
Polynomial Precise Interval Analysis Revisited

Thomas Gawlitza1, Jérôme Leroux2, Jan Reineke3, Helmut Seidl1, Grégoire Sutre2,
and Reinhard Wilhelm3

1 TU München, Institut für Informatik, I2
80333 München, Germany

{gawlitza, seidl}@in.tum.de
2 LaBRI, Université de Bordeaux, CNRS

33405 Talence Cedex, France
{leroux, sutre}@labri.fr

3 Universität des Saarlandes, Germany
{reineke, wilhelm}@cs.uni-sb.de

Abstract. We consider a class of arithmetic equations over the complete lattice
of integers (extended with−∞ and∞) and provide a polynomial time algorithm
for computing least solutions. For systems of equations with addition and least
upper bounds, this algorithm is a smooth generalization of the Bellman-Ford al-
gorithm for computing the single source shortest path in presence of positive and
negative edge weights. The method then is extended to deal with more general
forms of operations as well as minima with constants. For thelatter, a controlled
widening is applied at loops where unbounded increase occurs. We apply this
algorithm to construct a cubic time algorithm for the class of interval equations
using least upper bounds, addition, intersection with constant intervals as well as
multiplication.

1 Introduction

Interval analysis tries to derive tight bounds for the run-time values of variables [2].
This basic information may be used for important optimizations such as safe removals
of array bound checks or for proofs of absence of overflows [4]. Since the very begin-
ning of abstract interpretation, interval analysis has been considered as an algorithmic
challenge. The reason is that the lattice of intervals may have infinite ascending chains.
Hence, ordinary fixpoint iteration will not result in terminating analysis algorithms.
The only general technique applicable here is the widening and narrowing approach
of Cousot and Cousot [3]. If precision is vital, also more expressive domains are con-
sidered [8, 9]. While often returning amazingly good results, widening and narrowing
typically does not compute the least solution of a system of equations but only a safe
over-approximation.

In [11], however, Su and Wagner identify a class of interval equations for which
the respective least solutions can be computed precisely and in polynomial time. As
operations on intervals, they consider least upper bound, addition, scaling with posi-
tive and negative constants and intersection with constantintervals. The exposition of
their algorithms, though, is not very explicit. Due to the importance of the problem,

we present an alternative and, hopefully more transparent approach. In particular, our
methods also show how to deal with arbitrary multiplications of intervals. Our algo-
rithm demonstrates how well-known ideas need only to be slightly extended to provide
a both simple and efficient solution.

We start by investigating equations over integers only (extended with−∞ and∞ as
least and greatest elements of the lattice) using maximum, addition, scaling with posi-
tive constants and minimum with constants as operations. Inabsence of minima, com-
puting the least solution of such a system of equations can beconsidered as a generaliza-
tion of the single-source shortest path problem from graphsto grammars in presence of
positive and negative edge weights. A corresponding generalization for positive weights
has been considered by Knuth [6]. Negative edge weights, though, complicate the prob-
lem considerably. While Knuth’s algorithm can be considered as a generalization of
Dijkstra’s algorithm, we propose a generalization of the Bellman-Ford algorithm.

More generally, we observe that the Bellman-Ford algorithmworks for all systems
of equations which use operators satisfying a particular semantic property which we
call BF-property. Beyond addition and multiplication withpositive constants, positive
as well as negative multiplication satisfies this property.Positivemultiplication returns
the product only if both arguments are positive, whilenegativemultiplication returns the
negated product if both arguments are negative. In order to obtain a polynomial algo-
rithm also in presence of minima with constants, we instrument the basic Bellman-Ford
algorithm to identify loops along which values might increase unboundedly. Once we
have short-circuited the possibly costly iteration of sucha loop we restart the Bellman-
Ford algorithm until no further increments are found.

In the next step, we consider systems of equations over intervals using least upper
bound, addition, negation, multiplication with positive constants as well as intersections
with constant intervals and arbitrary multiplication of intervals. We show that comput-
ing the least solution of such systems can be reduced to computing the least solution of
corresponding systems of integer equations. This reduction is inspired by the methods
from [5] for interval equations with unrestricted intersections and the ideas of Leroux
and Sutre [7], who first proved that interval equations with intersections with constant
intervals as well as full multiplication can be solved in cubic time.

The rest of the paper is organized as follows. In Section 2, weintroduce basic no-
tions and consider methods for general systems of equationsoverZ. Then we consider
two classes of systems of equations overZ where least solutions can be computed
in polynomial time. In Section 3, we consider systems of integer equations without
minimum. In Section 4, we extend these methods to systems of equations where right-
hand sides areBellman-Fordfunctions. These systems can be solved in quadratic time
(if arithmetic operations are executed in constant time). In Section 5, we then present
our cubic time procedure for computing least solutions of systems of integer equations
which additionally use minima with constants. In Section 6,we apply these techniques
to construct a cubic algorithm for the class of interval equations considered by Su and
Wagner [11] — even if additionally arbitrary multiplication of interval expressions is
allowed.

