Interprocedurally Analysing Linear Inequality
Relations

Helmut Seidl, Andrea Flexeder and Michael Petter

Technische Universitidt Miinchen, Boltzmannstrasse 3, 85748 Garching, Germany,
{seidl, flexeder, petter}@cs .tum.edu,
WWW home page: http://www2.cs.tum.edu/ {seidl, flexeder,petter}

Abstract. In this paper we present an alternative approach to interprocedurally
inferring linear inequality relations. We propose an abstraction of the effects of
procedures through convex sets of transition matrices. In the absence of condi-
tional branching, this abstraction can be characterised precisely by means of the
least solution of a constraint system. In order to handle conditionals, we introduce
auxiliary variables and postpone checking them until after the procedure calls.
In order to obtain an effective analysis, we approximate convex sets by means
of polyhedra. Since our implementation of function composition uses the frame
representation of polyhedra, we rely on the subclass of simplices to obtain an ef-
ficient implementation. We show that for this abstraction the basic operations can
be implemented in polynomial time. First practical experiments indicate that the
resulting analysis is quite efficient and provides reasonably precise results.

1 Introduction

In [5]], Cousot and Halbwachs present an intraprocedural analysis of linear inequalities
based on an abstraction of the collecting semantics [4] by means of convex polyhe-
dra. They draw upon both the frame and the constraint representation of polyhedra to
perform the subsumption test and widening [S] on polyhedra. More precise widening
strategies on convex polyhedra are provided in [[1]]. Based on this approach an interpro-
cedural analysis can be obtained by relating input and output states of a procedure call
by means of linear inequalities. This leads to convex transition invariants on program
variables before and after the procedure call.

main: \ £
)
X 1= 2; / \\x = 2%X%;
X = X; { @
£(); \ '//X :X_2r

Fig. 1. An example program for transition invariants

mailto:seidl@cs.tum.edu
mailto:flexeder@cs.tum.edu
mailto:petter@cs.tum.edu
http://www2.cs.tum.edu

In the example in figure 1| (from [8]]), the procedure call £ () at program state 2 can
be described by the transition invariant x = 2’ V © = 2 - 2’ — 2. The approximation of
this invariant by polyhedra leads to a complete loss of information. Although transition
invariants work in several practical cases (e.g., the McCarthy91 function [6]), they
seem too restrictive for a precise interprocedural analysis.

Instead, we propose an interprocedural alternative to transition invariants. Our ap-
proach is based on convex sets of transition matrices to capture the effects of proce-
dures. For our intraprocedural reachability analysis, the program states are abstracted
by convex sets of vectors, describing the values of the program variables. The transfor-
mation of program states is described by linear transition matrices, similar to [8]. The
key idea of our approach is to compute a finite representation for the effect of procedures
[9] (i.e. convex sets of transition matrices) which can be embedded into the reachability
analysis. In the absence of conditionals, this abstraction can be characterised precisely
by means of the least solution of a suitable constraint system. Since conditional branch-
ing cannot be represented by linear transformations, conditionals can obviously not be
evaluated on convex sets of transition matrices. Therefore, we introduce auxiliary vari-
ables for each condition and postpone checking them until after the procedure call. In
order to obtain an effective analysis, we follow the standard approach of approximating
convex sets by means of convex polyhedra [5]. Our composition operation for polyhe-
dra relies on the frame representation of polyhedra, represented by sets of points, rays
and lines. In order to avoid the expensive continual conversion between the two poly-
hedral representation forms [5], we resort to the frame representation alone. Testing
for subsumption as well as computing the union of two convex polyhedra is reduced
to linear programming problems [3]]. In order to infer the linear inequalities for a pro-
gram point, the conversion to the constraint representation is deferred to the end of the
computation of the procedure effects or the very end of the analysis. However, poly-
hedra tend to be complex. Consequently, operations on polyhedra are expensive [10].
This induces the demand for perhaps more efficient representations of convex sets. In
[[71, octagons, an efficient subclass of polyhedra, are introduced. Within this approach
at most two program variables per inequality are allowed with restrictions on the coef-
ficients, permitting only inequalities of the form +x + y < c. Simon et al. abandon all
restrictions on the coefficients for the considered pair of occurring program variables in
[[L3]]. In contrast, Clarisé et al. propose in [3]] to approximate polyhedra with octahedra.
In contrast to the former approaches, they allow any number of program variables but
the coefficients of the inequalities are restricted to =1 or 0. A quite general approach
is introduced by Sankaranarayanan et al., who introduce generic inequality templates
and solve systems of inequalities on the coefficients of the templates [11]. All these
approaches consist in restricted classes of constraint systems, though their frame repre-
sentation can easily become exponential.

This does not hold for simplices. Simplices are convex polyhedra which are re-
stricted in the number of frame elements to at most n linearly independent elements and
a base point, if n is the dimension of the underlying vector space. Thus, simplices form
a subclass of polyhedra where the frame representation has approximately the same size
as the constraint representation. This is the reason why we started to experiment with
approximations of convex sets by means of simplices. Based on this approximation, we

achieve that subsumption testing reduces to solving n + 1 systems of at most n linear
equations. Thus, our subsumption test can be performed in polynomial time.

