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Cryptographic protocols with single blind copying were defined and modeled by Comon and Cortier

using the new class C of first order clauses. They showed its satisfiability problem to be in

3-DEXPTIME. We improve this result by showing that satisfiability for this class is NEXPTIME-

complete, using new resolution techniques. We show satisfiability to be DEXPTIME-complete if

clauses are Horn, which is what is required for modeling cryptographic protocols. While translation

to Horn clauses only gives a DEXPTIME upper bound for the secrecy problem for these protocols,

we further show that this secrecy problem is actually DEXPTIME-complete.
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1. INTRODUCTION

Several researchers have pursued modeling of cryptographic protocols using first order
clauses [Blanchet 2001; Comon-Lundh and Cortier 2003a; Weidenbach 1999] and related
formalisms like tree automata and set constraints[Comon and Cortier 2005; Goubault-
Larrecq et al. 2005; Monniaux 1999; Goubault-Larrecq 2000]. While protocol insecurity
is NP-complete in case of a bounded number of sessions [Rusinowitch and Turuani 2001],
this is helpful only for detecting some attacks. For certifying protocols, the number of
sessions cannot be bounded, although we may use other safe abstractions. The approach
using first order clauses is particularly useful for this class of problems. A common safe
abstraction is to allow a bounded number of nonces, i.e. random numbers, to be used in
infinitely many sessions. Security however still remains undecidable [Comon and Cortier
2005]. Hence further restrictions are necessary to obtain decidability.

In this direction, Comon and Cortier [Comon-Lundh and Cortier 2003a; Cortier 2003]
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proposed the notion of protocols with single blind copying. Intuitively this restriction
means that agents are allowed to copy at most one piece of data blindly in any protocol
step, a restriction satisfied by most protocols in the literature. Comon and Cortier mod-
eled the secrecy problem for these protocols using the new class C of first order clauses,
and showed satisfiability for C to be decidable [Comon-Lundh and Cortier 2003a] in 3-
DEXPTIME [Cortier 2003]. The NEXPTIME lower bound is easy. We show in this paper
that satisfiability of this class is in NEXPTIME, thus NEXPTIME-complete. If clauses
are restricted to be Horn, which suffices for modeling cryptographic protocols, we show
that satisfiability is DEXPTIME-complete (again the lower bound is easy). While trans-
lation to clauses only gives a DEXPTIME upper bound for the secrecy problem for this
class of protocols, we further show that the secrecy problem for these protocols is also
DEXPTIME-complete.

For proving our upper bounds, we introduce several variants of standard ordered reso-
lution with selection and splitting [Bachmair and Ganzinger 2001]. Notably we consider
resolution as consisting of instantiation of clauses, and of generation of propositional impli-
cations. This is in the style of Ganzinger and Korovin [2003], but we adopt a slightly dif-
ferent approach, and generate interesting implications to obtain optimal complexity. More
precisely, while the approach of Ganzinger and Korovin [2003] emphasizes a single phase
of instantiation followed by propositional satisfiability checking, we interleave generation
of interesting instantiations and propositional implications in an appropriate manner to ob-
tain optimal complexity. We further show how this technique can be employed also in
presence of rules for replacement of literals in clauses, which obey some ordering con-
straints. To deal with the notion of single blind copying we show how terms containing
a single variable can be decomposed into simple terms whose unifiers are of very simple
forms. As byproducts, we obtain optimal complexity for several subclasses of C, involving
so called flat and one-variable clauses.

Outline: After discussing related work in Section 2, we start in Section 3 by recalling basic
notions about first order logic and resolution refinements. In Section 4 we introduce cryp-
tographic protocols with single blind copying, discuss their modeling using the class C of
first order clauses, and show that their secrecy problem is DEXPTIME-hard. To decide the
class C we gradually introduce our techniques by obtaining DEXPTIME-completeness and
NEXPTIME-completeness for one-variables clauses and flat clauses in Sections 5 and 6 re-
spectively. In Section 7, the techniques from the two cases are combined with further ideas
to show that satisfiability for C is NEXPTIME-complete. In Section 8 we adapt this proof
to show that satisfiability for the Horn fragment of C is DEXPTIME-complete. We further
give an exponential time normalization procedure in the Horn case, which produces a set
of simple clauses on which various queries can be efficiently answered.

2. RELATED WORK

For analyzing cryptographic protocols, one line of research is based on the assumption of
a bounded number of sessions of the protocol. This is useful for detecting flaws which
involve small number of sessions. Rusinowitch and Turuani [2001] showed that in this
case, without any further restrictions, protocol-insecurity in NP-complete. A weaker re-
sult is presented by Fiore and Abadi [2001] who consider only symmetric cryptography
(encryption and decryption using the same key), and present an algorithm that is shown
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to be sound but complete only under the assumption of bounded size of keys. Amadio
and Lugiez [2000] consider protocols with atomic keys and give a symbolic algorithm to
decide whether an erroneous state can be reached.

To guarantee that a protocol has no flaws, one needs to analyze it without bounding
the number of sessions. In this case however, Durgin et al. [1999] showed that secrecy
is undecidable even with a bound on message size. Further, if the number of nonces is
also bounded, then they showed secrecy to be DEXPTIME-complete. The undecidability
result of Durgin et al. [1999] is further refined by Amadio and Charatonik [2002] who also
consider cryptographic protocols modeled using tail recursive processes. Their approach is
to bound the number of parallel sessions, so that the number of nonces in use at any point
of time is bounded. These are analyzed using a class of set constraints with a renaming
operator.

For analyzing unbounded number of sessions, a common approach is to bound the num-
ber of sessions. Also, protocols with unbounded number of sessions can be approximated
by protocols with bounded number of sessions, by identifying nonces of different sessions.
Under simple assumptions, these approximations are safe in that insecure protocols are
approximated by insecure protocols. However even with only only finitely many nonces,
with unbounded number of sessions and unbounded message size, secrecy is undecid-
able [Comon and Cortier 2005]. Hence further restrictions are necessary in order to obtain
decidability results. Tree automata and Horn clauses are commonly used for modeling
these classes of protocols. The work of Monniaux [1999] was one of the first in this direc-
tion. Other work pursuing this approach are mentioned in the introduction.

The class C of clauses [Comon-Lundh and Cortier 2003a; Cortier 2003] is also closely
related to the class of tree automata with one memory Comon et al. [2001; Comon and
Cortier [2005]. This work also deals with a related class of set constraints for modeling
cryptographic protocols.

Use of automated deduction techniques for deciding fragments of first-order logic has
been extensively studied. Maslov [1964] defined the inverse method, which is now well-
understood as a form of resolution, and claimed that it provides decision procedures for
several classes. Joyner Jr. [1976] used ordered resolution for deciding several classes.
Ferm üller et al. [2001] also provide several other examples of classes which can be decided
by resolution techniques.