2 Notation and Basic Concepts

Assume we are given a finite set of variablesX. We are interested in solving systems
of constraints over the complete latticeZ = Z ∪ {−∞,∞} equipped with the natural
ordering:

−∞ < . . . < −2 < −1 < 0 < 1 < 2 < . . . < ∞

OnZ, we consider the operations addition, multiplication withnonnegative constants,
minimum “∧” and maximum “∨”. All operators are commutative where minimum,
addition, and multiplication also preserve−∞. Moreover for everyx > −∞,

x + ∞ = ∞ 0 · ∞ = 0
x · ∞ = ∞ wheneverx > 0 x · ∞ = −∞ wheneverx < 0

For a finite setX of variables, we consider systems of equations

x = e , x ∈ X

where the right-hand sidese are expressions built from constants and variables fromX

by means of maximum, addition, multiplication with positive constants and minimum
with constants. Thus right-hand sidese are of the form

e :: = a | y | e1 ∨ e2 | e1 + e2 | b · e | e1 ∧ a

for variablesy ∈ X anda, b ∈ Z wherea > −∞ andb > 0. Note that we excluded
general multiplication since multiplication with negative numbers is no longer mono-
tonic. Similar systems of equations have been investigatedin [10] where polynomial
algorithms for computing least upper bounds are presented —but only when comput-
ing least solutions over nonnegative integers.

A functionµ : X → Z is called avariable assignment. Every expressione defines
a functionJeK : (X → Z) → Z that maps variable assignments to values, i.e.:

[[a]]µ = a [[x]]µ = µ(x)
[[e1 ∨ e2]]µ = [[e1]]µ ∨ [[e2]]µ [[e1 + e2]]µ = [[e1]]µ + [[e2]]µ
[[b · e]]µ = b · [[e]]µ [[e ∧ a]]µ = [[e]]µ ∧ a

for a ∈ Z, x ∈ X, b > 0 and expressionse, e1, e2. For a systemE of equations, we also
denote the function[[e]] by fx, if x = e is the equation inE for x. A variable assignment
µ is called asolutionof E iff it satisfies all equations inE , i.e. µ(x) = fxµ for all
x ∈ X. Likewise,µ is apre-solutioniff µ(x) ≤ fxµ for all x ∈ X. Since the mappings
fx are monotonic, everyE has a unique least solution. In the following, we denote by
|E| the sum of expression sizes of right-hand sides of the equations inE . The following
fact states bounds on the sizes of occurring values of variables:

Proposition 1. Assume thatE is a system of integer equations with least solutionµ∗.
Then we have:

1. If µ∗(x) ∈ Z for a variablex, then:

−(B ∨ 2)|E| · A ≤ µ∗(x) ≤ (B ∨ 2)|E| · A

whereA andB bound the absolute values of constantsa ∈ Z and constant multi-
pliers b ∈ N, respectively, which occur inE .

2. If E does not contain multiplication or addition of variables, the bounds under 1
can be improved to:

Σ− ≤ µ∗(x) ≤ Σ+

whereΣ− andΣ+ are the sums of occurrences of negative and positive numbers,
respectively, inE . 2

In order to prove these bounds, we observe that they hold for systems of constraints
without minimum operators. Then we find that for everyE , we can construct a system
of equationsE ′ without minimum operators by appropriately replacing every minimum
expression by one of its arguments in such a way thatE ′ has the same least solution as
E .

Due to Proposition 1, the least solutions of systems of equations overZ are com-
putable by performing ordinary fixpoint iteration over the finite lattice

Za,b = {−∞ < a < . . . < b < ∞}

for suitable boundsa < b. This results in practical algorithms if a reasonably small
differenceb−a can be revealed. In the following, we consider algorithms whose runtime
does not depend on the particular sizes of occurring numbers– given that operations and
tests on integers take timeO(1).

3 Integer Equations without Minimum

We first consider systems of integer equations without minimum. Let us call these sys-
temsdisjunctive. Note that we obtain the equational formulation of the single-source
longestpath problem for positive and negative edge weights if we restrict systems of
disjunctive equations further by excluding multiplication and addition of variables in
right-hand sides. By replacing all weightsa with −a, the latter problem is a reformula-
tion of the single-sourceshortestpath problem (see, e.g., [1]).

In [6], Knuth considers a generalization of the single-source shortest path problem
with nonnegative edge weights to grammars. In a similar sense, computing least solu-
tions of systems of disjunctive constraints can be considered as a generalization of the
single-source shortest path problem with positive and negative edge weights. For the lat-
ter problem, only quadratic algorithms are known [1]. Here,we observe that quadratic
time is also enough for systems of disjunctive constraints:

Theorem 1. The least solution of a disjunctive systemE of equations withn variables
can be computed in timeO(n · |E|).

