—O—"——=0~0—0

The set of truely used variables at an edge= (_, lab,v)

Kk

lab truely used

; 0

Pos (e) Vars (e)

Neg (e) Vars (e)

T = e Vars (e) (%)
r = Mle; Vars (e) (%)
Mlei| = eo; Vars(e;) U Vars(es)

(*)

—given that «

226

IS defined as:

IS truely live at v w.rt.m :-)

227

Example:

228

Example:

229

Example:

230

Example:

231

The Effects of Edges:

[L = L

[Pos(e)]* L = [Neg(e)]*L = LU Vars(e)
[v=e]F L = (L\{z})U Vars(e)
[+ = M[e}]FL = (L\{z}hU Vars(e)
[Mle)] =ex;]FL = LU Vars(e;) U Vars(es)

232

The Effects of Edges:

[L = L

[Pos(e)]* L = [Neg(e)]*L = LU Vars(e)
[z =] L = (L\{z})U (x € L)? Vars(e):
[v = Mle;]L = (L\{z})U (2 € L)? Vars(e):
[Mle)] =ex;]FL = LU Vars(e;) U Vars(es)

0
0

233

Note:

e The effects of edges for truely live variables anere complicated
than for live variables :-)

e Nonetheless, they argstributive!!

234

Note:

e The effects of edges for truely live variables anere complicated
than for live variables :-)

e Nonetheless, they argstributive!!

To see this, consider forD =2V, fy=(uey)?b:) We
verify:

fpnUy) = (u€yUy)?b: ()
= (ueyVuey)?b: 0
= (wey)?b: DU (u€y)?b: 0
= fuUfy

235

Note:

e The effects of edges for truely live variables anere complicated
than for live variables :-)

e Nonetheless, they argstributive!!

To see this, consider forD =2V, fy=(uey)?b:) We
verify:

fpnUy) = (u€yUy)?b: ()
= (ueyVuey)?b: 0
= (wey)?b: DU (u€y)?b: 0
= fuUfy

—— the constraint system yields théOP :-))

236

e True liveness detectsoresuperfluous assignments than repeated
livenesg!!!

237

e True liveness detectsoresuperfluous assignments than repeated
livenesg!!!

Liveness:

238

e True liveness detectsoresuperfluous assignments than repeated
livenesg!!!

True Liveness:

=

239

1.3 Removing Superfluous Moves

Example:

This variable-variable assignment is obviously useless

240

1.3 Removing Superfluous Moves

Example:

This variable-variable assignment is obviously useless
Instead of 1, we could also store 7" :-)

241

1.3 Removing Superfluous Moves

Example:
€ €
T=ux+1; T=x+1;
(2 l (2
y=1; y="1T;
© (3®
M[R] = y; M[R] =T;

@ @

This variable-variable assignment is obviously useless
Instead of 1, we could also store 7" :-)

242

1.3 Removing Superfluous Moves

Example:
€ €
T =zx+1; T=ux+1;
(2 l (2
y="1T; y="1T;
© (3®
M[R] = y; M[R] =T;

Advantage: Now, y hasbecomeead :-))

243

1.3 Removing Superfluous Moves

Example:
€ €
(2 (2
y =1Tj — y =1Tj —
© (3®
M[R] = y; M[R] =T;

Advantage: Now, vy has becomeéead

244

-))

©

ldea:

For each expression, we record the variable which curreotiyains its
value :-)

We use: V = (Expr \ Vars) — 2V

245

ldea:

For each expression, we record the variable which curreotiyains its
value :-)

We use: V = Frpr — 2V and define:

[]FV =V
0 if ¢/ =¢

[Pos(e)]f Ve = [Neg(e)]fVe = _
Ve otherwise

246

[=)V e
[z =y]*Ve
r=e]fVe
r=M[c;]*V ¢
r=Mly|;]FV e
[= Mle];]fV €

I

Veoyu{z} if ¢=c

<

K
| (Ve)\{z} otherwise
(((Ve)u{z} if yeVe
| (Ve)\{z} otherwise
B

(

) x} if ¢ =e
| (Ve)\{z} otherwise
(V e\

(VeO\r

B 0 if e/ =¢
(Ve)\{xr} otherwise

analogously for the diverse stores

247

In the Example:

E

T =x+1;
{e+1={T}} (@
{z+1—{y,T}} (3)

fe+10- {11 ()

248

In the Example:

0O
T =x+1;
{x+1— {T}} e
y =T
{r+1— {y,T}} e
MI[R] = y;

{r+1— {y,T}} @

— We propagate information forwarddirection :-)
At start, Vie=10 forall e;
— L C VxV isdefined by:

ViCV, iff Vie DO Vshe forall e

249

Observation:
The new effects of edges adestributive

To show this, we consider the functions:

(1) fiVe=Ve)\{z}

(2) [V =Va{e—al}

3) f3'Ve=(yeVe)?(Veu{z}):(Ve)\{z})

Obviously, we have:

[r=c]t = fot oy
[r=y]F = /Y
[v = Mlel;]t = fsPoff

By closure undecomposition the assertion follows :-))

250

(1) For fVe=(Ve)\{z}, we have:
fVidVa)e = ((ViUVa)e)\{r}
(Vie)n (Vae))\{z}
= (Vie)\{zp) n((Vze)\ir})
(fVie)n(fVae)
(fViufWa)e o)

251

(2) For fV =V &{e~— a}, we have:

fWhuWye = (ViuVa) @{era})e
= (iuly)e
= (fViufW)e giventhat e # ¢

fWiuVe)e = (ViuVy)@©{e—a})e
(Vid{e—al)e)n((Va®{e— a})e)
(fiufWa)e -)

252

(3) For fVe=(yeVe)?(Veu{z}):(Ve)\{x}), we have:

f(ViuVy)e

ViuVa)e)\{zHh U (ye (Vi Va)e) 7{z}:0
renVae)\{zh)U(y €(VienVae))?{z}:0
1enVae)\{z}) U

yeVie){z}:0)N((y € Vae) ?{z}:0)

Vie)\{z}) U (y €Vie) ?{z}:0) N

(Vae)\{z}) U (y € Vae) 7 {x}:0)

fvidfVa)e =)

((
(V
(V
((
((
((
(

253

We conclude:

1

Solving the constraint system returns the MOP solutibn
— Let)V denote this solution.

If 2 e€Vule,then = at w« contains the value of e —
which we have stored in7.

—

the accessto » can be replaced by the access t6. :-)

For V €V,let V- denote thevariable substitutiomvith:

B T, f reVe
V= o = _
T otherwise

if VenVe =0 for e#¢ . Otherwise: Voo =2a2 :-)

254

Transformation 3:

o= Vu|~
Pos(e) ﬁ Pos(a(e))

... analogously for edges withNeg (¢)

o= V|u|~
T =e; ﬁ v =o(e);

255

Transformation 3 (cont.):

ixM[e];

iM[el] — €9;

256

Procedure as a whole:

(1) Availability of expressions: T1

+ removes arithmetic operations

— inserts superfluous moves

(2) Values of variables: T3

+ creates dead variables

(3) (true) liveness of variables: T2

+ removes assignments to dead variables

257

Example:

Ay = A+ T,
By = M[A4];
Bs = By — 1;
Ao = A4 T,
M[As] = Ba;

a[7] - -;

T1.1

Ty = A+7;
Ay =Ty
By = M[A1];
Ty = By — 1;
By = Tb;

1 = A+ 7,
Ao = T
M[Az] = Ba;

258

Example:

Ay = A+ T,
By = M[Ay];
Bs = B1 — 1;
Ao = A4 T,
M[As] = B;

a[7] - -;

T1.1

Ty = A+7;
Ay =Ty
By = M[A1];
Ty = By — 1;
By = Tb;

T, = A+ 7,
Ag = Ti;
M[As] = Bo;

259

T1.2

T = A+T;
Ay =Ty
B1 = M[A4];
Ty = By — 1;
By = Tb;

Ao = Tr;
M[A2] = Ba;

T, = A+ T,
Ay =Ty
By = M[A1];
Ty = By — 1;
By = Tx;
Ag = Th;
M[Az] = Ba;

Example (cont.):

T3

a[7] - -;

T, = A+ 7T,
Ay =Ty
By = M[T1];
Ty = By — 1;
By = T5;
Ag = Tr;
M[T:1] = Ty;

260

T, = A+ T,
Ay =Ty
By = M[A1];
Ty = By — 1;
By = Tx;
Ag = Th;
M[Az] = Ba;

Example (cont.):

T3

a[7] - -;

T, = A+ T,
Ay =Ty
By = M[T1];
Ty = By — 1;
By = T5;
Ag = Tr;
M[T:] = Ty;

261

T2

T1 :A—|—7,
By = M[T1];
To = B; — 1;
M[T1] = Ts;

1.4 Constant Propagation

ldea:
Execute as much of the code at compile-time as possible!

Example:

if (z>0)
M|A] = B;

262

Obviously, = has always the value 7:-)

Thus, the memory accessabvaysexecuted :-))

Goal:

263

Obviously, = has always the value 7:-)

Thus, the memory accessabvaysexecuted :-))

Goal:

264

Generalization: Partial Evaluation

Neil D. Jones, DIKU, Kopenhagen

265

ldea:

Design an analysis which for everyu,

e determines the values which variabtesinitely have;

e tellswhether u can be reached at all:-)

266

ldea:

Design an analysis which for everyu,

e determines the values which variabtesinitely have;

e tellswhether » can be reached at all:-)

The complete lattice is constructed in two steps.

(1) The potentialvalues of variables

2'=2ZU{T} with 2Cy iffy=Torz=y

/\
@ @ O D @

267

Caveat: Z' isnota complete lattice in itself :-(

(2) D= (Vars = 2Z"), = (Vars — Z") U {L}
// 1L denotes: “not reachable”:-))

with Dy C Do Iff 1 =D or
DixE Dyx (x € Vars)

Remark: D isacomplete lattice :-)

268

Caveat: Z' isnotacomplete lattice in itself :-(

(2) D= (Vars = 2Z"), = (Vars — Z") U {L}
// 1L denotes: “not reachable”:-))

with Dy C Do Iff 1 =D or
DixE Dyx (x € Vars)

Remark: D is acomplete lattice :-)

Consider X CD.W.lo.g., 1l ¢X.
Then X C Vars - 7" .
f X=0,then || X=1 €D :)

269

If X#£0 ,then ||X =D with

Dr = |[{fz]|[feX}
_ {z if fr=z (fe€X)

T otherwise

-))

270

If X#£0 ,then ||X =D with

Dr = |[{fz]|[feX}
_ {z if fr=z (fe€X)

T otherwise

-))

For every edge k£ = (_, lab,), construct an effect function
[£]* = [lab]* : D — D which simulates theoncretecomputation.

Obviously, [lab]* L =1 forall lab :-)
Nowlet L # D¢ Vars —7Z'.

271

ldea:

e Weuse D todetermine the values of expressions.

272

ldea:

e Weuse D todetermine the values of expressions.

e For some sub-expressions, we obtaifn :-)

273

ldea:

e Weuse D todetermine the values of expressions.

e For some sub-expressions, we obtaifn :-)

—

We must replace the concrete operators by abstracbperators
0% which can handle T :

T f a=Torb=T
a0 b =
aOdb otherwise

274

ldea:

e Weuse D todetermine the values of expressions.
e For some sub-expressions, we obtaifn :-)
—
We must replace the concrete operators by abstracbperators
0% which can handle T :
T f a=Torb=T
alfph =
aOb otherwise

e The abstract operators allow to defineaostracevaluation of
expressions:

[e]f : (Vars = Z') = Z'

275

Abstract evaluatioof expressions is like theoncretesvaluation — but
with abstract values and operators. Here:

[c]* D = ¢
[ex O] D = [e]f DO [es]* D

... analogously founaryoperators :-)

276

Abstract evaluatioof expressions is like theoncretesvaluation — but
with abstract values and operators. Here:

[c]* D = ¢
[ex O] D = [e]f DO [es]* D

... analogously founaryoperators :-)
Example: D={r+2,y+— T}

[+ +7]*D = [«]*D +* [7]* D
= 24F 7
= 9

[t —y]*D = 2 -FT
= T

277

Thus, we obtain the following effects of edgeq/ab]* :

[]* D = D
(L if 0=[e!D
[Pos (e)]# D = I°]
| D otherwise
(D if 0C[e]!D
Neg (e)]* D = -
INeg (<) | L otherwise
x = e]f D = D@ {xw [e]* D}
=MD = D& {rw T)
Mlei]=ex]*D = D

...Whenever D=#1)

278

At start wehave Dt ={z+— T |z € Vars}.

Example:

279

At start wehave Dt ={z+— T |z € Vars}.

Example:

aa B~ W N P

{r— T}
{r+— T}
{r+— T}
{2z +— T}
Lu{er— 7 ={r—T7}

280

The abstract effects of edgegk]* are again composed to the effects of
paths ==k, ... k. Dby:

[7]* = [k]fo...0o[k]f :D—D

|dea for Correctness: Abstract Interpretation
Cousot, Cousot 1977

281

Patrick Cousot, ENS, Paris

282

The abstract effects of edgegk]* are again composed to the effects of
paths == k... k. Dby:

[7)f = [k, JFo...0o[k]f :D—D

|Idea for Correctness: Abstract Interpretation
Cousot, Cousot 1977

Establish a description relationA between theoncretevalues and
their descriptions with:

xAa; N agCay — zAa

Concretization: ~va={z|zAa}
// returns the set of described values)

283

(1) Values: A CZxZ'
zAa Iff z=aVa=T

Concretization:

{a} if aCC T
Ta =
Z if a=T

284

(1) Values: A CZxZ'
zAa Iff z=aVa=T
Concretization:

{a} if aCC T
Ta =
Z if a=T

(2) Variable Assignments: A C (Vars = 7Z) x (Vars = Z")

pAD iff D#1L AN prEDx (xe Vars)

Concretization:

Do 0 if D=1
! (p|¥ze: (p2) A (D)} otherwise

285

Example: {rx—1ly— -7} A {z— T,y— -7}

(3) States:

A C (Vars = 7Z)x (N—=Z)) x (Vars = Z"),
(o) AD it pAD

Concretization:

{ 0 if D=1
D=
{(p,p) |Vx: (px) A(Dz)} otherwise

286

We show:

(*)

If

s A D

and

[7] s is defined, then:

(7] s) A ([7F* D)

7]

287

The abstract semantics simulates the concrete semantics

In particular:
[7] s € v ([7]* D)

288

The abstract semantics simulates the concrete semantics
In particular:

[x] s € 5 (=] D)

In practice this meanse.g, that D+ = -7 implies:

pr = =7 forall pe~yD
— prx = =7 for (p1,_) =|[n]s

289

To prove (%), we show for every edgek :

%]

S > 5

D > D1
[K]*

Then (x) follows by induction :-)

290

To prove (xx), we show for every expressiore :
(xx%) ([e]p) A ([e]*D) whenever p A D

291

To prove (xx), we show for every expressiore :
(xx%) ([e]p) A ([e]*D) whenever p A D

To prove (x x x), we show for every operator :

(z0y) A (F 0%y whenever z A 2% Ay A 3

292

To prove (xx), we show for every expressiore :
(xx%) ([e]p) A ([e]*D) whenever p A D

To prove (x x x), we show for every operator :

(z0y) A (F 0%y whenever z A 2% Ay A 3

This precisely was how we have defined the operatans :-)

293

Now, (xx) is proved by case distinction on the edge labelsb .
Let s=(p,u) A D.Inparticular, L#D : Vars —7Z'

Case |x =e:]:

pr = p&{r—=lelpt o= w
D, = Do{xrw—[e]fD}

— (p1, 1) A Dy

294

Case |x = Mlel;|:

p = pD{r—=pu(le]fr)} o= p
D = Dae{r—T}

= > (p1,11) A Dy

Case | Mley| = ey;|:

P = p = p®{feifp = [e]p}

— (p1, 1) A Dy

295

Case

Neg(e)|:

296

Case

Pos(e) |:

(,01,#1) = S

0 # [e]

A e]

— 0 # [€]

where:

P

D
D

—— | £ D, =D
— (p1,1) A Dy

297

\We conclude: The assertion () istrue :-))

The MOP-Solution:
D[] = | [Iz]* Dy |7 : start —* v}

where Drax=T (x € Vars) .

298

\We conclude: The assertion () istrue :-))

The MOP-Solution:
D[] = | [Iz]* Dy |7 : start —* v}

where Drax=T (x € Vars) .

By (%), we have for all initial states s and all program executions
m which reach v :

(Il s) A (D*[v])

299

\We conclude: The assertion () istrue :-))

The MOP-Solution
D[] = | [Iz]* Dy |7 : start —* v}

where Drax=T (x € Vars) .

By (%), we have for all initial states s and all program executions
m which reach v :

(Il s) A (D*[v])

In order to approximate the MOP, we use our constraint systeim

300

Example:

301

Example:

Ly
oy T T
110} T
2110 1
31 10| 1
4110 | 10
51 9 |10
6
7

302

Example:

Loy L1y
oy T | T | T]|T
L1 7|10 T
2011010 1 (T | T
310 1 (T | T
410110110 T | T
51N 9 (10 T | T
6 T 1T
7 T 1T

303

Example:

3

Loy LYy x|y
oy T T | T |T
10} 17|10 T
2011001 T | T
101 T | T
41110 [10 || T | T || ditto
51N 9 10y T | T
6 T 1T
7 T 1T

304

Conclusion:
Although we compute with concrete values, we fail to compute
everything :-(

The fixpoint iteration, at least, is guaranteed to terminate

For n»n program points and m variables, we maximally need:
n-(m-+1) rounds :-)

Caveat:

The effects of edge amot distributive!!!

305

Counter Example: f = [z =2z +y]’

let Dy = {r—2,y— 3}
= {r+—3,y— 2}

S
|

Dann f D, U f D {r—5y—=3tu{r—5y—2}
{r—5y— T}
{fr—T,y— T}
flr— T, y— T}

f(D1UDs)

“h

-((

306

We conclude:

The least solution D of the constraint system in general yields only an
upper approximatioof the MOP, i.e.,

D*[v] T D]

307

We conclude:

The least solution D of the constraint system in general yields only an
upper approximatioof the MOP, i.e.,

D*[v] T D]

As an upper approximation, D|v] nonetheless describes the result of
every program execution = which reaches v :

([7] (p, 1)) A (Dv])

whenever 7] (p,u) isdefined ;-))

308

Transformation 4:

by
0.

Removal ofDeadCode

[lab]*(Dlu]) = L

309

O ®

Transformation 4 (cont.): Removal ofDeadCode

1 #Dlu]=D
[e]* D =0

Neg(e) ﬁ

1L #Dlu]=D
[e]* D ¢ {0, T}

Pos(e) ﬁ

310

Transformation 4 (cont.): Simplified Expressions

1 #Dlu]=D
[e]! D = ¢

311

Extensions:

e Instead of complete right-hand sides, also subexpressmurid be
simplified:

{z—=T,y—5}

r+ (3xy) = x+ 15

... and further simplifications be applied, e.g.:

x * 0
T * 1
x + 0
x — 0

LIl

312

So far, the information ofonditionshas not yet be optimally
exploited:

if (z==17)
y=x+3;
Even if the value of + before thaf statement is unknown, we at

least know that » definitely has the value 7 — whenever the
then-part isentered :-)

Therefore, we can define:

i

D if [v==¢)!D=
[Pos(z ==e)]*!D=< 1 if [r==¢c]*D=0
| Ds otherwise

where
D =D®{zw— (Dx[e]* D)}

313

The effect of an edge labeled\eg (= # ¢) is analogous :-)

Our Example:

314

The effect of an edge labeledNeg (= # ¢

N——

IS analogous :-)

Our Example:

315

The effect of an edge labeled\eg (= # ¢) is analogous :-)

Our Example:

316

1.5 Interval Analysis

Observation:

e Programmers often use global constants for switching dghgg
code on/off.

—

Constant propagation is useful-)

e In general, precise values of variables will be unknown —hpps,
however, a tightnterval!!!

317

Example:

for (1 = 0;i < 42;14++)
if (0<iAi<42){
A=A+
M[A]| =i
}
// A start address of an array
/| if the array-bound check

Obviously, the inner check is superfluous)

318

|dea 1:

Determine for every variablex an (as tight as possibie) interval of
possible values:

I=A{[l,u] |l e ZU{—o0},u € ZU{+o0},l < u}

Partial Ordering:

11, u1] E [l2, usg] Iff lo <11 ANup < ug

319

Thus:

[ll, ’U,l] LI [lg, UQ] = [ll [lg, U1 LI UQ]

I o
ly U9
:—

320

Thus:

[ll, ’Lbl] LI [ZQ, UQ] = [ll [lQ, U1 LI UQ]
[ll, ul] [[ZQ, UQ] = [ll L lQ, Uyl UQ] WheneVE(ll L lg) < (u1 [’LLQ)

ll Uq
:_
lg U2

321

Caveat:

— I Is notacomplete lattice :-)

— T hasinfinite ascending chaine.g.,

0,0z 0,1l [-1,1]C [-1,2] ...

322

Caveat:

— I Is notacomplete lattice :-)

— T hasinfinite ascending chaine.g.,

0,0z 0,1l [-1,1]C [-1,2] ...