Our approach for interprocedurally identifying linear inequality relations among
the variables of a program is subsequently described in detail. In section 2] we introduce
control flow graphs, representing our inspected program class. Furthermore, the collect-
ing semantics of our program class is described. In section [3| we turn to the abstraction
of the concrete semantics based on convex sets. In addition, we present a method for
interprocedurally dealing with conditionals. Effective approximations of convex sets
are discussed in section[5} where we also present simplices and the basic operations on
simplices. Finally, first experimental results and comparisons of the various approaches
are reported in section [6]

2 The general set-up

This section introduces the programs to be analysed together with their collecting se-
mantics. We assume that a program is represented by a finite set of disjoint control flow
graphs G, as illustrated in figure[I}

Each graph Gy € G corresponds to a procedure f from a finite set Proc of proce-
dures. Each control flow graph Gy € G consists of:

e afinite set Ny of program points of the procedure f,

e afinite set £y C (Ny x Label x Ny) of labeled control-flow edges,
o the start point sy € N for the procedure f, as well as the

e return point 7y € Ny of f.

Labels at control-flow edges either are linear assignments (e.g. X1 : =x2+5), pro-
cedure calls (e.g. g ()), non-deterministic assignments (x; := ?) or linear conditions
(e.g. x1—x2—3 > 0). For simplicity, we only consider conditionals of the form ¢ > 0.

We suppose that the program operates on the n global program variables x4, . . ., X;,.
We assume the variables to take values on an ordered field F. In the following we con-
sider the field Q. Then a program state can be modelled by a (n + 1)-dimensional
column vector x = (1,z1,...,2,)T € {1} x Q". Each component x;, i > 0, of the
vector x represents the value assigned to the program variable x;. Note that we use an
extra 0-th component 1. This extra component allows modelling the semantic effects of
affine assignments through linear transformations, e.g. as considered in [8]].

The set of all state vectors attained at a program point through program execution
forms the collecting semantics of the program at this program point. Every assignment
x; := t of alinear term t = to + 7, t; - X;; causes a linear transformation [x; :=
t] : 20", 20" on the underlying set of program states. Its effect onto a single
program state can be described by multiplication of x with the following matrix:

n L) O
[x: —to+ztj x5;] = | to ln
Jj=1 0 In—z

with I; : (i x i)-dimensional identity matrix in Q?*?. As we consider extended program
states, the matrix of this definition is from (@("+1)2. We only consider matrices where

the entry at position (0, 0) is equal to 1 and the remaining entries in the Oth row are all
0.

For the beginning, we assume that the program does not contain conditional branch-
ing, i.e. edges labeled with inequalities. Since linear transformations are closed under
composition, we realise that the effects of procedures can be represented by sets of lin-
ear transformations of the extended program state. These sets of transformations can be
characterised by the least solution of the following constraint system T

[T0) T(s) 2 {1d}

[T1] T(v) 2 {[xi:=1]}oT(u) for (u, x; :=t;, v) € Ey
[T2] T(v) 2 {[xi:=¢c]|ceQ}oT(u) for(u, x;:=7;, v) € Ey
[T3] T(v) 2 T(ry)o T(u) for (u, g();, v) € Ey

Here, the operator o denotes the element-wise function composition of two sets of
transformations. Thus, the effect of a whole procedure is the effect accumulated at the
return point of the procedure.

Constraint [T0] expresses that no initialisation of the program variables is per-
formed at the start point s; of any procedure f € Proc. This results in the identity
mapping Id. [T1] describes the accumulation of the effect of a linear assignment. It is
obtained by the composition of the linear transformation corresponding to the assign-
ment with the effect already accumulated for the start point u of the edge. If the edge is
labeled with a non-deterministic assignment, each value ¢ € @ can be assigned to the
program variable x;. This is described by the constraint [T2]. Constraint [T3] describes
the handling of edges, which are labeled with a procedure call. We simply compose
all transformations of the called procedure with the transformations accumulated be-
fore the procedure call. Since all right-hand sides in the constraint system T represent
monotonic functions, a least solution for this system exists. We denote the components
of this least solution by T'(u) (u a program point).

Given the effects of procedures, we can characterise the sets of program states reach-
ing program points by the least solution of the constraint system A.:

[AO] A(Smain) :_> {1} X Qn
[Al] A(sg) 2 A(u) if (u, g();, -) calls g € Proc
[A2] A(v) D [xi:=t] A(u) for (u, x; :=t;, v) € Ey
[A3] A(v) O | JIxi:==c] A(u) for (u, x; :=7;, v) € Ef

ceQ
[A4] A(v) 2T(rg) A(u) for (u, g();, v) € Ef

The first constraint [AQ] expresses that program execution starts with a call to the
specific procedure main. At this point, no assumptions on the set of program states can
be made. Constraint [A1] describes that the start point of a procedure f is dependent of
all the program points where f is called. Linear and non-deterministic assignments, as
defined in [A2] and [A3], result in applying the transformation functions corresponding
to the edges element-wise to the sets of vectors reaching the start point of the edge. The
same does also hold for procedure calls where the effect of a call to f is given by the
set of transformations T'(r), provided by the least solution of the constraint system T.