Proof. As a generalization of the Bellman-Ford algorithm [1] we propose alg. 1 for
computing the least solution of the systemE . The algorithm consists of two nested loops
l1, l2 where the first one corresponds ton rounds of round robin fixpoint iteration, and
the second one differs from the first in widening the value of avariable to∞ whenever
a further increase is observed. Letµ∗ denote the least solution ofE . For a formal proof,
let us defineF : (X → Z) → (X → Z) by

F (µ)(x) = [[e]]µ if (x = e) ∈ E

Algorithm 1
forall (x ∈ X) µ(x) = −∞;
for (i = 0; i < n; i++)

forall ((x = e) ∈ E)
µ(x) = µ(x) ∨ [[e]]µ;

for (i = 0; i < n; i++)
forall ((x = e) ∈ E)

if (µ(x) 6≥ [[e]]µ) µ(x) = ∞;
return µ;

for µ : X → Z. Additionally we define the variable assignmentsµi for i ∈ N0 by

µ0(x) = −∞ for x ∈ X

µi = F i(µ0) for i ∈ N.

Thus
∨

i∈N0
µi = µ∗ and in particularµi ≤ µ∗ for all i ∈ N. In order to prepare us for

the proof, we introduce the following notion. Variablex µ-depends onx′ iff

F (µ ⊕ {x′ 7→ µ(x′) + δ})(x) ≥ F (µ)(x) + δ

for all δ ≥ 0. Here,⊕ denotes the update operator for variable assignments. We claim:

Claim 1: Let k ≥ 1. Assume thatµk+1(x) > µk(x). There exists ay s.t.x µk-depends
ony with µk(y) > µk−1(y). 2

The key observation is stated in the following Claim.

Claim 2: µn(x) = µ∗(x) wheneverµ∗(x) < ∞.

Proof. Assumeµ∗(x) > µn(x). Thus there exists an indexk ≥ n s.t. µk+1(x) >
µk(x). Claim 1 implies that there exist variables

xk+1,xk, . . . ,x1

wherexk+1 = x andxi+1 µi-depends onxi for i = 1, . . . , k. Since there are at least
n + 1 elements in the sequencexk+1, . . . ,x1, the pigeon-hole principle implies that
there must be a variablex′ which occurs twice. W.l.o.g., letj1 < j2 s.t.x′ = xj1 = xj2 .
Furthermore by assumptionµj2(x

′) > µj1(x
′).

By a straight forward induction it follows that

F j2−j1(µj1 ⊕ {x′ 7→ µj1(x
′) + δ})(x′) ≥ µj2(x

′) + δ (1)

Let δ := µj2(x
′) − µj1(x

′) > 0. Then

µ∗(x′) ≥ F i(j2−j1)(µj2)(x
′)

≥ F i(j2−j1)(µj1 ⊕ {x′ 7→ µj1(x
′) + δ})(x′) (monotonicity)

≥ F (i−1)(j2−j1)(µj1 ⊕ {x′ 7→ µj2(x
′) + δ})(x′) (1)

= F (i−1)(j2−j1)(µj1 ⊕ {x′ 7→ µj1(x
′) + 2δ})(x′) (def.δ)

≥ · · · ≥ µj2(x
′) + iδ

for everyi ∈ N. Sincex depends onx′, we conclude thatµ∗(x) = ∞. This proves
claim 2. 2

Let µ̂i denote the value of the program variableµ after execution of thei-th nested
loop. By constructionµn ≤ µ̂1 ≤ µ∗. Whenever a further increase in the second nested
loop can be observed, we know thatµ ≤ µ∗ and by claim 2, that after the modification
µ ≤ µ∗ still holds. Thus,̂µ2 ≤ µ∗.

To show that̂µ2 = µ∗ recall that there aren variables. Therefore, at mostn variables
can be set to∞ — implying that the least fixpoint is reached after at mostn rounds.2

4 Extension with Positive and Negative Multiplications

Algorithm 1 can be generalized also to systems of equations which utilize a wider range
of operators. We observe:

Proposition 2. For any monotonic functionf : (X → Z) → Z, the two following
conditions are equivalent:

(i) for anyµ : (X → Z) and anyY ⊆ X, if f(µ ⊕ {y 7→ −∞ | y ∈ Y}) < f(µ)
then there isy ∈ Y such thatf(µ ⊕ {y 7→ µ(y) + i}) ≥ f(µ) + i for all i ≥ 0.

(ii) for any µ : (X → Z) and anyx ∈ X, if f(µ ⊕ {x 7→ −∞}) < f(µ) then
f(µ ⊕ {x 7→ µ(x) + i}) ≥ f(µ) + i for all i ≥ 0.

Proof. (i) ⇒ (ii) is trivial. For anyµ : (X → Z) and any subsetY ⊆ X, we will
write µY for µY = µ⊕ {y 7→ −∞ | y ∈ Y}. Assume that(ii) holds, and let us prove
by induction on|Y| that(i) holds. The case ofY = ∅ is trivial and the basis|Y| = 1
follows from (ii). To prove the induction step, letY ⊆ X with |Y| > 1 and assume
thatf(µY) < f(µ). Pick somey ∈ Y and letZ = Y \ {y}. If f(µZ) < f(µ) then we
derive from the induction hypothesis that there isz ∈ Z ⊆ Y such thatf(µ ⊕ {z 7→
µ(z) + i}) ≥ f(µ) + i for all i ≥ 0. Otherwise,f(µZ ⊕ {y 7→ −∞}) = f(µY) <
f(µ) = f(µZ), and we deduce from(ii) thatf(µZ ⊕ {y 7→ µ(y) + i}) ≥ f(µZ) + i
for all i ≥ 0. We come tof(µ ⊕ {y 7→ µ(y) + i}) ≥ f(µ) + i for all i ≥ 0 since
µ ≥ µZ andf(µ) = f(µZ). We have thus shown that(i) holds for allY ⊆ X. 2

We call a functionf : (X → Z) → Z Bellman-Fordfunction (short: BF-function)
when it is monotonic and it satisfies any (or equivalently all) of the above conditions.