Description Relation:

ALy iff I<z<uw

Concretization:

yhul={2€Z|l<z<u}

323

Example:

710,71 = {0,...,7}
v[0,00] = {0,1,2,...,}
Computing with intervals: Interval Arithmetic
Addition:
[ll, ul] —i—]j [lg, ’LLQ] = [ll -+ lQ, Uy + ’LLQ] where
— X0+ _ = —
+oo+_ = 4o

-)

// —oo+ oo cannotoccur :-)

324

Negation:

v = [~u,—I]

Multiplication:
(1, ui] #* [lo,us] = [a,b] where
a = lils M l{us Muyls Muqgus
b = [l Uljus U uily U ujus
Example:
0,2] #* [3,4] = 10,8]
[—1,2] #* [3,4] = [—4,8]
[—1,2] #* [-3,4] = [-6,8]
[—1,2] #* [-4,-3] = [-8,4]

325

Division: [, u] /* [ly, us] = [a,b]

e |If O Iisnotcontained in the interval of the denominator, then:

a = ll/lzﬂll/UQﬂul/lzﬂul/UQ
= ll/lzl_lll/ugl_lul/lgl_lul/uz

o Ui [, <0 <wusy,wedefine:

la,b] = |[—o00, +o0]

326

Equality:

[llaul] ==/ [lg,Ug] = 9

1,1]
0,0]
0,1]

327

If llzulzlgzﬂg
|f U1<l2\/U2<l1

otherwise

Equality:

:1, 1 If ll — U1 — 12 = U2

11, ur] =="[lg, ug) = < 0,0] if wu <laVuy <l

0,1] otherwise

Example:
42, 42]=="[42,42] = [1,1]
0,7]==%[0,7] = [0,1]
[1,2]==*%[3,4 = [0,0

328

Less:

[, ur] <P [l uo]

329

1, 1]
0,0)
0,1]

If u < lQ
If U9 S ll
otherwise

Less:

:1, 1 If U < lg
[, ur] <P [lo,ug) = 4 0,0] if wuy <[y
0,1] otherwise

Example:
[1,2] <#[9,42] = [1,1]
0,7] < [0,7] = [0,1]
3,4] < [1,2] = [0,0]

330

By means of I we construct the complete lattice:

Dy = (Vars — 1),

Description Relation:

p A D Iff D#1 AN VaxeVars: (pxr) A (D x)

Theabstract evaluatioaf expressions is defined analogously to constant
propagation. We have:

([e]l p) A ([e] D) whenever p A D

331

The Effects of Edges:

:F D
v =e]f D
v = M[e[;]" D

[Pos (e)]* D

Mle,] = 62;]]“) —

D
D @ {z +— [e]* D}
Dao{r— T}

1 if 0,0 =[e]* D
D otherwise

D if [0,0]C [e]*D
L

otherwise

..giventhat D # L

332

)

Better Exploitation of Conditions:

[Pos (e)]* D

{J_ if [0,0] =[e]* D

N\

D, otherwise

where :

D®{r— (Dx)M[—o0,ul}

D@ {r— (Dx)n|l, o0}

333

if e =2a

if e =2a

<
>

(Da{r— (Do) ([e]fD)} ife=r==c

Better Exploitation of Conditions (cont.):

S s

D, otherwise

where :

(Da{r— (Do) ([e]fD)} fe=a # e
Dy = D@ {r— (Dx)N[—oc0,ul} ife=x > e, [el]
D& {r— (Dx)N|l, 00} If e =2 < e, [eq]

334

335

cOo J O Ot B W N o= O

_ o O O o O

42

+00
42
41
41
41
41
42

42

Problem:

— The solution can be computed with RR-iteration —
after about 42 rounds:-(

— On some programs, iteration magverterminate :-((

ldea 1. Widening

e Accelerate the iteration — at th®ize of imprecision :-)

e Allow only a bounded number of modifications of valués
... Inthe Example:

e dis-allow updates of interval bounds inZ ...
— a maximal chain:

13,17] C [3, +o0] C |—00, 9]

336

Formalization of the Approach:

Let x; O fi(zy,...,2,), i=1,....n (1)

denote a system of constraints oveld where the f; arenot
necessarilynonotonic.

Nonetheless, aaccumulatingteration can be defined. Consider the
system of equations:

in:.flfiufi(ﬁlfl,...,ﬁlfn), ?::1,...,7’1, (2)

We obviously have:

(a) z Isasolutionof(l)iff z Is a solution of(2).
(b) Thefunction G :D"™ — D™ with

Gy, xn) = Wi,y Yn), Vi =x U fi(xg, ... 2p)
IS increasingi.e., zrC G forall zeD".

337

(€)

(d)
(€)

The sequence G* L, k>0, isan ascending chain:

lCcGLC...CcGFLC ...

If G"L=G""'L=y,then y isasolutionof(l).

If DD has infinite strictly ascending chains, th@nis not yet
sufficient...

but we could consider the modified system of equations:
v, = fi(ry,...,x,), 1=1,....n (3)
for a binary operationvidening
4 :D?* > D with v Uvy T v oy

(RR)-iteration for(3) still will compute a solution of1) :-)

338

... for Interval Analysis:

e The complete latticeis: Dy = (Vars — 1),

e thewidening U isdefined by:

1ldD = DUl =D and for D, # 1L # D

(Dl 4 DQ) r = (Dl QIZ') - (D2 QIZ') Where
[ll, Ul] 4 [12, Ug] = [l, U] with
(L 0 L <l

—oo otherwise

[= <

Uq If U1 Z U9

+oo otherwise

\

—— 4 Is not commutative!!

339

Example:

0,2]4(1,2] = [0,2]
172l=|072 — :_0072]
1,5]4(3,7] = [1,+o0]

— Widening returns larger valuesore quickly

— It should be constructed in such a way that termination o&iten
IS guaranteed :-)

— For interval analysis, widening bounds the number of iteratby:

Hpoints - (142 - # Vars)

340

Conclusion:

e Inorder to determine a solution of(1) over a complete lattice
with infinite ascending chains, we define a suitable wideaindgj
then solve (3) :-)

e Caveat: The construction of suitable widenings islark art!!!

Often 4 Is choserdynamicallyduring iteration such that

— the abstract values do not get toomplicategl

— the number of updates remains bounded ...

341

Our Example:

342

o N O Ot = W NN = O

+00

o O O O O

Our Example:

343

o N O Ot = W NN = O

o O O O O

+00

o O O O O

_ O O O o O

42
42

+00
+00
+00
+00
+00
+00
+00
+00
+00

di

tto

... obviously, the result is disappointing-(

|dea 2:

In fact, acceleration with LU need only be applied aufficiently many
places!

Aset [Iisaloop separatgnf every loop contains at least one point
from [:-)

If we apply widening only at program points from such a sét, then
RR-iteration still terminate&!

344

In our Example:

Neg(i < 42) Pog: < 42)

Pog0 < i < 42)
A1:A—|—i;

345

{1} or:
{2} or:
13}

The Analysis with I = {1} :

346

o N O Ot = W N = O

+00

o o O O O

_ o O O o O

42

+00

+00
41
41
41
41
42

+00

di

tto

The Analysis with I = {2} :

1 4
[U [U [U
0| —oo | 400 || =00 | +00 || —00 | +00
1 0 0 0 1 0 42
2 0 0 0 | +oo 0 | +oo
3 0 0 0 41 0 41
4 0 0 0 41 0 41 || ditto
D 0 0 0 41 0 41
6 1 1 1 42 1 42
7 1L 42 | +oo || 42 | +o0
8 1L 42 42

347

Discussion:

e Both runs of the analysis determine interesting infornratio-)

e Therunwith I ={2} provesthatalways: =42 after
leaving the loop.

e Onlytherunwith 7 ={1} finds, however, that the outer check
makes the inner check superfluous(

How can we find a suitable loop separatar???

348

ldea 3: Narrowing

Let z denote any solutionof (1), i.e.,
ngfzga izl:"'an

Then for monotonic f;,

// Narrowinglteration

349

¢ J Fg J F?x 3...3 FFg 3.,

ldea 3: Narrowing

Let 2z denote any solution of (1), i.e.,
Q?ngzﬁ, izl,...,n

Then for monotonic f;

¢ J Fg O F?x 3...0 FFae O...

// Narrowinglteration

Every tuple F*z isasolutionof (1) :-)
—

Termination is no problem anymore:
we stop whenever we want:-))

// The same also holds for RR-iteration.

350

Narrowing Iteration in the Example:

351

o N O Ot = W NN = O

o O O O O

42
42

+00
+00
+00
+00
+00
+00
+00
+00
+00

Narrowing lteration in the Example:

352

o N O Ot = W NN = O

o O O O O

42
42

+00
+00
+00
+00
+00
+00
+00
+00
+00

_ O O O o O

42

+00

+00
41
41
41
41
42

+00

353

Narrowing lteration in the Example:

o N O Ot = W NN = O

o O O O O

42
42

+00
+00
+00
+00
+00
+00
+00
+00
+00

_ O O O o O

42

+00

+00
41
41
41
41
42

+00

o O O O O

42

+00
42
41
41
41
41
42

42

Discussion:

We start with a safe approximation.
We find that the inner check is redundant)

We find that at exit from the loop, always: = 42 :-))

b

It was not necessary to construct an optimal loop separatgy))

Last Question:

Do we have to accept that narrowing may not termirrate

354

4.1dea: Accelerated Narrowing

Assume that we have a solutionx = (xy,...,x,) ofthe system of
constraints:

v, Jfi(xy,...,x,), i=1,...,n (1)
Then consider the system of equations:

v, = o fi(ry,...,x), 1=1,...,n (4)

Obviously, we have for monotonicf; : Hfxz = Ffg)

where H (zq,...,2,) = (W1, Yn) s, Yi=x; 1 fi(x1,...,2p).

In (4), we replace M durch by the novel operator™ where:

CI/1|_|CL2 E CL1|=|CL2 E ay

355

... for Interval Analysis:
We preserve finite interval bounds-)

Therefore, 1 AD = DAL = 1 andfor D # L # D

(Dl i Dg) r = (Dl ZC) A (DQ ZC) Where
[ll, ul] i [12, UQ] = [l, U] with
l2 If ll = —
| = ¢ |
[y otherwise

s If uy = o0

| v otherwise
—— [IS not commutative!!

356

Accelerated Narrowing in the Exam

nle:

o N O Ot = W NN = O

o O O O O

42
42

+00
+00
+00
+00
+00
+00
+00
+00
+00

_ O O O o O

42

+00

+00
41
41
41
41
42

+00

o O O O O

42

+00
42
41
41
41
41
42

42

Discussion:

— Caveat: Widening also returns for non-monotonicf; a
solution. Narrowing is only applicable to monotonig; !

— In the example, accelerated narrowing already returnsghmal
result :-)

— Ifthe operator 7 only allows for finitely many improvements
of values, we may execute narrowing until stabilization.

— In case of interval analysis these are at most:

#Hpoints - (1 4+ 2 - # Vars)

358

1.6 Pointer Analysis

Questions:

— Are two addressesossiblyequal?

— Are two addressesefinitively equal?

359

1.6 Pointer Analysis

Questions:
— Are two addressesossiblyequal? May Alias
— Are two addressesefinitively equal? Must Alias

—— Alias Analysis

360

The analyses so favithoutalias information:

(1) Available Expressions:

e Extendthe set Expr of expressions by occurring loads\/|e] .

e Extend the Effects of Edges:

z =]t A = (AU gep)\Lapr,
v =Mle[J]PA = (AU{e, M[e]})\Ezpr,
Mley] =ex]FA = (AU {ei,ea})\Loads

361

Values of Variables:

(2)

e Extendthe set Expr of expressions by occurring loads\/|e] .

e Extend the Effects of Edges:

[v = Mlel PV e

[Mlei] = ex;]PV €

362

{x} if ¢ = Mle
0 if ¢ =¢

| Ve\{z} otherwise

(@ if ¢ = {61,62}

| V¢ otherwise

(3) Constant Propagation:

e Extend the abstract state by an abstract staré

e Execute accesses to known memory locations!

(D@ {x— Mal, M) if

[« = Mle}J (D, M) = { [(JfD=acT

(Do {r— T} M) otherwise

(D, M @ {a [e.]*!D}) if

[Mlei] = ex]* (D, M) =« [P D=aC T
(D, 1) otherwise where
Ta = T (a € N)

363

Problems:

e Addresses are fromN -(
There areno infinite strictly ascending chains, but
e Exact addresses at compile-time amezlyknown :-(

e Atthe same program point, typically different addresses ar
accessed.

e Storing at arunknownaddress destroys all informationM :-(

—— constant propagation fails:-(

—— memory accesses/pointead precision :-(

364

Simplification:

e \We consider pointers to the beginningbcks A which allow
indexed accessesAl|i| :-)

e \We ignore well-typedness of the blocks.

° New statements:

r=new(); // allocation of a new block
r = ylel; // indexed read access to a block
yler] = es; // indexed write access to a block

e Blocks are possibly infinite :-)

e For simplicity, all pointers point to the beginning of a bioc

365

Simple Example:

366

The Semantics:

367

The Semantics:

368

The Semantics:

369

The Semantics:

370

The Semantics:

371

More Complex Example:

r = Null;
while (¢ # Null) { Neg(t # Null)
h=t;
t = t[0];
h[0] = r;
r=h;

372

Concrete Semantics:

A store consists of &nite collection of blocks.

After h new-operations we obtain:

Addr, = {refa|0<a<h} // addresses
Val, = Addr,UZ // values
Storg, = (Addr, x Ng) — Valy, // store
Stateg = (Vars — Valy) x Storey, // states

For simplicity, we set:. 0 = Null

373

Let (p,u) € Statey, . Then we obtain for the new edges:

[z =new():] (p,n) = (p&{z > refh},
u@ {(ref hyi) = 0 i € Nob)

[z =ylel:] (o) = (p@{r—=pnlpy,lelp)}, 1)
[yled] = exs] (o) = (pop® {(py, [e:] p) = [e2] p})

374

Caveat:

This semantics ioo detailled in that it computes withbsolute
Addresses. Accordingly, the two programs:

x = new(); y = new();
y = new(); r = new();

arenotconsidered as equivalen?

Possible Solution:

Define equivalence onlyp to permutation of addresses-)

375

Alias Analysis 1. ldea:

e Distinguishfinitely manyclasses of blocks.

e Collect all addresses of a block into one set!

e Use sets of addresses as abstract values!

—— Points-to-Analysis

Addrf = Fdges

Val _ 9Addrt

Storé = Addr* — Val*

Staté = (Vars — Val*) x Store®

// complete lattice!!

376

//
//
//
//

creation edges
abstract values
abstract store

abstract states

... Inthe Simple Example:

et Wi et

/N /N N

— AN N

PN e R e R S N

(- —

N——" N—"

— =

et N et N et

~—~ ~~

AN AN AN

=D = « -

— =

N— N

— N

et N e Bl e Wi et

/N N N /N

—— == =

x:@:c/”ﬁ/

o o o O

N— N~ N~

— N

O —~ N o <A
~]

D .

2 = s
(@) @)

c c I I

377

The Effects of Edges:

M)

(D,
(D, M)

(D® {x— Dy}, M)

(D@ {x— 0}, M) : e & Vars
(D@7 = 1w, 0)}), M)

(D& {x—=U{M(f)|feDy}t}, M)
(D,Me{f=MfUDz)|feDy})

378

Caveat:

e Thevalue Null has been ignored. Dereferencing dfiull or
negative indices are not detected(

e Destructive updateare only possible for variables, not for blocks in
storage!

—— no Information, if not all block entries are initialized loeé
use -((

e The effects now depend on the edge itself.
The analysis cannot be proven correct w.r.t. the referemcmstics
=
In order to prove correctness, we fingstrumentthe concrete

semantics with extra information which records where albloas
been created.

379

We computegoossiblepoints-to information.

From that, we can extractay-aliasinformation.

The analysis can be rather expensive — without finding verghmu
=

Separate information for each program point can perhaps be
abandone@?

380

Alias Analysis 2. ldea:

Compute for each variable and address a value which safplpamates
the values at every program point simultaneously

... Inthe Simple Example:

381

Each edge (u, lab,v) gives rise to constraints:

lab Constraint

T =Y Plz] 2 Py

v =new(); | Plz] 2 {(u,v)}

v=uylel: | Plz] 2 WPl S € P}

yled] =a; | Plf] 2 (feP)?P[x] : 0
forall f e Addr?

Other edges have no effect-)

382

Discussion:

e The resulting constraint system has siz€ (% -n) for &
abstract addresses and edges :-(

e The number of necessary iterations i&) (L (/ + # Vars)) ...
e The computed information is perhaps still too precisd!?

e Inorder to prove correctness of a solution” € States* we show:

[¥]

383

Alias Analysis 3. Idea:

Determineoneequivalence relation = on variables » and memory
accessesy|| with s;=s, whenever s;,s, may contain the
same address abme uq, us

... Inthe Simple Example:

= {{=},
{y, 2]},
{yl1}}

384

Discussion:

1

We compute &ingle informatiorfo the whole program.

The computation of this information maintaipartitions
W:{Pl,...,Pm} :')

Individual sets P, are identified by means ofpresentatives
pi € .

The operations on a partitionr are:

find (m, p) = p; if pe P,
// returns the representative

union (Wapilvp’iz) — {Pll U PLQ} U {PJ | t #] 7£ ZQ}
// unions the represented classes

385

If 21,2, € Vars are equivalent, then alsor;|| and x5]]
must be equivalent :-)

If P,N Vars # (), then we choose p; € Vars . Then we can
apply union recursively:

union” (m,q1,q2) = let p;;, = find (7, q1)
pi, = find(m,¢q)
in if p;, ==p;, then 7

else let 7 = union (7, p;,, Pi,)

in if p;,, pi, € Vars then

union™ (7, pi, [|, Pis| |)

else 7

386

The analysis iterates over all edgasce

m =} {zl]} | v € Varsk
forall k= (_,lab,) do m = [lab]*m;

where:

[z = y;]* = union” (m,x,y)
[+ = ylel:]*m = union® (m,z,y[])
[yle] = :]Fm = union® (m,z,y[])
lab]* = 7 otherwise

387

... Inthe Simple Example:

H{ah vy 7]
H{ah vy 7]
H{ah vy 7]

et

oAy ol

I3 w3}
I3 w3}
I3 w3}

1, o]y

Ay

Ayl

388

... Inthe More Complex Example:

WAk rb At AL S
(2,3) | ALty (LRl 3
3, 4) | (Ut ALt A
(4,5) st Wt)y
(5,6) Whtyrs it}

389

Caveat:

In order to find something, we must assume that variablesréadds
always receive a value before they are accessed.

Complexity:

we have:
O(# edges + # Vars) calls of union”
O(# edges + # Vars) calls of find
O(# Vars) calls of union

—— We require efficientUnion-Find data-structure :-)

390

ldea:

Represent partition of U as directed forest:

e For uweU areference Flu| tothe fatheris maintained,

e Roots are elementsu with Flu] = u .

Single trees represent equivalence classes.

Their roots are their representatives ...

391

©
()
GGl

— find (w,u) follows the father references:-)

— union (7, uy, us) re-directs the father reference of one, ...

392

0|1/ 2 3 4|5| 6| 7

1113 1| 4| 7| 5 7

393

0|1/ 2 3 4|5| 6| 7

1113 1) 7| 7] 5 7

394

The Costs:

Strategy to Avoid Deep Trees:

e Putthesmallertree below thévigger!

e Use find to compress paths.

395

0|1/ 2 3 4|5| 6| 7

1113 1| 4| 7| 5 7

396

0|1/ 2 3 4|5| 6| 7

1113 1) 7| 7] 5 7

397

0|1 2|3/ 4|5| 6|7
5| 13| 1| 7| 7| 5 3

0|1 2|3/ 4|5| 6|7
5| 13| 1| 7| 7| 5 3

399

%

)

0|1 2|3/ 4|5| 6|7
5| 13| 1| 7| 7| 5 3

0|1/ 2 3 4|5| 6| 7
5|13 1] 1] 7] 1] 1

Robert Endre Tarjan, Princeton

403

Note:

e By this data-structure, »n union- und m find operations
require time O(n +m - «a(n,n))
// « theinverse Ackermann-function:-)

e For our application, we only must modifyunion such that roots
are from Vars whenever possible.

e This modification does not increase the asymptotic run-time

Summary:

The analysis is extremely fast — but may not find very much.

404

Background 3: Fixpoint Algorithms

Consider: v, 3 fi(xy,...,x,), i=1,...,n

Observation:

RR-Iteration isnefficient

— We require a complete round in order to detect terminatiof

— Ifin some round, the value of just one unknown is changed the
we still re-compute all :-(

— The practical run-time depends on the ordering on the vigsab

-~(

405

ldea: Worklist Iteration

If an unknown z; changes its value, we re-compute all unknowns
which depend on z; . Technically we require:

— thelists Dep f; of unknowns which are accessed during
evaluation of f;. From that, we compute the lists:

[[QZL] — {Ij | €T; € D€p f]}
l.e., alistofall z; which depend on the value ofz; ;

— thevalues Dlz;| ofthe z; whereinitially Dlz;| = 1;

— alist W of all unknowns whose value must be recomputed ...

406

The Algorithm:

W = append [[x;| W;

W: [LUl,...,LEn];

while (W 7 []) {
x; = extractW;
t = f;eval
if (t £ Dlxi]) {

Dlz;] = Dlx;]Ut;

f

f

where : eval x; = Dlzj]

407

Example:

=
U

{a} Uxs
T3 M {a, b}
I U {C}

S
U

&
U

I1 {333}

I3 {$17$2}

408

Example:

ry 2 {a}Uxs
) 2 T3 M {CL, b}
X3 2 U {C}
1
x1 | {xs}
i) (b
xs | {1, 22}

Dlx1] | D|xs] | D]xs] W

0 0 0 T1], To, T3
{a}) 0 T |, T3
{a}) 0 T3
{a} 0 | {a,c} T, o
{fa,c} | 0 |{a,c} T3], To
{fa,c} | 0 |{a,c} To

14, ¢}

14}

14, ¢}

409

Theorem

Let z; J fi(x1,...,2,), i=1,...,n denotea constraint system
over the complete latticelD of height 5 > 0.

(1) The algorithm terminates after at most - V' evaluations of
right-hand sides where

N — i(l + # (Dep 1)) // size of the system :-)

(2) The algorithm returns a solution.
Ifall f; are monotonic, it returns the least one.

410

Proof:

Ad (1):

Every unknown z; may change its value at most: times :-)
Each time, the list /|x;] isaddedto 1V .

Thus, the total number of evaluations is:

n+ > (b # (zi]))
n+he 3 # Uz)])
n+h-y i #(Dep fi)
h- 3 imi(L+# (Dep fi))
h-N

IA

411

Ad (2):

We only consider the assertion for monotonig; .

Let D, denote the least solution. We show:

e Dylz;] 3 Dz (all the time)
o Dlx;| 2 fieval — z; €W (at exit of the loop body)
e On termination, the algo returns a solution))

412

Discussion:

e Inthe example, fewer evaluations of right-hand sides ayeired
than for RR-iteration :-)

e The algo also works for non-monotonicf; :-)
e For monotonic f;, the algo can be simplified:

Dl|z;] = Dlz;]Ut;| == []]

e In presence ofvidening we replace:

e In presence oflarrowing we replace:

Dlz;| = D|x;)Ut;| == |Dl|x;] = D|x;]Ft;

... and update the testta_ D|x,].

413

Warning:

e The algorithm relies on explicit dependencies among theowks.

So far in our applications, these wegkvious This need not always
be the case :-(

e We need somsetrategyfor extract which determines the next
unknown to be evaluated.

e Itwould be ingenious if we always evaluati$t and then accessed
the result ... :-)

— recursive evaluation.

414

ldea:

— If during evaluation of f; , an unknown z; Is accessed, z;
Is first solved recursively. Thenz; isaddedto [|x;] :-)

eval z; z; = solvexzy;
] = Il Ui
Dlz;l;
In order to prevent recursion to descend infinitely, a sétable
of unknown is maintained for whichsolve just looks up their

values :-)
Initially, Stable =0 ...

415

The Function solve :

solve x; = if (x; & Stable) {

Stable = Stable U {x;};

t = f; (eval x;);

it (¢t £ Dlxi]) {
Dlx;] = Dlx;] Ut
W =Ix]; Iz = 0;
Stable = Stable\W
app solve WW;

416

Helmut Seidl, TU Minchen ;-)

417

Example:

Consider our standard example:

=
U

{a} U I3
T3 M {CL, b}
r1 U{c}

S
U

&
U

A trace of the fixpoint algorithm then looks as follows:

418

solve xo eval o x3 solve x3 eval 3 x1 solve x1 eval 1 x3 solve x3

stable!
Izs] = {z1}
= 0
Dlz1] = {a}
Iz] = {z3}
= {a}
Dlxs] = {a, c}
Ixzs] =0
solve x1 eval x1 =3 solve x3
stable!
Izs] = {z1}
= {a,c}
D[z1] = {a, c}
I[z1] =0
solve x3 eval 3 1 solve x1
stable!
Izy] = {=s}
= {a,c}
ok

Izs] = {z1,z2}
= {a,c}

Dlxz] = {a}

419

Evaluation starts with amterestingunknown z; (e.g., the
value at stop)

Thenautomaticallyall unknowns are evaluated which influence
X; :-)

The number of evaluations is often smaller than during wsirkl
iteration ;-)

The algorithm is more complex but does not rely on
pre-computatiorf variable dependencies)

It also works if variable dependencies during iterattbiange!!!