This is formalised in the constraint [A4], where the function application is performed
element-wise to the sets of vectors. Again, the least solution for this constraint system
exists according to the fixpoint theorem of Knaster-Tarski and we denote its components
by A(u) (u a program point).

3 Convex abstraction

In order to interprocedurally infer linear inequality relations, we want to construct a
precise abstraction for our collecting semantics. The abstraction should provide for ev-
ery program point v (hopefully all) linear inequalities, which are valid for all program
states reaching u. Geometrically, a linear inequality specifies a half space. The conjunc-
tive combination of these half spaces results in a convex set of vectors. This may serve
as a justification of an abstraction of the concrete semantics by means of convex sets,
the convex abstraction.

Formally, let C(Q™*1) denote the set of all convex subsets of vectors over Q"1 .
On convex sets, the greatest lower bound M is given by the set theoretical intersection,
while the least upper bound LI is given by the convex hull of the set theoretical union:
(X1) U(X5) = (X1 UXy) with X; C {1} x Q",i = 1,2. The set C(Q"*!) of all
convex subsets of vectors together with the subset relation C as partial ordering relation
(denoted by C here) forms a complete lattice.

Now, we define the abstraction o : 22" — C(Q™*) by: a(X) = (X) where
(X)) denotes the least convex set containing X C {1} x Q™. The convex set (X) can
be obtained from X by applying the convex hull operation to X:

n n
<X> = {Z/\izi|n€N AO<)N\ A Z)\lzl N ZiEX}
i=1 i=1

Clearly, a commutes with arbitrary unions and therefore is an abstraction.

Within our interprocedural approach the effect of assignments is modelled by a set
of linear transformations. Each of these transformations can be represented by a matrix,
similar to [8]. As a matrix can be seen as a (n + 1)2-dimensional vector, the abstraction
a is also applicable to sets of matrices. Thus, the abstract effect [x; := ¢]* of a linear
assignment x; := ¢ results in the convex hull of the single (n+ 1)? vector obtained from
[x; := t]. In the case of a non-deterministic assignment, all possible constant values of
@ could be assigned to the program variable. This effect is described by the following
convex set of transition matrices:

L |0
[[xizz?]]ﬁ:< A0 ... 0 |Ae@>
0 Infi

In order to approximate the convex abstraction of the effect of procedure calls, we
apply the abstraction to the constraint system T. The resulting system T* is given by:

[T0?] T#(sf) 3 {1} IecQntD)’

[T1¥] T#(v) O [x;:=t]* of T¥(u) for (u, x; :=1t;, v) € Ey
[T24] T#(v) O [x; :=7]F of T#(u) for (u, x; :=7;, v) € B
[T3%] T#(v) O T(ry)? of T#(u) for (u, g();, v) € Ey

In the abstraction, we have used the convex composition of on convex sets of linear
transformations, which is defined by an element-wise matrix-multiplication composed
with the convex hull operation:

(Cy) of (Cy) = (C1Cy | C; € C;) with C; C Q+1’

The least solution of T# provides an abstract effect of a procedure represented as a
convex set of transformation matrices. We only consider those matrices where the entry
at position (0, 0) is equal to 1 and the remaining entries at the Oth row are all 0. We
denote the components of this least solution by T#(u) (u a program point).

Accordingly, we can describe the reachability analysis in the convex abstraction by
the constraint system A obtained from the concrete constraint system A by applying
the abstraction o

[Aoﬁ] Aﬁ(smain) 2{1} xQ"

[A1Y] Af(sy) D A¥(u) if (u, g();, -) callsg € Proc
[A28] Af(v) O [x; ==t]* # A(u) for (u, x; :==1;, v) € By
[A3f] Af(v) 3 [xi :=?] # A¥(u) for (u, x; :=7;, v) € E
AL A%(w) DTr,) F AMw) for (u, g0, v) € B

Analogously to the abstract composition operator of, the abstract application opera-
tor -# is defined by element-wise application composed with the convex hull operation.
The least solution of the system A again exists and provides us with a convex set of
vectors for every program point u. For convenience, we denote the components of this
least solution by A¥(u) (u a program point).

First we want to show the safety and precision of the convex abstraction. For this
purpose we verify that the abstraction commutes with function application and compo-
sition of the linear transformations.