We remark that the class of Bellman-Ford functions is incomparable to the class of
bounded-increasingfunctions as considered in [7]. Bounded-increasing functions are
monotonic functionsf : (X → Z) → Z such thatf(µ1) < f(µ2) for all µ1, µ2 :
X → Z with µ1 < µ2, f(λx. − ∞) < f(µ1) andf(µ2) < f(λx.∞). However,
for any bounded-increasing functionf : (X → Z) → Z, if (1) f is continuous (i.e.
f(

∨

k µk) =
∨

k f(µk) for every ascending chainµ0 ≤ µ1 ≤ · · ·) and (2)f(λx. −
∞) = −∞ andf(λx.∞) = ∞, thenf is a Bellman-Ford function.

Let us call a k-ary operator2 a BF-operator, if the functionf2(µ) =
2(µ(x1), . . . , µ(xk)) (for distinct variablesxi) is a BF-function.

Clearly, addition itself is a BF-operator as well as the least upper bound operation
and the multiplication with constants. For simulating multiplication of intervals, we
further rely on the following two approximative versions ofmultiplication:

x ·+ y =

{

x · y if x, y > 0
−∞ otherwise

x ·− y =







−∞ if x = −∞∨ y = −∞
−(x · y) if x, y < 0
∞ otherwise

We call thesepositiveandnegativemultiplication, respectively. Note that, in contrast to
full multiplication over the integers, both versions of multiplication are monotonic. Ad-
ditionally, they satisfy the conditions for BF-functions and therefore are BF-operators.
By induction on the structure of expressions, we find:

Lemma 1. Assumee is an expression built up from variables and constants by means
of application of BF-operators. Then the evaluation function [[e]] for e is a BF-function.

Let us call an equationx = e BF-equation, if[[e]] is a BF-function. Our key observation
is that the Bellman-Ford algorithm can be applied not only todisjunctive systems of
equations but even to systems of BF-equations. In order to adapt the proof of theorem
1, we in particular adapt the proof of claim 1. We use the same notations from that
proof. Letk ≥ 1 and assume thatµk+1(x) > µk(x). Then(x = e) ∈ E for some
expressione. The monotonic functionfx = JeK is a Bellman-Ford function where
µk+1(x) = fx(µk) andµk(x) = fx(µk−1), and recall thatµk ≥ µk−1.

Let Y = {y ∈ X | µk(y) > µk−1(y)}. Sincefx(µk ⊕ {y 7→ −∞ | y ∈ Y}) ≤
fx(µk−1) < fx(µk), we get from Proposition 2 that there is somey ∈ Y such that
f(µk ⊕ {y 7→ µk(y) + i}) ≥ f(µk) + i for all i ≥ 0. Hence,x µk-depends ony, and
moreover,µk(y) > µk−1(y) asy ∈ Y. This completes the proof of this claim.

Altogether, we obtain:

Theorem 2. The least solution of a systemE of BF-equations withn variables can be
computed in timeO(n · |E|).

It is important here to recall that we consider a uniform costmeasure where each op-
erator can be evaluated in timeO(1). If besides addition, also positive and negative
multiplication is allowed, then the sizes of occurring numbers may not only be single
exponential, but even double in the occurring numbers. Moreprecisely, assume thatµ∗

is the least solution ofE x is a variable ofE with µ∗(x) ∈ Z. Then

(A ∨ 2)|E|
n

≤ µ∗(x) ≤ (A ∨ 2)|E|
n

whereA is an upper bound to the absolute values of constantsc ∈ Z occurring inE ,
andn is the number of variables.

5 Integer Equations with Minimum

In this section, we extend the results in the previous section by additionally allowing
minima with constants. For convenience, let us assume that all right-hand sidesr in the
systemE of equations either are of the following simple forms:

r ::= a | y | 2(y1, . . . ,yk) | y ∧ a

for constantsa ∈ Z, variablesy and BF-operators2. Note that now the size|E| of E
is proportional to the number of variables ofE . Our main result for systems of such
equations is:

Theorem 3. The least solution of a systemE of integer equations using BF-operators
and minima with constants can be computed in timeO(|E|3).

Proof. Let µ∗ denote the least solution ofE . We introduce the following notions. We
call a sequenceP = (y1, . . . ,yk+1) ∈ X∗ a path if for everyi = 1, . . . , k, variable
yi+1 occurs in the right-hand side of the equation foryi in E . Thus, given a variable
assignmentµ, the pathp represents the transformation[[p]]µ : Z 7→ Z defined by

([[p]]µ)(z) = [[e1]](µ ⊕ {y2 7→ [[e2]](. . . [[ek]](µ ⊕ {yk+1 7→ z}) . . .)})

whereyi = ei is the equation foryi in E . The pathp is called acycleiff yk+1 = y1.
The cyclep is calledsimpleif the variablesy1, . . . ,yk are pairwise distinct.

