Polynomial Precise Interval Analysis Revisited

Thomas Gawlitzh, Jerome Lerou) Jan Reinekg Helmut Seidl, Grégoire Sutrg
and Reinhard Wilhelrh

L TU Miinchen, Institut fir Informatik, 12
80333 Munchen, Germany
{gawW i tza, seidl }@n.tum de
2 LaBRI, Université de Bordeaux, CNRS
33405 Talence Cedex, France
{l'eroux, sutre}@abri.fr
3 Universitat des Saarlandes, Germany
{rei neke, wilhel m@s. uni-sb.de

Abstract. We consider a class of arithmetic equations over the comjd¢tice
of integers (extended with co andoo) and provide a polynomial time algorithm
for computing least solutions. For systems of equationk witdition and least
upper bounds, this algorithm is a smooth generalizatiom@®Bellman-Ford al-
gorithm for computing the single source shortest path isgmee of positive and
negative edge weights. The method then is extended to déalnware general
forms of operations as well as minima with constants. Fofatier, a controlled
widening is applied at loops where unbounded increase sctle apply this
algorithm to construct a cubic time algorithm for the clagsterval equations
using least upper bounds, addition, intersection with zorisntervals as well as
multiplication.

1 Introduction

Interval analysis tries to derive tight bounds for the rimet values of variables [2].
This basic information may be used for important optimizasi such as safe removals
of array bound checks or for proofs of absence of overflows3#jce the very begin-
ning of abstract interpretation, interval analysis hasbemsidered as an algorithmic
challenge. The reason is that the lattice of intervals mag r&inite ascending chains.
Hence, ordinary fixpoint iteration will not result in ternaiting analysis algorithms.
The only general technique applicable here is the widenirdyrarrowing approach
of Cousot and Cousot [3]. If precision is vital, also more rg3ive domains are con-
sidered [8, 9]. While often returning amazingly good resultidening and narrowing
typically does not compute the least solution of a systengofé&ons but only a safe
over-approximation.

In [11], however, Su and Wagner identify a class of intengiations for which
the respective least solutions can be computed preciselyrapolynomial time. As
operations on intervals, they consider least upper boutditian, scaling with posi-
tive and negative constants and intersection with congtéentvals. The exposition of
their algorithms, though, is not very explicit. Due to thepiontance of the problem,

we present an alternative and, hopefully more transpaggrobach. In particular, our
methods also show how to deal with arbitrary multiplicataf intervals. Our algo-
rithm demonstrates how well-known ideas need only to bé#liggxtended to provide
a both simple and efficient solution.

We start by investigating equations over integers onlygesed with—oo andoo as
least and greatest elements of the lattice) using maximdditian, scaling with posi-
tive constants and minimum with constants as operatiorsb$ence of minima, com-
puting the least solution of such a system of equations caniigdered as a generaliza-
tion of the single-source shortest path problem from graplgsammars in presence of
positive and negative edge weights. A corresponding gépatian for positive weights
has been considered by Knuth [6]. Negative edge weightagtihaomplicate the prob-
lem considerably. While Knuth’s algorithm can be consideas a generalization of
Dijkstra’s algorithm, we propose a generalization of thdiiBan-Ford algorithm.

More generally, we observe that the Bellman-Ford algorittorks for all systems
of equations which use operators satisfying a particularasgic property which we
call BF-property. Beyond addition and multiplication wiplesitive constants, positive
as well as negative multiplication satisfies this propdrositivemultiplication returns
the product only if both arguments are positive, whisgativemultiplication returns the
negated product if both arguments are negative. In ordebtaima polynomial algo-
rithm also in presence of minima with constants, we instnoirtiee basic Bellman-Ford
algorithm to identify loops along which values might incseainboundedly. Once we
have short-circuited the possibly costly iteration of sadbop we restart the Bellman-
Ford algorithm until no further increments are found.

In the next step, we consider systems of equations ovewaiteusing least upper
bound, addition, negation, multiplication with positivenstants as well as intersections
with constant intervals and arbitrary multiplication ofervals. We show that comput-
ing the least solution of such systems can be reduced to domgpibe least solution of
corresponding systems of integer equations. This reduimspired by the methods
from [5] for interval equations with unrestricted interiens and the ideas of Leroux
and Sutre [7], who first proved that interval equations witteisections with constant
intervals as well as full multiplication can be solved in mtime.