While the class we study does not include the equality relation, superposition or paramod-
ulation calculi have been studied to deal with the equality relation. For example, Bachmair
et al. [1993b] show that the monadic class with equality can be decided using these tech-
niques.

There are also many similarities between some classes of clauses, in particular flat
clauses, and some classes of set constraints [Bachmair et al. 1993a; Goubault-Larrecq
2002]. It is traditional to decide both clause sets and set constraints by some saturation
procedures, although there are notable differences. The main difference lies in the last nor-
malization rule introduced in Section 8.1 for states corresponding to intersections of several
other states. This is a typical rule encountered in saturating set constraints, see [Charatonik
and Podelski 1997] for example, but is rarely seen in saturating clause sets using resolution.

Our idea of resolution modulo propositional reasoning, introduced in Section 6, involves
instantiations of clauses and generation of propositional implications in a suitable way
to hopefully generate fewer clauses than usual resolution techniques would generate. It
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has long been recognized that, while resolution handles first-order phenomena efficiently
through unification of terms, it is very inefficient at propositional reasoning. The first to
have observed this, and to have proposed a cure, are Lee and Plaisted [1992] who pro-
posed the idea of hyper-linking of clauses. Their prover CLIN is based on these ideas.
Goubault’s use of BDDs at first order can be seen as a variant of this idea [Goubault 1994].
Ganzinger and Korovin [2003], cited in the introduction, also pursue the idea of generating
suitable instantiations of clauses and then checking propositional unsatisfiability. To our
knowledge, none of these work address decidability issues.

3. RESOLUTION

We recall standard notions from first order logic. Fix a signature Σ of function symbols
each with a given arity, and containing at least one zero-ary symbol. Let r be the maximal
arity of function symbols in Σ. Fix a set X = {x1,x2,x3, . . .} of variables. Note that
x1,x2, . . . (in bold face) are the actual elements of X, where as x, y, z, x1, y1, . . . are used
to represent arbitrary elements of X. The set TΣ(X) of terms built from Σ and X is defined
as usual. TΣ is the set of ground terms, i.e. those not containing any variables. Atoms A
are of the form P (t1, . . . , tn) where P is an n-ary predicate and ti’s are terms. Literals L
are either positive literals +A (or simply A) or negative literals −A, where A is an atom.
−(−A) is another notation for A. ± denotes + or − and ∓ denotes the opposite sign (and
similarly for notations ±′,∓′, . . .). A clause is a finite set of literals. A negative clause is
one which contains only negative literals. If M is any term, literal or clause then the set
fv(M) of variables occurring in them is defined as usual. If C1 and C2 are clauses then
C1 ∨ C2 denotes C1 ∪ C2. C ∨ {L} is written as C ∨ L (In this notation, we allow the
possibility of L ∈ C). If C1, . . . , Cn are clauses such that fv(Ci) ∩ fv(Cj) = ∅ for i 6= j,
and if Ci is non-empty for i ≥ 2, then the clause C1∨. . .∨Cn is also written as C1t. . .tCn

to emphasize this property. Ground literals and clauses are ones not containing variables.
A term, literal or clause is trivial if it contains no function symbols. A substitution is a
function σ : X → TΣ(X). Ground substitutions map every variable to a ground term. We
write σ = {x1 7→ t1, . . . , xn 7→ tn} to say that xiσ = ti for 1 ≤ i ≤ n and xσ is some
arbitrary term (whose value will not be relevant in the context) for x /∈ {x1, . . . , xn}.
If M is a term, literal, clause, substitution or set of such objects, then the effect Mσ of
applying σ to M is defined as usual. Renamings are bijections σ : X → X. If M is a
term, literal, clause or substitution, then a renaming of M is of the form Mσ for some
renaming σ, and an instance of M is of the form Mσ for some substitution σ. If M and
N are terms or literals then a unifier of M and N is a substitution σ such that Mσ = Nσ.
If such a unifier exists then there is also a most general unifier (mgu), i.e. a unifier σ
such that for every unifier σ′ of M and N , there is some σ′′ such that σ′ = σσ′′. Most
general unifiers are unique upto renaming: if σ1 and σ2 are two mgus of M and N then
σ1 is a renaming of σ2. Hence we may use the notation mgu(M, N) to denote one of
them without ambiguity. We write M [x1, . . . , xn] to say that fv(M) ⊆ {x1, . . . , xn}. If
t1, . . . , tn are terms then M [t1, . . . , tn] denotes M{x1 7→ t1, . . . , xn 7→ tn}. If N is a
set of terms then M [N ] = {M [t1, . . . , tn] | t1, . . . , tn ∈ N}. If M is a set of terms,
atoms, literals or clauses then M [N ] =

⋃
m∈M m[N ]. A Herbrand interpretation H is a

set of ground atoms. A clause C is satisfied in H if for every ground substitution σ there
is some A such that, either A ∈ H and A ∈ Cσ, or A /∈ H and −A ∈ Cσ. A set S of
clauses is satisfied in H if every clause of S is satisfied in H. If such an H exists then
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S is satisfiable, and H is a Herbrand model of S. A Horn clause is one containing at
most one positive literal. If a set of Horn clauses is satisfiable then it has a least Herbrand
model w.r.t. the subset ordering. A definite clause is one containing exactly one positive
literal. The clause A ∨ −A1 ∨ . . . ∨ −An is also written using the Prolog-like notation
A ⇐ A1 ∧ . . .∧An. A is called the head and the remaining part the body of the clause. A
set of definite clauses always has a least Herbrand model H defined inductively using the
rule that if A ⇐ A1 ∧ . . . ∧ An is present in the clause set, if σ is a ground substitution,
if each Aiσ ∈ H then Aσ ∈ H. Hence the presence of a ground atom A′ in H can be
justified by a tree like structure consisting of using a clause and a ground substitution at
each node. We call this the derivation of A′. A′ is said to be derivable or reachable, which
is equivalent to saying that S ∪ {−A} is unsatisfiable.

Resolution and its refinements are well known methods for testing unsatisfiability of
sets of clauses. Given a strict partial order < on atoms, a literal ±A is maximal in a clause
C if there is no literal ±′B ∈ C with A < B. Binary ordered resolution and ordered
factorization w.r.t. ordering < are defined by the following two rules respectively:

C1 ∨ A − B ∨ C2

C1σ ∨ C2σ

C1 ∨ ±A ∨ ±B

C1σ ∨ Aσ

where σ = mgu(A, B) in both rules, A and B are maximal in the left and right premises
respectively of the first rule, and A and B are both maximal in the premise of the second
rule. We rename the premises of the first rule before resolution so that they do not share
variables. The ordering < is stable if: whenever A1 < A2 then A1σ < A2σ for all
substitutions σ. We write S ⇒< S ∪ {C} to say that C is obtained by one application
of the binary ordered resolution or binary factorization rule on clauses in S (the subscript
denotes the ordering used).