In order to enhance alg. 1 for systems with minima, assume that an increase of the
value of the variablex can be observed within the first iteration of the second nested
loop. Then there exists a simple cyclec = (y1, . . . ,yk,y1) that can be repeated until
either all variablesyi receive values∞ or the value of the argumente′ in some mini-
mum expressiony ∧ a occurring along the cycle exceedsa. In order to deal with this,
we modify the Bellman-Ford algorithm in the following way:

1. We initialize the variable assignmentµ s.t. every variable is mapped to−∞ and
execute the first phase of alg. 1 which consists ofn Round-Robin iterations.

2. Then we perform the second phase. If no increment in the second phase can be
detected, we have reached the least solution and returnµ as result.

3. Whenever an increment in the second phase under a current variable assignmentµ
is detected, we try to extract a simple cyclec = (y1, . . . ,yk,y1) s.t. ([[c]]µ)(v) >
v for somev < µ(y1). If this is possible, then we do anacceleratedfixpoint
computation on the cyclec to determine new values for the variablesy1, . . . ,yk.
We then update the variables with the new values and restart the procedure with
step2.

This gives us alg. 2. Extra effort is necessary in order to extract cycles in the sec-
ond phase which can be repeated. For that, the algorithm records in the variabletime,
the number of equations evaluated so far. Moreover for everyvariablex, it records
in modified(x) the last time when the variablex has received a new value, and in
evaluated(x) the last time when the equation forx has been evaluated. Also, it records
for every variablex in pred(x) a variable n the right-hand side ofx which may have
caused the increase and can give rise to an increase in the future. If no such occurrence
exists, thenpred(x) is set to⊥. This is implemented by the functionpred(x). Let µ
denote the current variable assignment, and assume that theright-hand side ofx is r.
Furthermore, letY denote the set of variablesy occurring inr which have been mod-
ified after the last evaluation ofx, i.e.,modified(y) ≥ evaluated(x). Since the value
of x has increased,r cannot be equal to a constant. Ifr = y, thenpred(x) = y. If
r = y ∧ c, thenpred(x) = ⊥ if µ(y) ≥ c andpred(x) = y otherwise. Finally,
assumer = 2(y1, . . . ,yk) and letvj = µ(yj) for all j. Furthermore, letv′j = vj

Algorithm 2
forall (x ∈ X) µ(x) = −∞;

do {
done = true ; time = 0;
forall (x ∈ X) {modified(x) = 0; pred(x) = ⊥; evaluated(x) = 0;
}

for (i = 0; i < n; i++)
forall ((x = e) ∈ E) {

time++;
if ([[e]]µ > µ(x)) {

pred(x) = pred(x); µ(x) = [[e]]µ; modified(x) = time;
}
evaluated (x) = time;

}
forall ((x = e) ∈ E)

if ([[e]]µ > µ(x)) {
µ(x) = [[e]]µ;
if (µ(x) < ∞){

widen(x);done = false; break;
} ;

}
} until (done);
return µ;

if yj 6∈ Y, i.e., has not been changed since the last evaluation ofx, andv′j = −∞
otherwise. Then2(v′1, . . . , v

′
k) < 2(v1, . . . , vk). Since2 is a BF-operator, we thus can

retrieve an indexj such that2(v1, . . . , vj−1, vj +d, vj+1, . . . , vk) ≥ 2(v1, . . . , vk)+d
for all d ≥ 0. Accordingly, we setpred(x) = yj .

Example 1.Let µ := {x 7→ −10,y 7→ 0} and consider the equationz = x ∨ y. Then
for Y = {x,y}, the function callpred(z) returns the variabley. 2

Now we consider the second phase of alg. 2. Whenever a finite increase of the value
of a variablex is detected,widen(x) is called (see alg. 3).

Algorithm 3 widen(x)

c = (y1, . . . ,yk,y1) = extract cycle(x);

µ(y1) = µ(y1) ∨ eval cycle(c);
for (i = k; i ≥ 2; i−−)

µ(yi) = µ(yi) ∨ fyi
(µ);

Within the procedurewiden(), the functionextract cycle() is used to extract a cycle
which has caused the increase and possibly causes further increases in the future. It
works as follows. The callextract cycle(x) for a variablex looks up the value of
pred(x). If pred(x) 6= ⊥ a variablex1 in the right-hand side forx is returned. Then
the procedure records(x1) and proceeds with the value stored inpred(x1) and so on.
Thus, it successively visits a path according to the information stored inpred until it

either reaches⊥ or visits a variable for the second time. In the latter case weobtain a
simple cycle(y1, . . . ,yk,y1). In the former case, the empty sequence will be returned.