Proposition 1. For every set of vectors X C {1} x Q™ and all sets of transformation
matrices C,C1,Cqy C Q("+1)2, the following equalities hold:

1. {Cx|zeX, CeC})={Czx| z€(X), Ce(C)})
2. ({C1Cy | CieCi})=({C1Ca | Cie (Ci) })

For the constraint systems A and T# we therefore obtain from proposition E] with the
fixpoint transfer lemma:

Theorem 1. For every program point u and every procedure f of the program with
return point 1y, the following holds:
1. Af(u) = a(A(u)) = (A(u))
2. THry) = o(T(ry)) = (T(ry))
This theorem means that the smallest fixpoints of the constraint systems T and A*

precisely characterise the convex abstraction « applied to the smallest fixpoints of the
constraint systems T and A for the collecting semantics.

In general, the least solutions of the abstract constraint systems will not be reached
after finitely many fixpoint iterations. In order to arrive at practical algorithms for com-
puting safe (over-) approximations of the least solutions of these constraint systems, we
therefore must rely on effective representations of convex sets together with effective
abstract composition and application operations as well as effective implementations
of subsumption and union. In order to speed up fixpoint iteration, a widening operator
must be provided.

By now, we have specified the convex abstraction and verified its correctness and
precision. However, our abstraction of the effects of procedures only works for non-
deterministic branching, i.e. in the absence of inequality guards. Linear inequality anal-
ysis is not yet very significant without the handling of conditionals. The next section
therefore provides a technique to enhance the base framework to handle linear inequal-
ity guards.

4 Linear Inequality Guards

Clearly, the reachability analysis naturally can be enhanced to deal with linear inequal-
ity guards (b > 0). As in [5]], the effect of such a guard is interpreted as the intersection
with the corresponding half-space of state vectors, which satisfy the guard:

[b>0]X = {z€ X |bx>0}
where for b = by + b1x; + ...+ b,x, and x = (1,21,...,2,)7,
bz =by +bix1+ ...+ bz,

When analysing programs with conditional branching, the effects of procedures can
no longer be described by sets of linear transformations. Since the constraint system T
only speaks about linear transformations, conditionals cannot easily be integrated into
our concrete semantics. The constraint system A for the reachbility analysis, however,
can be extended to conditionals by introducing the following constraint:

[A5] A(v) D {z € A(u) | bz > 0} for (u, (b >0), v) € Ey

Within the convex abstraction, the idea for interprocedurally handling conditionals
therefore is to postpone their evaluation during the computation of procedure effects
until the reachability analysis. Up to this time, we suggest to store the value of each
condition in an auxiliary variable, which then can be checked for non-negativity.

Thus, we extend the original semantics by introducing new “program variables “,
one for each guard. Assuming that the guards are numbered n + 1,...,n + g, the
auxiliary variables are denoted by X,, 11 ...Xy44. This leads to an extension of every
program state by g extra components. All the auxiliary variables are initially set to 0.
During the effect computation we replace the jth conditional (b > 0) with the assign-
ment X,4; := b. As the value of each condition is just stored in an auxiliary variable,
conditionals now can be treated within our effect computation. Accordingly, we modify
the constraint system T* as follows:

[T4%] T#(v) 2 [xn4; == b]* of T#(u) for (u, (b >0), v) € By

where (b > 0) denotes the jth conditional.

Clearly, every feasible program execution path of the original program will also be
a feasible execution path of the transformed program — but not necessarily vice versa.
Thus, our postponed evaluation of guards introduces a safe over-approximation of the
concrete semantics. Due to the extension of every program state the constraint [A0¢]
must be adapted to handle conditionals:

[A0] A¥(5pm4in) D1 x Q™ x 09

This constraint shows that at the start point of procedure main every program state
is possible, in which all auxiliary variables are 0.

There are two natural choices for scheduling the evaluation of the postponed guards
(Xp+; > 0) during the reachability analysis. The first alternative is to schedule their
evaluation directly after each procedure call. Then the constraint system A* is modified
as follows:

[A4F] A%(v) O TH(ry) of Af(u) N {(1, 21, ..., Tnig) | Tny; > 0 forall j}
for (u, g(), v) € Ef
[A5F] A%(v) 3 {z € A*(u) | bz > 0} for (u, (b >0), v) € Ef

The modified constraint [A4%] describes the postponed evaluation of guards after
each procedure call, whereas the additional constraint [A5] illustrates the direct evalu-
ation when a conditional has been visited.

As a second alternative, we may postpone the evaluation of guards even during the
reachability analysis — in order to perform a single check for every program point u
just before the valid linear inequalities for u are inferred. To this end, we use the origi-
nal constraints [A4%]. Furthermore, we replace the constraints [A5¢] with corresponding
assignments to the auxiliary variables:

[A5¥] A¥(v) O [xp4; = b]*(AF(u)) for (u, (b >0), v) € E;

where (b > 0) denotes the jth conditional. Finally, we introduce extra unknowns
A*(u)’ for each program point u which are meant to receive the final analysis results.
For these, we introduce the extra constraints:

[A'] A*(u) D A*(u) N {(L,21,...,Zntg) | Tnyj > Oforall j} foru € Ny

The latter alternative may lose more precision in comparision to the immediate eval-
uation, because more execution paths are admitted. A first comparison between the two
alternatives is shown in section@ In case of an analysis over integer variables, however,
all of the second analysis can be performed within the field Q — up to the final condi-
tion evaluation. Thus, we even obtain a tight integer solution already if the final round
of intersections is performed by an ILP solver.