Another inference rule is splitting. This can be described using tableaux. A tableau is
of the form S1 | . . . | Sn, where n ≥ 0 and each Si, called a branch of the tableau, is a
set of clauses (the | operator is associative and commutative). A tableau is satisfiable if at
least one of its branches is satisfiable. The tableau is called closed if each Si contains the
empty clause, denoted 2. The splitting step on tableaux is defined by the rule

T | S →spl T | (S \ {C}) ∪ {C1} | . . . | (S \ {C}) ∪ {Cn}

whenever C = C1 t . . . t Cn ∈ S, each Ci is non-empty. Ci are called components of
the clause C being split. It is well known that splitting preserves satisfiability of tableaux.
We may choose to apply splitting eagerly, or lazily or in some other fashion. Hence we
define a splitting strategy to be a function φ such that T →spl φ(T ) for all tableaux T .
The relation ⇒< is extended to tableaux as expected. Ordered resolution with splitting
strategy is then defined by the rule

T1 ⇒<,φ φ(T2) whenever T1 ⇒< T2

This provides us with a well known sound and complete method for testing satisfiability.
For any binary relation R, R∗ denotes the reflexive transitive closure of R, and R+ denotes
the transitive closure of R.

LEMMA 3.1. For any set S of clauses, for any stable ordering <, and for any splitting
strategy φ, S is unsatisfiable iff S ⇒∗

<,φ T for some closed T .
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If all predicates are zero-ary then the resulting clauses are propositional clauses. In
this case we write S �p T to say that every Herbrand model of S is a Herbrand model
of T . This notation will also be used when S and T are sets of first order clauses,
by treating every (ground or non-ground) atom as a zero-ary predicate. For example
{P (a),−P (a)} �p 2 but {P (x),−P (a)} 2p 2. S �p {C} is also written as S �p C. If
S �p C then clearly Sσ �p Cσ for every substitution σ.

4. CRYPTOGRAPHIC PROTOCOLS

We assume that Σ contains the binary functions { } and 〈 , 〉 denoting encryption and
pairing. Messages are terms of TΣ(X). A state is of the form S(M1, . . . , Mn) where S
with arity n is from a finite set of control points and Mi are messages. It denotes an agent
at control point S with messages Mi in its memory. An initialization state is a state not
containing variables. We assume some strict partial order < on the set of control points. A
protocol rule is of the form

S1(M1, . . . , Mm) : recv(M) → S2(N1, . . . , Nn) : send(N)

where S1 < S2, Mi, Nj are messages, and M and N are each either a message, or a
dummy symbol ? indicating nothing is received (resp. sent). For secrecy analysis we
can replace ? by some public message, i.e. one which is known to everyone including
the adversary. The rule says that an agent in state S1(M1, . . . , Mm) can receive message
M , send a message N , and then move to state S2(N1, . . . , Nn), thus also modifying the
messages in its memory. A protocol is a finite set of initialization states and protocol rules.
This model is in the style of [Durgin et al. 1999] and [Comon and Cortier 2005]. The
assumption of single blind copying then says that each protocol rule contains at most one
variable (which may occur anywhere any number of times in that rule). For example, the
public-key Needham-Schroeder protocol

A → B : {A, NA}KB

B → A : {NA, NB}KB

A → B : {NB}KB

is written in our notation as follows. Firstly, a bounded number of agents suffice for finding
all attacks against secrecy [Comon-Lundh and Cortier 2003b; 2003a], under very reason-
able assumptions which are satisfied by this protocol. Note that the argument of [Comon-
Lundh and Cortier 2003b] is in a somewhat different model, but is easily adapted to dif-
ferent models. Now, for every pair of agents A and B in our system we have two nonces
N1

AB and N2
AB to be used in sessions where A plays the initiator’s role and B plays the

responder’s role. We have initialization states Init0(A, N1
AB) and Resp0(B, N2

AB) for all
agents A and B. Note that A, N 1

AB etc. are constants, contrary to the Prolog convention
which uses identifiers starting with capitals for variables. Corresponding to the three lines
in the protocol we have rules for all agents A and B

Init0(A, N1
AB):recv(?) → Init1(A, N1

AB):send({〈A, N1
AB〉}KB

)
Resp0(B, N2

AB):recv({〈A, x〉}KB
) →Resp1(B, x, N2

AB):send({〈x, N2
AB〉}KA

)
Init1(A, N1

AB):recv({〈N1
AB , x〉}KA

)→ Init2(A, N1
AB , x):send({x}KB

)
Resp1(B, x, N2

AB):recv({N2
AB}KB

) →Resp2(B, x, N2
AB):send(?)

Any initialization state can be created any number of times and any protocol rule can
be executed any number of times. The adversary has full control over the network: all
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messages received by agents are actually sent by the adversary and all messages sent by
agents are actually received by the adversary. The adversary can obtain new messages
from messages he knows, e.g. by performing encryption and decryption. To model this
using Horn clauses, we create a unary predicate reach to model reachable states, and a
unary predicate known to model messages known to the adversary. The initialization state
S(M1, . . . , Mn) is then modeled by the clause reach(S(M1, . . . , Mn)), where S is a new
function symbol we create. The protocol rule

S1(M1, . . . , Mm) : recv(M) → S2(N1, . . . , Nn) : send(N)

is modeled by the clauses

known(N) ∨ −reach(S1(M1, . . . , Mm)) ∨ −known(M)
reach(S2(N1, . . . , Nn)) ∨ −reach(S1(M1, . . . , Mm)) ∨ −known(M)

Under the assumption of single blind copying it is clear that all these clauses are one-
variable clauses, i.e. clauses containing at most one variable. We need further clauses to
express adversary capabilities. The clauses

known({x1}x2
) ∨ −known(x1) ∨ −known(x2)

known(x1) ∨ −known({x1}x2
) ∨ −known(x2)

express the encryption and decryption abilities of the adversary. We have similar clauses
for his pairing and unpairing abilities, as well as clauses

known(f(x1, . . . ,xn)) ∨ −known(x1) ∨ . . . ∨ −known(xn)

for any function f that the adversary knows to apply. All these are clearly flat clauses, i.e.
clauses of the form

C =

k∨

i=1

±iPi(fi(x
i
1, . . . , x

i
ni

)) ∨
l∨

j=1

±jQj(xj)

where {xi
1, . . . , x

i
ni
} = fv(C) for 1 ≤ i ≤ k. Asymmetric keys, i.e. keys K such that

message {M}K can only be decrypted with the inverse key K−1, are also easily dealt with
using flat and one-variable clauses. The adversary’s knowledge of other data c like agent’s
names, public keys, etc are expressed by clauses known(c). Then the least Herbrand model
of this set of clauses describes exactly the reachable states and the messages known to the
adversary. Then to check whether some message M remains secret, we add the clause
−known(M) and check whether the resulting set is satisfiable.

A set of clauses is in the class V1 if each of its members is a one-variable clause. A set of
clauses is in the class F if each of its members is a flat clause. More generally we have the
class C proposed by Comon and Cortier [Comon-Lundh and Cortier 2003a; Cortier 2003]:
a set of clauses S is in the class C if for each C ∈ S one of the following conditions is
satisfied.