The rest of the paper is organized as follows. In Section 2imveduce basic no-
tions and consider methods for general systems of equaii@rsZ. Then we consider
two classes of systems of equations o#emhere least solutions can be computed
in polynomial time. In Section 3, we consider systems ofgeteequations without
minimum. In Section 4, we extend these methods to systemguaitisns where right-
hand sides arBellman-Fordfunctions. These systems can be solved in quadratic time
(if arithmetic operations are executed in constant time)Séction 5, we then present
our cubic time procedure for computing least solutions stems of integer equations
which additionally use minima with constants. In Sectiow8,apply these techniques
to construct a cubic algorithm for the class of interval emues considered by Su and
Wagner [11] — even if additionally arbitrary multiplicaticof interval expressions is
allowed.

2 Notation and Basic Concepts

Assume we are given a finite set of variabdsWe are interested in solving systems
of constraints over the complete latti®e= Z U {—o0, oo} equipped with the natural
ordering:

—00<... <2< -1<0<1<2<... <0

On Z, we consider the operations addition, multiplication wittmnegative constants,
minimum “A” and maximum %/”. All operators are commutative where minimum,
addition, and multiplication also preservex. Moreover for every: > —oo,

T+ 00 =00 0-00=0
r-00 =oo Wwhenever >0 z-00=—00 whenever <0

For a finite seiX of variables, we consider systems of equations
x =e, xeX

where the right-hand sidesare expressions built from constants and variables fkom
by means of maximum, addition, multiplication with positigonstants and minimum
with constants. Thus right-hand sideare of the form

e = al|lyletVeslei+ea|b-elelNa

for variablesy € X anda,b € Z wherea > —oo andb > 0. Note that we excluded
general multiplication since multiplication with negaimumbers is no longer mono-
tonic. Similar systems of equations have been investigat¢tO] where polynomial
algorithms for computing least upper bounds are presentduit-enly when comput-
ing least solutions over nonnegative integers.

A functiony : X — Z is called avariable assignmengEvery expression defines
a functionfe] : (X — Z) — Z that maps variable assignments to values, i.e.:

[a]p =a [x]p = p(x)
[ex Ves]u=T[ex]uVe]r [ex +e2]p = [ex]p + [e2]
[b-elp =b-[e]n [enalp =[eluna

fora € Z,x € X, b > 0and expressions ey, ex. For a systend of equations, we also
denote the functiofie] by fx, if x = e is the equation iif for x. A variable assignment

w is called asolutionof £ iff it satisfies all equations i€, i.e. u(x) = fxp for all

x € X. Likewise,u is apre-solutioniff ;(x) < fxu forall x € X. Since the mappings
fx are monotonic, ever§ has a unique least solution. In the following, we denote by
|€| the sum of expression sizes of right-hand sides of the espsiné. The following
fact states bounds on the sizes of occurring values of Vagab

Proposition 1. Assume thaf is a system of integer equations with least solufiGn
Then we have:

1. If u*(x) € Z for a variablex, then:
—(BV 2)'5‘ A< ur(x) < (BV 2)‘5| A

where A and B bound the absolute values of constamts Z and constant multi-
pliersb € N, respectively, which occur if.

2. If £ does not contain multiplication or addition of variablebgtbounds under 1
can be improved to:
YT <pr(x) < bR

whereX~ and X* are the sums of occurrences of negative and positive numbers
respectively, irt.]

In order to prove these bounds, we observe that they holdykiems of constraints
without minimum operators. Then we find that for evérywe can construct a system
of equations’ without minimum operators by appropriately replacing guvamimum
expression by one of its arguments in such a way h&ias the same least solution as
E.

Due to Proposition 1, the least solutions of systems of éguabverZ are com-
putable by performing ordinary fixpoint iteration over theité lattice

Zop={—-0<a<...<b< oo}

for suitable bounds < b. This results in practical algorithms if a reasonably small
differenceb—a can be revealed. In the following, we consider algorithmesd#runtime
does not depend on the particular sizes of occurring nurslgaven that operations and
tests on integers take ting@(1).

3 Integer Equations without Minimum

We first consider systems of integer equations without mimmLet us call these sys-
temsdisjunctive Note that we obtain the equational formulation of the srgburce
longestpath problem for positive and negative edge weights if wéirtsystems of
disjunctive equations further by excluding multiplicatiand addition of variables in
right-hand sides. By replacing all weightwith —a, the latter problem is a reformula-
tion of the single-sourcshortestpath problem (see, e.g., [1]).

In [6], Knuth considers a generalization of the single-sewhortest path problem
with nonnegative edge weights to grammars. In a similaresez@mputing least solu-
tions of systems of disjunctive constraints can be coneitias a generalization of the
single-source shortest path problem with positive and thegadge weights. For the lat-
ter problem, only quadratic algorithms are known [1]. Heve,observe that quadratic
time is also enough for systems of disjunctive constraints:

Theorem 1. The least solution of a disjunctive systémf equations with: variables
can be computed in tim@(n - |£]).