S Representing convex sets

So far, we have introduced a framework for an interprocedural analysis for inferring lin-
ear inequalities. In order to arrive at practical analysis algorithms, it remains to choose
suitable effective representations for convex sets, which support the necessary opera-
tions as well as a widening operation to enforce termination of the fixpoint iteration.

Convex Polyhedra

y For this purpose we focus on the subset of C(Q"*1) of convex
IZB/R: polyhedra [3], denoted by P. For our approach, we find it con-
B, venient to use the frame representation of polyhedra. This means

that a polyhedron F is represented as a triple F = (P, R, L)
where P denotes a finite set of points, R is a finite set of rays and
B L is a finite set of lines. The figure on the left-hand side illustrates
5 R a polyhedron in Q?, which consists of a point set and a ray set,
> forming the polyhedron ({ Py, P, P, P3}, {Ro, R1},0).
Every element of R, respectively L, is a vector, which can be considered as the differ-
ence of two points in the considered vector space. As mentioned in[2} we use projective
space in our vectors. Thus, the extra 0-th component of a vector is always 1 for points
and O for rays or lines. The set of points, represented by (P, R, L), is given by:

q T S
[P RL)] ={)_NP+> miRi+Y niLi | q,rs > 0AN, i 2 0AY A =1}
i=0 i=0 i=0 i

withP ={P,..., P}, R={Ry,..., R}, L={Lo,..., L} Inorderto use poly-
hedra as effective representation of convex sets of transition matrices in the constraint
system T*#, we must provide algorithms for composition, union, widening as well as an
effective test for subsumption on polyhedra. We introduce the polyhedral composition
P as an abstraction of o#, in order to easily express the composition on the frame
representation of polyhedra.

(e]

Composition. Let F; = (P;, R;,L;), i = 1,2, denote the frame representation of two
polyhedra of transition matrices. The polyhedral composition F = F; o” Fy results in
the frame F' defined by the triple (P, R, L), where

P —{P, 0Py}
R :{Pl oRs UR{oRy U Rjo0 P2}
L:{L10P2UL10R2UL10L2UP10L2UR10L2}

Here, o denotes the element-wise multiplication of two sets of matrices.
By construction we obtain:

Proposition 2. The result of the polyhedral composition is a superset of the convex
composition: [F1 oF Fy] I [F1] of [Fo]

The other direction C is not necessarily valid in presence of rays and lines. If the frame
consists of points only, the polyhedral composition o” is equivalent to the convex com-
position of,

Widening. In order to compute effectively some (hopefully non-trivial) solution of the
constraint system T* by means of convex polyhedra, we should avoid infinite ascending
chains during fixpoint iteration. This can be achieved by the use of widening for poly-
hedra, e.g. the standard widening introduced by Cousot and Halbwachs [5]. Here, we
rely on those more precise widening strategies of Bagnara et.al. [1]], which are restricted
to the frame representation of a convex polyhedron.

Union and Subsumption. In every step of the fixpoint iteration we must check if the
next polyhedron F for a constraint variable is already subsumed by the old value F’,
i.e. whether [F] C [F’]. This subsumption test can be implemented by successively
testing for all frame elements of polyhedron F whether they can be represented by the
elements of the polyhedron F’/ or not. Subsumption testing, thus, reduces to checking
the feasibility of a linear program [12]). Union for two polyhedra (following referred
to as polyhedral union) on the other hand is implemented readily using set theoretical
union on each of the three components of the frame representation. Subsequent sub-
sumption testing may be used to remove redundant elements from the result.

Linear Guards. According to the extended constraint system for the reachability anal-
ysis, as presented in section [d] both alternatives for evaluating conditionals can be ap-
plied to convex polyhedra. For performing intersections on polyhedra we apply the
techniques from [5].

In practice, program analysis using polyhedra is quite expensive [10]. Thus, in re-
cent approaches special subclasses of polyhedra have been proposed, e.g. octagons [7]]
or octahedra [3]]. These subclasses rely on restricted forms of constraint systems to spec-
ify polyhedra, which then can be handled efficiently. Since the frame representation of
these polyhedra can be easily exponential in the number of constraints, they cannot be
applied here.

This is the reason why we will turn our attention to simplices, a particular subclass
of polyhedra, whose frame representation has almost the same size as the constraint
representation.

Simplices

The idea is to restrict the number of frame elements in the frame representation (P, R, L)
of a non-empty polyhedron to n frame elements and a base point Py € P, whereas the
differences P — Py, Py # P € P together with the rays and lines are all linearly in-
dependent. In the following this fact is referred to as the linear independence of frame
elements.