(1) C is a one-variable clause

(2) C =
∨k

i=1 ±iPi(ui[fi(x
i
1, . . . , x

i
ni

)]) ∨
∨l

j=1 ±jQj(xj), where for 1 ≤ i ≤ k we
have {xi

1, . . . , x
i
ni
} = fv(C) and ui contains at most one variable.

If all clauses are Horn then we have the corresponding classes V1Horn, FHorn and
CHorn. Clearly the classes V1 (resp. V1Horn) and F (resp. FHorn) are included in the
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class C (resp. CHorn) since the ui’s above can be trivial. Conversely any clause set in C
can be considered as containing just flat and one-variable clauses. This is because we can
replace a clause C ∨ ±P (u[f(x1, . . . , xn)]) by the clause C ∨ ±Pu(f(x1, . . . , xn)) and
add clauses −Pu(x)∨P (u[x]) and Pu(x)∨−P (u[x]) where Pu is a fresh predicate. This
transformation takes polynomial time and preserves satisfiability of the clause set. Hence
now we need to deal with just flat and one-variable clauses. In the rest of the paper we
derive optimal complexity results for all these classes.

Still this only gives us an upper bound for the secrecy problem of protocols since the
clauses could be more general than necessary. It turns out, however, that this is not the case.
In order to show this we rely on a reduction of the reachability problem for alternating
pushdown systems (APDS). In form of Horn clauses, an APDS is a finite set of clauses of
the form

(i) P (a) where a is a zero-ary symbol

(ii) P (s[x]) ∨ −Q(t[x]) where s and t involve only unary function symbols, and

(iii) P (x) ∨ −P1(x) ∨ −P2(x)

Reachability in APDS is DEXPTIME-hard [Chandra et al. 1981]. We encode this problem
into secrecy of protocols, as in [Durgin et al. 1999]. Let K be a (symmetric) key not known
to the adversary. Encode atoms P (t) as messages {〈P, t〉}K , by treating P as some data.
Create initialization states S1 and S2 (no message is stored in the states). Clauses (i-iii)
above are translated as

S1 : recv(?) → S2 : send({〈P, a〉}K)
S1 : recv({〈Q, t[x]〉}K) → S2 : send({〈P, s[x]〉}K)
S1 : recv(〈{〈P1, x〉}K , {〈P2, x〉}K〉) → S2 : send({〈P, x〉}K)

The intuition is that the adversary cannot decrypt messages encrypted with K. He also
cannot encrypt messages with K. He can only forward messages which are encrypted with
K. However he has the ability to pair messages. This is utilized in the translation of clause
(iii). Then a message {M}K is known to the adversary iff M is of the form 〈P, t〉 and P (t)
is reachable in the APDS.

THEOREM 4.1. Secrecy problem for cryptographic protocols with single blind copy-
ing, with bounded number of nonces but unbounded number of sessions is DEXPTIME-
hard, even if no message is allowed to be stored at any control point.

We make a few remarks regarding this model of cryptographic protocols. The above en-
coding of APDS requires very simple clauses, hence the generality of the shape of clauses
and protocol rules comes at no increased price in terms of complexity. The model is also
general enough. The single blind copying assumption is a natural one observed in many
existing protocols. While the assumption of finitely many nonces is not satisfied by most
protocols, it is still reasonable to make this assumption. Firstly, as mentioned above, we
need to consider only bounded number of agents for analyzing protocols. Hence although
nonces need to be modeled as functions of pairs of agents, this does not lead to infinitely
many nonces. However there could still be infinitely may nonces due to the number of ses-
sions. Then one can use safe approximations which to obtain only finitely many nonces.
These approximations are safe in that insecure protocols remain insecure.
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decompose here

$f$

$h$

$x$
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$f$
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$f$

$g$ $g$

$x$

Fig. 1. Decomposition of one-variable terms

5. ONE VARIABLE CLAUSES: DECOMPOSITION OF TERMS

We first show that satisfiability for the classes V1 and V1Horn is DEXPTIME-complete.
We recall also that although we consider only unary predicates, this is no restriction in the
case of one-variable clauses, since we can encode atoms P (t1, . . . , tn) as P ′(fn(t1 . . . , tn))
for fresh P ′ and fn for every P of arity n. As shown in [Comon-Lundh and Cortier
2003a; Cortier 2003], ordered resolution on one-variable clauses, for a suitable ordering,
leads to a linear bound on the height of terms produced. This does not suffice for obtain-
ing a DEXPTIME upper bound and we need to examine the forms of unifiers produced
during resolution. We consider terms containing at most one variable (call them one-
variable terms) to be compositions of simpler terms. A non-ground one-variable term t[x]
is called irreducible if it is not of the form u[v[x]] for any non-ground non-trivial one-
variable terms u[x] and v[x]. The term f(g(x), h(g(x))) for example is not irreducible
because it can be written as f(x, h(x))[g(x)]. The term f(g(f(x, x)), h(g(f(x, x)))) is
not irreducible because it can be written as f(x,h(x))[g(x) [f(x,x)]]. Figure 1 provides some
intuition. The term f ′(x, g(x), a) is irreducible. Unifying it with the irreducible term
f ′(h(y), g(h(a)), y) produces ground unifier {x 7→ h(y)[a], y 7→ a} and both h(y) and a
are strict subterms of the given terms. Indeed we find:

LEMMA 5.1. Let s[x] and t[y] be irreducible, non-ground and non-trivial terms where
x 6= y and s[x] 6= t[x]. If s and t have a unifier σ then xσ, yσ ∈ U [V ] where U is the set
of non-ground (possibly trivial) strict subterms of s and t, and V is the set of ground strict
subterms of s and t.

PROOF. See Appendix A.

In case both terms (even if not irreducible) have the same variable we have the following
easy result:

LEMMA 5.2. Let σ be a unifier of two non-trivial, non-ground and distinct one-variable
terms s[x] and t[x]. Then xσ is a ground strict subterm of s or of t.

PROOF. See Appendix A.

In the following one-variable clauses are simplified to involve only irreducible terms.

LEMMA 5.3. Any non-ground one-variable term t[x] can be uniquely written as t[x] =
t1[t2[. . . [tn[x]] . . .]] where n ≥ 0 and each ti[x] is non-trivial, non-ground and irreducible.
This decomposition can be computed in time polynomial in the size of t.
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PROOF. We represent t[x] as a DAG by doing maximal sharing of subterms. If t[x] = x
then the result is trivial. Otherwise let N be the position in this graph, other than the
root node, closest to the root such that N lies on every path from the root to the node
corresponding to the subterm x. Let t′ be the strict subterm of t at position N and let t1 be
the term obtained from t by replacing the sub-DAG at N by x. Then t = t1[t

′] and t1 is
irreducible. We then recursively decompose t′.