— Interprocedural analysis

420

Warning Il

e The recursive algorithm may not evaluate right-hand sitdaesizly.

e Evaluations of right-nand sides may be continued which lheaen
started with out-dated data— Iin some cases, it may fail to
determine thé=astsolution!?!

ldea:

e Identify outdated computations
e Abort!!

421

ldea (cont.):

— Record when evaluation of a variable has started by meanseif a
Called

— Whenever during evaluation of a rlis we detect that no longer
x; € Cualled, we abort..

eval z; x; = solvex;;
if (z; & Called) raise Abort;
;) = I Uiz}
Dla;);

— nitially, Called =0 ...

422

The new Function solve :

solve x; = if (x; & Stable) {
Stable = Stable U {x;}; Called = Called U {x;};
t = try f;(eval x;)
with Abort — Dlx;];
Called = Called\{z;};
if (¢ £ Dlxy]) {
Dlx;] = Dlx;] Ut;
W =1lz;]; Iz =0
Stable = Stable\W;
app solve W;

423

Aleks Karbyshev, TU Mlnchen:-))

424

1.7 Eliminating Partial Redundancies

Example:

// r+ 1 is evaluated on every path...
// onone path, however, even twice-(

425

Goal:

426

ldea:

(1)

(2)

(3)

Insert assignments. = ¢; such that is available at all points
where the value of is required.

Thereby spare program points whereither is alreadyvailable
or will definitely be computeth future.

Expressions with the latter property are caledy busy
Replace the original evaluations©by accesses to the variable

B we require a novel analysis:-))

427

An expression ¢ Is calledbusyalong a path =, if the expression ¢
IS evaluated before any of the variables € Vars(e) is overwritten.

// backward analysis!

e Is calledvery busyat u,if e Is busy along every path
mu—" stop .

428

An expression ¢ Is calledbusyalong a path =, if the expression ¢
IS evaluated before any of the variables € Vars(e) is overwriten.

// backward analysis!

e Is calledvery busyat u,if e Is busy along every path
mu—" stop .

Accordingly, we require:

Blu| = ﬂ{ﬂ’ﬂ]]ﬂ 0| 7:u—"stop}

where for 7#=k;... Lk, :

429

Our complete lattice is given by:

B — 2Ea:p7“\Va7’s with E _ 2

The effect [k]* ofanedge k = (u,lab,v) only depends on lab,
i.e., [k]* = [lab]* where:

BipE = B

[Pos(e)]* B = [Neg(e)]* B = BU{e}
z=¢e]'B = (B\Ezpr,) U{c}

v =Ml[e[[PB = (B\Ezpr,)U{c}

(Mle)] =ex]* B = BU{ey, e}

430

These effects are dallistributive Thus, the least solution of the constraint
system yields precisely the MOP — given thatp is reachable from
every program point :-)

Example:

{y1 +ya}
{z+1}
{z+1}
{z+1}
{z+1}

O || W | &0 O |

431

A point « is calledsafefor e,if ee€ Alu]UB[u|,ie., e s
either available or very busy.

ldea:

e We insert computations ofe such that ¢ becomes available at
all safe program points :-)

e Weinsert], = ¢; after every edgéu, lab, v) with
e € Bo\[laby(Alu] U Blu))

432

Transformation 5.1:

ilab ——> lab

T.=e; (e € B\[lab]’ (Afu] UBu)))

\@ T.=¢e; (e €B[v])

433

Transformation 5.2:

// analogously for the other uses of

// at old edges of the program.

434

Bernhard Steffen, Dortmund Jens Knoop, Wien

435

In the Example:

A B
0) 0
1 0 0
2 0 {x + 1}
3 0 {z+1}
4 {x + 1} {z + 1}
5 0 {z+1}
6 {z+1} {y1 + 2}
T {z+ 1,5 + 1} 0

436

In the Example:

A B
0) 0
1 0 0
2 0 {x +1}
3 0 {z+1}
4 {x + 1} {z + 1}
5 0 {z +1}
6 {z+1} {y1 + 2}
T {z+ 1,5 + 1} 0

437

Im Example:

A B
1o 0 0
1 0 0
2 0 {x +1}
3 0 {z+1}
4 {x + 1} {z + 1}
5 0 {z +1}
6 {z+1} {y1 + 2}
T {z+ 1,5 + 1} 0

438

Correctness:

Let =« denote a path reachingy after which a computation of an
edge with ¢ follows.

Then there is a maximal suffix ofr such that for every edge
k = (u,lab,u") inthe suffix:

e € [lab]*(Alu] U Blu))

AVvB AVB AvB AVB B

O—0O~0~-0~0~®

439

Correctness:

Let =« denote a path reachingy after which a computation of an
edge with ¢ follows.

Then there is a maximal suffix ofr such that for every edge
k = (u,lab,u") inthe suffix:

e € [lab]*(Alu] U Blu))

In particular, no variable in ¢ receives a new value:-)

Then 7, =e¢; Isinserted before the suffix :-))

R

440

We conclude:

e Whenever the value ofe isrequired, ¢ is available :-)

= correctnes®f the transformation

e Every T = e;which isinserted into a path corresponds to an
which is replaced with 7T -))

— non-degradationf the efficiency

441

1.8 Application: Loop-invariant Code

Example:

for (i = 0;i < n;i++)
ali] = b+ 3;

// The expression b + 3 is recomputed in every iteration:-(
// This should be avoided:-)

442

The Control-flow Graph:

443

Warning: 7 =5+ 3; may not be placetieforethe loop:

—— There is nadecentplace for 7T'=0b0+3;

444

ldea: Transform into a do-while-loop ...

445

...nowthereisaplacefor T'=¢; :-)

446

Applicationof T5 (PRE):

447

J O Ot = W NN = O

=S S|~

{b+ 3}
{b+ 3}
{b+ 3}
{b—+ 3}

S S S =T =Y

Applicationof T5 (PRE):

448

J O Ot = W NN = O

=S S|~

{b+ 3}
{b+ 3}
{b+ 3}
{b—+ 3}

S S S =T =Y

Conclusion:

e Elimination of partial redundancies may move loop-invarieode
out of the loop :-))

e This only works properly for do-while-loops :-(

e To optimize other loops, we transform them intado-while-loops
before-hand:

while (b) stmt —— if (b)
do stmt
while (b);

— Loop Rotation

449

Problem:

If we do not have the source program at hand, we must re-cmtstr
potential loop headers;-)

— Pre-dominators

uw pre-dominates v , if every path = : start —* v contains u. We
write: u = v.

“=" Is reflexive, transitive and anti-symmetric:-)

450

Computation:

We collect the nodes along paths by means of the analysis:

]P):2N0d€8 C — O

) p— =

(v P = PU{v}

Then the set P|v] of pre-dominators is given by:

Plv] = ﬂ{[[ﬂ]]ﬂ {start} | m: start —* v}

451

Since [k]* are distributive, the P[v] can computed by means of
fixpoint iteration :-)

Example:
(0) P
0 10}
(1) RS
@ %) 21 {0,1,2}
3| {0,1,2,3}
(3 414{0,1,2,3,4}
; 50 {0,1,5)

452

The partial ordering =" inthe example:

© P
0 {0}
(L 1l {01}
(5) 2 21 {0,1,2}
31 {0,1,2,3}
® 11{0,1,2,3,4}
(4) 50 {0,1,5}

453

Apparently, the result is iee :-)

In fact, we have:

Theorem:

Every node v has at most one immediate pre-dominator.

Proof:

Assume:

there are wu; # u, which immediately pre-dominatev.
If w, = uy, then w«; notimmediate.

Consequently, u,,u, are incomparable :-)

454

Now for every = : start —* v .

T = T 9 with T ¢ start —* uy
Tyt U — U

If, however, u;,u, areincomparable, then there is pathstart —* v
avoiding wus :

455

Now for every = : start —* v .

T = T Ty with 1 : start —* uy
To T Uy —* v

If, however, u.,u, areincomparable, then there is pathstart —* v
avoiding wus :

456

Observation:

The loop head of avhile-loop pre-dominates every node in the body.

A back edge from the exit« to the loop head v can be identified
through
v € Pluj

Accordingly, we define:

457

Transformation 6:

N P Pl P
eg 0s(e u%v e Pl] eg(e) 0s(e
Neg(e) Pos(e ?

We duplicate the entry check to all back edges)

458

... Inthe Example:

459

... Inthe Example:

0,1,2,3,4,5,6

460

... Inthe Example:

0,1,2,3,4,5,6

461

... Inthe Example:

462

Warning:

There arainusualoops which cannot be rotated:

Q Pre-dominators: @

463

... but alsaccommon onesvhich cannot be rotated:
O (0)
0 @

& ©
3 (3
A (4)

Here, the complete block between back edge and conditiongd ghould
be duplicated :-(

464

... but alsaccommon onesvhich cannot be rotated:
O (0)
T @

®& ©
3 (3
A (4)

Here, the complete block between back edge and conditiongd ghould
be duplicated :-(

465

... but alsocommon onesvhich cannot be rotated:

& ; @.e

4 O~@

Here, the complete block between back edge and conditiongd ghould
be duplicated :-(

466

1.9 Eliminating Partially Dead Code

Example:

x4+ 1 need only be computed along one path(

467

ldea:

468

Problem:

e The definition = =¢; (z & Vars.) may only be moved to an
edge where ¢ Issafe ;-)

e The definition must still be available for uses of ;-)

—

We define an analysis which maximally delays computations:

[JF D = D

[=e]fD = {D\(USQGUDGJ[:::)U{IG;} if o ¢ Vars,

D\ (Use. U Def) if x¢e Vars,

469

... where:

Use. = {y=2¢;|ye Vars.}
Def, = {y=¢€;|ly=axVare Vars.}

470

... where:

Use. = {y=2¢;|ye Vars.}
Def, = {y=¢€;|ly=axVare Vars.}

For the remaining edges, we define:

[v = Me|;]*D = D\(Use.U Def)
[Mle)] = e] D = D\(Use., U Use.,)
[Pos(e)]* D = [Neg(e)]*D = D\Use.

471

Warning:

We may move y = e; beyond ajoinonlyif y =e¢; can be delayed
along all joining edges:

Here, 7= a2+ 1; cannot be moved beyondl !!

472

We conclude:

e The partial ordering of the lattice for delayabillity is givey “O”.
e Atprogram start: Dy = (.

Therefore, the setsD|u| ofat « delayable assignments can
be computed by solving a system of constraints.

e We delay only assignmentse where « a has the same effect
as « alone.

e The extra insertions render the original assignments agrassnts
to dead variables.

473

Transformation 7:

a € D[u]\[lab]*(D[u])

ilab ——> lab

a € [lab]*(Dlu))\ D]

474

a € D[u]\[Pos(e)]*(Dlu])

Neg(e)}/@\\Pos(e) Neg(e) Pos(e)

D) (2)
@ € [Neg ()] (Du)\D[v1] @ € [Pos()](D[u))\D[v2]

Note:

Transformation T7 is only meaningful, if we subsequently eliminate
assignments to dead variables by means of transformaticn :-)

In the example, the partially dead code is eliminated:

475

{T=x+1;}
{T'=2+1;}

= o N = O

476

0 0
T—111: L {T =x+1;}

21 {T"'=2+1;}

3 0

4 0

ar7

L
0 {z}
1| {x}
2 | {z}
21 {x, T}
30 0
41 0

478

Remarks:

e After 77, alloriginal assignments y = ¢; with y € Vars, are
assignments to dead variables and thus can always be diaaina

-)
e By this, it can be proven that the transformation is guaexhte be
non-degradating efficiency of the code-))

e Similar to the elimination of partial redundancies, the
transformation can be repeated}

479

Conclusion:

— The design of aneaningfuloptimization is non-trivial.

— Many transformations are advantageous only in connectitn w
other optimizations :-)

— Theorderingof applied optimizations matteis

— Some optimizations can be iterated

480

... a meaningful ordering:

T4 Constant Propagation
Interval Analysis

Alias Analysis

T6 Loop Rotation

T1, T3, T2 | Available Expressions

T2 Dead Variables

T7, T2 Partially Dead Code

\] 4

15, T3, T2 | Partially Redundant Codg

481

2 Replacing Expensive Operations by Cheaper
Ones

2.1 Reduction of Strength

(1) Evaluation of Polynomials

f(@) = ap-2"+ap_ 2" +.. . 4a -z +a

Multiplications | Additions

naive n(n+1) n

re-use 2n — 1 n

Horner-Scheme n n

482

ldea:

(2) Tabulation of a polynomial f(z) of degree n :

— Torecompute f(z) forevery argument istoo expensive :-)

— Luckily, the n-th differences areonstant!!

483

Example: f(x) = 3x3 — 5x? + 4z + 13

ni f(n)| A | A% | A®
01 13 2 8 18
Ly 15 | 10 ||26

21 25 ||36

31 |61

4

Here, then-th difference isalways

AP(f)=nl-a,-h" (h step width

484

Costs:

times evaluation of f;

] n
.(n—1)-n subtractions to determine theA® ;

DO [

e 1 additions for every further value:-)

-))

Number of multiplications only depends om

485

Simple Case: f(x)=a1-x+ ag

e ... naturally occurs in many numerical loops-)

e Thefirst differences are already constant:
fl+h)=f(z)=a-h

o Instead of the sequence: y; = f(zg+i-h), 1 >0
we compute: yo = f(x9), A=ay-h
Vi =Yi-1 + A, >0

486

Example:

for (i =dg;i<mny;i=i+h) { Neg(i < n) Pogi < n)
A:A0+b2,

487

.. or, after loop rotation:

L = 1p; Neg(i < n)
if (i <n) do {

A=Ay+b- 1

M[A] =...;

1 =1+ h;

} while (i < n);

488

.. and reduction of strength:

1 = 1p;
if (1 <n) {
A=1b-h; Neg(i < n)
A= Ao+ b-ip;
do {
M[A] =...;
1 =14 h;
A=A+ A,

} while (i < n);

489

Warning:

e Thevalues b, h, Ay mustnot change their values during the loop.
e 1, A maybe modified at exactly one position in the loop(

e One may try to eliminate the variable. altogether.

— 7 may not be used else-where.

— The initialization must be transformed into:
A=A,+b 1.

— The loop condition < n must be transformed into:
A< N for N=Ay,+b-n.

— b must always be different fromero!!!

490

Approach:

|dentify

loops;

iteration variables;
constants;

the matching use structures.

491

Loops:
... are identified through the nodey with back edge (_, ,v) :-)

For the sub-graph G, ofthe cfgon {w | v = w}, we define:

Looplv] = {w|w —=*v in G,}

492

Example:

(0) P
0 {0}
(i) 1o
@ e 2 {O, 1, 2}
3 {0, 1,2, 3}
9 4 {O, 1,2, 3,4}
y 50 {0,1,5)

493

Example:

(0) P
0 {0}
(1) 1 {01}
e 2 2 {O, 1, 2}
3| {0,1,2,3}
(3 4140,1,2,3,4)
@ 5) {0,1,5}

494

Example:

(0) P
0 {0}
(1) 1 {01}
@/ 5 2| {0,1,2}
31 {0,1,2,3}
(3 4140,1,2,3,4)
@ 5) {0,1,5}

495

We are interested in edges which during each iteration areuded

exactly once:

This property can be expressed by means of the pre-domiredémion...

496

Assume thatu, , v) is the back edge.

Then edges k = (uy, _,v;) could be selected such that:
e v pre-dominates;
e 1, pre-dominates;;

e v; predominates.

497

Assume thatu, , v) is the back edge.

Then edges k = (uy, _,v;) could be selected such that:
e v pre-dominates;
e 1, pre-dominates;;

e v; predominates.

On the level of source programs, thidiisial:

do { S1...S5k
} while (e);

The desired assignments must be among the :-)

498

lteration Variable:

» Is an iteration variable if the onlgiefinitionof ¢ inside the loop occurs
at an edge which separates the body and is of the form:

1 =1+ h;

for someloop constant 7 .

A loop constant is simply a constant (e.g.42), or slightly more libaral,
an expression which only depends on variables which are odifrad
during the loop :-)

499

(3) Differences for Sets

Consider the fixpoint computation:
r =0
for (t=Fux;t L x;|t=Fux;)
r=2xUt;

If F isdistributive it could be replaced by:
r = ();
for (A=Fax;A#Q;|A=(FA)\ x;))
r=xUA;

The function F must only be computed for treemallersets A :-)
semi-naive iteration

500

Instead of the sequence: () C F(0) C F?(0) C
we compute: A U Ay U ...
where: Aiy1 = F(F(0)\F(0)
= F(A)\(AU...UA;) with Ag=0

Assume that the costs of ' = IS 1+ #ux .

Then the costs may sum up to:

naive 1+2+...+n+n = in(n+3)

semi-naive on

where n is the cardinality of the result.

— A linear factor is saved :-)

501

2.2 Peephole Optimization

ldea:

e Slide asmallwindow over the program.

e Optimize agressively inside the window, i.e.,

— Eliminate redundancies!

— Replace expensive operations inside the window by cheaper
ones!

502

Examples:

y=M[x];x=x+1; SN y = Mz++];
// given that there is a specific post-increment instructior)
Z=1Y—a-+a; — 2=
// algebraic simplifications :-)

T =21 — r=x+

503

Important Subproblem: nop-Optimization

lab # lab

— If (v,;,v) lisanedge, v; has no further out-going edge.
— Consequently, we can identifyp; and v :-)

— The ordering of the identifications does not matter))

504

Implementation:

e \We construct a function next : Nodes — Nodes with:

next v if (u,;,v) edge
next u = _
u otherwise

Warning: This definition is only recursive if there are-loops
?2?77?

e We replace every edge:
(u, lab,v) — (u, lab, next v)

... whenever [ab # ;
e All ;-edges are removed;-)

505

Example:

506

next 1
next 3

next 5

Example:

507

next 1
next 3

next 5

2. Subproblem: Linearization

After optimization, the CFG must again be brought intohaarly
arrangemenof instructions :-)

Warning:

Not every linearization is equally efficieht

508

Example:

0:

1. if (e;) goto 2;

4. halt

2: |Rumpf

3. if (es) goto 4
goto 1;

Bad: The loop body is jumped into :-(

509

Example:

if (le;) goto 4;

Rumpf

if ('e5) goto 1;
halt

> M PO

I better cache behavior:-)

510

ldea:

e Assign to each nodetamperaturk

e always jumpsto

(1) nodes which have already been handled,;

(2) coldernodes.

e Temperature ~ nesting-depth

For the computation, we use the pre-dominator tree andgron
connected components ...

511

... Inthe Example:

The sub-tree with back edgehsitter...

512

ol

... Inthe Example:

513

More Complicated Example:

514

More Complicated Example:

515

More Complicated Example:

516

Our definition of Loop implies that (detected) loops are necessarily
nested :-)

Is is also meaningful fodo-while-loops withbreaks ...

« | o3 e
@/

517

Our definition of Loop implies that (detected) loops are necessarily
nested :-)

Is is also meaningful fodo-while-loops withbreaks ...

518

Summary: The Approach

(1) Forevery node, determine a temperature;
(2) Pre-order-DFS over the CFG;
— If an edge leads to a node we already have generated code
for, then we insert a jump.

— If a node has two successors with different temperature,
then we insert a jump to thelderof the two.

— If both successors are equally warm, then it does not matter

=)

519

2.3 Procedures

We extend our mini-programming language by proceduresourith
parameters and procedure calls.

For that, we introduce a new statement:

fO;

Every procedure f has a definition:
J O A stmt™ }

Additionally, we distinguish betweemiobalandlocal variables.

Program execution starts with the call of a proceduneain () .

520

Example:

int a, ret; 0 A
main () { int b;
a = 3; if (a <1){ret =1;goto exit; }
10 b= a;
M17] = ret; a=>b-—1;
ret = 0; 10;
} ret = b - ret;
exit :
}

Such programs can be represented bgi@f CFGs: one for each
procedure..

521

... Inthe Example:

main() S0
© (5)
a=3: Neg(a < 1) Pos(a < 1)
(il) (6) 10
f0); b= a;
(2 @
M17] = ret; a=>b—1; ret = 1;
(3 (&
ret = 0; £0);
@ ®

ret = b x ret;

@

522

In order to optimize such programs, we require an extendedatipnal
semantics ;-)

Program executions are no longeaths butforests

523

... In the Example:

524

The function [.] is extended to computation forestsuw :
[w] : (Vars - Z) x (N —Z) — (Vars - Z) x (N — Z)

Foracall &= (u, f();,v) we must:

e determine the initial values for the locals:

enter p = {x — 0 | x € Locals} ® (p| ciobais)

e ... combine the new values for the globals with the old vafoeghe
locals:

combine (p1, p2) = (01| Locais) @ (P2 Globais)

e ... evaluate the computation forest inbetween:

[k (w)] (p,p) = let (p1, 1) = [w] (enter p, p)
in (combine (p, p1), 1)

525

Warning:

e Ingeneral, [w] isonly partially defined :-)

e Dedicated global/local variablesu;, b,, ret can be used to
simulate specific calling conventions.

e Thestandarcperational semantics relies on configurations which
maintain acall stack

e Computation forests are better suited for the construcifon
analyses and correctness proofs)

e Itis an awkward (but useful) exercise to prove the equivadanf
the two approaches ...

526

Configurations:

configuration =— stack X store
store — globals x (N — 7Z)
globals — (Globals — 7Z)
stack — frame - frame”
frame — pownt X locals
locals — (Locals — 7))

A frame specifies the local state of computation inside a procedure
call :-)

Theleftmostframe corresponds to the current call.

527

Computation steps refer to the current cail)

The novel kinds of steps:

o) — ((up{r =0 € Locals}) - (v, p)

us entry point of f

call k= (u,f();v)

((u,p)

return:

((va_) " 0, </77 :u>) — (07 <77 ,LL>)

T'f

return point of f

528

-0, (7, 1)

The call stack explicitly implements the DFS traversal tigio the
computation forest :-)

... In the Example:

529

The call stack explicitly implements the DFS traversal tigio the
computation forest :-)

... In the Example:

5| b—0

530

The call stack explicitly implements the DFS traversal tigio the
computation forest :-)

... In the Example:

71 b— 3

531

The call stack explicitly implements the DFS traversal tigio the
computation forest :-)

... In the Example:

5| b—0

9| b— 3

532

The call stack explicitly implements the DFS traversal tigio the
computation forest :-)

... In the Example:

9| b— 3

533

The call stack explicitly implements the DFS traversal tigio the
computation forest :-)

... In the Example:

b— 0

br— 2

b— 3

N ||| © ||| © ||| O1

534

The call stack explicitly implements the DFS traversal tigio the
computation forest :-)

... In the Example:

11| b— 0

9| b— 3

535

The call stack explicitly implements the DFS traversal tigio the
computation forest :-)

... In the Example:

9| b— 3

536

The call stack explicitly implements the DFS traversal tigio the
computation forest :-)

... In the Example:

11| b+— 2

9| b— 3

537

The call stack explicitly implements the DFS traversal tigio the
computation forest :-)

... In the Example:

9| b— 3

538

The call stack explicitly implements the DFS traversal tigio the
computation forest :-)

... In the Example:

11| b— 3

539

The call stack explicitly implements the DFS traversal tigio the
computation forest :-)

... In the Example:

540

This operational semantics is qurealistic :-)

Costs for a Procedure Call:

Before entering the body: e Creating a stack frame;
e assigning of the parameters;
e Saving the registers;
e Saving the return address;
e Jump to the body.
At procedure exit: e Freeing the stack frame.
e Restoring the registers.
e Passing of the result.
e Return behind the call.