The procedureeval cycle() does the accelerated fixpoint computation on a given
cycle. The functioneval cycle() takes a simple cyclec = (y1, . . . ,yk,y1). Letf :=
[[c]]µ and assume thatf(v) > v for somev ≤ µ(y1). Theneval cycle() computes
∨

i∈N0
f i(v). Note thatf(z) can be written as

f(z) = f ′(z) ∧ b′

for some unary BF-functionf ′ andb′ ∈ Z. Sincef(v) > v, b′ ≥ f ′(v) > v. Therefore,

∨

i∈N0

f i(v) = b′ = f(∞)

We conclude that
∨

i∈N0
f i(v) can be computed in time linear to the size of the simple

cyclec. Furthermore,
∨

i∈N0
f i(v) ≤ µ∗(y1) by construction. Thus, we have shown the

following claim:

Claim 1: Assume thatc is a simple cycle which starts with the variabley1. Assume
thatµ ≤ µ∗ andv ≤ µ(y1) are s.t.f(v) := [[c]]µ(v) > v. Thenv′ :=

∨

i∈N0
f i(v) ≤

µ∗(y1) andv′ can be computed in time linear to the size ofc. 2

For a formal proof of correctness of the algorithm, letµi denote the variable assignment
µ before thei-th extraction of a simple cycle andci the value ofc after thei-th extraction
of a simple cycle. Therebyci can be⊥. Let furthermoreµ′

i denote the value ofµ after
thei-th call of the procedurewiden().

First, we show that the widening is correct, i.e.,µ′
i ≤ µ∗ for all i. For that, we only

need to consider the case in which thei-th extraction leads to a simple cycleci and
not to⊥. Thanks to Claim 1, we only need to show that the assertions ofClaim 1 are
fulfilled for every call of the procedurewiden() in which extract cycle extracts a
simple cycle. Thus we must show:

Claim 2: Assume thatci 6= ⊥ is a simple cycle which starts with the variabley1. Then
([[ci]]µi)(v) > v for some valuev < µi(y1).

Proof. Assume thatci = (y1, . . . ,yk,y1) whereyj = ej is the equation foryj . Ob-
serve that the algorithm always records an occurrence of a variable which possibly has
caused the increase. Therefore, by monotonicity,[[ej]]µi is at least the current value
µi(yj) of the left-hand sideyj . This means for the cycleci that

µi(y1) ≤ [[e1[µi(y2)/y2]]]µi ∧ . . . ∧ µi(yk−1) ≤ [[ek−1[µi(yk)/yk]]]µi

as well as
µi(yk) ≤ [[ek[v/y1]]]µi

wherev is the value of the variabley1 at the last point in time where the evaluation
of the equationyk = ek lead to an increase. Thusv < µi(y1). Since by construction,
([[ci]]µi)(v) ≥ µi(y1) > v, the assertion follows. 2

Assume again thatci = (y1, . . . ,yk,y1) is a simple cycle and assume as induction
hypothesis, that the variable assignmentµ′

i−1 after the(i − 1)-th widening is less than
or equal to the least solutionµ∗ of the systemE . Since the variable assignmentµi

before the extraction of the cycleci is computed by fixpoint iteration, it follows that
µi ≤ µ∗. Let v′ denote the values returned from thei-th call of eval cycle(). By
Claim 1,v′ ≤ µ∗(y). Since the rest of procedurewiden() consists in ordinary fixpoint
iteration, we obtainµ′ ≤ µ∗.

Thus by construction, alg. 2 returnsµ∗ — whenever it terminates. In order to prove
termination, letM(E) denote the set of minimum expressions occurring inE . We show
the following claims which imply that a progress occurs at each increase of a variable’s
value in the second phase, i.e., either one further variablereceives the value∞ or an-
other minimum can (conceptually) be replaced by its constant argument.

Claim 3: Assume thatci = ⊥. Then
– either there exists a variablex such thatµ′

i−1(x) < ∞ andµi(x) = ∞;
– or there exists a subexpressiony ∧ a from M(E) s.t.µ′

i−1(y) < a andµi(y) ≥ a.
2

Proof. ci = ⊥ implies that the procedurepred() returned⊥ for one of the equations
x = e in the sameiteration of the main loop. This is because all values ofpred()
reachable withinn steps byextract cycle() have been modified during this iteration.
Longer paths would imply finding a simple cycle. However, theprocedurepred() only
returns⊥ if some minimuma is reached which had not been reached before. 2

From Claim 3 and the fact that the sequence(µ′
i) is increasing we conclude that for

everyi,
{x ∈ X | µ′

i(x) = ∞}) {x ∈ X | µ′
i−1(x) = ∞}

or
{x ∧ a ∈ M(E) | [[x]]µ′

i ≥ a}) {x ∧ a ∈ M(E) | [[x]]µ′
i−1 ≥ a}.