Uniqueness of decomposition follows from Lemma 5.1 according to the following ar-
gument. If decomposition were not unique then let t[x] = t′1[t

′
2[. . . [t

′
m[x]] . . .]] be another

decomposition. By symmetry one of the following cases occur.

—n < m and ti[x] = t′i[x] for 1 ≤ i ≤ n.
But then t1[t2[. . . [tn[x]] . . .]] 6= t′1[t

′
2[. . . [t

′
m[x]] . . .]], leading to contradiction.

—We have some k such that ti[x] = t′i[x] for 1 ≤ i < k, and tk[x] 6= t′k[x]. We must have
tk[. . . [tn[x]] . . .] = t′k[. . . [t′m[x]] . . .]. Hence the terms tk[x] and t′k[y] have a unifier
{x 7→ tk+1[. . . [tm[x]] . . .], y 7→ t′k+1[. . . [tm[x]] . . .], which leads to a contradiction by
Lemma 5.1.

The above result is a cornerstone of the rest of this paper. It illustrates an important
property of one-variable terms. These terms can be thought of as strings of symbols, by
considering an irreducible term as analogous to a symbol. The analogy is not exact though,
since distinct one-variables terms can still unify, as explained by Lemmas 5.1 and 5.2. But
the unification fortunately always produces ground terms.

Above and elsewhere, if n = 0 then t1[t2[. . . [tn[x]] . . .]] denotes x. Now if a clause set
contains a clause C = C ′∨±P (t[x]), with t[x] being non-ground, if t[x] = t1[. . . [tn[x]] . . .]
where each ti is non-trivial and irreducible, then we create fresh predicates Pt1 . . . ti for
1 ≤ i ≤ n − 1 and replace C by the clause C ′ ∨ ±Pt1 . . . tn−1(tn[x]). Also we add
clauses Pt1 . . . ti(ti+1[x]) ∨ −Pt1 . . . ti+1(x) and −Pt1 . . . ti(ti+1[x]) ∨ Pt1 . . . ti+1(x
) for 0 ≤ i ≤ n − 2 to our clause set. Note that the predicates Pt1 . . . ti are considered
invariant under renaming of terms tj . For i = 0, Pt1 . . . ti is the same as P . Our transfor-
mation preserves satisfiability of the clause set. By Lemma 5.3 this takes polynomial time
and eventually all non-ground literals in clauses are of the form ±P (t) with irreducible
t. Next if the clause set is of the form S ∪ {C1 ∪ C2}, where C1 is non-empty and has
only ground literals, and C2 is non-empty and has only non-ground literals, then we do
splitting to produce S ∪ {C1} | S ∪ {C2}. This process produces at most exponentially
many branches each of which has polynomial size. Now it suffices to decide satisfiability
of each branch in DEXPTIME. Hence now we assume that each clause is either:

(Ca) a ground clause, or
(Cb) a clause containing exactly one variable, each of whose literals is of the form

±P (t[x]) where t is non-ground and irreducible.
Consider a set S of clauses of type Ca and Cb. We show how to decide satisfiability of the
set S. Wlog we assume that all clauses in S of type Cb contain the variable x1. Let Ng be
the set of non-ground terms t[x1] occurring as arguments in literals in S. Let Ngs be the set
of non-ground subterms t[x1] of terms in Ng. We assume that Ng and Ngs always contain
the trivial term x1, otherwise we add this term to both sets. Let G be the set of ground
subterms of terms occurring as arguments in literals in S. The sizes of Ng, Ngs and G are
polynomial. Let S† be the set of clauses of type Ca and Cb which only contain literals of
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the form ±P (t) for some t ∈ Ng ∪ Ng[Ngs[G]] (observe that G ⊆ Ngs[G] ⊆ Ng[Ngs[G]]).
Ng, Ngs and G are of polynomial size, hence Ng[Ngs[G]] is of polynomial size. The size
of S† is at most exponential.

For resolution we use ordering ≺: P (s) ≺ Q(t) iff s is a strict subterm of t. We call ≺
the subterm ordering without causing confusion. This is clearly stable. This is the ordering
that we are going to use throughout this paper. In particular this means that if a clause
contains literals ±P (x) and ±′Q(t) where t is non-trivial and contains x, then we cannot
choose the literal ±P (x) to resolve upon in this clause. Because of the simple form of
unifiers of irreducible terms we have:

LEMMA 5.4. Binary ordered resolution and ordered factorization, w.r.t. the subterm
ordering, on clauses in S† produces clauses which are again in S† (upto renaming).

PROOF. Factorization on a ground clause does not produce any new clause. Now sup-
pose we factorize the non-ground clause C[x1] ∨ ±P (s[x1]) ∨ ±P (t[x1]) to produce the
clause C[x1]σ ∨ ±P (s[x1])σ where σ = mgu(s[x1], t[x1]). If the premise has only
trivial literals then factorization is equivalent to doing nothing. Otherwise by ordering
constraints, s and t are non-trivial. By Lemma 5.2 either s[x1] = t[x1] in which case fac-
torization does nothing, or x1σ is a ground subterm of s[x1] or of t[x1]. In the latter case
all literals in (C[x1] ∨ P (s[x1])σ are of the form ±′Q(t′[x1]σ)) where t′[x1] ∈ Ng and
x1σ ∈ G ⊆ Ngs[G].

Now we consider binary resolution steps. We have the following cases:

(1) If both clauses are ground then the result is clear.

(2) Now consider both clauses C1[x1] and C2[x1] to be non-ground. Before resolution
we rename the second clause to obtain C2[x2]. Clearly all literals in C1[x1] and C2[x1]
are of the form ±Q(u[x1]) where u[x1] ∈ Ng. Let C1[x1] = C ′

1[x1] ∨ P (s[x1]) and
C2[x2] = −P (t[x2])∨C ′

2[x2] where P (s[x1]) and−P (t[x2]) are the literals to be resolved
upon in the respective clauses. If s[x1] and t[x2] are unifiable then from Lemma 5.1, one
of the following cases hold:
—s[x1] = x1 (the case where t[x2] = x2 is treated similarly). From the definition of ≺,

for P (s[x1]) to be chosen for resolution, all literals in C ′
1[x1] are of the form ±Q(x1).

The resolvent is C[x2] = C ′
1[x1]σ ∪ C ′

2, where σ = {x1 7→ t[x2]}. Each literal in
C ′

1[x1]σ is of the form ±Q(t[x2]) and each literal in C ′
2[x2] is of the form ±Q(t′[x2])

where t′ ∈ Ng. Hence C[x1] ∈ S†.
—s[x1] = t[x1]. Then the resolvent is C ′

1[x1] ∨ C ′
2[x1].

—s[x1] and t[x2] have a mgu σ such that x1σ,x2σ ∈ Ngs[G]. The resolvent C ′
1[x1]σ ∨

C ′
2[x2]σ has only ground atoms of the form ±Q(t′) where t′ ∈ Ng[Ngs[G]].