Yy

The figure on the left-hand side illustrates the simplex
({Py, P1},{Ro},0) C Q2. Two-dimensional simplices may consist
of at most 3 frame elements. Obviously, in this example the differ-
ence P; — P is linearly independent from the ray Ry. For simplices,
Ry we need again an appropriate subsumption test, union as well as
an effective composition. Furthermore, widening on simplices must
> be introduced to assure the linear independence of frame elements.
Union and composition for simplices can be readily implemented by using the corre-
sponding polyhedral operations and subsequently determining a preferably small sim-
plex (referred to as enclosing simplex) which encloses the polyhedron.

Py

Py

Enclosing Simplex. Given a polyhedron F, a simplex S is called enclosing simplex
for F iff [F] C [S]. This enclosing simplex is realised by successively building up the
simplex. Starting with an empty simplex, which is successively widened with all the
frame elements of the polyhedron F.

Subsumption. As for polyhedra the subsumption test for simplices [S] T [S’] is per-
formed by successively checking the points, rays and lines of S whether they can be
expressed through the points, rays and lines of S’ or not. However, for simplices each
such test can be performed through solving an appropriate system of linear equations.
Because of the linear independence of frame elements, this system has a unique solu-
tion. In order to determine whether a point P, a ray R or a line L is subsumed by the
simplex (P, R, L), the corresponding system of linear equations has to be solved:

q T E]
P=Py+> N(Pi—Po)+ Y piRi+ Y miLi (1)
i=1 =0 =0
R=> wRi+> niL; ©)
=0 =1
L= mlL; 3)
=0

where Zg:1 A <1 A N, > 0holds, P, € PR, € R, L; € L and P, as base point.
The complexity of solving such a system of linear equations is cubic in the number of
frame elements. If the system of linear equations is feasible and the restrictions for the
coefficients \;, i; hold, the point P, the ray R or the line L is considered as subsumed.

Composition. The composition of two simplices (referred to as simplicial composi-
tion) is reduced to the polyhedral composition o” and subsequently determining the
enclosing simplex.

Union. Union for two simplices S1, Sy (simplicial union) is implemented using the
polyhedral union of the simplices and subsequently determining the enclosing simplex
for this polyhedron. This can be efficiently realised by successively widening of simplex
S, with all the frame elements of S».

Widening. Widening of a simplex S with a frame element F results in three distinct
cases: First, if the frame element E is linearly independent of all the frame elements
of S, E can be directly added to the corresponding element set of S. Secondly, if £
is already subsumed, S does not have to be widened. In the third case the linearly
dependent frame elements of S (i.e. their linear combination represents E) are widened
according to one of the algorithms presented in figure

1 widen ((P,R,L), P){
choose some base point Py € P;
determine A;,pu; with 1<i<gq, 0<j<r
P =P+ >0 Xi(Pi = Po) + X _oniRj +>i_gmiLs
for all j s.t. pu; <0: L—L UR;; R— R\R;j;
6 for all 4 s.t. A; #0:
if (A <0) {(L—L U(Py—P;); P—P\PF;;}
if (\; >1) {(R<—R U(Pg*Po); PHP\PI',‘ }
while (39_,X; > 1) (R~ R U(P;—Py);i P—P\Pgiq—q—1; }
return (P,R,L);

Fig. 2. Widening of a simplex with a point P
When widening the simplex with a point P, the system of equations (1) has to be
solved to determine the coefficients for the frame elements, who contribute to the linear

combination of P (v. line 4 of the algorithm in figure . The frame elements, more
precisely the points and rays of the simplex, whose restrictions on the coefficients do
not hold, have to be widened.

If the restriction of a ray [2; does not hold, i.e. p1; < 0, the ray ; is removed from
the ray set of the simplex and added to its line set, as line 5 of the algorithm in figure
E] demonstrates. Furthermore, if the restriction on the coefficient of a point P; does
not hold there are two cases: if A; < 0 then P; is removed from the point set and the
difference Py — P; is added to the line set, whereas if A\; > 1 the difference P, — P, is
added to the ray set. Additionally, the restriction on the sum of the points’ coefficients

,?:1 A; < 1 must be preserved. As long as this restriction does not hold, the ray
set is augmented with the differences P; — Py (v. line 9 of the algorithm in figure [2).
The resulting simplex subsumes P and does only consist of linearly independent frame
elements. Note that the precision of the widening presented here strongly depends on
the choice of the base point Py, but can be implemented in such a way, the choice of Py
becomes irrelevant for the precision of the resulting simplex.

widen ((P,R,L), R){
choose some base point Py € P;
determine A;,pu; with 1<i<gq, 0<j<r
4 R=31, NP — Po)+ Xi_omui Ry + Xi_gmiLi
for all j s.t. p; <0: L—L UR;; R— R\ Rj;;
for all 4 s.t. A; #0:
if (A <0 (L—L U(Py—P;); P—P\PF;;}
if (A, >0) {(R—R U(P;—FPy); P—P\P;; }
9 return (P,R,L);