Proof. As a generalization of the Bellman-Ford algorithm [1] we gwee alg. 1 for
computing the least solution of the syst€n he algorithm consists of two nested loops
l1, I3 where the first one correspondsit@ounds of round robin fixpoint iteration, and
the second one differs from the first in widening the value wd@able toco whenever

a further increase is observed. ligtdenote the least solution &f For a formal proof,
let us definel’ : (X — Z) — (X — Z) by

Flp)(x) =[e]p i (x=e)ef

Algorithm 1
forall (x € X) p(x) = —oc;
for (i = 0;¢ < m;i++)
forall (x =¢) € &)
p(x) = px) v [elp;
for (i = 0;i < nji++)
forall ((x=¢€)€ &)

if (u(x) 2 [e]p) p(x) = oo;
return p;

for u : X — Z. Additionally we define the variable assignmentdor i € Ny by

Lo (x) = —00 forx e X
L = FZ(,LL()) fori € N.

ThusV/, , #i = p* and in particulap; < p* for alli € N. In order to prepare us for
the proof, we introduce the following notion. Variabteu-depends o’ iff

Flpo {x' = p(x') +6})(x) > F(u)(x) +4

forall o > 0. Here,® denotes the update operator for variable assignments.aia:cl
Claim 1: Letk > 1. Assume thafi1(x) > ui(x). There exists & s.t.x ui-depends
ony with i, (y) > pr—1(y). U

The key observation is stated in the following Claim.
Claim 2: pu,(x) = p*(x) whenever* (x) < oo.

Proof. Assumep*(x) > u,(x). Thus there exists an indéx > n s.t. g1 (x) >
ux(x). Claim 1 implies that there exist variables

X411y Xk -+ -5 X1
wherex; = x andx;.; pu;-depends ox; fori = 1,..., k. Since there are at least
n + 1 elements in the sequeneg. 1, ...,x1, the pigeon-hole principle implies that

there must be a variabig which occurs twice. W.l.o.g., lgt < j» S.t.x" = x;, = xj,.
Furthermore by assumptiqn, (x') > p;, (x).
By a straight forward induction it follows that

F20 (g, @ {x = g, () 4 01)(x) > g () 46 1)
Letd := pj, (x) — py, (x’) > 0. Then
pr(x') > Fi9270) (g,) (x')
> Fi02790) (5, @ {x = pj, (x) + 61 (x) (monotonicity)
> FODE=) (15, @ {x = g, (X)) + 0} (x) (D)

= FOD0 (15, @ {x/ = puy, (%) 4+ 20}) (%) (def.d)
2>y (X)) + 6

for everyi € N. Sincex depends orx’, we conclude that*(x) = oo. This proves
claim 2. |

Let 1; denote the value of the program variableafter execution of thé-th nested
loop. By construction, < ji; < p*. Whenever a further increase in the second nested
loop can be observed, we know thak p* and by claim 2, that after the modification
1 < p* still holds. Thusfis < p*.

To show thafi, = p* recall that there are variables. Therefore, at mastwariables
can be set tao — implying that the least fixpoint is reached after at mesbunds.O

4 Extension with Positive and Negative Multiplications

Algorithm 1 can be generalized also to systems of equatidmshautilize a wider range
of operators. We observe:

Proposition 2. For any monotonic functiorf : (X — Z) — Z, the two following
conditions are equivalent:

(i) foranyp : (X — Z)and anyY C X, if f(u®{y— —oo |y € Y}) < f(n)
then there isy € Y such thatf (u @ {y — p(y) +4}) > f(u) +iforall i > 0.
(i¢) foranyu : (X — Z)and anyx € X, if f(u® {x — —oo}) < f(p) then

flpe{x— ux)+i}) > f(u)+iforalli > 0.

Proof. (i) = (i) is trivial. For anyu : (X — Z) and any subseY C X, we will
write py for py = p @ {y — —oo | y € Y}. Assume thatii) holds, and let us prove
by induction onY| that (i) holds. The case oY = {) is trivial and the basi§Y| = 1
follows from (i7). To prove the induction step, I1& C X with |Y| > 1 and assume
that f(uy) < f(p). Picksomey € Y and letZ = Y \ {y}. If f(uz) < f(r) then we
derive from the induction hypothesis that thereis Z C Y such thatf (1 & {z —
w(z) +i}) > f(u) +iforall ¢ > 0. Otherwise,f(uz ® {y — —o0}) = f(uy) <
f(n) = f(pz), and we deduce frorfii) that f (uz ® {y — u(y) +i}) = f(uz) +i
foralli > 0. We come tof (u @ {y — u(y) +i}) > f(u) +iforalli > 0 since
> pz andf(u) = f(pz). We have thus shown thét) holds for allY C X. a

We call a functionf : (X — Z) — Z Bellman-Fordfunction (short: BF-function)
when it is monotonic and it satisfies any (or equivalentlyaflithe above conditions.