(3) Now let the first clause C1[x1] = C ′
1[x1]∨±P (t[x1]) be non-ground, and the second

clause C2 = ∓P (s) ∨ C ′
2 be ground with ±P (t[x1]) and ∓P (s) being the respective

literals chosen from C1[x1] and C2 for resolution. All literals in C1[x1] are of the form
±′Q(t′[x1]) with t′ ∈ Ng. All literals in C2 are of the form ±′Q(t′) with t′ ∈ Ng[Ngs[G]].
Suppose that s and t[x1] do unify. We have the following cases:
—s ∈ Ngs[G]. Then the resolvent C = C ′

1[x1]σ ∪ C ′
2 where σ = {x1 7→ g} where g is

subterm of s. As s ∈ Ngs[G] hence g ∈ Ngs[G]. Hence all literals in C ′
1[x1]σ are of the

form ±Q(t′) where t′ ∈ Ng[Ngs[G]]. Hence C ∈ S†.
—Now suppose s ∈ Ng[Ngs[G]] \ Ngs[G]. We must have s = s1[s2] for some non-

trivial s1[x1] ∈ Ng and some s2 ∈ Ngs[G]. This is the interesting case which shows
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why the terms remain in the required form during resolution. The resolvent is C =
C ′

1[x1]σ ∨ C ′
2 where σ = {x1 7→ g} is the mgu of t[x1] and s for some ground term g.

As t[g] = s1[s2], σ1 = {x1 7→ g,x2 7→ s2} is a unifier of the terms t[x1] and s1[x2].
By Lemma 5.1 we have the following cases:
—t[x1] = x1, so that g = s ∈ Ng[Ngs[G]]. By definition of ≺, for ±P (t[x1]) to be

chosen for resolution, all literals in C1[x1] must be of the form ±′Q(x1). Hence all
literals in C ′

1σ are of the form ±′Q(g). Hence C ∈ S†.
—t[x1] = s1[x1]. Then g = s2 ∈ Ngs[G]. Hence all literals in C ′

1σ are of the form
±′Q(t′[g]) where t′[x1] ∈ Ng. Hence C ∈ S†.

—g = x1σ ∈ Ngs[G]. Hence all literals in C ′
1σ are of the form ±′Q(t′[g]) where

t′ ∈ Ng. Hence C ∈ S†.

Hence to decide satisfiability of S ⊆ S†, we keep generating new clauses of S† by doing
ordered binary resolution and ordered factorization w.r.t. the subterm ordering till no new
clause can be generated, and then check whether the empty clause has been produced. Also
recall that APDS consist of Horn one-variable clauses. Hence:

THEOREM 5.5. Satisfiability for the classes V1 and V1Horn is DEXPTIME-complete.

6. FLAT CLAUSES: RESOLUTION MODULO PROPOSITIONAL REASONING

Next we show how to decide the class F of flat clauses in NEXPTIME. This is well known
when the maximal arity r is a constant, or when all non-trivial literals in a clause have the
same sequence (instead of the same set) of variables. But we are not aware of a proof of the
NEXPTIME upper bound in the general case. We show how to obtain NEXPTIME upper
bound in the general case, by doing resolution modulo propositional reasoning. While this
constitutes an interesting result of its own, the techniques allow us to deal with the full class
C efficiently. Also this shows that the generality of the class C does not cost more in terms
of complexity. An ε-block is a one-variable clause which contains only trivial literals. A
complex clause C is a flat clause

∨k

i=1 ±iPi(fi(x
i
1, . . . , x

i
ni

))∨
∨l

j=1 ±jQj(xj) in which
k ≥ 1. Hence a flat clause is either a complex clause, or an ε-clause which is defined to be
a disjunction of ε-blocks, i.e. to be of the form B1[x1]t. . .tBn[xn] where each Bi is an ε-
block. ε-clauses are difficult to deal with, hence we split them to produce ε-blocks. Hence
define ε-splitting as the restriction of the splitting rule in which one of the components is
an ε-block.

Recall that r is the maximal arity of symbols in Σ. Upto renaming, any complex clause C
is such that fv(C) ⊆ Xr = {x1, . . . ,xr}, and any ε-block C is such that fv(C) ⊆ {xr+1}.
The choice of xr+1 is not crucial. Now notice that ordered resolution between sets of
complex clauses and ε-blocks only produces flat clauses, which can then be split to be left
with only complex clauses and ε-blocks. E.g. Resolution between

P1(x1) ∨ −P2(x2) ∨ P3(f(x1,x2)) ∨ −P4(g(x2,x1))

and

P4(g(x1,x1)) ∨ −P5(h(x1)) ∨ P6(x1)

produces

P1(x1) ∨ −P2(x1) ∨ P3(f(x1,x1)) ∨ −P5(h(x1)) ∨ P6(x1)
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Resolution between

P2(xr+1) and − P2(f(x1,x2)) ∨ P3(x1) ∨ P4(x2)

produces P3(x1) ∨ P4(x2) which can then be split. The point is that we always choose a
non-trivial literal from a clause for resolution, if there is one. Complex clauses obtained af-
ter resolution and splitting can be renamed to contain variables only from Xr. As there are
finitely many complex clauses and ε-blocks this gives us a decision procedure. Note how-
ever that the number of complex clauses is doubly exponential. This is because we allow
clauses of the form P1(f1(x1,x1,x2))∨P2(f2(x2,x1))∨P3(f3(x2,x1,x2))∨ ..., i.e. the
nontrivial terms contain arbitrary number of repetitions of variables in arbitrary order. The
number of such variable sequences of r variables is exponentially many, hence the number
of clauses is doubly exponential. Letting the maximal arity r to be a constant, or forcing
all non-trivial literals in a clause to have the same variable sequence would have produced
only exponentially many clauses. In presence of splitting, this would have given us the
well-known NEXPTIME upper bound, which is also optimal. But we are not aware of a
proof of the NEXPTIME upper bound in the general case. To obtain NEXPTIME upper
bound in the general case we introduce the technique of resolution modulo propositional
reasoning.

Definition 6.1. For a clause C, define the set of its projections as π(C) = C[Xr].
Define the set U = {f(x1, . . . , xn) | f ∈ Σ and each xi ∈ Xr} of size exponential in r.

Essentially projection involves making certain variables in a clause equal. Our intuition is
that resolution between two complex clauses amounts to propositional resolution between
their projections. Resolution between an ε-block C1 and a complex clause C2, which has
variables only from Xr, amounts to propositional resolution of a clause from C1[U] with
C2. Also note that propositional resolution followed by further projection is equivalent to
projection followed by propositional resolution. Each complex clause has exponentially
many projections. This suggests that we can compute beforehand the exponentially many
projections of complex clauses and exponentially many instantiations of ε-blocks. All
new complex clauses generated by propositional resolution are ignored. But after several
such propositional resolution steps, we may get an ε-clause, which should then be split
and instantiated and used for obtaining further propositional resolvents. In other words
we only compute such propositionally implied ε-clauses, do splitting and instantiation and
iterate the process. This generates all resolvents upto propositional implication. We now
formalize our approach. We start with the following observation which is used in this and
further sections.