Fig. 3. Widening of a simplex with a ray R

In the case of widening a simplex with a ray R, we determine the coefficients for the
differences P; — Py, Py # P; € P and the rays R (v. line 4 of the algorithm in figure
B). Analogously to the algorithm widening with a point[2] all the points and rays, whose
coefficients do not hold, are widened i.e. they are added to the ray set respectively line
set (v. line 5/6 of the algorithm in figure3).

widen ((P,R,L), L){
choose some base point Py € P;
determine A;,pu; with 1<i<g¢q, 0<j<r
L=37_ (P —Po) + X _oui Ry + g mLi
5 for all j s.t. uj #0do L—L U R;; R— R\ R;; od
for all ¢ s.t. \; #0 do L—L U (Py—P;); P— P\ P;; od
return (P,R,L);

Fig. 4. Widening of a simplex with a line L
Considering widening a simplex with a line L, all the rays and point differences with
non-zero coefficient, i.e. contributing to represent L, are widened to new lines, as de-
scribed in detail in the algorithm in figure]. O

When using simplices, termination of the fixpoint algorithm over the constraint sys-
tem T* need not be ensured by introducing additional widening. Since in Q*, k =
O(n?), a non-empty simplex can be enlarged at most 3k-times, no infinite ascending
chains may occur. Note, however, that due to the frequent computation of the enclosing

simplex, the fixpoint iteration over the constraint system T* based on simplices leads
to a less precise approximation of convex sets than convex polyhedra.

Linear Guards. Since the class of simplices has been introduced in order to efficiently
approximate convex polyhedra when computing the effects of procedures, it is not re-
quired to evaluate linear guards on simplices within our approach. Our reachability
analysis relies on polyhedra, on which the conditions can be directly evaluated, v. sec-
tion 4] When using simplices for the reachablity analysis, the evaluation of conditionals
on simplices cannot be performed directly after each procedure call or when a condition
is passed, because the result of an intersection is not necessarily again a simplex. Since
the creation of an enclosing simplex after the condition evaluation will cause too much
imprecision, checking the condition must be postponed until the end of the analysis.
Thus, it is preferable to transform the simplex into a convex polyhedron and addition-
ally perform the condition evaluation.

Further on, operations on simplices have a better runtime complexity than on polyhedra:

Theorem 2. All the simplicial operations (subsumption, union, widening and compo-
sition) can be performed in a time, polynomial in the number of variables n.

Proof. Assume that the simplices in question describe subsets of Q% where k = O(n?).
The simplicial operations of inclusion testing and widening are reduced to solving a
system of at most &+ 1 linear equations, which can be performed in O(k?) for a simplex
with k + 1 frame elements. Union is reduced to (k + 1)-times successive widening,
subsumption to (k + 1)-times inclusion tests. Thus, each operation can be performed in
time O(k*). The simplicial composition is given by the element-wise composition of
the frame elements (i.e., O(k?) matrix multiplications) and subsequently determining
its enclosing simplex, leading to a total complexity of O(k®). a

6 Preliminary experimental results

So far, we have introduced two different representations for convex sets — convex poly-
hedra and simplices. Even more, we have presented two alternatives for evaluating con-
ditionals within the reachability analysis — directly after each procedure call or once
at the end of the analysis. To get a general idea of the performance of these different
options in practical application, we have examined the behaviour of our interprocedural
approach on a collection of example programs. Here, we concentrate on three charac-
teristic examples, recursive add, array bounds and nested loops.

The example program recursive add contains a procedure, that recursively calls it-
self, computing the addition of two numbers. Furthermore, in array bounds array bound
checking, as done by Java programs, is simulated. Finally, we consider the iteration vari-
ables in the program nested loops, containing four nested for-loops. This program also
covers the case that a loop is bounded by the iteration variable of an outer loop.

The analysis set-up consists of approximating convex sets either by convex poly-
hedra or simplices and trying either direct condition evaluation or a single evaluation
at the end of the analysis. Our prototypical implementation is more complex than the
theoretical analysis described in this paper, as it deals with local variables, passing of
parameters and return values in procedures.

The following chart compares the effect analysis by means of convex polyhedra and
with simplices for each example program:

l Program \ LOC \# Procedures \ Increase in efficiency \ Precision ‘

recursive add| 26 4 62 % 100 %
array bounds| 25 2 97 % 100 %
nested loops 28 2 98 % 75 %

Table 1. Simplex compared to polyhedra

The runtime of the reachability analysis by means of convex polyhedra does not
differ significantly from the reachability analysis by means of simplices. The effect
analysis by means of simplices is, however, dramatically faster than the effect analysis
by means of convex polyhedra, as the column “Increase in efficiency” of table[T]illus-
trates. Effect analysis with simplices has terminated in few seconds for all benchmarks.