Accordingly, the algorithm can perform at mostO(|E|) iterations of the outerwhile-
loop. Since every iteration of the outer loop of the algorithm can be executed in time
O(n · |E|), the assertion follows. 2

Example 2.Consider the following system of equations:

x = y ∧ 5 y = z ∧ 3 z = −17 ∨ z + 2

The first three rounds of Round-Robin iteration give us:

0 1 2
x −∞ −∞ −15
y −∞ −15 −13
z −15 −13 −11

Since the value ofx still increases during the next round of evaluation, we callthe
functionwiden() with the variablex. Within widen() the functionextract cycle

is called which returns the simple cycle(z, z). — giving us the new value∞ for z.
Restarting the Round-Robin iteration for all variables, reveals the least solution:

µ∗(x) = 3 µ∗(y) = 3 µ∗(z) = ∞

2

6 Intervals

In this section, we consider systems of equations over the complete lattice of integer
intervals. Let

I = {∅} ∪ {[z1, z2] ∈ Z2 | z1 ≤ z2, z1 < ∞,−∞ < z2}

denote the complete lattice of intervals partially orderedby the subset relation (here
denoted by “⊑”). The empty interval∅ is also denoted by[∞,−∞]. It is the least
element of the lattice while[−∞,∞] is the greatest element, and the least upper bound
“⊔” is defined by:

[a1, a2] ⊔ [b1, b2] = [a1 ∧ b1, a2 ∨ b2]

Here, we consider systems of equations overI similar to the ones we have considered
overZ with the restriction that at least one argument of every intersection is constant.
Instead of multiplication with positive constants only, wenow also support negation as
well as full multiplication of interval expressions. For a fixed setX of variables, we
consider expressionse of the form

e ::= a | y | c · e | −e | e1 ⊔ e2 | e1 + e2 | e ⊓ a | e1 · e2

wherea ∈ I, c > 0 is a positive integer constant, andy is a variable fromX.
As for expressions overZ, we rely on an evaluation function[[e]] for interval ex-

pressionse built up from variables and constants by means of applications of operators.
The function[[e]] then maps variable assignmentsµ : X → I to interval values. Note
that (in contrast to the integer case) full multiplication of intervals still is monotonic.
Therefore, every system of interval equations has a unique least solution.

Our goal is to reduce solving of systems of equations over intervals, to solving of
systems equations over integers. For that, we define the functions(·)+, (·)− : I → Z
which extract from an interval the upper andnegatedlower bound, respectively. These
functions are defined by:

∅+ = ∅− = −∞ [a, b]+ = b [a, b]− = −a

where[a, b] ∈ I. Thusx+ denotes the upper bound andx− denotes thenegatedlower
bound ofx ∈ I. In the following, we indicate how operations on intervals can be
realized by means of integer operations on interval bounds.

Assumex, y ∈ I are intervals andc > 0. Then we have:

(c · x)− = c · x−

(c · x)+ = c · x+

(−x)− = x+

(−x)+ = x−

(x ⊔ y)− = x− ∨ y−

(x ⊔ y)+ = x+ ∨ y+

(x + y)− = x− + y−

(x + y)+ = x+ + y+

(x ⊓ y)− = (x+ + y−); (x− + y+); (x− ∧ y−)
(x ⊓ y)+ = (x+ + y−); (x− + y+); (x+ ∧ y+)
(x · y)− = −(x−·y−) ∨ −(x+·y+) ∨ x−·y+ ∨ x+·y−

= ((x+ ∨ y+); (x−·−y−) ∨ (x− ∨ y−); (x+·−y+)) ∧ 0 ∨ x−·+y+ ∨ x+·+y−

(x · y)+ = x−·y− ∨ x+·y+ ∨ −(x−·y+) ∨−(x+·y−)
= x−·+y− ∨ x+·+y+ ∨ ((x+ ∨ y−); (x−·−y+) ∨ (x− ∨ y+); (x+·−y−)) ∧ 0

Here, the operatorx; y returns−∞ if x < 0 andy otherwise. This operator can be
expressed by means of positive multiplication together with a minimum with 0:

x ; y = (((x + 1) ·+ 1) ∧ 0) + y

Additionally, we observe that w.r.t. the interval bounds, interval multiplication can be
expressed through positive and negative multiplications together with minima with 0.

Every systemE of interval equations gives rise to a systemE± of integer equations
overZ for the upper and negated lower bounds for the interval values of the variables
from E . For every variablex of the interval systemE , we introduce the two integer
variablesx−,x+. The variablex+ is meant to receive the upper interval bound ofx

whereas the variablex− is meant to receive the negated lower interval bound ofx.
Every equationx = e of E then gives rise to the equationsx− = [e]− andx+ =

[e]+ of E± for the new integer variables corresponding to the left-hand sidex where the
new right-hand sides[e]− and[e]+ are obtained by the following transformations:

[[a1, a2]]
− = −a1 [[a1, a2]]

+ = a2

[x]− = x− [x]+ = x+

[c · e]− = c · [e]− [c · e]+ = c · [e]+

[−e]− = [e]+ [−e]+ = [e]−

[e1 ⊔ e2]
− = [e1]

− ∨ [e2]
− [e1 ⊔ e2]

+ = [e1]
+ ∨ [e2]

+

[e1 + e2]
− = [e1]

− + [e2]
− [e1 + e2]

+ = [e1]
+ + [e2]

+

[e ⊓ a]− = ([e]+ + a−); ([e]− + a+); ([e]− ∧ a−)
[e ⊓ a]+ = ([e]+ + a−); ([e]− + a+); ([e]+ ∧ a+)

[e1 · e2]
− = (([e1]

+ ∨ [e2]
+); ([e1]

−·−[e2]
−) ∨ ([e1]

− ∨ [e2]
−); ([e1]

+·−[e2]
+)) ∧ 0

∨ [e1]
−·+[e2]