LEMMA 6.2. Let x1, . . . , xn, y1, . . . , yn be variables, not necessarily distinct, but with
{x1, . . . , xn} ∩ {y1, . . . , yn} = ∅. Then the terms f(x1, . . . , xn) and f(y1, . . . , yn) have
an mgu σ such that {x1, . . . , xn}σ ⊆ {x1, . . . , xn} and yiσ = xiσ for 1 ≤ i ≤ n.

Definition 6.3. In the rest of this section, for a set S of clauses, comp(S) is the set
of complex clauses in S, eps(S) the set of ε-blocks in S, π(S) =

⋃
C∈S π(C) and

I(S) = π(comp(S)) ∪ eps(S)[xr+1] ∪ eps(S)[U]. For sets S and T of complex clauses
and ε-blocks, S v T means that:
– if C ∈ S is a complex clause then I(T ) �p π(C), and
– if C ∈ S is an ε-block then C[xr+1] ∈ eps(T )[xr+1].
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For tableaux T1 and T2 involving only complex clauses and ε-blocks we write T1 v T2

if T1 can be written as S1 | . . . | Sn and T2 can be written as T1 | . . . | Tn (note same
n) such that Si v Ti for 1 ≤ i ≤ n. Intuitively T2 is a succinct representation of T1.
Instead of performing actual resolution and splitting steps, we will simulate them by new
rules which work on the succinct representations. Define the splitting strategy φ as the
one which repeatedly applies ε-splitting on a tableau as long as possible. The relation
⇒≺,φ provides us a sound and complete method for testing unsatisfiability. We define
the alternative procedure for testing unsatisfiability by using succinct representations of
tableaux. We define I by the rule: T | S I T | S ∪ {B1} | . . . | S ∪ {Bk} whenever
I(S) �p C = B1[xi1 ] t . . . tBk[xik

], C is an ε-clause, and 1 ≤ i1, . . . , ik ≤ r + 1. Then
I simulates ⇒≺,φ:

LEMMA 6.4. If S is a set of complex clauses and ε-blocks, S v T and S ⇒≺,φ T ,
then all clauses occurring in T are complex clauses or ε-blocks and T I∗ T ′ for some T ′

such that T v T ′.

S
v

//

⇒≺,φ

��

T

I
∗

��

T
v

// T ′

PROOF. We have the following ways in which T is obtained from S by doing one
resolution step followed by splitting:

(1) We resolve two ε-blocks C1 and C2 of S to get an ε-block C, and T = S ∪ {C}.
Then {C1[xr+1], C2[xr+1]} �p C[xr+1]. Also as S v T we have {C1[xr+1], C2[xr+1]} ⊆
eps(T )[xr+1]. We have I(T ) �p C[xr+1]. Hence T I T ∪ {C[xr+1]} and clearly
S ∪ {C} v T ∪ {C}.

(2) We resolve an ε-block C1[xr+1] with a complex clause C2[x1, . . . ,xr], both from
S upto renaming, and we have C1[xr+1] ∈ eps(T )[xr+1] and I(T ) �p π(C2). By ordering
constraints, we have C1[xr+1] = C ′

1[xr+1]∨±P (xr+1) and C2[x1, . . . ,xr] = ∓P (f(x1,
. . . , xn))∨C ′

2[x1, . . . ,xr] so that resolution produces C[x1, . . . ,xr] = C ′
1[f(x1, . . . , xn)]∨

C ′
2[x1, . . . ,xr]. Clearly C1[U] ∪ {C2[x1, . . . ,xr]} �p C[x1, . . . ,xr]. Also π(C1[U]) =

C1[U]. Hence I(T ) �p C1[U] ∪ π(C2) �p π(C) ⊇ {C[x1, . . . ,xr]}.
—If C ′

1 is not empty or if C ′
2 has some non-trivial literal then C is a complex clause and

T = S ∪ {C} v T .
—If C ′

1 is empty and C ′
2 has only trivial literals then C[x1, . . . ,xr] is an ε-clause of the

form B1[xi1 ]t . . .tBk[xik
] with 1 ≤ i1, . . . , ik ≤ r. T = S ∪ {B1} | . . . | S ∪ {Bk}.

Since I(T ) �p C[x1, . . . ,xr], hence T I T ′ where T ′ = T ∪ {B1} | . . . | T ∪ {Bk}
and we have T v T ′.
(3) We resolve two complex clauses C1[x1, . . . ,xr] and C2[x1, . . . ,xr], both from S

upto renaming, and we have I(T ) �p π(C1) and I(T ) �p π(C2). First we rename the sec-
ond clause as C2[xr+1, . . . ,x2r] by applying the renaming σ0 = {x1 7→ xr+1, . . . ,xr 7→
x2r}. By ordering constraints, C1[x1, . . . ,xr] is of the form C ′

1[x1, . . . ,xr] ∨ ±P (f(x1,
. . . , xn)) and C2[xr+1, . . . ,x2r ] is of the form ∓P (f(y1, . . . , yn)) ∨ C ′

2[xr+1, . . . ,x2r]
so that ±P (f(x1, . . . , xn)) and ∓P (f(y1, . . . , yn)) are the literals to be resolved from the
respective clauses. By Lemma 6.2, the resolvent is C = C ′

1[x1, . . . ,xr]σ ∨ C ′
2[xr+1,

. . . ,x2r]σ where σ is such that {x1, . . . , xn}σ ⊆ {x1, . . . , xn} and yiσ = xiσ for
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1 ≤ i ≤ n. C is obtained by propositional resolution from C1[x1, . . . ,xr]σ ∈ π(C1)
and C2[xr+1, . . . ,x2r ]σ = C2[x1, . . . ,xr]σ0σ ∈ π(C2). Hence π(C1) ∪ π(C2) �p

C[x1, . . . ,xr]. Hence π(π(C1)) ∪ π(π(C2)) = π(C1) ∪ π(C2) �p π(C). As I(T ) �p

π(C1) and I(T ) �p π(C2). Hence I(T ) �p π(C) ⊇ {C[x1, . . . ,xr])}.
—If either C ′

1 or C ′
2 contains a non-trivial literal then C is a complex clause and T =

S ∪ {C} v T .
—If C ′

1 and C ′
2 contain only trivial literals then C[x1, . . . ,xr] is an ε-clause of the form

B1[xi1 ] t . . . t Bk[xik
] with 1 ≤ i1, . . . , ik ≤ r. T = S ∪ {B1} | . . . | S ∪ {Bk}. As

I(T ) �p C[x1, . . . ,xr] we have T I T ′ where T ′ = T ∪ {B1} | . . . | T ∪ {Bk}. Also
T v T ′.