—— ... quite expensive !

541

1. Idea:

Inlining

Copy the procedure body at every call dite

Example:

abs () {

g = —daq,

maz ();

542

) { ret =ay; goto cuwit; }

... yields:

abs () {

g = —daq,

if (a1 <a) { ret =as; goto ewil; }

ret = aq;

_exit :

}

543

Problems:

e The copied block may modify the locals of the calling proaedu
2?7

e More general: Multiple use of local variable names may lead t
errors.

e Multiple calls of a procedure may lead to code duplicatian((
e How can we handlescursion???

544

Detection of Recursion:

We construct theall-graphof the program.

In the Examples:

(main)

abs

545

Call-Graph:

e The nodes are the procedures.

e Anedge connexts ¢ with /A, whenever the body of ¢
contains a call of £ .

Strategies for Inlining:
e Just copy nufeafprocedures, i.e., procedures without further calls
-)

e Copy all non-recursive procedures!

... here, we consider just leaf-procedures)

546

Transformation 9:

?f();

Q)

AN

?xf =0; (z € Locals)

copy
of f

547

Note:

e TheNop-edge can be eliminated if tlgopnode of f has no
out-going edges ...

e The =z, arethe copies of the locals of the procedurg

e According to our semantics of procedure calls, these must be
initialized with 0 :-)

548

2. ldea: Elimination of Tail Recursion

fO { int b

if (ap <1) { ret =ay; goto ewil; }
b= ay - as;
az = ag — 1;
a; = b;
fO;
_exit
h
After the procedure call, nothing in the body remains to beedo
— We maydirectly jump to the beginning :-)

... after having reset the locals to O.

549

... this yields in the Example:

fO { int b
_f if (ap <1) { ret =ay; goto cwit; }
b= a1 + 9,

CLQZCLQ—I;

_exit :
}

// It works, since we have ruled otgferences to variables

550

Transformation 11:

— O,
f0: \CEI =0; (x € Locals)

551

Warning:

— This optimization is crucial for programming languageshoiit
iteration constructs!

— Duplication of code is not necessary:-)
— No variable renaming is necessary-)
— The optimization may also be profitable for non-recursiviectlls

-)
— The corresponding code may contain jumps from the body of one
procedure into the body of anoth&??

552

Background 4: Interprocedural Analysis

So far, we can analyze each procedure separately.

— The costs are moderate-)

— The methods also work in presence of separate compilation
— At procedure calls, we must assume the worst casg

— Constant propagation only works for local constantg(
Question:

How can recursive programs be analyz&®

553

Example: Constant Propagation

main() { int ¢; work() {
t=0; if (a1) work();
if (¢) M[17] = 3; ret = ay;

ret =1 — ret;

554

Example: Constant Propagation

work () \
()
Neg(a) Pos(a;)
(®)
work();

555

Example: Constant Propagation

main () worko () \ -
t=0;

1
ret = 0;
& @
a; = 0;
@

556

(1) Functional Approach

Let D denote a complete lattice of (abstract) states.

ldea:

Represent the effect of /() by a function:

[/]*: D—D

557

Micha Sharir, Tel Aviv University Amir Pnueli, Weizmann Institute

558

In order to determine the effect of a call edgé = (v, f ();,v) we
require abstract functions:

enter? - D—>D

combine! : D? =D

Then we define:

[k]* D = combine* (D,[f]* (enter* D))

559

... for Constant Propagation:

D = (Vars = 7Z"),
(1 if D=1
entert D = 4 _
D|ciobais @ {x +— 0| x € Locals} otherwise

\N 7

1 f Di=1VvDy=1

combine? (D1, Dy) = 3 _
Dl ‘Locals D D2|Globals OtherWISe

560

The effects [f]* then can be determined by a system of constraints
over the complete latticeD — D

W] 3 Id v entry point
W]* 3 [k]F o [u]? k= (u, ,v) edge
TP 3 [stop,]f stop, end pointof f

[v]* : D— D describes the effect of all prefixes of computation
forests w of a procedure which lead from the entry pointto :-)

561

Problems:

e How can we represent functionsf : D — D 7?7

e If #D =o00,then D — D hasinfinite strictly increasing
chains :-(

Simplification: Copy-Constants

— Conditions are interpreted as :-)

— Only assignments = = ¢; with e € Vars UZ are treated
exactly :-)

562

Observation:

— The effects of assignments are:

(D@{QCHC} if e=ceZ
[t=e]*D = { De{r— (Dy)} if e=ye Vars
| De{r— T} otherwise

— Let V denote the (finité!!) set ofconstanright-hand sides.
Then variables may only take values fronv' :-))

— The occurring effects can be taken from

D, Dy with D= (Vars = V'),

— The complete lattice is huge, biutite !!!

563

Improvement:

1

Not all functions from D, — D, will occur :-)

All occurring functions AD. 1 # M are of the form:

M = {o = (b, Ul,cr, v) | v € Vars} where:
MD = {z— (.Ul Dy)|xe Vars} far D # L

Let M denote the set of all these functions. Then for
My, MyeM (M #AXD. L # M):

(MyU M)z = (Myx)U (M)

For k=#Vars , M hasheight O(k?) :-)

564

Improvement (Cont.):

— Also, composition can be directly implemented:

(MyoMy)x = VU] py with
b = buUl] 0.
I' = U.o L where

Mlﬂl' = bu'—lyéfy
MQZ — bZI_I|_|y€IZy

— The effects of assignments then are:

(Ide@{ch} if e=ceZ
[t =¢]f = !¢ ldy,.s @ {r—y} it e=ye Vars

| dvars © {r — T} otherwise

565

... Inthe Example:

[t =0 = {a;~ aj,retr>ret[t—=0}

[a: =] = {la; > t| ret — ret,t —t}

In order to implement the analysis, we additionally muststarct the
effectofacall £ =(_,f();,_) fromthe effectofa proceduref :

[£]? = H ([f]%) where:

H (M) = d|1oeats ® (M o enter®)| grobais
x If 2= € Globals

{ 0 otherwise

enterﬁ r ==

566

... Inthe Example:

If [work]# = {a; ~ ay,ret = ay,t > t}
then H [work]* = Idyy @ {a1 +— ai,ret — a1}

= {ay — ay,ret — ay,t—t}

Now we can perform fixpoint iteration:-)

567

work () \

Neg(a1) Pos(a)

work();

(9)
ret = aq;

1

10

{a; — ay,ret — ret,t — t}
{CL1 — ap, ret — ret, { — t}
{@1 — ap,ret — a;,t— t}

{@1 — ap,ret — ret,{ — t}

{a1 — aq,ret — a,t — t} O
{@1 — a1, ret — ret, t — t}

{@1 — aq,ret — a,t — t}

568

2
7 {a; ¥ ay,ret — ret,t — t}
9| |{a1 — ay,ret — a; Uret, t +— t}
10 {a; — aq,ret = ay,t — t}
8 {a; — ay,ret — ret,t — t}

{a1 — aq,ret — a,t — t} O
{Cll — a1, ret — ret, t — t}

{Cll — aq,ret — a,t — t}

569

If we know the effects of procedure calls, we can put up a camdt
system for determining the abstract state when reachinggrgom point:

‘main]
/]

V]

]

| | O

enter? d,
enter? (R[u]) k= (u,f();_) call
R|f] v entry pointof f

[K]F (Ru]) k= (u,_,v) edge

570

... Inthe Example:

main()

{a; — T, ret— T,t— 0}
{a; — T, ret— T,t— 0}
{a; — T, ret— T,t— 0}
— T,ret— T,t+ 0}
{a; — 0,ret— T,t— 0}

{a; — 0,ret — 0,1 — 0}

S Ut R W NN = O
R
=)
[

{a; — O,ret — T,t— 0}

571

Discussion:

e Atleastcopy-constantsan be determined interprocedurally.
e Forthat, we had to ignore conditions and complex assignsnen(
e Inthe second phase, however, we could have been more preejse
e The extra abstractions were necessary for two reasons:
(1) The set of occurring transformerdVl € D — D must be
finite;
(2) Thefunctions M € M must beefficientlyimplementable
-)

e The second condition can, sometimes, be abandoned ...

572

Observation: Sharir/Pnueli, Cousot

— Often, procedures are only called ftaw distinct abstract
arguments.

— Each procedure need only to be analyzed for thesg

1

Put up a constraint system:

a v entry point

combine® ([u, a], [f, enter* [u, a]*]#)
(u, f();,v) call

[lab)?* [u,a]* &k = (u,lab,v) edge

[stop;,a]* stop, end pointof f

|

|

/| [v,a]* == value for the argumenta .

573

Discussion:

e This constraint system may beige :-(
e \We do not want to solve it completely

e Itis sufficient to compute the correct values for all callseth
occur I.e., which are necessary to determine the value
[main(), ag]* —— We apply ourocal fixpoint algorithm
-))

e The fixpoint algo provides us also with tketof actual parameters
a € D for which procedures are (possibly) called and all abstract
values at their program points for each of these call$

574

... In the Example:

Let us try afull constant propagation ...

ret = 1 — ret;

work () \

Neg(a1)

r

POS(al)

work();

et = aq;

575

S
[y

-
D
—+

© o0 N b~ W NN = O

—_
-

main()

4 4 oo oo A4 A4+ +

e e e e e e e e

o o o O

— o o -

Discussion:

e Inthe Example, the analysis terminatesckly :-)

e If DD hasfinite height, the analysis terminates if each procedure
Is only analyzed fofinitely manyarguments :-))

e Analogous analysis algorithms have proved very effectivelie
analysis ofProlog :-)

e Together with a points-to analysis and propagation of megat
constant information, this algorithm is the heart of a vargcessful
race analyzer fo€ with Posixthreads :-)

576

(2) The Call-String Approach:

ldea:

— Compute the set of all reachable call stacks!
— In general, this is infinite :-(

— Only treat stacks up to a fixed depth/ precisely! From longer
stacks, we only keep the upper prefix of length :-)

— Important special case:d = 0.

—_— Just track the current stack frame ...

577

.. In the Example:

éwork
% ret =1 — ret;

578

... Inthe Example:

main() work () \ enter

t =0 Neg(a) Pos(aq)

(8)

Neg () Pos(t)

ol

M[17] = 3; éret = ai;
10
/ combine

ay = t; enter

§ combine
% ret =1 — ret;

579

The conditions for 5,7,10, e.q., are:

2
=
1L

combine® (R[4], R[10])

enter? (R[4])
enter? (R[8])

i

©
L]

combine® (R[8], R[10])

Warning:

The resulting super-graph contains obviousiypossible paths.

580

... Inthe Example this is:

main() work () \ enter
Z? (7)
t =0 Neg(a) Pos(aq)
(8)

ol

M[17] = 3; éret = ai;
10
/ combine

a; =t; enter

|§ combine
% ret =1 — ret;

581

... Inthe Example this is:

work-() \ enter

Neg(aq) Pos(aq)

(8)

o

= 3; éret = aq;
10
> combine

enter
§ combine
% ret =1 — ret;

582

Note:

— In the example, we find the same results:
more paths render the resultss precise

In particular, we provide for each procedure the resultfimisone
(possibly very boring) argument:-(

— The analysis terminates — wheneved has no infinite strictly
ascending chains:-)

— The correctness is easily shown w.r.t. the operational seasa
with call stacks.

— For the correctness of the functional approach, the seosantth
computation forests is better suited-)

583

3 Exploiting Hardware Features

Question: How can we optimally use:

Registers
Pipelines
Caches

Processorg8??

584

3.1 Regqisters

Example:

read();

x = M[A];
y=x+1;
it (y) {

585

The program usesvariables ...

Problem:

What if the program uses more variables than there are eegist-(

ldea:

Use one register fazeveralariables :-)

In the example, e.qg., one forz, ¢, = ...

586

r = M[A];

y=x+ 1;

it (y) {
M[A] = z;

} else {
t=—-y-y;
MIA] = t;

}

587

588

Warning:
This is only possible if théve rangesdo not overlap :-)

The (true) live range of = is defined by:

Llr] = {u |z e Llul}

... Inthe Example:

589

590

S N W ke Ot O N @

{A, =}
{A, z}
{A,t}
{4y}
{A z,y}
{A, z}
{A}

591

S N W ke Ot O N @

{A, =}
{A, z}
{A,t}
{4y}
{A z,y}
{A, z}
{A}

{A}

Live Ranges:

Alfo,.... 7
v | {2,3,6}
y | {2,4}

t {5}

z [{7}

592

In order to determine sets of compatible variables, we coatsthe
Interference Graph I = (Vars, E;) where:

Er = {{z,y} |z #y, Llz]) 0 L]y] # 0}

E; hasanedgefor #y Iff 2,y arejointly live at some program
point :-)

... Inthe Example:

593

Interference Graph:

594

Variables which ar@ot connected with an edge can be assigned to the
same register :-)

595

Variables which ar@ot connected with an edge can be assigned to the
same register :-)

60

Color = Reqister

596

Sviatoslav Sergeevich Lavrov,
Russian Academy of Sciences1962

597

Gregory J. Chaitin, University of Maine 1981)

598

Abstract Problem:
Given: Undirected Graph (V, E) .
Wanted: Minimal coloring, i.e., mapping ¢:V — N mit

(1) c(u) #c(v) for {u,v} € F;
(2) | Hc(w)|weV} minimall

e Inthe example, 3 colors suffice:-) But:
e In general, the minimal coloring is not unique-(

e Itis NP-complete to determine whether there is a colorint) \at
most k£ colors :-((

—

We must rely on heuristics or special cases)

599

Greedy Heuristics:

e Start somewhere with color 1;

e Next choose the smallest color which is different from thi®icof
all already colored neighbors;

e Ifanode is colored, color all neighbors which not yet havies

e Deal with one component after the other ...

600

... MMore Concretely:

forall (v € V) c[v] =0;
forall (v € V') color (v);

void color (v) {
if (clv] #0) return;
neighbors = {u € V | {u,v} € E};
clv] = {k > 0| Vu € neighbors : k # c(u)};
forall (u € neighbors)
if (c(u) ==0) color (u);
h

The new color can be easily determined once the neighbosoaed
according to their colors :-)

601

Discussion:

Essentially, this is &#re-order DFS :-)
In theory, the result may arbitrarily far from the optimum(

... In practiceg it may not be as bad :-)

b

... Anecdote: different variants have begratented!!

602

Discussion:

Essentially, this is &#re-order DFS :-)
In theory, the result may arbitrarily far from the optimum(

... In practiceg it may not be as bad :-)

b

... Anecdote: different variants have begratented!!

The algorithm works the better the smaller life ranges.are

ldea: Life Range Splitting

603

Special Case: Basic Blocks

L

T, Y, 2
A=z +y; X,z
M[Aq] = z; i
r=ux+ 1; x
z = M[A]; T, 2
t = Mlz]; x, 2, t
Ay =x +1; x,z,1
M[As] = z; x,t
y = Mlz]; y,t
Mly| = t;

604

Special Case: Basic Blocks

L

T, Y, 2
A=z +y; X,z
M[Aq] = z; i
r=x+1; x
z = M[A]; T, 2 e
t = Mlz]; x, 2, t
Ay =x +1; x,z,1
M[As] = z; x,t
y = Mlz]; y,t
Mly| = t;

605

The live ranges of + and =z
L
x,Y, 2
Al =x+y; T, 2
M[A] = z; x
v =x+ 1; T
z1 = M[A]; L1, 21
t = Mlxq]; Ty, 21,1
Ay =21 + t; x1, 21,1t
M|[As] = z1; Ty, t
y1 = Ma1]; Y1, 1
Mly] = ¢

can be split:

606

The live ranges of + and =z can be split:

L

T, Y, 2
Al =z +; X,z
M[A;] = z; i
r1 =z + 1; T
21 = M[Aq]; X1, 2
t = Mlxq]; X1, 21,1
Ay =21 + t; x1, 21,1t
M|[As] = z1; Ty, t
y1 = Ma1]; Y1, t
Mly] = ¢

607

Interference graphs for minimal live ranges on basic bl@rksknown as
Interval graphs

vertex Interval

edge joint vertex

608

Thecovering numbeof a vertex is given by the number of incident
Intervals.

Theorem:

maximal covering number

size of the maximal clique

minimally necessary number of colors-)

Graphs with this property (for every sub-graph) are catledect...

A minimal coloring can be found in polynomial time:-))

609

ldea:

b

Conceptually iterate over the vertices,...,m — 1!
Maintain a list of currently free colors.
If an interval starts, allocate the next free color.

If an interval ends, free its color.

This results in the following algorithm:

610

free =[1,..., k|;
for (=051 < m;i++)

I —

init[i] = []; exit[i]

Ik
}
forall (I = [u,v] € Intervals) {
init{u] = (I :zinitfu]); exitlv] = (I :: exit[v]);
}
for (i =0;i <m;i++) {
forall (I € init[i]) {
color[I] = hd free; free = tl free;

}

forall (I € exit[i]) free = color|I] :: free;

611

Discussion:

1

1

For arbitrary programs, we thus may apply some heuristics fo
graph coloring..

If the number ofrealregister does not suffice, the remaining
variables are spilled into a fixed area on the stack.

Generally, variables from inner loops are preferably held |
registers.

For basic blocks we have succeeded to derive an optimateeqgis
allocation :-)

The number of required registers could even be determined
before-hand

This works only once live ranges have been split.

Splitting of live ranges for full programs results programstatic
single assignmerform ...

612

Discussion

e Every live variable should be defined at most ofiGe
e Every live variable should have at most one definitton

e All definitions of the same variable should have a common end
point!!!

—— Static Single Assighment Form

613

How to arrive at SSA Form:
We proceed in two phases:

Step 1.

Transform the program such that each program point is reached
by at most one definition of a variabler which islive at .

Step 2:

e Introduce a separate variant;; for every occurrence of a
definition of a variable z!

e Replace every use ofxr with the use of the reaching variant

Lh oo

614

Implementing Step 1.

e Determine for every program point the setrefiching definitions
e Assumption

All incoming edges of a join point are labeled with the same
parallel assignment x =« | x € L, for some sef,.
Initially, L, = 0 for all v.

e Ifthejoinpoint v Isreached by more than one definition for the
same variable = which is live at program point v , insertx into
L,,l1.e., add definitions = = z; atthe end of each incoming edge
of v.

615

Reaching Definitions

—~ ~
<t < <t <
s S D
~ ~— <f ~ ~
- - @\ AN ~— <H N N
S D D e~ D D> D
~ ~— ~— ~ 1O ~ ~— ~
- — LO 100 ~— 1O LOO LO
208 8 8 ~ 8 8 8
~ ~— ~— ~— ~— ~~— ~—
Ao — ~— Ao Ao
= = = =
~ ~ ~ ~
- — @\ am) < 1O Ne) I~

616

Reaching Definitions

—~ ~
<t < <t <
s S D
~ ~— <f ~ ~
- - @\ AN ~— <H N N
S D D e~ D D> D
~ ~— ~— ~ 1O ~ ~— ~
- — LO 100 ~— 1O LOO LO
208 8 8 ~ 8 8 8
~ ~— ~— ~— ~— ~~— ~—
Ao — ~— Ao Ao
= = = =
~ ~ ~ ~
- — @\ am) < 1O Ne) I~

617

Reaching Definitions

The complete lattic® for this analysis is given by:

R — oDefs
where
Defs = Vars x Nodes Defs(x) = {x} x Nodes
Then:
[z =r,v)]R = R\Defs(r) U{(r,v)}

[(,x=2]2¢€L,0)])R = R\ U.cr, Defs(z) U{(z,v) | v € L}

The ordering on R is given by subset inclusion € where the value
at program start is given by Ry = {(z, start) | x € Vars}.

618

The TransformatiolsSA, Step 1.

wherek > 2.

The label) of the new in-going edges for v is given by:

v = {r=ua|2e L],#(R[v]N Defs(x)) > 1}

619

If the nodev is the start point of the program, we add auxiliary edges
whenever there are further ingoing edges imnto

The TransformatiotsSA, Step 1 (cont.):

wherek > 1and ¢ of the new in-going edges for v is given by:

v = {r=ua|xe Lv],#(R[v]N Defs(x)) > 1}

620

Discussion

e Program start is interpreted as (the end point of) a defimiifo
every variable = :-)
e At some edgeg)aralleldefinitionsy are introduced

e Some of them may be useless-(

621

Discussion

e Program start is interpreted as (the end point of) a defimiifo
every variable = :-)

e Atsome edgeg)aralleldefinitionsy are introduced

e Some of them may be useless-(

Improvement:

e We introduce assignmentsx = = beforewv only if the sets of
reaching definitions for at incoming edges af differ !

e This introduction is repeated until everys reached by exactly one
definition for each variable live at

622

Theorem

Assume that every program point in the controlflow graph a&hable
from start and that every left-hand side of a definition is live. Then:

1. The algorithm for inserting definitions » = = terminates after at
most n-(m+ 1) roundswere m isthe number of program
points with more than one in-going edges and is the number of

variables.

2. After termination, for every program point the setR[u]| has exactly
one definition for every variable which is live atu.

623

Discussion

The efficiency crucially depends on the number of iteratidinthe cfqg is
well-structuredlit terminates already aft@emeiteration!

624

Discussion

The efficiency crucially depends on the number of iteratidinthe cfqg is
well-structuredlit terminates already aft@emeiteration!

A well-structuredcfg can be reduced to a single vertex or edge by:

® @
—>) =——> ©

625

Discussion

The efficiency crucially depends on the number of iteratidinthe cfqg is
well-structuredlit terminates already aft@emeiteration!

A well-structuredcfg can be reduced to a single vertex or edge by:

==
?
§ 4

626

Discussion (cont.)

e Reducible cfgs are not the exception — but the rtile
e In Javareducibility is only violated by loops with breaks/conies.

e If the insertion of definitions does not terminate aftaterations,
we may immediately terminate the procedure by inserting
definitions = = x» Dbefore all nodes which are reached by more

than one definition of «.

Assume now that every program pointu is reached by exactly one
definition for each variable which is live atu ...

627

The TransformatiolsSA, Step 2:

Each edge (u,
if (x,

QT = Ty
Tos

To.¢
To.¢

Tool

To.¢
To.¢
To¢

lab,v)
u') € Rlul

;)
Neg(e)]
Pos(e)]

v = €]

v = Mlel]
Mlei] = e

{r=uo|x€ L}

s replaced with (u, 7, 4[lab], v)
and:

628

where

Remark

The multiple assignments:

pa =z =2 |. . |zl = :1:'1(]?

in the last row are thought to be executegarallel i.e.,

[pa] (o, 1) = (p® {2, = p(2'V,) | i =1,...,k}, p)

629

Example

P = $3:331‘?J3:y1

Py = $3:332‘?J3:yz

630

Theorem

Assume that every program point is reachable frogtart and the
program is in SSA form without assignments to dead variables

Let X\ denote the maximal number of simultaneously live variables
and G the interference graph of the program variables. Then:

A =w(G) =x(G)
where w(G), x(G) are the maximal size of a clique (® and the

minimal number of colors fo€:, respectively.