+ ∨ [e1]
+·+[e2]

−

[e1 · e2]
+ = [e1]

−·+[e2]
− ∨ [e1]

+·+[e2]
+ ∨

(([e1]
+ ∨ [e2]

−); ([e1]
−·−[e2]

+) ∨ ([e1]
− ∨ [e2]

+); ([e1]
+·−[e2]

−)) ∧ 0

We have:

Proposition 3. Assume thatE is a system of equations over the complete lattice of
intervals, andE± is the corresponding system for the negated lower and upper interval
bounds of values for the variables ofE . Letµ andµ± denote the least solutions ofE and
E±, respectively. Then for every variablex of E , (µ(x))− = µ±(x−) and(µ(x))+ =
µ±(x+). 2

Proposition 3 follows by standard fixpoint induction. By Proposition 3, computing least
solutions of systems of interval equations reduces to computing least solutions of sys-
tems of equations overZ using the BF operators maximum, addition, multiplication
with positive constants, positive and negative multiplications together with minima with
constants. Thus, theorem 3 is applicable, and we obtain:

Theorem 4. The least solution of a systemE of interval equations can be computed in
timeO(|E|3).

Note that before application of theorem 3, we must instroduce auxiliary variables for
simplifying complex interval expressions in right-hand sides ofE . Furthermore, the
transformations[.]− and[.]+ may produce composite expressions which we again de-
compose by means of auxiliary variables. The number of thesefresh variables, how-
ever, is linear in the number of occurring multiplications and thus altogether bounded
byO(|E|).

7 Conclusion

We presented a cubic time algorithm for solving systems of integer equations where
minimum is restricted to always have at least one constant argument. The methods re-
lied on a subtle generalization of the Bellman-Ford algorithm for computing shortest
paths in presence of positive and negative edge weights. We also observed that this al-
gorithm is still applicable when right-hand sides of equations not only contain maxima,
addition and multiplication with constants, but additionally use positive and negative
multiplications.

In the second step, we showed how solving systems of intervalequations with addi-
tion, full multiplication and intersection with constant intervals can be reduced to solv-
ing systems of integer equations. In particular, the restricted variants of multiplication
allowed us to simulate full interval multiplication as wellas to construct tests whether
or not the intersection of an interval with a constant interval is empty. The one hand,
our methods thus clarifies the upper complexity bound for solving systems of interval
equations with intersection with constant intervals as presented by Su and Wagner [11];
on the other hand the approach generalizes the system of equations considered in [11]
by additionally allowing full multiplication of intervals.

Our algorithms were designed to beuniform, i.e., have run-times independent of
occurring numbers — given that arithmetic operations are counted asO(1). This is a
reasonable assumption when multiplication is allowed withconstants only. It is also

reasonable in presence of full multiplication for intervals — given that numbers are
from a fixed finite range only.

In [5], the ideas presented here have been extended to work also for systems of
interval equations with full multiplication as well as witharbitrary intersections.

References

1. T. H. Cormen, C. E. Leiserson, and R. L. Rivest.Introduction to Algorithms. 2nd Edition.
MIT Press, Cambridge, MA, U.S.A., 2001.

2. P. Cousot and R. Cousot. Static Determination of Dynamic Properties of Programs. In
Second Int. Symp. on Programming, pages 106–130. Dunod, Paris, France, 1976.

3. P. Cousot and R. Cousot. Comparison of the Galois Connection and Widening/Narrowing
Approaches to Abstract Interpretation. JTASPEFL ’91, Bordeaux.BIGRE, 74:107–110, Oct.
1991.

4. P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux, and X. Rival. The
ASTRÉE Analyser. InEuropean Symposium on Programming (ESOP), volume 3444 of
LNCS, pages 21–30. Springer, 2005.

5. T. Gawlitza and H. Seidl. Precise Fixpoint Computation Through Strategy Iteration. In
European Symposium on Programming (ESOP), pages 300–315. Springer Verlag, LNCS
4421, 2007.

6. D. E. Knuth. A Generalization of Dijkstra’s algorithm.Information Processing Letters (IPL),
6(1):1–5, 1977.

7. J. Leroux and G. Sutre. Accelerated data-flow analysis. InStatic Analysis, 14th Int. Symp.
(SAS), pages 184–199. LNCS 4634, Springer, 2007.

8. A. Miné. Relational Abstract Domains for the Detection of Floating-Point Run-Time Er-
rors. InEuropean Symposium on Programming (ESOP), volume 2986 ofLNCS, pages 3–17.
Springer, 2004.

9. A. Miné. Symbolic Methods to Enhance the Precision of Numerical Abstract Domains. In
Verification, Model Checking, and Abstract Interpretation, 7th Int. Conf. (VMCAI), pages
348–363. LNCS 3855, Springer Verlag, 2006.

10. H. Seidl. Least and Greatest Solutions of Equations overN . Nordic Journal of Computing
(NJC), 3(1):41–62, 1996.

11. Z. Su and D. Wagner. A Class of Polynomially Solvable Range Constraints for Interval
Analysis Without Widenings.Theor. Comput. Sci. (TCS), 345(1):122–138, 2005.