We remark that the class of Bellman-Ford functions is incaraple to the class of
bounded-increasinfunctions as considered in [7]. Bounded-increasing fumdiare
monotonic functions : (X — Z) — Z such thatf(u1) < f(upe) for all gy, ps :
X — Zwith gy < po, f(Ax. —oc0) < f(p1) and f(u2) < f(Ax.00). However,
for any bounded-increasing functigh: (X — Z) — Z, if (1) f is continuous (i.e.
F(Vi) = V. f(ur) for every ascending chaimy < p; < ---) and (2) f(Ax. —
o0) = —oo and f(Ax.00) = oo, thenf is a Bellman-Ford function.

Let us call ak-ary operatorO a BF-operator, if the functionfo(u) =
O(pu(x1), - - -, u(xx)) (for distinct variables;) is a BF-function.

Clearly, addition itself is a BF-operator as well as the teggper bound operation
and the multiplication with constants. For simulating riplitation of intervals, we
further rely on the following two approximative versionsmfiltiplication:

x-yifx,y>0 - if v =—-ocoVy=—oc0
oy = : 'y >)
Y { —oo otherwise Ty (z-y)if 2,y <0

00 otherwise

We call thesgositiveandnegativemultiplication, respectively. Note that, in contrast to
full multiplication over the integers, both versions of iplication are monotonic. Ad-
ditionally, they satisfy the conditions for BF-functionsdatherefore are BF-operators.
By induction on the structure of expressions, we find:

Lemma 1. Assume: is an expression built up from variables and constants bynmaea
of application of BF-operators. Then the evaluation fuoifje] for e is a BF-function.

Let us call an equatior = e BF-equation, if[¢] is a BF-function. Our key observation
is that the Bellman-Ford algorithm can be applied not onlgigjunctive systems of
equations but even to systems of BF-equations. In orderdptatie proof of theorem
1, we in particular adapt the proof of claim 1. We use the saotations from that
proof. Letk > 1 and assume thatyi(x) > ui(x). Then(x = e) € £ for some
expressiore. The monotonic functioryx = [e] is a Bellman-Ford function where
prt1(X) = fx(pr) @andug(x) = fx(px—1), and recall thapy > pig—1.

LetY ={y € X | pk(y) > pr—-1(y)}- Sincefx(ur @ {y = —oo |y € Y}) <
Ffx(pr—1) < fx(pk), we get from Proposition 2 that there is sognez Y such that
flpe ©{y — pr(y) +1i}) > f(ur) + i foralli > 0. Hencex u;-depends oty, and
moreoveru(y) > pr—1(y) asy € Y. This completes the proof of this claim.

Altogether, we obtain:

Theorem 2. The least solution of a systefhof BF-equations wit: variables can be
computed in tim&(n - |£]).

It is important here to recall that we consider a uniform eostisure where each op-
erator can be evaluated in tin®@(1). If besides addition, also positive and negative
multiplication is allowed, then the sizes of occurring niergomay not only be single
exponential, but even double in the occurring numbers. Ndogeisely, assume that

is the least solution of x is a variable o€ with p*(x) € Z. Then

(Av2)e" < p(x) < (Av2)ll
where A is an upper bound to the absolute values of constamtsZ occurring iné&,
andn is the number of variables.
5 Integer Equations with Minimum

In this section, we extend the results in the previous sediipadditionally allowing
minima with constants. For convenience, let us assume lthagte-hand sides: in the
system¢ of equations either are of the following simple forms:

ron= a|Y|D(Y17---aYk)|y/\a

for constants: € Z, variablesy and BF-operatorsl. Note that now the sizg| of £
is proportional to the number of variables &f Our main result for systems of such
equationsiis:

Theorem 3. The least solution of a systefhof integer equations using BF-operators
and minima with constants can be computed in t@{e|*).

Proof. Let 1* denote the least solution &f We introduce the following notions. We
call a sequenc® = (yi,...,yk+1) € X* a path if for everyi = 1,..., k, variable
yi+1 occurs in the right-hand side of the equation §grin £. Thus, given a variable
assignment, the pathp represents the transformatifyj . : £ — Z defined by

([Plw)(2) = [ead(p @ {y2 = [eal (.- [ex] (4 @ {yrs1 = 2}) .)})

wherey,; = e; is the equation foy; in £. The pathp is called acycleiff yr11 = y1.
The cyclep is calledsimpleif the variablesy, . . ., y; are pairwise distinct.