A minimal coloring ofG, I.e., an optimal register allocation can be found
In polynomial time.

631

Discussion

e By the theorem, the numbarof required registers can be easily
computed :-)

e Thus variables which are to be spilled to memory, can be
determined ahead of the subsequent assignment of redisters

e Thus here, we may, e.g., insist on keeping iteration vaegmfrbm
Inner loops.

632

Discussion

e By the theorem, the numbarof required registers can be easily
computed :-)

e Thus variables which are to be spilled to memory, can be
determined ahead of the subsequent assignment of redisters

e Thus here, we may, e.g., insist on keeping iteration vaegmfrbm
Inner loops.

e Clearly, always A < w(G) < x(G))

Therefore, it suffices to color the interference graph with
colors.

e Instead, we provide an algorithm which directly operateshancfg

633

Observation

e Live ranges of variables in programs in SSA form behave sind
live ranges in basic blocks

e Consider some dfs spanning treg’ of the cfg with root start.

e Foreach variable z, the live range L[z] forms atree fragment
of T !

e Atree fragmentis a subtree from which some subtrees have bee
removed...

634

Example

635

Discussion

e Although the example program is not in SSA form, all live rasg
still form tree fragments :-)

e The intersection of tree fragments is again a tree fragrnent

e AsetC of tree fragments forms a clique iff their intersection is
non-emptyt!!

e Thegreedy algorithnwill find an optimal coloring...

636

Proof of the Intersection Property

(1) Assume NI, #0 and v, istherootof I;. Then:
V1 €]2 or wvy €]1

(2) Let (C denote a clique of tree fragments.

Then there is an enumerationC = {/[,...,I,} with roots
v1,... 0, Such that

v; € 1 forall 5 <=1

In particular, v, € I, forall:i. :-)

637

The Greedy Algorithm

forall (v € Nodes) visited|u] = false;
forall (v € L[start]) I'(x) = extract(free);

alloc(start);

void alloc (Node u) {
visited |[u] = true;
forall ((lab,v) € edges|u])
if (—wisited[v]) {
forall (x € L{u]\L[v]) insert(free,T'(x));
forall (z € L{v|\L|u]) I'(x) = extract(free);
alloc (v);

}

)

638

639

640

Remark:

e Intersection graphs for tree fragments are also knowsoesal
graphs...

e A cordal graph is an undirected graph where every cycle withem
than three nodes containgard :-)

e Cordal graphs are another sub-claspeffect graphs :-))

e Cheap register allocation comes at a price:

when transforming int&SAform, we have introduced parallel
register-register moves :-(

641

Problem

The parallel register assignment:

h=Ri=Ry|Re =Ry

IS meant to exchange the reqgistérsand/z, :-)

There are at least two ways of implementing this exchange

642

Problem

The parallel register assignment:

h=Ri=Ry|Re =Ry

IS meant to exchange the reqgistérsand/z, :-)

There are at least two ways of implementing this exchange

(1) Using an auxiliary register:

643

(2) XOR:
Ri = Ri 3P Ry;
Ry = R; P Ry;
Ri = R Ry;

644

(2) XOR:

Ry = R; ® Ry;
Ry = R; ® Ry;
Ry = R; ® Ry;

But what about cyclic shifts such as:
Yp=Ri=Ro|...| Rp_1 =Ry | Ry = Ry

fork > 27?7

645

(2) XOR:

Ry = R ® Ry;
Ry = R; ® Ry;
Ry = R; ® Ry;

But what about cyclic shifts such as:
wk:R1:R2|‘Rk_1:R]{‘R]{:R1

fork > 2?7

Then at moskt — 1 swaps of two registers are needed:

Y = Ry < Ry;
R2 <> Rg;

Ry—1 < Ryg;

646

Next complicated case: permutations.

e Every permutation can be decomposed into a set of disjoiftssh
-)

e Any permutation of: registers with- shifts can be realized by — r
swaps...

647

Next complicated case: permutations.

e Every permutation can be decomposed into a set of disjoiftssh

»

e Any permutation of: registers with- shifts can be realized by — r
swaps...

Example

Yp=R =Ry | Ry =Rs | R3=Ry | Ry = R3 | R5s = Ry
consists of the cycle§r,, R,, 5) and(Rs, ;). Therefore:

Y = Ry <> Ry;
Ry < Rs;
R3 <> Ry;

648

The general case:

e Every register receives its value at most once.

e The assignment therefore can be decomposed into a peranutati
together with tree-like assignments (directed towarddaaees)...

Example

=R =Ry |Ry=Ry| R3=Rs| Rs = R3

The parallel assignment realizes the linear register mfmres,, 1, and
R, together with the cyclic shift for?; and 2s:

Ry = Ry;
R3 <> Rs;

649

Interprocedural Register Allocation:

— For every local variable, there is an entry in the stack frame

— Before calling a function, the locals must be saved into theks
frame and be restored after the call.

— Sometimes there is hardware support)
Then the call igransparentor all registers.

— Ifitis our responsibility to save and restore, we may

e save only registers which are over-written-)

e restore overwritten registers only.

— Alternatively, we save only registers which are still liviéea the
call — and then possibly into different registers——
reduction of life ranges :-)

650

3.2 Instruction Level Parallelism

Modern processors do not execute one instruction afterttrer strictly
sequentially.

Here, we consider two approaches:

(1) VLIW (Very Large Instruction Words
(2) Pipelining

651

VLIW:

One instruction simultaneously executes up té (e.g., 4-)
elementary Instructions.

Pipelining:

Instruction execution may overlap.
Example:

w=(Ry=Ry+ R3| D=D;*Dy| Rz = M|Ry])

652

Warning:

e Instructions occupy hardware ressources.
e Instructions may access the same busses/registers=- hazards
e Results of an instruction may be available only after soniayde

e During execution, different parts of the hardware are inedl

Fetch — Decodga—=—| Execute> Writ¢

e During ExecuteandWrite different internal registers/busses/alus
may be used.

653

We conclude:

Distributing the instruction sequence into sequences oflsvs amenable
to various constraints.

In the following, we ignore the phaségtchundDecode :-)

Examples for Constraints:

(1) at most one load/store per word;
(2) at most one jump;
(3) at most one write into the same register.

654

Example Timing:

Floating-point Operation 3

Load/Store
Integer Arithmetic 1
Timing Diagram:

Ry, Ry Rj D
0| 5 -17 0.3
1 1
2 49
3 17.4

R

IS over-written afterthe addition has fetche?l

655

)

If a reqgister is accessed simultaneously (her&;), a strategy otonflict
solvingis required...

Conflicts:

Read-Read: A register is simultaneously read.
—— In general, unproblematic:-)

Read-Write: Aregister is simultaneously read and written.
Conflict Resolution:

e ...ruled out!
e Read is delayeds(all9, until write has terminated!

e Readbeforewrite returns old value!

656

Write-Write: A register is simultaneously written to.
—— In general, unproblematic:-)
Conflict Resolutions:

e ...ruled out!

In Our Examples ...

e simultaneous read is permitted,
e sSimultaneous write/read and write/write is ruled out;

e no stalls are injected.

We first consider basic blocks only, i.e., linear sequentassignments

657

ldea:

Example:

Data Dependence Graph

Vertices | Instructions
Edges Dependencies
(1) z=x4+1;
(2) y=MI[A]
(3) t==z
(4) z= M[A+ z|;
(5) t=y+z;

658

Possible Dependencies:

Definition — Use // Reaching Definitions
Use — Definition /] ?7?7?
Definition — Definition // Reaching Definitions

Reaching Definitions:

Determine for each « which definitions may reach —— can be
determined by means of a system of constraints)

... Inthe Example:

659

= =W W W w

77777

N~ SN SN S SN S~

N~ SN SN S SN S~

o~

N~ S SN SN SN S~

M[A + x|;

=
=

) + N

\G*?Z*Gh@

r=x+1;

N

+
)
|

660

Let U,, D; denote the sets of variables which are used or defined at
the edge outgoing from «; . Then:

(Ul, UQ) e DD If up € R[Ug] N D1 M D2 7é Q)
(Ul,U2> e DU If Uy € R[Ug] A D1 M U2 7é @

... In the Example:

Def | Use
DD DD /DD DD
1l z=x+1; {e} | {=} llz=x+1; |2|y=M[A] 3|t =2
2 | y=M[A]; {u} | {A} DN UD
3|t=z {t} | {z} 4|z = M[A +ﬁ DU DD
4| z=M[A+z]; | {z} | {42} DU '
S| t=y+z; {t} | {y, =} 5(t=1y+ z;

661

TheUD-edge (3,4) has been inserted to exclude that is
over-written before use :-)

In the next step, each instruction is annotated witkreéguired
ressources, in particular, jtexecution time.

Our goal is a maximally parallelorrectsequence of words.

For that, we maintain the current system state:
> Vars - N
Y.(r) = expected delay until is available
Initially:
YX(r) =0

As aninvariant{ we guarantee on entry of the basic block, that all
operations are terminated-)

662

Then the slots of the word sequence are successively filled:

e We start with the minimal nodes in the dependence graph.
e If we fail to fill all slots of a word, we insert -)

e After every inserted instruction, we re-comput& .

Warning:

— The execution of twd&/LIW s can overlap!!

— Determining aroptimalsequence, is NP-hard

663

Example: Word width % = 2

Word State
1 2 rlylz|t
0(0]0]0
r=x+1|y= M|A] 0]1]0]0
t=z z=M[A+2x||0]0]1]|0
0(0]0]0
t=y+=z 0(0]0]0

In each cycle, the execution of a new word is triggered.

The state just records the number of cycles still to be wddethe result

)

664

Note:

e Ifiinstructions put constraints on future selection, weakscord
thesein X .

e Overall, we still distinuish justinitely manysystem states :-)

e The computation of the effect of\&_.IW onto > can be
compiled into dinite automaton!!

e This automaton, though, could be quite huge(
e The challenge of making choices still remains(
e Basic blocks usually are not very large

= opportunities for parallelization are limited:-((

665

Extension 1: Acyclic Code

if (x>1) {
y = M|[A];
z=x— 1

} else {
y= M[A+1];
z=x— 1;

}

y=y+1

The dependence graph must be enriched with extra contparaiencies

666

z=x —1; x> 1

Pos Neg
y = M[A+1] y = M[A];
DJ\\ /4b
y=y+1

The statement - = » — 1; Is executed with the same arguments in both
branches and does not modify any of the remaining variables

We could have moved lieforethe if anyway :-))

667

The following code could be generated:

z=x—1 if (!(x>0)) goto A
y = M[A]
goto B

A:ly=M[A+1]

B:ly=y+1

At every jJump target, we guarantee tihgariant :-(

668

If we allow several (known) states on entry of a sub-block cae
generate code which complies with all of these.

... Inthe Example:

z=x—1 if (!(x>0)) goto A
y = M|A] goto B
A:ly=M[A+1]

669

If this parallelism is not yet sufficient, we could try to spé&tively
execute possibly useful tasks

For that, we require:

e anidea which alternative is executed more frequently;

e the wrong execution may not end ircatastrophyi.e., run-time
errors such as, e.g., division by 0;

e the wrong execution must allow roll-back (e.g., by delayang
commil) or may not have any observational effects

670

... Inthe Example:

z=x—1 y= M[A] |if (x>0) goto B
y= M[A+1]

B :
y=y+1

Inthe case * <0 wehave y= M[A] executed in advance.

This value, however, is overwritten in the next step-)

In general:

x = e; has no observable effect in a branch if is deadin this
branch :-)

671

Extension 2:

We may unrolemportant i.e., inner loops several times:

Neg

Unrolling of Loops

Pos

672

Pos

Neg

Pos

Now it is clear which side of tests to prefer:

the side which stays within the unroled body of the loap)

Warning:

e The different instances of the body are translated relabmssibly
different initial states :-)

e The code behind the loop must be correct relative to the &ti¢é s
corresponding to every jump out of the loop!

673

Example:

x = 0;

PO

Pos(z < n)

Neg(z < n
for (z =0;2 < n;z++)

M|A+ x| = 2; @ ?M[A—I—a:]z;

r=x+ 1;
4

Duplication of the body yields:

674

x = 0;

Ot

Pos(z < n)

Neg(z < n)
for (x =02 <n;z++) {

M[A + x] = z;
r=x+ 1;

if (!(x <n)) break;
M|A + z] = z;

}

675

It would be better if we could remove the assignment = » + 1;
together with the test in the middle — since these seriaheeskecution

of the copied!

This is possible if we substitute = + 1 for = in the second copy,
transform the condition and add a compensation code:

for (x=0c+1<nz=2+2) {
M[A+ 2] = z;
MA+z+1] =z
} Neg (x < n)

if (x<n){

676

Discussion:

e Elimination of the intermediate test together with the th&dn of
all increments at the end reveals that the different loajatiens are
In fact independent :-)

e Nonetheless, we do not gain much since we only allow one ptrre
word :-(

e If right-hand sides, however, are more complex, we canlgdge
their evaluation with the stores :-)

677

Extension 3:

Sometimes, one loop alone does not provide enough oppbesifor
parallelization :-(

... but perhaps two successively in a row-)

Example:
for (x =02 <njz++) { for (x =0;2 <njz++) {
R = Blz]; R = Blz];
S = Clx]; S = Clal;
T, =R+ S; Th=R-05;
Alz] =T; Clz] = Ty;

} }

678

In order to fuse two loops into one, we require that:

e the iteration schemes coincide;

e the two loops access different data.

In case of individual variables, this can easily be verified.
This is more difficult in presence of arrays.

Taking the source program into account, accesses to distatically
allocated arrays can be identified.

An analysis of accesses to the same array is significantly ehéfrcult ...

679

Assume that the blocks A, B, C are distinct.

Then we can combine the two loops into:

for (x =02 <n;z++) {

R = B|x|;
S = Clal;
Thn=R+S;
Alzx] = Ty;

680

R = Blz];
S = Clz;
Th=R-—S5;
Clx| = Ty;

The first loop may in iteration = not read data which the second loop
writes to in iterations < =« .

The second loop may in iterationz not read data which the first loop
writes to in iterations > x .

If the index expressions of jointly accessed arraydiasar, the given
constraints can be verified througtieger linear programming.

Twrite = 1
1 > 0
) Lread = X
1 < x—1
Lread — Lwrite

I x.eaq read access t0' by 1st loop
I z.ite Write access t@’' by 2nd loop

... obviously has no solution:-)

681

General Form:

s > 1
to > S

Y. = 5
Y2 = 52
Yy = Y2

for linear expressions s, t1, t5, s1, S over: and the iteration variables.

This can be simplified to:

OSS—tl OStQ_S 0281—82
What should we do with iP??

682

Simple Case:

The two inequations have no solution over).

Then they also have no solution overZ :-)

... In Our Example:

7

S
]

I

7 = X

-
IA

r—1—1 = —1

The second inequation has no solution)

683

One Variable:

The inequations wherex occurs positive, provide®wer bounds
The inequations wherex occurs negative, provideoper bounds

If G,L arethe greatest lower and the least upper bound, resgdgctive
then all (integer) solution are in the intervalG, L] :-)

Example:

o
VAN

13—7-x x
<
0 < —1+45-2 T

I

'V
S

The onlyintegersolution of the systemisxz =1 :-)

684

Discussion:

e Solutions only matter within the bounds to the iterationafales.

e Everyintegersolution there provides a conflict.

e Fusion of loops is possible ifo conflicts occur :-)

e The given special case suffices to solve the case one vaoadie
7 :-)

e The number of variables in the inequations correspondseto th
nesting-depth ofor-loops =—— in general, is quitemall :-)

685

Discussion:

e Integer Linear Programmin@LP) can decide satisfiability of a
finite set of equations/inequations ove¥. of the form:

n n

ZCLZQJZ:b bzw. ZCLZCIfZZb, a; €/

1=1 1=1
e Moreover, a (linear) cost function can be optimized)
e Warning: The decision problem is in general, already NP-Hérd

e Notwithstanding that, surprisingly efficient implememntas exist.

e Not just loop fusion, but also other re-organizations oplegield
ILP problems...

686

Background 5: Presburger Arithmetic

Many problems in computer science can be formulatgdout
multiplication :-)

Let us first consider tweimplespecial cases.

1. Linear Equations

20+ 3y = 24
r — Yy + dz = 3

687

Question:

e |s there a solution over@Q ?
e IS there a solution overZ ?

e IS there a solution overN ?

Let us reconsider the equations:

2¢ + 3y
r = Y

|

688

Hz

24

Answers:

e |s there a solution over Q
e Is there a solution over Z

e Is there a solution over N

Complexity:

e |s there a solution over Q
e |s there a solution over Z

e Is there a solution over N

689

Yes
No
NO

Polynomial
Polynomial

NP-hard

Solution Method for Integers:

Observation 1:

a1y + ... Fagre =0 (Vi: a; #0)

has a solution iff

ng{afla U a’k} | b

690

Example:
5y — 10z = 18

hasno solution overZ :-)

691

Example:
5y — 10z = 18

hasno solution overZ :-)

Observation 2:

Adding a multiple of one equation to another does not changeséet of
solutions :-)

692

Example:

20+ 3y

693

Hz

24

Example:

694

Hz

10z
Hz

24

18

Observation 3:

Adding multiples of columns to another column is an inveetib
transformation which we keep track of in a separate matrix

1 00 by — 10z = 18
01 0jlz — y + 252 = 3
0 0 1

—
1 00 by = 18
01 2|z — y + 3z = 3
0 0 1

695

Observation 3:

Adding multiples of columns to another column is an inveetib
transformation which we keep track of in a separate matrix

1 0 O DY = 18
o1 2|z — vy + 3z = 3
0 0 1

o
1 0 =3 DY = 18
0 1 2|l — vy — 3
0 0 1

—— triangular form!!

696

Observation 4:

e A special solution of a triangular system can be directlylrefh

-)

e All solutions of a homogeneous triangular system can bectiyre
read off :-)

e All solutions of the original system can be recovered from th
solutions of the triangular system by means of the accumdilat
transformation matrix))

697

Example

1 0 =3 oY = 15
01 2|z — y = 3
0 0 1

One special solution:
[6,3,0]"

All solutions of the homogeneous system are spanned by:

0,0,1]"

698

Solving overlN

e ... is of major practical importance;
e ... has led to the development of many new technigues;
e ... easily allows to encode&P-hardproblems;

e ... remains difficult if justhreevariables are allowed per equation.

699

2. One Polynomial Special Case:

r > y+95
19 >

8

Vv

13
> x—7

=

o There are at most 2 variables perequation;

o no scaling factors.

700

ldea: Represent the system bygaaph

19

701

The in-equations argatisfiablaff

e the weight of everygycleare at most 0;

e the weights of pathseachingr are bounded by the weights of edges
from x into thesink.

702

19

703

19

704

19

705

19

706

19

13+5 < 19

707

The in-equations argatisfiablaff

e the weight of everygycleare at most 0;

e the weights of pathseachingr are bounded by the weights of edges
from x into thesink.

—

Compute theeflexiveandtransitiveclosure of the edge weights!

708

3. A General Solution Method:
ldea: Fourier-Motzkin Elimination

e Successively remove individual variables: !

e Allin-equations withpositiveoccurrences of = yield lower
bounds

e Allin-equations withnegativeoccurrences of = yield upper
bounds

e All lower bounds must be at most as big as all upper boundg

709

Jean Baptiste Joseph Fourier, 1768-1830

710

Example:

5
9 < dxi+ 1 (1) .
4 < xy + 219 (2)
0 < 21— x5 (3) 3
6 < 21+ 624 (4) 5
11 <~z — 215 (5)
—17 < —6x1 4+ 225 (6) !
—4 < —x (7)

711

For o+, we obtain:

9 < 4z + 29 (1) % — ixg < 1 (1)
4 < z1 + 229 (2) 4 —2x5 < 1y (2)
0 < 211 — Z9 (3) %Qfg < 1 (3)
6 < 1 + 629 (4) 6 — 61 < 1 (4)
—11 < —x1 — 229 (H) T < 11 =2z, (5)
—17 < —6x1 + 225 (6) 1 < %7 + %xg (6)
—4 < —x (7) —4 < —x9 (7)

If such anz, exists, all lower bounds must be bounded by all upper
bounds, i.e.,

712

|
IA

IN

N NN NN Ve
VAN

|
VAN VANNEN VANSES VAN VANRNS VAN

11 — 2,
17 1

6 T 3T
11 — 2,
17 1

6 T gt
11 — 2,
17 1

6 + 5332
11 — 2,

17 1
6 T 372

—_

~

—_
Ot

~

@)

(N}
N’ T T T N N N N

~

Ot

~

w w1
<R

~

S

~

S
Ot

~

N e e N e N e e e Y

\‘[
N——

I

/AN VANSEE VANSEN V/ANSEN VAN VAN VAN VAN
L2222

I

|

N
8

N

TN NN NN Ve
|
DO
S
)

|
N
8
(\V)

/AN VANSEN V/ANSEN VAN VAN VAN VAN VANSNN VAN

11 — 2,
17 1
6 T 3T
11 — 2,
17 1
EIRRERE:
11 — 2,
17 1
6 + 5332
11 — 2,
17 1
6 T 3T

—_
Ot

N’ N e v N N N N

»-l&”»-lk “OJ “OJ QL\D “[\D =
Sy Ot Oy Ot Oy Ot Oy

e N N /N 7/ N /N /N /N /N
N——— ~

714

AN VAN V/ANSEN V/A NS VAN V/ANRN VANSEN VANSNN VAN

This is theone-variable casa&hich we can solve exactly:

—_ =
S Ot

W W N
S Ul &Y
~— ~— ~— ~— ~— ~— ~—"

~

~

>
ot

/N /N /N /N /N /N /N /N /N
=~
-
&)

\‘[
N——

max {—1,

DO =

}o< oy < min{5, 217,14}

’) 59

)

> [Ot

1
20

From which we conclude: =, € [1.4] =)

In General:

e The original system has a solution ov@iff the system after
elimination of one variable has a solution o¥er :-)

e Every elimination step mayguarehe number of in-equations
—— exponentiakun-time :-((

e It can be modified such that it also decides satisfiabilityr Gve
—— Omega Test

715

William Worthington Pugh, Jr.
University of Maryland, College Park

716

ldea:

e We successively remove variables. Thereby we omit division

e If 2 only occurs with coefficient +1, we apply Fourier-Motzkin
elimination :-)

e Otherwise, we provide a bound fopasitivemultiple of = ...