Concerning the precision of the inferred inequalities, we find that both the approach
via simplices and that via convex polyhedra have been able to infer the exact result for
the recursive function in the case of recursive add and the dependence of the iteration
variable from the variable upper bound for array bounds. Yet for the example program
nested loops both approaches returned quite precise results. In this case, however, the
analysis by means of simplices missed some lower loop bounds and thus did not reach
the full accuracy of the analysis with polyhedra, cf. table|[T]

Since the analysis using simplices is rather fast and the quality of the inferred in-
equalities is not too imprecise, we conclude that it might be a good compromise to
rely on simplices for the effect analysis, and to resort to convex polyhedra or other
approximations of convex polyhedra (e.g. octahedra from [3]) for the reachability anal-
ysis. Contrary to our theoretical expectations from section 4} no advantage could be
observed of immediate condition evaluation over single evaluation at the very end of
the analysis — but this may just be due to the perhaps not very representative selection
of benchmark programs.

7 Conclusion

We have introduced a general framework for interprocedurally identifying linear in-
equality relations between the variables of a program for each program point. This can
be achieved by representing the effects of procedures with convex sets of transition ma-
trices. Within our approach we accumulate the single edge effects in order to describe
the effect of a whole procedure. These procedure effects can be simply embedded into
a reachability analysis by means of arbitrary approximations of convex polyhedra.

In the absence of conditional branching the convex abstraction can be characterised
precisely by the least solution of a constraint system. In order to handle conditional
branching within our framework, we propose to store the value of each conditional in
an auxiliary variable during effect analysis and postpone the evaluation up to the reach-
ability analysis. This postponement is safe, merely leading to an over-approximation.

In order to finitely represent and compute with convex sets, we approximate them
by means of convex polyhedra. We resort to the frame representation of polyhedra,
thus avoiding the expensive continual conversion between the two representations. The
frame representations of convex polyhedra, on the other hand, can be exponentially

larger than their constraint representations. For this reason, we propose the subclass of
simplices as an abstract domain Since for simplices, the number of frame elements is
restricted, we obtain small representations for convex sets. Moreover, the basic opera-
tions on simplices can be performed in polynomial time. Thus, our effect analysis by
means of simplices runs in polynomial time, more precisely, the analysis is linear in the
program size and polynomial in the number of program variables and guards.

First practical experiments indicate that this approach is quite efficient and provides
reasonably precise results. In contrast to convex transition invariants, our interprocedu-
ral analysis is able to yield the exact invariant = = 2 for program point r,,, in figure[I] It
remains for future work to examine the scalability of our approach for larger and more
realistic benchmark programs. If, however, the complexity for larger programs prevents
a practical application of our approach, clustering , as introduced in Astrée [2], could
be included.

References

1. R. Bagnara, E. Zaffanella, P. M. Hill, and E. Ricci. Precise widening operators for convex
polyhedra. In 10th International Static Analysis Symposium (SAS), pages 337-354, 2003.

2. B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux, and X. Ri-
val. A static analyzer for large safety-critical software. In Proceedings of the ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI), pages 196-207,
2003.

3. R. Clarisé and J. Cortadella. The Octahedron abstract domain. In //th International Static
Analysis Symposium (SAS), pages 312-327, 2004.

4. P. Cousot and R. Cousot. Abstract interpretation frameworks. Journal of Logic and Compu-
tation, 2(4):511-547, 1992.

5. P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among variables of a
program. In 5th Ann. ACM Symposium on Principles of Programming Languages (POPL),
pages 84-97, 1978.

6. Z. Manna and J. McCarthy. Properties of programs and partial function logic. Machine
Intelligence, 5:2737, 1970.

7. A. Miné. The Octagon abstract domain. In Analysis, Slicing, and Transformation (AST),
pages 310-319, 2001.

8. M. Miiller-Olm and H. Seidl. Program analysis through linear algebra. In 3/th Ann. ACM
Symposium on Principles of Programming Languages (POPL), 2004.

9. M. Miiller-Olm and H. Seidl. A generic framework for interprocedural analysis of numerical
properties. In 12th Static Analysis Symposium (SAS), pages 235-250, 2005.

10. S. Sankaranarayanan, M. Colon, H. Sipma, and Z. Manna. Efficient strongly relational poly-
hedral analysis. In 7th International Conference, Verification, Model Checking and Abstract
Interpretation (VM CAI), 2006.

11. S. Sankaranarayanan, H. Sipma, and Z. Manna. Constraint based linear relations analysis.
In 11th International Static Analysis Symposium (SAS), pages 53-68, 2004.

12. A. Schrijver. Theory of linear and integer programming. John Wiley & Sons, Inc., 1986.

13. A. Simon, A. King, and J. M. Howe. Two Variables per Linear Inequality as an Abstract
Domain. In Logic Based Program Development and Transformation (LOPSTR), pages 71—
89, 2002.

	Interprocedurally Analysing Linear Inequality Relations
	Helmut Seidl, Andrea Flexeder and Michael Petter (Technische Universität München)