In order to enhance alg. 1 for systems with minima, assunteathancrease of the
value of the variablex can be observed within the first iteration of the second deste
loop. Then there exists a simple cyele= (yi,...,¥y%,y1) that can be repeated until
either all variabley; receive valueso or the value of the argumeat in some mini-
mum expressioy A a occurring along the cycle exceedslin order to deal with this,
we modify the Bellman-Ford algorithm in the following way:

1. We initialize the variable assignments.t. every variable is mapped tecc and
execute the first phase of alg. 1 which consista &ound-Robin iterations.

2. Then we perform the second phase. If no increment in thensephase can be
detected, we have reached the least solution and retasresult.

3. Whenever an increment in the second phase under a cuamgibie assignment
is detected, we try to extract a simple cyele= (y1,...,y%,y1) S-t. ([c]p)(v) >
v for somev < p(y1). If this is possible, then we do amcceleratedfixpoint
computation on the cycleto determine new values for the variables . . ., yx.
We then update the variables with the new values and resgfprocedure with
step2.

This gives us alg. 2. Extra effort is necessary in order toagextcycles in the sec-
ond phase which can be repeated. For that, the algorithnndgaothe variabléime,
the number of equations evaluated so far. Moreover for evariablex, it records
in modified(x) the last time when the variabte has received a new value, and in
evaluated (x) the last time when the equation fehas been evaluated. Also, it records
for every variablex in pred(x) a variable n the right-hand side fwhich may have
caused the increase and can give rise to an increase in thre.fiftno such occurrence
exists, therpred (x) is set to_L. This is implemented by the functigired(x). Let u
denote the current variable assignment, and assume thagttéand side ok is r.
Furthermore, lely denote the set of variablgsoccurring inr which have been mod-
ified after the last evaluation of, i.e., modified(y) > evaluated(x). Since the value
of x has increased, cannot be equal to a constantrlf= y, thenpred(x) = y. If

r =y Ac thenpred(x) = L if u(y) > candpred(x) = y otherwise. Finally,
assumer = O(yi,...,yx) and letv; = u(y;) for all j. Furthermore, lev; = v;

Algorithm 2
forall (x € X) p(x) = —oc;
do{
done = true ; time = 0;
forall (x € X) {modified(x) = 0; pred(x) = L; evaluated (x) = 0;
}
for (i = 0;i < nji++)
forall (x=¢) € &) {
time—++;
if (el > n(x)) {
pred(x) = pred(x); u(x) = [e]u; modified(x) = time;
}

evaluated (x) = time;

}
forall ((x=¢€)€ &)
if ([e]p > p(x)) {
p(x) = [e]p;
if (p(x) < oo){
widen(x); done = false;break;

¥
}
} until (done);
return p;
if y; ¢ Y, i.e., has not been changed since the last evaluation efdv; = —oo
otherwise. Them(vy,...,v}) < O(v1,...,v). Sinced is a BF-operator, we thus can
retrieve an indey such thatd(vy, ..., vj_1,vj+d, vj41, ..., v%) > O(vy, ..., v5)+d

for all d > 0. Accordingly, we sepred(x) =y;.

Example 1.Let 1 := {x — —10,y — 0} and consider the equatien= x VV y. Then
for Y = {x,y}, the function callpred(z) returns the variablg. O

Now we consider the second phase of alg. 2. Whenever a fititease of the value
of a variablex is detectedwiden(x) is called (see alg. 3).

Algorithm 3 widen(x)
c=(y1,...,yk,y1) = extract_cycle(x);

p(y1) = pu(y1) V eval_cycle(c);
for (i =k; i>2; i——)
w(yi) = p(yi) V fy, (1);

Within the procedureviden(), the functionextract_cycle() is used to extract a cycle
which has caused the increase and possibly causes furttreages in the future. It
works as follows. The cakkxtract_cycle(x) for a variablex looks up the value of
pred(x). If pred(x) # L a variablex; in the right-hand side fox is returned. Then
the procedure records;) and proceeds with the value storedpired (x;) and so on.