Consider, e.g., (1)and(6) :

@)
N

17 + 2332

|

VAN
W

9—332

717

W.l.0.g., we only considestrictin-equations:

6'112'1 < 18—|‘2£If2
8—332 < 471

... where we always divide by gcds:

311 < 94 29

8—x9 < 4-14

This implies:

3-(8—m3) < 4-(9+ x9)

718

We thereby obtain:

e If one derived in-equation ignsatisfiablethen also the overall
system :-)

e If all derived in-equations are satisfiable, then there islat®n
which, however, need not beteger :-(

e Aninteger solution is guaranteed to exist if thersudficient
separatiorbetween lower and upper bound

e Assume a<a-x b-r <f.
Then it should hold that:

b-a<a-pf

and moreover:

a-b|<a-B—>0-«

719

... Inthe Example:

12 < 4-(9+22) —3-(8—x9)
or.
12 < 12+ Txs
or.
0 < @9

In the example, also thes&rengthenedh-equations are satisfiable

— the system has a solution ovér :-)

720

Discussion:

e If the strengthened in-equations are satisfiable, thentlaésoriginal
system. The reverse implication may be wrong-(

e Inthe case where upper and lower boundraresufficiently
separatedwe have:

a-B<b-a+|a-b

or.

b-a<ab-r<b-a+|a-b

Division with b vyields:

a<a-r<a-+ia

— a+i=a-x| forsome ¢e€{l,...,a—1} !

721

Discussion (cont.):

— Fourier-Motzkin Elimination ishotthe best method for rational
systems of in-equations.

— TheOmega tesis necessarily exponential:-)
If the system isolvable the test generally terminates rapidly.
It may have problems withnsolvablesystems :-(

— Also for ILP, there are other/smarter algorithms

1

For programming language problems, however, it seems taMeeh
quite well :-)

122

4. Generalization to a Logic

Disjunction:

(x—=2y=15 AN x+y=7) V
(t+y=6 A 3x+z=—8)

Quantors:

dr: z—2vr=42 AN z4+1x=19

723

4. Generalization to a Logic

Disjunction:

(x—=2y=15 AN x+y=7) V
(t+y=6 A 3x+z=—8)

Quantors:

dr: z—2vr=42 AN z4+1x=19

— Presburger Arithmetic

124

Mojzesz Presburger, 1904-1943 (?)

725

Presburger Arithmetic = full arithmetic

without multiplication

726

Presburger Arithmetic — full arithmetic

without multiplication

Arithmetic . highly undecidable :-(

evenincomplete :-((

127

Presburger Arithmetic = full arithmetic

without multiplication

Arithmetic © highly undecidable :-(

evenincomplete :-((

Hilbert's 10th Problem

:>
— Godel’s Theorem

728

Presburger Formulas ovemN:

¢ = xz4+y=z | x=n |

PNy | P
dz: ¢

729

Presburger Formulas ovemN:

0 = x4+y=z | x=n |
PNy | P
dz: ¢
Goal: PSAT

Find values for thdreevariables inN such that holds ...

730

-)

Code the values of the variables\&srds

ldea:

—|lolo|o
—|lo|d|o
o|ld|o|lo
|||«
o|ld|-|o
—|lolo|o
o|ld|o|lo
—A|lo|-| -
+~ N > X
N o~
Y o -

731

-)

Code the values of the variables\&srds

ldea:

—|lo|o|o
—lo|-|o
o|ld|o|o
o]
o|ld|-|o
—|lo|o|o
o|ld|o|o
o]
~ N > X
O N o~
o S O o

732

-)

Code the values of the variables\&srds

ldea:

—|lolo|o
—|lo|d|o
o|ld|o|lo
|||«
o|ld|-|o
—|lolo|o
o|ld|o|lo
o]
+~ N > X
N o~
oS o

733

-)

Code the values of the variables\&srds

ldea:

—|lolo|o
—|lo|d|o
o|ld|o|lo
|||«
o|ld|-|o
—|lolo|o
o|ld|o|o
—A|lo|-| -
+~ N > X
N o~
oS o

734

-)

Code the values of the variables\&srds

ldea:

—|lolo|o
—|lo|d|o
o|ld|o|lo
|||«
o|ld|-|o
—|lo|lo|o
o|ld|o|lo
—A|lo|-| -
+~ N > X
N o~
oS o

735

-)

Code the values of the variables\&srds

ldea:

—|lolo|o
—|lo|d|o
o|ld|o|lo
|||«
o|ld|-|o
—|lolo|o
o|ld|o|lo
—A|lo|-| -
+~ N > X
N o~
oS o

736

-)

Code the values of the variables\&srds

ldea:

—|lolo|o
—|lo|d|o
o|ld|o|lo
—A|lo|d| -
o|ld|-|o
—|lolo|o
o|ld|o|lo
—A|lo|-| -
+~ N > X
N o~
oS o

737

-)

Code the values of the variables\&srds

ldea:

—|lolo|o
—|lo|d|o
o|ld|o|lo
|||«
o|ld|-|o
—|lolo|o
o|ld|o|lo
—A|lo|-| -
+~ N > X
N o~
oS o

738

-)

Code the values of the variables\&srds

ldea:

—|lolo|o
—lo|-d|o
o|ld|o|lo
|||«
o|ld|-|o
—|lolo|o
o|ld|o|lo
—A|lo|-| -
+~ N > X
N o~
oS o

739

-)

Code the values of the variables\&srds

ldea:

—|lo|lo|o
—|lo|d|o
o|ld|o|lo
|||«
o|ld|-|o
—|lolo|o
o|ld|o|lo
—A|lo|-| -
+~ N > X
N o~
oS o

740

Observation:

The set of satisfying variable assignmentsagular :-))

741

Observation:
The set of satisfying variable assignmentsagular :-))
b1 N\ Po — L(p1) N L(¢2) (Intersectioi

¢ — L(9) (Complement
dz: ¢ — T (L(9)) (Projection

742

Projecting away the-component:

1/0(1{0|12(0]1]|1

0/1/{0(1{0|2|0]0
1/0(0|2/1(0|12/0
110/0(0(1{0{0|0

t

213
42

y

89

17

743

Projecting away the-component:

213 t 1{0{1(0

42 z 01|01

89 vy 1/0]0]1

744

Warning:

e Our representation of numbers is not uniquiet101 should be
accepted iff every word fromi11101 - 0* is accepted!

e This property is preserved by union, intersection and cempit
-)

e ltislost by projection!!

—— The automaton for projection must be enriched such that the
property is re-establishéed

745

Automata for Basic Predicates:

746

Automata for Basic Predicates:

X+X =y

10

o(@. TDw

01

747

Automata for Basic Predicates:

X+y =z
110

000 111
(O TalDmo

101 100
001

748

Results:

Ferrante, Rackoff, 1973 PSAT < DSPACE(2*™)

749

Results:

Ferrante, Rackoff, 1973 PSAT < DSPACE(2*™)

Fischer, Rabin,1974 : PSAT > NTIME(2*™)

750

3.3 Improving the Memory Layout

Goal:
e Better utilization of caches
— reduction of the number of cache misses
e Reduction of allocation/de-allocation costs
— replacing heap allocation by stack allocation
— support to free superfluous heap objects
e Reduction of access costs
— short-circuiting indirection chaingJnboxing

751

1. Cache Optimization:

ldea: local memory access

e Loading from memory fetches not just one byte but fills a catel
cache line.

e Access to neighbored cells become cheaper.

e If all data of an inner loop fits into the cache, the iterati@admes
maximally memory-efficient ...

752

Possible Solutions:

— Reorganize the data accesses

— Reorganize the data

Such optimizations can be made fully automatic onlydorays :-(

Example:
for (j=1;j <n;j++)

for (¢ =1;1 < m;i++)
ali]lj] = ali = 1}[7 = 1] + ald][j};

753

— At first, always iterate over theowd

— Exchange the ordering of the iterations:

for (¢ =1;1 < m;i++)
for (j =1;7 <n;j++)
ali]|j] = ali = 1}[7 — 1] + ald][j};

When is this permittea??

754

lteration Scheme: before:

755

lteration Scheme: after:

756

Iteration Scheme: allowed dependencies:

NI

757

In our case, we must check that the following equation systeaweno
solution:

Write Read
(i,1) = (i2—1,j2—1)
11 < 12
P < 1
(731,j1) — (iz — 1,72 — 1)
12 < 11
J1 <)2
The first implies: Jo < go — 1 Hurral

The second implies: iy, <iy—1 Hurral

758

Example: Matrix-Matrix Multiplication

for (i =0;i < N;i++)
for (j=0;7 < M;j++)
for (k=0;k < K; k++)
clillg] = clallg] + ala)[k] - O[F]1];

Over b|||] the iteration iscolumnwise :-(

759

30

1123 4

760

Exchange the two inner loops:

for (i =0;i < N;i++)
for (k=0k < K;k++)
for (j =0;7 < M;j++)
cle][j] = cle]lg] + ald][k] - bE][j];

Is this permitted???

761

16

762

Discussion:

e Correctness follows as before:-)

e Asimilar idea can also be used for the implementation of
multiplication forrow compressethatrices :-))

e Sometimes, the program must im@assagesuch that the
transformation becomes applicablé

e Matrix-matrix multiplication perhaps requires initiadizon of the
result matrix first..

763

for (i =0;i < N;i++)
for (=07 < M;j5++) {
clel]j] = 0;
for (k=0k < K;k++)
cli][j] = cle]ls] + ald][k] - bE][j];

Now, the two iterations can no longer be exchangedq

The iteration over, however, can bduplicated..

764

for (i =0;i < N;i++) {
for (j =0;j <M;j++) cli][j] = 0;
for (=07 < M;j++)
for (k=0;k < K;k++)
cle][j] = cle]lg] + ald][k] - bE][j];

t
Correctness:
—— The read entries (here: no) may not be modified in the
remaining body of the loof!
—— The ordering of the write accesses to a memory cell may not be

changed :-)

765

We obtain:

for (1 =0;i < N;i++) {
for (j =055 <M;j++) cli][j] = 0;
for (k=0k < K;k++)
for (j =0;7 < M;j++)
cle][j] = cle]lg] + ald][k] - bE][j];
}

Discussion:

e Instead of fusing several loops, we now hal&ributedthe loops
-)

e Accordingly, conditionals may be moved out of the loop—
if-distribution...

766

Warning:

Instead of using this transformation, the inner loop colso &e
optimized as follows:

for (1 =0;1 < N;i++)
for (=07 < M;j++) {
t=0;
for (k=0k < K;k++)
t =t + alt)[k] - O[] [];

767

ldea:

If we find heavily usedarray elements aleq]. .. [e.] whose index
expressions stayonstanwithin the inner loop, we could instead also

provide auxiliary registers :-)

Warning:

The latter optimization prohibits the former and vice versa

768

Discussion:

e so far, the optimizations are concerned with iterations aveays.

e Cache-aware organization of other data-structures isigesbut in
general not fully automatic.

Example: Stacks

=
¥
N
¥
w
1
AN

769

Advantage:

+ The implementation is simple:-)
+ The operationgush/ poprequire constant time :-)
+ The data-structure may grow arbitrarily-)

Disadvantage:

— The individual list objects may be arbitrarily disperse&iothe
memory -(

770

Alternative:

Advantage:

+ The implementation is also simple:-)

+

The operationgush/ popstill require constant time :-)

+ The data are consequtively allocated; stack oscillatioasygically
small

— better Cache behavidi

771

Disadvantage:

— The data-structure isounded :-(

Improvement:

e If the array isfull, replace it with another adoublesize!!!

e Ifthe array drops empty ta quarterhalvethe array agait'!

—— The extraamortizedcosts are constant:-)

—— The implementation is no longer so trivial-}

772

Discussion:

1

The same idea also works fqueues :-)
— Other data-structures are attempted to organize blockwise

Problem: how can accesses be organized such that they refer
mostlyto the same block??

— Algorithms for external data

773

2. Stack Allocation instead of Heap Allocation

Problem:

e Programming languages suchJasaallocateall data-structures in
the heap — even if they are only used within the current method

~(
e If noreference to these data survives the call, we want tcalé
these on the stack:-)

— Escape Analysis

774

ldea:

Determinepoints-toinformation.

Determine if a created object is possibly reachable fronotlieside...

Example: Our Pointer Language

r = new();
y = new();
z[A] = y;
Z =Y,

ret = z;

... could be a possible method body;-)

775

Accessible from the outside world are memory blocks which:

e are assigned to a global variable such ast; or

e arereachabldrom global variables.

... Inthe Example:

r = new();
y = new();
v[A] = y;
<~ =Y,

776

Accessible from the outside world are memory blocks which:

e are assigned to a global variable such ast; or

e arereachabldrom global variables.

... Inthe Example:

r = new();
y = new();
v[A] = y;
<= \Y)

777

Accessible from the outside world are memory blocks which:

e are assigned to a global variable such ast; or
e arereachabldrom global variables.

... In the Example:

r = new();
y = | new() |
r[A] = y;

< =1Y}

778

Accessible from the outside world are memory blocks which:

e are assigned to a global variable such ast; or
e arereachabldrom global variables.

... In the Example:

r = new();
y = | new() |
r[A] = y;

< =1Y}

779

We conclude:

e The objects which have been allocated by the firsiew() may
never escape.

e They can be allocated on the stack)

Warning:

This is onlymeaningfulif only few such objects are allocated during a
method call :-(

If alocal new() occurs within a loop, we still may allocate the objects
In the heap ;-)

780

Extension: Procedures

e We require annterprocedurapoints-to analysis :-)

e \We know the whole program, we can, e.g., merge the contrei-flo
graphs of all procedures into one and compute the points-to
information for this.

e Warning: If we always useéhe sameglobal variables v, -, ...
for (the simulation of) parameter passing, the computearmétion
IS necessarily imprecise:-(

e |f the whole program isiot known, we must assume thedich
reference which is known to a procedure escapef

781

3.4 Wrap-Up

We have considered various optimizations for improvingiineare
utilization.

Arrangement of the Optimizations:

e First, global restructuring of procedures/functions ahlbops for
better memory behavior ;-)

e Then local restructuring for better utilization of the ingition set
and the processor parallelism:-)

e Then register allocation and finally,

e Peephole optimization for the final kick

782

Procedures:

Tail Recursion+ Inlining
Stack Allocation

Loops:

Iteration Reordering
— If-Distribution
— for-Distribution
Value Caching

Bodies:

Life-Range Splitting (SSA)
Instruction Selection
Instruction Scheduling with
— Loop Unrolling

— Loop Fusion

Instructions:

Register Allocation
Peephole Optimization

783

4 Optimization of Functional Programs

Example:
let rec facz = 1if <1 then 1

else x-fac (x —1)

e There are no basic blocks:-(
e There are no loops :-(

e Virtually all functions are recursive :-((

784

Strategies for Optimization:

—— Improvespecific inefficienciesuch as:

e Pattern matching

e Lazy evaluation (if supported;-)

e Indirections— Unboxing/ Escape Analysis

e Intermediate data-structures Deforestation
—— Detect and/ogeneratdoops with basic blocks :-)

e Talil recursion
e Inlining
e let-Floating
Then applygeneraloptimization techniques

...e.g., by translation int&€ ;-)

785

Warning:

Novel analysis techniques are needed to collect informationtabou
functional programs.

Example: Inlining
let max (z,y) = if = >y then z
else y
let abs z = max (2, —2)

As result of the optimization we expect

786

let max (z,y) = if z >y then z

else y
let abs z = let ===z
inlet y=—z
in if >y then x

else y

Discussion:

For the beginningmax is just aname We must find out which value it
takes at run-time

—— Value Analysisrequired!!

787

Nevin Heintze in the Australian team
of the PrologProgramming-Contest, 1998

788

The complete picture:

789

4.1 A Simple Functional Language
For simplicity, we consider:

e == bl(ey,....ex)|cer...ep|funx — e

| (ere2) [(B1e) | (e1Oge2) |

let Ir1 = €1 in €0 |

match ey with p; — e |...| pr — e
p = blxl|lcxy...xp | (x1,...,78)
t = letrecri=e¢;and...and z, = ¢, ine

where b isaconstant, z Iisavariable, ¢ is a (data-)constructor
and 0O, are:-ary operators.

790

Discussion:

e letreconly occurs on top-level.
e Functions are alwaysnary. Instead, there are explidiiples :-)

e if-expressions and case distinction in function definitieneduced
to match-expressions.

e In case distinctions, we allow justmple patterns
—— Complex patterns must be decomposed
e |et-definitions correspond to basic blocks-)

e Type-annotationat variables, patterns or expressions could provide
further useful information
— which we ignore :-)

791

... Inthe Example:

A definition of max may look as follows:

let max = fun r — match z with (z;,23) — (
match r; < x5
with True — 29

| False — 3

792

Accordingly, we have for abs :

let abs = funz — let z = (z, —71)

In max 2

4.2 A Simple Value Analysis

|dea:

For every subexpressione we collect the set [¢]* of possible
valuesof e ...

793

Let V denote the set of occurring (classes of) constants, furshs
well as applications of constructors and operators. Asattice, we

choose:
Vv = 2Y

As usual, we put up aonstraint system

e If e isavalue,i.e., oftheform: b,ce;...ex, (e1,...,€ex),an
operator application orfunx — e we generate the
constraint:

[e]F 2 {e}

o If e=(e1ey) and f=funz — ¢, then

[(]F 2 (fela])?[eT - 0
[«1F 2 (f €ledd’) ?[e2]? - O

794

e If e=letx =e;in ey, then we generate:

[2:]% 2 [ed]?
[e] 2 [eo]®

e Analogously for ¢t =letrec z1 =¢;...1, = ¢ in e:

— /3
_ =
R S|
s wn i
U
— /3
Q) Q)
=, B
P X

795

Int-values returned by operators are described by the undgdlua
expression;

Operator applications might return Boolean values or adbasic
values. Therefore, we do replace tests for basic values by
non-deterministichoice...

Assume e = match eg withp;, — e | ... | ppr — €.
Then we generate forp; = b (basic value),

[e]* 2 [e:]" - 0

796

If pi=cyi...yx and v=cej...e, Isavalue,then

[P 2 (velel)?[e]f - 0
[y,]F 2 (velel)?[e]f - 0
If pi=(,...,y) and v =(e},...,e,) Isavalue,then
[} 2 (ve[e])?[ei] - 0
[yl 2 (vele]”)?[E]F - 0
If p; =y, then
[e]* 2 [e]f
[v]F 2 [eo]®

797

Example Theappend-Function

Consider the concatenation of two lists.rwam| we would write:

let rec app = fun xr — match x with
] — funy — y
|h:t — funy — h:appty
in app [1; 2] [3]
The analysis then results in:

[app]* = {funz — match...}

[z]" = L2 2L 1]

[match...]* = {funy — y,funy — h:app...}

[y]F = Bl

798

h]? = 11,2}

t]f = {1211}

app t]* =

app [1; 2] = {funy — y,funy — h::app...}
appty]’ =

app [1;2] 3]]F = {[3],huapp...}

Values ce;...ex, (e1,...,e,) oOroperator applications e;0Oe;
now are interpreted ascursivecalls c[e]* ... [ex]’, ([el], ..., [ex]?)
or [e;]*0[es]*, respectively.

— regular tree grammar

799

... In the Example:

We obtain for A = [appty]*:

— [3] | [r]F:A
— 1 | 2

[A]*

Let £(¢) denote the set of terms derivable frdnj* w.r.t. the regular tree
grammar. Thus, e.qg.,

L(h) = {1,2}
L(appty) = {lar;...,a;3]|r>0,a; € {1,2}}

800

4.3 An Operational Semantics

ldea:

We construct &ig-Stepoperational semantics which evaluates
expressions w.r.t. an environment-)

Valuesare of the form:
vi=b|cu...ck | (v1,...,0) | (funx — e, n)
Examples for Values:

cl
;2] ==1(:2]])
(funz — z:y, {y — [5]})

801

Expressions are evaluated w.r.t.emvironment n : Vars — Values.

The Big-Stepoperational semantics provides rules to infer the value to
which an expression is evaluated w.r.t. a given environment deals

with statements of the form:

(e,n) = v

Values:
(b,n) =0

(funz — e,n) = (funx — e, n)

(e1,m) = vy ... (er,n) = vy

(cep...ex,n) = cuy... v

Operator applications are treated analogously!

802

(e1,m) = v1 ... (eg,1n) = vy

((e1,...,ex),n) = (v1,...,0%)

Global Definition:

letrec ... 2=¢ ... 1n ...

(e,0) = v

(x,m) = v

803

Function Application:

(e1,n) = (funz — e,m)
(62777) — Vg

(e,m @ {x — v2}) = v3

(61 €2, 77) — U3

804

Case Distinction 1:

(e,m) = b

(61;, 77) — U

(match e withp;, — ey |...|pr — e,) = v

If p; =0 Isthe first pattern which matches :-)

805

Case Distinction 2:

(e,n) = cvy... v

(ei,n@®{z1 = v, .,z = O }) =

(match e withp;, — ey | ... |pr — e, n) =0

If p, =cz ...z, Isthefirst pattern which matches v, ... v,)

806

Case Distinction 3:

(e,n) = (v1,...,vk)
(e, n®{yr = vi, . 1 > vk}) =0
(match e withp; — e | ... |pr — €, 1) = v

it p;=(y1,...,yx) Isthe first pattern which matchegv,, ..., v;)

-)

807

Case Distinction 4:

(e,n) = v/
(e;,m®{r—1'}) = v

(match e withp;, — ey |...|pr — e,) = v

If p;, =z Isthe first pattern which matches’ :-)

808

Local Definitions:

(617 77) — U1

(0, ® {x1 — v1}) = vy

Variables:

(let x1 = e1 in ey,) = vy

(z,n) == n(x)

809

Correctness of the Analysis:

For every (e,n) occurring in a proof for the program, it should hold:
e If n(x)=wv,then [v] A L(x).
o If (e,n) == v,then [v] A L(e) ...

e wherelv] is thestrippedexpression corresponding toi.e.,
obtained by removing all environments, and

e vALIff ve LorL has an expressiart which evaluates to.

Conclusion:

L(e) returns asupersedf the values to which e is evaluated :-)

810

4.4 Application: Inlining

Problem:

e global variablesThe program:

let z=1
inlet f= let z =2
in funy — y+=

in fax

811

... computes something else than:

let x=1

inlet f= let z =2

in

in funy — y+=2

let y==x
in y+x

recursive functionsln the definition:

= funy — fooy

foo should better not be substituted-)

812

|dea 1:

— First, we introduceiniquevariable names.