Thus, it successively visits a path according to the infdiomastored inpred until it

either reachegd. or visits a variable for the second time. In the latter caseofbtain a

simple cycle(yq, ..., y&, y1). In the former case, the empty sequence will be returned.
The procedureval_cycle() does the accelerated fixpoint computation on a given

cycle. The functioreval_cycle() takes a simple cycle = (yi1,...,yr,y1). Letf :=

[c]p+ and assume that(v) > v for somev < u(y1). Theneval_cycle() computes

Vien, J'(v). Note thatf(z) can be written as

f2)=f'(2) NV

for some unary BF-functioyi’ andd’ € Z. Sincef(v) > v, b’ > f’(v) > v. Therefore,

\/ fiw)=b = f(c0)

1€Np

We conclude thal/, ., f*(v) can be computed in time linear to the size of the simple
cyclec. Furthermorel/, ., fi(v) < p*(y1) by construction. Thus, we have shown the
following claim:

Claim 1: Assume that is a simple cycle which starts with the varialle. Assume
thaty < p* andv < p(y1) are s.t.f(v) := [cu(v) > v. Thenv' == \/, .y f'(v) <
w*(y1) andv’ can be computed in time linear to the size-of a

For a formal proof of correctness of the algorithm letlenote the variable assignment
1 before the-th extraction of a simple cycle anglthe value of: after thei-th extraction
of a simple cycle. Therehy; can bel. Let furthermoreu denote the value qf after
thei-th call of the procedureriden().

First, we show that the widening is correct, i&.,< p* for all i. For that, we only
need to consider the case in which thth extraction leads to a simple cyalg and
not to L. Thanks to Claim 1, we only need to show that the assertiol®daim 1 are
fulfilled for every call of the procedureriden() in which extract_cycle extracts a
simple cycle. Thus we must show:

Claim 2: Assume that; # L is a simple cycle which starts with the varialyie Then
([ei]wi)(v) > v for some valuer < p;(y1).

Proof. Assume that; = (yi1,...,¥&, y1) Wherey; = e; is the equation foy ;. Ob-
serve that the algorithm always records an occurrence ofiabla which possibly has
caused the increase. Therefore, by monotonidity].; is at least the current value
wi(y;) of the left-hand side ;. This means for the cyclg that

pi(y1) < lexlmi(y2)/yollms Ao A piCyr—1) < [en—1[mi(ye)/yell i

as well as
wi(yr) < lexlv/ya]lm
wherew is the value of the variablg; at the last point in time where the evaluation

of the equatiory;, = ¢, lead to an increase. Thus< y;(y1). Since by construction,
(Iei]pi)(v) > pi(y1) > v, the assertion follows. |

Assume again that; = (yi1,...,yx,y1) is a simple cycle and assume as induction
hypothesis, that the variable assignmeht, after the(i — 1)-th widening is less than
or equal to the least solution* of the system€. Since the variable assignmemt
before the extraction of the cycle is computed by fixpoint iteration, it follows that
w; < p*. Letv’ denote the values returned from théh call of eval_cycle(). By
Claim 1,v" < p*(y). Since the rest of proceduveiden() consists in ordinary fixpoint
iteration, we obtain’ < u*.

Thus by construction, alg. 2 return$ — whenever it terminates. In order to prove
termination, let)M (£) denote the set of minimum expressions occurring.ikiVe show
the following claims which imply that a progress occurs ateiacrease of a variable’s
value in the second phase, i.e., either one further variggleives the valueo or an-
other minimum can (conceptually) be replaced by its cotstagument.

Claim 3: Assume that; = L. Then
— either there exists a variabdesuch tha]_, (x) < oo andu;(x) = oo;

— or there exists a subexpressipm a from M (£) s.t.p;_,(y) < a andp;(y) > a.
]

Proof. ¢; = L implies that the procedunered() returnedL for one of the equations
x = e in the sameiteration of the main loop. This is because all valuegedd()
reachable withim steps byextract_cycle() have been modified during this iteration.
Longer paths would imply finding a simple cycle. However, phecedurered() only
returns if some minimun is reached which had not been reached before. O

From Claim 3 and the fact that the sequefieg is increasing we conclude that for
everysi,
{x € X[pi(x) =00} 2 {x € X | pj_, (x) = o0}

or
{xAaeME) | [xlu; > a} 2 {x Aa e ME)| X, > a}.

Accordingly, the algorithm can perform at ma8{(|£|) iterations of the outewhile-
loop. Since every iteration of the outer loop of the algaritban be executed in time
O(n - |€]), the assertion follows. O
Example 2.Consider the following system of equations:

X=yADd y=zA3 z=—17Vz+2

The first three rounds of Round-Robin iteration give us:

01112
X||—oo|—o0|—15
y||—oo|—15|—13
z||—15(—13|—11

Since the value ok still increases during the next round of evaluation, we tzl
functionwiden() with the variablex. Within widen() the functionextract_cycle
is called which returns the simple cydle, z). — giving us the new valuec for z.
Restarting the Round-Robin iteration for all variablesg@ds the least solution:

6 Intervals

In this section, we consider systems of equations over theptete lattice of integer
intervals. Let

IT={0}U{[z1,22) € 2° | 21 < 23,21 < 00, —00 < 2}

denote the complete lattice of intervals partially ordelogcdthe subset relation (here
denoted by Z"). The empty interval) is also denoted byoo, —oc]. It is the least
element of the lattice while-co, oo is the greatest element, and the least upper bound
“LI"is defined by:

[al, ag] (] [bl, b2] == [(11 A bl, as \ b2]

Here, we consider systems of equations dveimilar to the ones we have considered
over Z with the restriction that at least one argument of everyrggetion is constant.
Instead of multiplication with positive constants only, n@w also support negation as
well asfull multiplication of interval expressions. For a fixed 3&tof variables, we
consider expressionsof the form

e == alylc-e|l—eletUes|ertealelMaler e

wherea € Z, ¢ > 0 is a positive integer constant, agds a variable fromX.

As for expressions oveE, we rely on an evaluation functiofe] for interval ex-
pressiong built up from variables and constants by means of applinatad operators.
The function[e] then maps variable assignmepts X — 7 to interval values. Note
that (in contrast to the integer case) full multiplicationimtervals still is monotonic.
Therefore, every system of interval equations has a uniepst olution.

Our goal is to reduce solving of systems of equations overvals, to solving of
systems equations over integers. For that, we define théidms¢:)™, (1)~ : Z — Z
which extract from an interval the upper anegatedower bound, respectively. These
functions are defined by:

Pt =0"=-00 [a,b]T=b [a,b] =—a

where[a, b] € Z. Thusz™ denotes the upper bound and denotes th@egatedower
bound ofz € Z. In the following, we indicate how operations on intervagde
realized by means of integer operations on interval bounds.

Assumer, y € 7 are intervals and > 0. Then we have:

(c-x)- = c-x
(c-x)t = c-at
(—x)~ =
(o)t = a
(zUy)” = a2~ Vy
Exl_ly)Jr = gt vyt
rty)” = vty
(x+y)T = 2t +yt
(@Ny)” = (@ +y i@ +y)@ Ay)
(@ny)* = @ +y)@ +y)@ Ayh)
(@-y)~ = (@ y)V-(ztyT)va ytvaty
= ((@*Vy")@ Ty) V(e Vy)@ Ty") A0VaT Tyt vat TyT
(z-y)t = a7y VatytVv—(z7y")V—(2Ty7)
= oty vattytv(@Et vy)@y Vi vyt @t TyT)) A0

Here, the operatar; y returns—oo if © < 0 andy otherwise. This operator can be
expressed by means of positive multiplication togethehaiminimum with 0:

z;y=(((z+1)T1)A0)+y

Additionally, we observe that w.r.t. the interval boundgerval multiplication can be
expressed through positive and negative multiplicatiogether with minima with O.
Every systent of interval equations gives rise to a systérm of integer equations
over Z for the upper and negated lower bounds for the interval wahi¢he variables
from £. For every variablex of the interval systent, we introduce the two integer
variablesx—,x*. The variablex™ is meant to receive the upper interval boundxof
whereas the variabbke™ is meant to receive the negated lower interval bounx. of
Every equationx = e of £ then gives rise to the equatiors = [¢]~ andx™ =
[e]* of £F for the new integer variables corresponding to the leftehgidex where the
new right-hand sidefg] ~ and[e]* are obtained by the following transformations:

+

la1,a2]]” = —ay [la1, az]]™ = as

[x]~ =x" [x]* =x"

[c-e]™ =c-e]” [c-e]T =c-[e]"

[—e]m =[]t [—e]™ =e]”

[61 L 62] = [61]7 V [62] [61 L 62]+ = [61]+ V [62]+

le1 + e2]™ = [e1]™ + [e2] ler +ea] ™ = [ea]t + [ea]t

leMal™ = (leJ" +a7);([e]” +a*);([e]- Aa7)

leMal®™ = (leJ]" +a7);([e]” +a™);([e]" Aa™)

ler-ea]™ = (([ea]™ V [e2]T); (fex] - ea] 7) V ([ea] ™ V [e2] 7)s (fea] - ea] ¥)) A O
Vler] ™ Fea]t V [ea] - Flea]

[e1-ea] = [er] ™ Flea] ™ V [ed]T-Tea] T Vv

(([ea]™ v [e2]7)s (fer] =T lea] ™) v ([ea] ™ V [e2] T); (fex] - ea] 7)) A O

We have:

Proposition 3. Assume thaft is a system of equations over the complete lattice of
intervals, andS* is the corresponding system for the negated lower and uppenial
bounds of values for the variables&flLet; and . denote the least solutions &fand
&+, respectively. Then for every variabteof £, (u(x))~ = p*(x~) and (u(x))* =
p(xT). o

Proposition 3 follows by standard fixpoint induction. By pPeosition 3, computing least
solutions of systems of interval equations reduces to cdimgpieast solutions of sys-
tems of equations ovef using the BF operators maximum, addition, multiplication
with positive constants, positive and negative multiglimas together with minima with
constants. Thus, theorem 3 is applicable, and we obtain:

Theorem 4. The least solution of a systefnof interval equations can be computed in
time O(|€]3).