— Then, we only substitute functions which ataticly within the
scope of thesameglobal variables as the application:-)

— For every expression, we determine all function definitiorth
this property :-)

813

Let) = Dle] denote the set of definitions which staticly arrive at

oo |f ¢ = letxy =€ iney then:
Dley] = D
Dleg) = DU{z}
e If e = funx — e; then:

Dleq] = DU{z}
ee Similarly,for ¢ = match...cz;... 2, —¢; ...,

Dle)l = DUA{z, ..., 2k}

814

In all other cases, /) is propagated to the sub-expressions unchanged

-)

... In the Example:

let z=1
inlet f= let 2 =2
in funy — y+ 24

in fax

...the application f x is notin the scope of,

—— we first duplicate the definition of z :

815

let z=1
inlet », =2
inlet f= let 2, =2
in funy — y+ 24

in fax

—— the inner definition becomes redunddit

816

let r=1
inlet », =2
inlet f=funy — y+ 2,

in fax

now we can apply inlining :

817

let =1
inlet », =2

inlet f=funy — y+ 2,

in let y==x

in y+ 14

Removingvariable-variableassignments, we arrive at:

818

let =1
inlet », =2

inlet f=funy — y+ 2,

il’l CC‘|‘£E1

819

|dea 2:

— We apply our value analysis.
— Weignoreglobal variables :-)

— We only substitute functiongithout free variables :-))

Example: Themap-Function

letrec f=funzx — z-x
and map=fung — funx — matchx
with [] — []
| TTS — gx:mapgrs

in map f [ist

820

Theactualparameter f inthe application map g is always
funx — xz-x)

Therefore, map g can be specialized to a new functiomh
defined by:

h = letg=|funz — z-x

in fun xr — match z

with [] — []

| x:rs — gx:mapglxs

821

The inner occurrence ofmap ¢ can be replaced with h

—— fold-Transformation :-)

h = letg=funx — z -2
in funz — matchz
with [] — []

| zizs — gxihuas

822

Inlining the function ¢ vyields:

h = letg=funx — z -2
in funx — match x
with [] — []
| xixs — (letr=ux

in zxx) = huas

823

Removing useless definitions and variable-variable assegus yields:

h = funaxz — match z
with [] — []

| xizs — xxxz i huas

824

4.5

Deforestation

Functional programmers love to collect intermediate tssullists
which are processed by higher-order functions.

Examples of such higher-order functions are:

map = fun f — fun! — match/ with[] — []

| x:xs — fx:map f xs)

825

filter = funp — fun! — match [with [|] — []
| z:xs — if px then x :: filter p xs

else filter p xs)

foldl = fun f — funa — funl/ — match!with|[] — a
| z::xs — foldl f (fax) xs)

826

id = funzx — =z

comp = funf — fung — funz — f (g 7)

comp;, = funf — fung - funz; - funz, —
f (g 1) 2

comp, = funf — fung — funx; - funz, —

[x1 (g w2)

827

Example:

sum =

length =

dev =

foldl (4)
let f

0

map (fun z — 1)

in comp sum f

fun/ —

let S1

828

sum [

length [

s1/n

map (fun z — = — mean) [
map (funz — z-2) [

sum [y

Observations:

e Explicit recursion does no longer occur!

e The implementation creates unnecessary intermediate
data-structures!

length could also be implemented as:

length = let f = funa — funz — a+1
in foldl f 0

e This implementation avoids to create intermediate lists

829

Simplification Rules:

compid f = compfid = f
comp, f id = comp, fid = f
map id = id

comp (map f) (mapg) = map(comp f g)

comp (foldl f a) (map g) = foldl(comp, fg)a

830

Simplification Rules:

compid f = compfid = f
comp, f id = comp, fid = f
map id = id
comp (map f) (mapg) = map (comp f g)
comp (foldl f a) (mapg) = foldl(comp, fg)a
comp (filter py) (filter po) = filter (funz — if pyz then p; x
else false)
comp (foldl f a) (filter p) = let h=funa — funx — if px then fax

else a

in foldl h a

831

Warning:

Function compositions also could occur as nested funcidia c.

idx =

map id [= |

map f (mapgl) = map (comp f g)l

foldl f a (map gl) = foldl(comp, fg)al

filter py (filter po [) = filter (funx — p1x Apox)l

foldl f a (filter pl) = let h=funa — funz — if pz then fax

else a

in foldl hal

832

Example, optimized:

sum

length

dev

foldl (+)
let f
in foldl

fun! —

0

= comp, (+) (funx — 1)

fO0
let S1

n

mean

833

sum [
length [

s1/n

comp (funz — z-1)

(
(
comp, (+) f
foldl g 0 {

fun xr — x — mean)

Remarks:

e Allintermediate lists have disappeared-)
e Onlyfoldl remain —i.e., loops :-))

e Compositions of functions can be further simplified in th&tregep
by Inlining.

e Insidedev, we then obtain:

g = funa — funz — let ¢y = x— mean
Lo — T1°-X
in a-+ xo

e Theresultis a sequencelet-definitions!!!

834

Extension: Tabulation

If the list has been created by tabulation of a function, tleaton of the
list sometimes can be avoided

tabulate’ = funj — fun f — funn —

if 7 > n then ||

else (f 7) :: tabulate’ (j +1) fn
tabulate = tabulate’ 0

835

Then we have:

comp (map f) (tabulate g) = tabulate (comp f g)

comp (foldl f a) (tabulate g) = loop (comp, f ¢g) a
where:

loop = funj — funf — funa — funn —

if 7 > n then a
else loop’ (j+1) f(fayj))n

loop = loop’ 0

836

Extension (2):

List Reversals

Sometimes, the ordering of lists or arguments is reversed:

rev’

rev

comp rev rev

swap

comp swap swap

funa — funl —
match [with [| — «
| xzixs — rev (v:ia) xs

rev’ |]

fun f — funz — funy — fyx

837

foldr f a = comp (foldl (swap f) a) rev

Discussion:

e The standard implementation fafidr is not tail-recursive.

e The last equation decompose®hlr into two tail-recursive
functions — at the price that an intermediate list is created

e Therefore, the standard implementation is probably faster

e Sometimes, the operatioav can also be optimized away

838

We have:

comp rev (map f) = comp (map f) rev
comp rev (filter p) = comp (filter p) rev
comp rev (tabulate f) = rev_tabulate f

Here,rev_tabulate tabulates in reverse ordering. This function has
properties quite analogous tabulate:

comp (map f) (rev_tabulate g9) = rev_tabulate (comp, f g)
comp (foldl f a) (rev_tabulate g) = rev_loop (comp, f g) a

839

Extension (3): Dependencies on the Index

e Correctness is proven by induction on the lengthes of orauhists.

e Similar composition results also hold for transformatiarsch take
the current indices into account:

mapi’ = fun¢ — fun f — fun! — match/ with || — |[]
| xixs — fix)omapl (14 1) f s

mapi = mapi’ 0

840

Analogously, there is index-dependent accumulation:

foldl’ = funi — fun f — funa — funl —
match [with [| — «
| zxs — foldli (i +1) f (fiax) xs
foldli = foldli’ 0

For composition, we must take care that always the sameasdaie used.
This is achieved by:

841

compi = funf — fung — funi — funx — fi(gix)

compi;, = funf — fung — fun: — funz; = funaz, —

fi(gix)xs

compi, = funf — fung — fun: — funz; — funaz, —

fix(gixs)

cmp; = funf — fung — fun: — funz; = funaz, —
fix (g x)
cmp, = funf — fung — fun: —- funz; — funz, —

fr(gix)

842

Then:

comp (mapi f) (map g) = mapi (comp, f g)

comp (map f) (mapi g) = mapi (comp [g)

comp (mapi f) (mapi g) = mapi (compi f g)

comp (foldli f a) (map g) = foldli (cmp, f¢g)a

comp (foldl f a) (mapi g) = foldli (cmp, fg) a

comp (foldli f a) (mapi g) = foldli (compi, f g) a

comp (foldli f a) (tabulateg) = let h= funa — funi —
fia(gi)

in loop h a

843

Discussion:

e Warning: index-dependent transformations may not commute
with rev or filter.

e All our rules can only be applied if the functioils map, mapi,
foldl, foldli, filter, rev, tabulate, rev_tabulate, loop, rev_loop, ... are
provided by astandard library Only then the algebraic properties
can be guaranteed

e Similar simplification rules can be derived for any kind adfdrlike
data-structure tree o .

e These also provide operationsp, mapi andfoldl, foldli with
corresponding rules.

e Further opportunities are opened up by functiongist and
from_list ...

844

Example

type tree « = Leaf | Node « (tree o) (tree)
map = fun f — fun{ — match ¢ with Leaf — Leaf
| Nodexlr — let ! = mapfl

r = mapfr

in Node (fx) ' r

foldl = funf — funa — funt — match{ with Leaf — «
| Node z [r — let o/ =foldl f al
in foldl f (fa'z) r

845

to list = funa — funt — match t with Leaf — a
| Nodexztits — let o/ = to list' ats
in to_list’ (z::d’) t;

to list = to_list' []

from list = fun/ — match |
with || — Leaf

| x::xs — Node z Leaf (from_list xs)

846

Warning:
Not every natural equation is valid:

id
id
comp (map f) to_list

comp to_list from_list

“h

comp from_list to_list

comp to_list (map f)

comp (map f) from_list
comp (foldl f a) to_list foldl f a
comp (foldl f a) from_list = foldl f a

comp from_list (map f)

847

In this case, there is evenrev:

rev = funt —
match ¢t with Leaf — Leaf
| Nodeztits — let s = revty
So = rev iy

in Node x sy s

comp to_list rev = comp rev to_list

comp from_list rev # comp rev from_list

848

4.6 CBN vs. CBV: Strictness Analysis

Problem:

e Programming languages suchrésskellevaluate expressions for
let-defined variables and actual parameters not before thielkeva
are accessed.

e This allows for an elegant treatment of (possibly) infinigtd of
which only small initial segments are required for compgtine
result :-)

e Delaying evaluation by default incures, though, a nondtiv
overhead..

849

Example

from = funn — n:from (n+1)

take = funk — funs — if £ <0then []
else match s with || — |[]

| x:xs — x:take (k—1) xs

850

Then CBN yields:

take 5 (from 0) = [0, 1,2, 3, 4]

— Wwhereas evaluation with CBV does not terminate

851

Then CBN yields:

take 5 (from 0) = [0, 1,2, 3, 4]

— Wwhereas evaluation with CBV does not terminate

On the other hand, for CBN, tail-recursive functions mayures
non-constant spac&’?

fac2 = funz — funae — if x <0thena
else fac2 (r —1) (a- x)

852

Discussion:

e The multiplications are collected in the accumulating pseter
through nested closures.

e Only when the value of a caflhc2 x 1 is accessed, this dynamic
data structure is evaluated.

e Instead, the accumulating parameter should have beendbasse
directly by-value!!!

e This is the goal of the following optimization

853

Simplification:

e Atfirst, we rule out data structures, higher-order funciicand local
function definitions.

e We introduce an unary operatgrwhich forces the evaluation of a
variable.

e Goal of the transformation is to plage at as many places as
possible...

854

Simplification:

e Atfirst, we rule out data structures, higher-order funciicand local
function definitions.

e \We introduce an unary operatgrwhich forces the evaluation of a
variable.

e Goal of the transformation is to plage at as many places as
possible...

e t= clxz|eOgey | Ore| fer ... e |if ¢y then e else e,
| let 1y = e ine
= T | #T
d = fx ... =c¢

[= letrecand d; ... and d,, ine

855

ldea:

e Describe &-ary function
f:int — ... — int

by a function
/P B—... =B

e Omeans: -evaluation does definitely not terminate.

e 1means: -evaluation may terminate.

e [f]F0=0 means: Ifthe function call returns a value, then the
evaluation of the argument must have terminated and rediane
value.

— f s strict

856

ldea (cont.):

e We determine the abstract semantics of all functions)
e For that, we put up a system of equations

Auxiliary Function:

e]* . (Vars - B) — B

c]* p = 1

2]* p = px

O e]f p = [efF p

e1 Oz eo] p = [e]? p A [ea]? p

if eg then e; else ex]f p = [eo]® p A ([er]? p V [e2]? p)
fer ... e]tp = [fIF (eal? p) - ([ex]* p)

857

flet 2y =erinelffp = [e]* (p@ {z1 = [er]* p})
[let #a1 =erinel* p = ([ei] p) A ([e]* (p @ {21 = 1}))

System of Equations:

LAy ... b = [es]f {xj = b | 5 =1,...,k}, i=1,...,n,b,...,bp,€B
e The unkowns of the system of equations are the functj¢yisor
the individual entrieg f;]#b, ... b in the value table.
e Allright-hand sides arenonotonidc
e Consequently, there is a least solution-)
e The complete lattic® — ... — B has heightD(2%) :~(

858

Example:

For fac2, we obtain:

[[fac2]]ﬂ bl bQ = bl N\ (bg\/
[[fac2]]ﬂ bl (bl A\ bg))

Fixpoint iteration yields:

0| funz — funa — 0

1 || funz — funa — x A a

2 funz — funa — x N a

859

We conclude:

e The functionfac2 is strict in both arguments, i.e., if evaluation
terminates, then also the evaluation of its arguments.

e Accordingly, we transform:

fac2 = funz — funa — if x <(0thena
else let #2' = z-—1
#ad = z-a

in fac2 2’ a

860

Correctness of the Analysis:

e The system of equations is an abstm@ehotationasemantics.

e The denotational semantics characterizes the meaningnctidms

as least solution of the corresponding equations for thereta
semantics.

e Forvalues, the denotational semantics relies orctimepletepartial
ordering 7Z,.

e For complete partial orderinggJeenés fixpoint theorem is
applicable :-)
e Asdescription relation /A we use:

1L A0 and 2z A1 forzeZ

861

Extension: Data Structures

e Functions may vary in the parts which they require from a data
structure...

hd = fun! — match ! withxz::2zs — =z

e hd only accesses the first element of a list.
e length only accesses the backbone of its argument.

e rev forces the evaluation of the complete argument — given thet t
result is required completely.

862

Extension of the Syntax:

We additionally consider expression of the form:

e == ... | []|eres| matcheywith|[] — e | x5 — e

| (e1,e2) | match eg with (x1,25) — e

Top Strictness

e \We assume that the program is well-typed.

e We are only interested in top constructors.

e Again, we model this property with (monotonic) Boolean ftiogs.
e Forint-values, this coincides with strictness.-)

e We extend the abstract evaluatior]e]* p with rules for
case-distinction..

863

[match eq with [| — e; | 225 — e]f p
[eol? p A ([e1]F pV [e2]F (p & {25 — 1}))
[match ey with (z1,25) — e1]? p =
[eo]? p A [er]F (p @ {1, 22+ 1})
[1Fp = lere]f p = [(er,e2)]F p = 1

The rules formatch are analogous to those fibr

In case of:, we know nothing about the values beneath the
constructor; therefore {z,xs — 1}.

We check our analysis on the functiepp ...

864

Example:

app = funzx — funy — match x with || — y

| xxs — x:appasy
Abstract interpretation yields the system of equations:

[[app]]ﬂ bl bg = bl A\ (b2 V 1)

We conclude that we may conclude for sure only for the firstiargnt
that its top constructor is required:-)

865

Total Stricthess

Assume that the result of the function applicatiomoislly required.
Which arguments then are also totally requifed

We again refer to Boolean functions

[match ey with [] — e, | 2,25 — e]f p = let b= [e]* pin
bAferlt oV [ealt (p @ Lz o boas o 1))V [eaf (p & [z > 1,z >)

[match ey with (z1,25) — e1]? p = let b = [eg]* pin
[edf (p® {x1 = 1,25 = 0}) V [e]? (p @ {21 = b, 25 > 1})

[P p = 1

€11 €] = [eif p A [eo]f

E2)" p P
(e1,€2)]* p = Jei]* p A fea]* p

866

Discussion:

e The rules for constructor applications have changed.

e Also the treatment afmatch now involves the componentsand

L1, 9.

e Again, we check the approach for the functiup.

Example:

Abstract interpretation yields the system of equations:

ﬂapp]]ﬁ bl b2 = b1 A\ bQ \Y bl A\ ﬂapp]]ﬂ 1 bQ V1A [[app]]ﬁ bl b2
= bl /N\ b2 V bl /N\ ﬂapp]]ﬂ 1 b2 V ﬂapp]]ﬂ bl b2

867

This results in the following fixpoint iteration:

0| funz — funy — 0

1| funz — funy - x Ay

2 || funxy —» funy -z Ay

We deduce that both arguments are definitely totally requfrine result
IS totally required :-)

Warning:

Whether or not the result is totally required, depends orctimext of the
function call!

In such a context, a specialized function may be called

868

app# = funzx — funy — let #2' =x and #y' =y in
match 'z with | | — ¢/
| xxs — let #r =x:app#H rsy

inr
Discussion:

e Both strictness analyses employ the same complete lattice.
e Results and application, though, are quite different)
e Thereby, we use the following description relations:
Top Strictness . L A0
Total Strictness : 2z A 01if L occurs inz.
e Both analyses can also be combined to an a joint analysis

869

Combined Strictness Analysis

e \We use the complete lattice:

T={0C1C 2}

e The description relation is given by:

1L A0 zA1(zcontainsl) =z A 2 (zvalug

e The lattice is more informative, the functions, though, mmdonger
as efficiently representable, e.g., through Boolean egmms :-(

e We require the auxiliary functions:

if 1 C o
(iCx); y= J T
0 otherwise

870

The Combined Evaluation Function:

[matcheywith|[] — e; | zas — e]fp = let b= [eg]* pin
2Cb);[alf oL
(1C0); ([ex]t (p® {x > 2,25 — b})
U [ea]? (p @ {x > b, s > 2}))

[match eg with (z1,22) — ei]fp = let b= [eo]fpin
(LE0); ([exl? (p ® {a1 = 2,22 > b})
U [(p @ {a1 = b, 22 > 2}))
[P p = 2

e ea]f p =
(e1,€2)]* p = 1U ([ed]* p 1 [e2] p)

871

Example:

For our beloved functioapp, we obtain:

[[app]]tt dy do = ; dy U

. (1 U [app]f di da U dy M [app]* 2 dy)

1

1

o8
)
[

N—r | N N

o
—_
L

/N
S T T

1) ; [app]* di do U
dy M [app]* 2 ds

this results in the fixpoint computation:

872

0| funz — funy — 0

1| funx — funy - 2Cx); y U (

N

z);

z);

1 1
2| funz — funy — (2Cx); y U (1 1

N

We conclude

e that both arguments are totally required if the result ialtpt
required; and

e thatthe root of the first argument is required if the root @& tlsult
IS required :-)

Remark:

The analysis can be easily generalized such that it gua=eiealuation
uptoadepth d ;-)

873

Further Directions:

e Our Approach is also applicable to other data structures.

e In principle, also higher-order (monomorphic) functioas de
analyzed in this way :-)

e Then, however, we require higher-order abstract functienst
which there are many :-(

e Such functions therefore are approximated by:

funz; — ... funz, —» T

-)
e For some known higher-order functions suchva®, foldl, loop, ...

only unary or binary functional arguments are required — bicl
there are sufficiently few :-))

874

5 Optimization of Logic Programs

We only consider the mini languagriP(“Pure Prolog”). In particular,
we do not consider:

e arithmetic;
e the cut-operator.

e Self-modification by means afssertandretract

875

Example:

bigger(X,Y) <+ X = elephant,Y = horse

bigger(X,Y) +— X = horse,Y = donkey

bigger(X,Y) +— X = donkey,Y = dog

bigger(X,Y) +— X = donkey,Y = monkey

is_bigger(X,Y) < bigger(X,Y)

is_bigger(X,Y) < bigger(X, 2),is_bigger(Z,Y)
< is_bigger(elephant, dog)

876

A more realistidexample:

877

A more realistidexample:

the atomempty list

1
—_

binary constructor application
Abbreviation for: |[a|[b|[Z]] ||]]

878

Accordingly, a progranp is constructed as follows:

t = a| X | _| f(ts,...,tn)

g == p(ty,...,tp) | X =t

c == p(Xy, ..., Xg) G915, 05
q = < Gi,..., 0

P = Cl...Cm(Q

e Atermt either is an atom, a (possibly anonymous) variable or a
constructor application.

e A goalg either is a literal, i.e., a predicate call, or a unification.

e A clausec consists of dneadp(X, ..., X;) together withbody
consisting of a sequence of goals.

e A programconsists of a sequence of clauses together with a
sequence of goals asiery.

879

Procedural View oPuRPrograms:

literal —— procedure call
predicate —— procedure
definition — body
term — value
unification —— basic computation step
binding of variables — side effect

Warning: Predicate calls ...

e do not return results!
e modify the caller solely through side effects:-)

e mayfail. Then, the following definition is tried —
backtracking

880

Inefficiencies:

Backtracking: e The matching alternative must be searched for
—— Indexing

e Since a successful call may still fail later, the stack caly be
cleared if there are no pending alternatives.
Unification: e The translation possibly must switch between build
and check several times.
e In case of unification with a variable, &ccur Checknust be
performed.

Type Checking: e Since Prolog is untyped, it must be checked at
run-time whether or not a term is of the desired form.

e Otherwise, ugly errors could show up.

881

Some Optimizations:
e Replacing last calls with jumps;

e Compile-time type inference;
e Identification of deterministic predicates

Example:

app(X,Y,Z) + X=[,Y=2
app(X,Y,Z) « X =[H|X'], Z=[H|Z, app(X".Y, Z")
— app([a,b],[Y,c],Z)

882

Observation:

e In PuP functions must be simulated through predicates.
e These then have designategut- and output parameters.

e Inputparameters are those which are instantiated with a
variable-free term whenever the predicate is called.

These are also callegtound
e Inthe example, the first parameteraplp is an input parameter.

e Unification with such a parameter can be implementeoladi®rn
matching

e Then we see thaipp in fact is deterministic!!

883

5.1 Groundness Analysis

A variable X is calledgroundw.r.t. a program execution starting
program entry and entering a program painif X is bound to a
variable-free term.

Goal:

e Find all variables which are ground whenever a particulagmm
point is reached

e Find all arguments of a predicate which are ground whenéser t
predicate is called

884

ldea:

e Describe groundness by values frdim

1 == \variable-free term;
0 =— term which contains variables.

e A setof variable assignments is described by Boolean fonsti :-)

X <Y = Xisground iffY is ground.
XANY = X andY are ground.

885

ldea (cont.):

e The constant functiof denotes an unreachable program point.
e Occurring sets of variable assignments are closed undstisuion.

This means that for every occurring function# 0,

o(1,...,1)=1
These functions are callembsitive
e The set of all positive functions is callétbs.
Ordering: ¢1 C ¢ If 1 = o@o.
e In particular, the least element(s :-)

886

Example:

00, 10, 11

(Y > Xx)

10, 11

X

00, 01, 10, 11

1)

XVY

00, 11

(X oYV)
(XAy)
o)

887

01, 10,

00, 01, 11

(XY)

Y

01, 11

Remarks:

e Not all positive functions are monotonild
e For/ variables, there ar&’ ' -+ 1 many functions.
e The height of the complete latticeis.

e \We construct an interprocedural analysis which for eveeglimatep
determines a (monotonic) transformation

[p]* : Pos — Pos

o Foreveryclause, p(Xi,...,X.) < ¢1,...,9, We obtain the
constraint:

[PFv 3 33Xk, X [galF (- ([0 0))

// - m number of clause variables

888

Abstract Unification:

X =t]"vy = YAX<XIA.. AX,)
it Vars(t) = {Xy,..., X, }.