Note that before application of theorem 3, we must instredaexiliary variables for
simplifying complex interval expressions in right-handes of. Furthermore, the
transformationg.]~ and[.]™ may produce composite expressions which we again de-
compose by means of auxiliary variables. The number of tfresé variables, how-
ever, is linear in the number of occurring multiplicatiomglghus altogether bounded
by O(|€]).

7 Conclusion

We presented a cubic time algorithm for solving systems tger equations where
minimum is restricted to always have at least one constgunaent. The methods re-
lied on a subtle generalization of the Bellman-Ford ald¢ponitfor computing shortest
paths in presence of positive and negative edge weightsladehbserved that this al-
gorithm is still applicable when right-hand sides of eqoiasinot only contain maxima,
addition and multiplication with constants, but additibpaise positive and negative
multiplications.

In the second step, we showed how solving systems of intequadtions with addi-
tion, full multiplication and intersection with constantérvals can be reduced to solv-
ing systems of integer equations. In particular, the retti variants of multiplication
allowed us to simulate full interval multiplication as wal to construct tests whether
or not the intersection of an interval with a constant in&igs empty. The one hand,
our methods thus clarifies the upper complexity bound forisglsystems of interval
equations with intersection with constant intervals as@néed by Su and Wagner [11];
on the other hand the approach generalizes the system di@tgieonsidered in [11]
by additionally allowing full multiplication of intervals

Our algorithms were designed to beiform, i.e., have run-times independent of
occurring numbers — given that arithmetic operations arented asO(1). This is a
reasonable assumption when multiplication is allowed withstants only. It is also

reasonable in presence of full multiplication for intesval- given that numbers are
from a fixed finite range only.

In [5], the ideas presented here have been extended to waokfed systems of

interval equations with full multiplication as well as wistnbitrary intersections.

References

10.

11.

T. H. Cormen, C. E. Leiserson, and R. L. Rivebttroduction to Algorithms. 2nd Edition
MIT Press, Cambridge, MA, U.S.A., 2001.

. P. Cousot and R. Cousot. Static Determination of Dynamapé&tties of Programs. In

Second Int. Symp. on Programmjmgges 106—-130. Dunod, Paris, France, 1976.

. P. Cousot and R. Cousot. Comparison of the Galois Commmeatid Widening/Narrowing

Approaches to Abstract Interpretation. JTASPEFL '91, Bauk.BIGRE 74:107-110, Oct.
1991.

. P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, DnMaux, and X. Rival. The

ASTREE Analyser. InEuropean Symposium on Programming (ESORJume 3444 of
LNCS pages 21-30. Springer, 2005.

. T. Gawlitza and H. Seidl. Precise Fixpoint Computationoligh Strategy lIteration. In

European Symposium on Programming (ESQ#)ges 300-315. Springer Verlag, LNCS
4421, 2007.

. D. E. Knuth. A Generalization of Dijkstra’s algorithimformation Processing Letters (IPL)

6(1):1-5, 1977.

. J. Leroux and G. Sutre. Accelerated data-flow analysisStatic Analysis, 14th Int. Symp.

(SAS) pages 184-199. LNCS 4634, Springer, 2007.

. A. Miné. Relational Abstract Domains for the DetectidnFtoating-Point Run-Time Er-

rors. InEuropean Symposium on Programming (ESQBlume 2986 of NCS pages 3-17.
Springer, 2004.

. A. Miné. Symbolic Methods to Enhance the Precision of Mtioal Abstract Domains. In

Verification, Model Checking, and Abstract Interpretatigith Int. Conf. (VMCAI) pages
348-363. LNCS 3855, Springer Verlag, 2006.

H. Seidl. Least and Greatest Solutions of Equations A¢eNordic Journal of Computing
(NJC), 3(1):41-62, 1996.

Z. Su and D. Wagner. A Class of Polynomially Solvable Ra@gnstraints for Interval
Analysis Without WideningsTheor. Comput. Sci. (TCS345(1):122-138, 2005.