Abstract Literal:

[a(s1, -, s0)]P = combinel, . (¢, [q] (enteri, . v))

777777777

//analogous to procedure céll

889

.....

ren(Ele,...,Xm. ﬂ)_(lzsl,... X

EIXl,...,Xr.’QD/\[[Xlel,...

where

ol0/X]V o[1/X]
[X1/ X1, X/ Xy

oI X1/ X1, ..., X,/ X,]

890

Example:

app(X,Y,Z) + X=[],Y=2
app(X,Y,Z) « X =[H|X'], Z=[H|Z', app(X".Y, Z")

Then
[app]f(X) O X A (Y & 2)
lapp(X) O letyy =X AHAX' AN(Z < Z')

in 3 H, X', Z". combine® (v, [app]*(enter® (1))

wherefor v = X ANHAX'N(Z < Z'):

enter? (v) = X
combine? (Y, XA (Y < 2)) = (XANHAX'AN(Z < ZYNY < 2"

891

Example (Cont.):

Furthermore,
l[app]*(Z) 3 XAY AZ
lapp]*(Z) 3 let oy =HANZANZ N (X < X')

in 3H,X’,Z'. combine? (1, [app]*(enter (1))

wherefor v =ZANHANZ'N (X < X'):

enter? (1)) = Z
combine! (), X AY ANZ) = XANHAX'ANYNZANZ

Fixpoint iteration therefore yields:

[app]* (X) = XA (Y < 2) [appl*(Z2) = XAY NZ

892

Discussion:

e Exhaustive tabulation of the transformatifupp]* is not feasible.
e Therefore, we rely odemand-driveriixpoint iteration!

e The evaluation starts with the evaluation of the quety i.e., with
the evaluation of [g]*1.

e The set of inspected fixpoint variables[p]* ¢ yields a
description of all possible calls:-))

e For an efficient representation of functions) € Pos we rely on
binary decision diagram$0Ds).

893

Background 6: Binary Decision Diagrams

ldea (1):

e Choose an ordering;, ..., z; on the arguments.

e Representthe function f:B — ... - B by |[f]o where:

by = b
[f]i—l = fun xr;, — if X; then [f 1]2
else [f 0]

Example: f T1 To Ty = X1 N (5132 < 373)

894

... yields the tree:

895

ldea (2):

e Decision trees are exponentially large-(
e Often, however, many sub-trees aemorphic :-)

e |somorphic sub-trees need to be represented only once

ldea (3):

e Nodes whose test is irrelevant, can also be abandoned

897

Discussion:

e This representation of the Boolean functignis unique!

—

Equality of functions is efficiently decidablé

e For the representation to be useful, it should support tseba
operationsA,V, -, =, 3z, ...

b1 Absle = b1 Abs
[fAglici = funx; — if z;then [f1 Agl];
else [f 0 A g0,
// analogous for the remaining operators

898

[El Zj. f]i—l = fun Xr;, — if X; then [EI Zj. f 1]2
else [Jx;. f0]; if i <
Fz. fli = [fOV [

e Operations are executed bottom-up.

e Root nodes of already constructed sub-graphs are stored in a
unique-table

—
Isomorphy can be tested in constant time

e The operations thus apolynomialin the size of the inpuBDDs :-)

899

Discussion:

e Originally, BDDs have been developped for circuit verification.
e Today, they are also applied to the verification of software

e A system state is encoded by a sequence of bits.

e A BDD then describes theetof all reachable system states.

e \Warning: Repeated application of Boolean operations may increase
the size dramatically

e The variable ordering may have a dramatic impact

900

(21 <> x2) A (23 <> T4)

Example:

901

Discussion (2):

e In general, consider the function:
(21 <> o) Ao A (Tap_1 <> Tay)
W.r.t. the variable ordering:
T < To < ...< Top

theBDD has 3n internal nodes.

W.r.t. the variable ordering:
T < T3 < ...<Togp1 < T2 <Tyu<...<Toy

theBDD has more than 2" internal nodeg!

e A similar result holds for the implementation of Additiorrélugh
BDDs.

902

Discussion (3):

e Not all Boolean functions have sm&bDDs -(

e Difficult functions:

O multiplication;

0 indirect addressing.

—— data-intensive programs cannot be analyzed in this way

903

Perspectives: Further Properties of Programs

Freeness: Is X, possibly/always unbound
—
If X, is always unbound, no indexing fof; is required:--)
If X; is never unbound, indexing foX, is complete-)

Pair Sharing: Are X;, X, possibly bound to terms, ¢; with
Vars(t;) N Vars(t;) #0 7

—
Literals without sharing can be executed in paralgl

Remark:

Both analyses may profit froi@roundness !

904

5.2 Types for Prolog

Example:
nat(X) — X =0
nat(X) — X =5(Y),nat(Y)
nat_list(X) <« X =]
nat_list(X) <« X = [H|T],nat(H), nat_list(T)

905

Discussion

e InProlog, atypeis a set of ground terms withsampledescription.
e There is no common agreement whatiplemeans :-)

e One possibility are (non-deterministithite tree automatar
normalHorn clauses:

nat_list(|H|T]) < nat(H), nat_list(T) normal
bin(node(T,T)) <+ bin(T) nicht normal
tree(node(T1,Ty)) < tree(Ty),tree(T) normal

906

Comparison:

Normal clauses Tree automaton
unary predicate state
normal clause transition

constructor in the head input symbol

body pre-condition

General Form:

pla(Xy, ..., Xg)) < pu(Xy),. .., pe(Xk)
p(X) %
p(b) %

907

Properties:

o Typesthen are in factgular tree languages;-)

e Types are closed under intersection:

<p=q>(a(X17"'7Xk)) — <p1>Q1>(X1);---7<pk;,Qk:>(Xk) If
p(a(le"'vXk)) — pl(Xl)v"'vpk(Xk) and

q(a(X1, ..., X)) — 1(Xy), . qe(Xg)

e Types are also closed under union)
e Queriesp(X) andp(t) can be decided in polynomial time but:

e ...onlyin presence of tabulatian

e Or the program isopdowndeterministic...

908

Example: Topdown vs. Bottom-up

p1(X1),p2(X2)
pz(X1),p1(X2)

T 1T

... 1S bottom-up but nottopdowndeterministic.
There is no topdown deterministic program for this type

—

Topdown deterministic types are closed under intersechionnot under
union!!!

909

Foraset T' of terms, we define the setIl(7") of pathsin terms
from 7"

[I(T) = U{IIQ@) [t e T}

I1(b) = {b}
O(a(ty,....tx) = {aw|well(t))} (k>0
// for new unary constructors;

Example

T = {a(b,c),a(c,b)}
I(T) = {aib,asc,aic,azb}

910

Vice versa from a set P of paths, aset [I"(P) of terms can be
recovered:

I-(P) = {t|IL{t) € P}
Example (Cont.):

P = {a1b, asc, aic, azb}
[I=(P) = {a(b,b),a(b,c),a(c,b),alc,c)}

The set has become largér

911

Theorem:

Assume that 7' is a regular set of terms. Then:

e II(7T) isregular :-)

o T CII-(I(T)) :-)

e T =II"(IKT)) iff T istopdown deterministic :-)

e II7(II(T)) isthesmallestsuperset of 7" which is topdown
deterministic. :-)

Consequence:

If we are interested in topdown deterministic types, it seffito
determine the set of paths in terrs

912

Example (Cont.):

add(X,Y,7Z) <+ X =0,nat(y),Y =2

add(X,Y,Z) < nat(X),X =s(X'),Z =s(Z'),add(X",Y, 2’)
mult(X,Y,7Z) < X =0,nat(V),Z =0

mult(X,Y,Z) < nat(X),X = s(X'),mult(X",Y,Z"),add(Z")Y, Z)
Question:

Which run-time checks are necessary?

913

ldea:
e Approximate the semantics of predicates by means of

topdown-deterministic regular tree languages

e Alternatively: Approximate the set of paths in the semantics of
predicates by regular word languades

ldea:

e Allpredicatesp/k, k > 0, are split into predicates, /1, ..., px/1.

914

Semantics:

Let (C denote a set of clauses.

The set [p]c is the set of tuples of ground terns, . . ., sx), for
which p(sq,...,sg) Iisprovable :-)

[ple (p predicate) thus is the smallest collection of sets of tufaes
which:
o(t) € [ple whenever Vi.o(t) € [pi]c

for clauses p(t) < p1(ty),...,pn(t,) € C and ground substitutions

915

Approximation of Paths:

Every clause
p(tl,...,tk) —

IS approximated by the clauses:

pi(w) — Al(a) where
g1, 9m) = H(g)U...UI(gm)
I(q(s1,.. -, 8n)) = Ag(w)[well(s;)}
(7=1,...,kwell(t))).
Example:
add(0,Y,Y) <~ nat(Y)

add(s(X),Y,s(Z)) « add(X,Y,Z)

916

yields:

addl(O)
adds(Y')
adds(Y)

add1(31 X)

adds(Y')

add3(51 Z)

1

1

1

917

Discussion:

e Every literal has at most one occurrence of a variable.

e Theliterals ¢;(w;Y) wherethe variable Y does not occur in
the head, represetdsts

If there is aw with w,w € [q;]¢c: for all suchj, then we can
cancel these literals.

If there Is no suchw, then we can cancel the clause

... Inthe Example:

The literals:
addl(X), addg(Y), addg(Z)

are all satisfiable :-)

918

We conclude:

addl(O
adds(Y)
add3()

N———

h<

add1(3
addg(Y)
add3(81 Z)

&

7

7

7

7

919

We conclude:

addl(O
addg(Y)
addg(Y)

N———

add1(31 X)

add3(81 Z)

7

7

920

We verify:

Theorem

Assume that C Is a set of clauses.
Let C* denote the corresponding set of clauses for the paths.

Then for all predicates/k:

H([ple) < lpales V- .- U [pies

Proof:

Induction on the approximations of the respective fixpoints)

921

A set of clauses with unary predicates and unary constrsictaralled
Alternating Pushdown Syste(APS).

Theorem

e Every APS is equivalent toempleAPS of the form:

plaX) < pi(X),...,p(X)
p(X)

p(b)
e Every APS s equivalent to a normal APS of the form:

plaX) <« pi(X)

p(b) <+

922

Step 1: Removal of complicated heads:

For w=ab...a™ (m>1) wereplace

p(w X) < rhs with:
p(aV) X) — po(X)

p2(a? X) — p3(X)
Pm-1(a™ VX)) — pn(X)

(@™ X) < rhs

// p; all new

923

Step 1 (Cont.): Removal of complicated heads:

For w=ab...a™b (m>0) wereplace

p(w) < rhs with:
p(aV) X) — po(X)

p2(a? X) — p3(X)
Pm-1(a™ VX)) = pu(X)
Pm(a™ X) < Pmra(X)
Pm+1(D) < rhs

// p; all new

924

Step 2: Splitting

We separate independent parts of pre-conditions intoianxipredicates:

head < rest, p1(w1 X), ..., pm(w, X)
(X does not occur ithead, rest)

IS replaced with:

head < rest,q()
q() N pl(le)a'--apm(me)

for a new predicate ¢/0.

925

Step 3: Normalization

We add simpler derived clauses:

head
pla X)

%

%

1

plaw), rest

p1(X), ..., p(X)
Implies:

pr(w), ..., p-(w), rest

p1(X), ..., pm(X)

pﬂcX)w'wZMQCX)
Implies:

pll(X)a s 7pmrm(X)

926

Step 3 (Cont.): Normalization

head — p(w), rest

p(X)
head — rest

Implies:

1

head — p(b), rest

p(b)
head — rest

Implies:

1

pl(X>7 Tt npm(X)

pi(X), ..., pir (X)
Implies:

p() < pu(X)s s P (X)

> =
/5\/
s

T 1

927

Example:

add;(X) <« addg(X)
addy(0) —

add{(X) <+ add{(X)
add;(s1 X) < add;(X)

... results in the new clause:

add1 (0) <

928

Theorem

Assume that C is a finite set of clauses for which steps 1 and 2 have
been executed and which then has been saturated accorditapB.

Assume that Cy C C Is the subset of normal clauses of. Then for
all occurring predicates p,

Proof:

Induction on the depth of terms jp]c :-)

929

... Inthe Example:

For add;(X) we obtain the following clauses:

addl(O) <
add1(31 X) < addl(X)

These clauses are already normatl)

930

Transforming into Normal Clauses:

Introduce new predicates fapnjunctionf predicates.

Assume that A = {p1,...,pn}. Then:
[A](b) < whenever p;(b) «+ for all .

[A](a X) < [B](X) whenever B ={p; |i=1,...,m} for
pila X) < pa(X), ..., pi(X)

931

Last Step: Transformation into a Type

e First, the automaton is determinized

932

Last Step: Transformation into a Type

e First, the automaton is determinized

e Then transitions for the components of constructors
pla; X) < p¥(X)
are joined into a transition far:
pla(Xy, ..., Xp) « pM(X1), ..., p™ (Xk)

e Finally, the predicateg; for the components of the predicaték
are joined to a transition:

(X1, Xe) < pi(X0), -, pie(Xi)

933

In the Example we find:

add(X,Y,Z) < addi(X),nat(Y),q(Z) where
¢'(0) -

¢ (s X) «— ¢(X)

q = {nat,add,}

934

In the Example we find:

add(X,Y,7) < addy(X),nat(Y),q(Z)

q'(0) —
q' (s X) «— ¢(X)
q = {nat,add,}

The types addy, ¢’,nat are all equivalent :-)

935

where

Discussion:

e For type-checking, it suffices to check for every predigate that
[pi]e: € TI(T;)

e Sincethe T; are topdown deterministic, we have a deterministic
automaton for II(7;) :-)

e Therefore, we camasilyconstruct a DFA for the complement
()

e Then we check whether

[pi]es NTI(T;) = 0

—— this saves us determinizatiot))

936

Warning:

e The emptiness problem f&PSis DEXPTIME-complete
e In many cases, though, our method terminates quick}y

937

Warning:

e The emptiness problem f&PSis DEXPTIME-complete

e In many cases, though, our method terminates quick}y

e Inferred types can also be used to understand legacy code.
e Then, however, they are only useful if they are not too cocapdd!
e Ourtype inference provides very precise information)

e In practical applications, furthevideningsare applied to accelerate
the analysis, e.g., by reducing the number of occurring sets

938

5.3 Goal-directed Type Inference

Prolog programs explore predicates only insofar as theyribore to
answer a query.

Example: append

app([, Y, Y) —
app([H[T], Y, [H|Z]) « app(T,Y, Z)
« app([1,2],3],2)
... results in:

939

The APS-Approximation

. . . .
/N /N /N VRS /N

~— — — — —
33333

-~ -~ -~ -~
VRS /N N /N /N

~— — — — —
22222

/N /N /N /N /N

— — S — —
11111

N—" N N N N N T
11111111

940

Ignoring the query, we find via normalization:

{

appa(X)
apps(X)

{

N N N
<
N— N
o = AN
o B B
A/~ /N /N
N
—_— o
== ===
L T . R . I I |
OO O O o o
OO O O o o
(C (O T (O O

N— N N N NS

941

Discussion

e The second and third argument can be arbitrary.

e The first argument is a list where nothing is known about the
elements :-)

e Ignoring the query, this result is the best we can hope fof

e Better results can be obtained if additionalbll patternsare
tracked!

—— Magic Set Transformation

942

Magic Sets

e For every predicate/k, we introduce a new predicatelled, /k with
the clauses

called,(t) < forthe query < p(2)

called,, (t;) < called,(), pi(t1), .-, pi—1(ti=1)

p(t) <« called,(t),pi(ts), - Pm(lm)

for every clause:
p(t) < Pi(t1);--- s Pm(tm)

943

Example: append (Cont.)

app([],Y,Y) + called([],Y,Y)

app([H|T],Y, [H|Z]) + called([H|T], Y, [H|Z]),
app(T,Y, Z)

called(T,Y, Z) — called(|H|T), Y, [H|Z])

called([1,2],[3],2) <«

944

The AP S-Approximation:

Y

1

called;([]), called2(X), calleds (X))
called;([]), called2(X), calleds (X)
called; ([]), calleds (X)), calleds (X))
called; ([|]; H), called; ([|], 1), called2(Y"), calleds([|], H), calleds([|], Z2),

)

app1(T),app2(Y), apps

called; ([|]; H), called; ([|],T"), called2(Y"), calleds([|]; H), calleds([|],Z),

app1 (1), app2(Y'), app3
called; ([|]; H), called; (]|

called; ([|]; H), calledy (]|

T
)
T), called2(Y), calleds([|]; H), calleds([|], Z),
)
T), called2(Y"), calleds([|]; H), calleds([|],Z),
)

app1(T'),app2(Y), apps

called; ([|]; H), called; (]|

(Z
J
(Z
J
app1(T), app2(Y), app3(Z
J
(Z
|,T"), calleds(Y), calleds([|]; H), calleds([|]5Z),
(Z

)

app1(T), app2(Y), apps

945

rTTTT T T T T T

called; ([|]; H), called; ([|}5T"), called2(Y"), calleds(||]; H), calleds(][|], Z)
called; ([|]; H), called; ([|}5T"), called2(Y"), calleds(||]; H), calleds(][|], Z)
called; ([|]; H), called; ([|],T), called2(Y"), calleds([|], H), calleds(][|]5Z)

946

The Normalizedd PS-Approximation (Cont.)

AN SN /N /N /N /N /N N/

— N Y N~ N~ ~— ~~— =

e e N N T N Y N

222222222

[B e S s IR s R s B s B o A s BN s |

_ 0 e 0 0 0 0 g

~— N N ~— ~— ~— ~— ~—

/N /N /N /N N /N

~— N N~ ~— =

/N /N /N /N N /N

222222

— o/ @ / /@

S e ST [SN T S S—

(((((()

AN SN /N /N /N /N /N

— N N ~— ~— ~—

— — e N — — — — — — —
—_— R — R R —_— —_— —_— —_— —_—

_ e e e e e e e
Na— N N N N N N N N~
11111111

947

Discussion

e The result now is amazingly precide
e The correct values for the second parameter is inferred.

e For the result parameter, a list containing 1,2 and 3 is iater

e ltonly fails to infer that this list is finite and of length 3 :-)

948

Perspective: Normal Horn Clauses

e Prolog may no longer be the sexiest programming language

e Horn clauses, though, are very well suited for sipecificatiornof
analysis problems

e Itis a separate problem thendolvethe stated analysis problem
-)

e |If the least solution cannot be computed exactly, approtema
solutions may at least yield approximative answers

Example: Cryptographic Protocols

949

Rules for the Exchange of Messages:

{Alice, Na} pub(Bob)

. {NCL, Nb} ub(Alice)
Alice : Bob

{Nb}pub(Bob)

Properties to be verified:

secrecy authenticity,,..

950

The Dolev-Yao Model:

° Messages are terms;

Representation

{m} encrypt(m, k)

(my,mg) | pair(mq,ms)

— Distinct terms represent distinct messages)
— perfect cryptographyTherefore, we have:
{m}y = {m'}p iff m =m' andk = £’

e The attacker hakull control over the network:

All messages are exchanged with the attacker.

951

Example: TheNeedham-Schroed@rotocol

1. A— B:{a,n,}g,
2. B— A: {na, nb}ka
3. A— B: {nb}kb

Abstraction:

e Unbounded number of sessiohs

e Nonces are not necessarihgsh??

952

|dea:

Characterize the knowledge of the attacker by means of Hauses..

1. A— B:{a,n.}x, known({a,ng}r,)
2. B— A:{ne,nptr, known({X,np}y,) < known({a, X }4,)
3. A— B:{mp}, known({X }x,) < known({ng, X }x,)

Secrecyof N : < known(ny).

953

Discussion:

e We have abstracted all nonces with finitely many.

e Less restrictive (though still correct) abstractions dilemssible...

1. A— B:{a,n.}x

2. B — A:{ng,nytr, known({X,ny(X)}e,) < known({a, X },)
3. A— B {nb}kb

The fresh nonce is finctionof the received nonce :-)

Blanchet 2001

954

Further capabilities of the attacker:

known({X }v)

known(({X,Y))

known(X)

known(X)
known(Y)

1

1

known(X), known(Y)

// The attacker can encode
known(X'), known(Y)

// The attacker can construct pairs
known({X }y), known(Y")

// The attacker can decode
known((X,Y"))

known({X,Y"))

// The attacker can project

955

Discussion

e Type inference for Prolog computed a regular abstractidhetet
of paths of the denotational semantics.

e Sometimes, this is too imprecise-(

e Instead, we now approximate the denotational semantiesttyir

)

e This, however, can be quite expensive
—— not well suited for compilers :-(

—— In general, much more precise:-)

956

Simplification:

We only consider clauses whose heads are of the form:

p(f(Xy, .., X)) or pb) or p(Xi,..., X

Such clauses are callétll.

Theorem

e Every finite set of H1-clauses is equivalent to a finite setiaiple
H1-clauses of the form:

p(f(X1, .., Xy)) < pu(Xi), .- pe(XG)
(X1, ..., Xg) — pu(Xi), e (X))
p(b) —

e ...or evento a finite set aformalH1-clauses.

957

|dea:

We successively introduce simpler clauses until the carafdd ones
becomesuperfluous..

Rule 1: Splitting

We separate independent parts from the pre-conditions:

head < rest, p1(X),...,pm(X)

(X does not occur inhead, rest)
IS replaced with:

head < Trest,q()
¢ = pi(X), - pm(X)

for a new predicate ¢/0.

958

Rule 2: Simplification

We introduce simpler derived clauses:

head — p(f(t1,...,tg)), rest

p(f(X1y, X))+ pi(Xa), oo pr(XG,)
Implies:

head pilta)s- . pe(ts). rest

head — p(ty,...,tx), rest

p(Xla"'an) < pl(Xil)v"'va(Xir)
Implies:

head pilta)s- . pe(ts). rest

959

Rule 3 (Cont.):

head

p(b)
head

Simplification

7

7

3

1

7

p1(X), ..., pm(X)

l%l(JXkl),-- -,Z%ri(Jxkri)
Implies:

Zhl()fu)a---alhnmn()fmmm)

p(b), rest
Implies:

rest

960

Rule 4:

Guard Simplification

%

1

1

7

p1(X), .. pm(X)

pil(Xil)a ooy Pir; (Xz'm)
Implies:

p11(X11)7 e 7pm7‘m(Xm7°m)

p1(X), ..o pm(X)
Implies:

961

Theorem

Assume that C is a finite set of clauses which is closed under splitting
and simplification and guard simplification.

Let Cy CC denote the subset of simple clauses ¢t Then for all
occurring predicates p,

[Ple, = [Pe
Proof:

Induction on the depth of terms in tuplesjpf. :-)

962

Transformation into normal clauses:

Introduce fresh predicates foonjunctionsof unary predicates.

Assume A ={pi,...,pm}. Then:

|A](b) ¢ whenever p;(b) <+ for all .
AJ(f (X1, Xk)) <« [Ba](Xq), .., [BiJ(Xy)
whenever B; = {p; | X;, = X;} for
pj(f(X17 c e 7Xk)) — pjl(Xij1)7 - . 7pj7‘j (ijr)

J

963

Warning:

e The emptiness problem for Horn clauseshis
DEXPTIME-completée

e In many cases, our method still terminates quickly)

e Not all Horn clauses are in H1 :-(

—— an approximation technique is required

964

Approximation of Horn Clauses

Step 1:

Simplification of pre-conditions by splitting, simplificah and guard
simplification (as before :-)

Step 2:

Introduction of copies of variableX. Every copy receives all literals of
X as pre-condition.

965

Step 3:

Introduction of an auxiliary predicate for every non-vateasubterm of
the head.

p(f(g(X,Y),Z2)) + q(X),q(Y),q3(Z) yields :

p1(9(X,Y)) — (X)), q2(Y),q3(2)
p(f(H, Z)) < pi(H),q1(X),2(Y), g3(2)

966