(4) C[x1, . . . ,xr] is a renaming of a complex clause in S, and we factor C[x1, . . . ,xr]
to get a complex clause C[x1, . . . ,xr ]σ where Xrσ ⊆ Xr, and T = S∪{C[x1, . . . ,xr]σ}.
C[x1, . . . ,xr]σ ∈ π(C). Hence π({C[x1, . . . ,xr]σ}) ⊆ π(π(C)) = π(C). As S v T
hence I(T ) �p π(C). Hence I(T ) �p π({C[x1, . . . ,xr]σ}). Hence we have T =
S ∪ {C[x1, . . . ,xr]σ} v T .

Hence we have completeness of I:

LEMMA 6.5. If a set S of complex clauses and ε-blocks is unsatisfiable then S I∗ T
for some closed T .

PROOF. By Lemma 3.1, S ⇒∗
≺,φ S1 | . . . | Sn such that each Si contains the empty

clause 2. As S v S, hence by Lemma 6.4, we have some T1, . . . , Tn such that S I∗ T1 |
. . . | Tn and Si v Ti for 1 ≤ i ≤ n. Since 2 ∈ Si and 2 is an ε-block, hence 2 ∈ Ti for
1 ≤ i ≤ n.

Call a set S of complex clauses and ε-blocks saturated if the following condition is
satisfied: if I(S) �p B1[xi1 ] t . . . t Bk[xik

] with 1 ≤ i1, . . . , ik ≤ r + 1, each Bi being
an ε-block, then there is some 1 ≤ j ≤ k such that Bj [xr+1] ∈ S[xr+1].

LEMMA 6.6. If S is a satisfiable set of complex clauses and ε-blocks then S I∗ T | T
for some T and some saturated set T of complex clauses and ε-blocks, such that 2 /∈ T .

PROOF. We construct a sequence S = S0 ⊆ S1 ⊆ S2 ⊆ . . . of complex clauses
and ε-blocks such that Si is satisfiable and Si I∗ Si+1 | Ti for some Ti for each i.
S = S0 is satisfiable by assumption. Now assume we have already defined S0, . . . , Si and
T0, . . . , Ti−1. Let C` = B`

1[xi`
1

] t . . . t B`
k`

[xi`
k`

] for 1 ≤ ` ≤ N be all the possible

ε-clauses such that I(Si) �p C`, 1 ≤ i`1, . . . , i
`
k`

≤ r +1. Since Si is satisfiable, Si ∪{C` |
1 ≤ ` ≤ N} is satisfiable. Since xi`

1

, . . . ,xi`
k`

are mutually distinct for 1 ≤ ` ≤ N , there

are 1 ≤ j` ≤ k` for 1 ≤ ` ≤ N such that Si ∪ {B`
j`

| 1 ≤ ` ≤ N} is satisfiable. Let
Si+1 = Si ∪ {B`

j`
| 1 ≤ ` ≤ N}. Si+1 is satisfiable. Also it is clear that Si I∗ Si+1 | Ti

for some Ti. If Si+1 = Si then Si is saturated, otherwise Si+1 has strictly more ε-blocks
upto renaming. As there are only finitely many ε-blocks upto renaming, eventually we will
end up with a saturated set T in this way. Since T is satisfiable, 2 /∈ T . From construction
it is clear that there is some T such that S I∗ T | T .

THEOREM 6.7. Satisfiability for the class F is NEXPTIME-complete.

ACM Transactions on Computational Logic, Vol. V, No. N, March 2007.



16 · H. Seidl and K. N. Verma

PROOF. The lower bound comes from reduction of satisfiability of positive set con-
straints which is NEXPTIME-complete [Aiken et al. 1993]. For the upper bound let S be
a finite set of flat clauses. Repeatedly apply ε-splitting to obtain f(S) = S1 | . . . | Sm.
S is satisfiable iff some Si is satisfiable. The number m of branches in f(S) is at most
exponential. Also each branch has size linear in the size of S. We non-deterministically
choose some Si and check its satisfiability in NEXPTIME.

Hence wlog we may assume that the given set S has only complex clauses and ε-blocks.
We non-deterministically choose a certain number of ε-blocks B1, . . . , BN and check that
T = S ∪ {B1, . . . , BN} is saturated and 2 /∈ T . By Lemma 6.6, if S is satisfiable then
clearly there is such a set T . Conversely if there is such a set T , then since T is saturated,
whenever T I∗ T , we will have T = T | T ′ for some T ′. Hence we can never have
T I∗ T where T is closed. Then by Lemma 6.5 we conclude that T is satisfiable. Hence
S ⊆ T is also satisfiable.

Guessing the set T requires non-deterministically choosing from among exponentially
many ε-blocks. To check that T is saturated, for every ε-clause C = B1[xi1 ]t. . .tBk[xik

],
with 1 ≤ i1, . . . , ik ≤ r + 1, and Bj [xr+1] /∈ T [xr+1] for 1 ≤ j ≤ k, we check that
I(T ) 2p C, i.e. I(T ) ∪ ¬C is propositionally satisfiable (where ¬(L1 ∨ . . . ∨ Ln) denotes
{−L1, . . . ,−Ln}). This can be checked in NEXPTIME since propositional satisfiability
can be checked in NP. We need to do such checks for at most exponentially many possible
values of C.

7. COMBINATION: ORDERED LITERAL REPLACEMENT

Combining flat and one-variable clauses creates additional difficulties. First observe that
resolving a one variable clause C1 ∨ ±P (f(s1[x], . . . , sn[x])) with a complex clause
∓P (f(x1, . . . , xn)) ∨ C2 produces a one-variable clause. If si[x] = sj [x] for all xi = xj ,
and if C2 contains a literal P (xi) then the resolvent contains a literal P (si[x]). The prob-
lem now is that even if f(s1[x], . . . , sn[x]) is irreducible, si[x] may not be irreducible. E.g.
f(g(h(x)), x) is irreducible but g(h(x)) is not irreducible. As in Section 5 we may think
of replacing this literal by simpler literals involving fresh predicates. Firstly we have to
ensure that in this process we do not generate infinitely many predicates. Secondly it is
not clear that mixing ordered resolution steps with replacement of literals is still complete.
Correctness is easy to show since the new clause is in some sense equivalent to the old
deleted clause. However deletion of clauses arbitrarily can violate completeness of the res-
olution procedure. The key factor which preserves completeness is that we replace literals
by smaller literals w.r.t. the given ordering <.

Formally a replacement rule is of the form A1 → A2 where A1 and A2 are (not neces-
sarily ground) atoms. The clause set associated with this rule is {A1 ∨ −A2,−A1 ∨ A2}.
Intuitively such a replacement rule says that A1 and A2 are equivalent. The clause set
cl(R) associated with a set R of replacement rules is the union of the clause sets asso-
ciated with the individual replacement rules in R. Given a stable ordering < on atoms,
a replacement rule A1 → A2 is ordered iff A2 < A1. We define the relation →R as:
S →R (S \ {±A1σ∨C})∪{±A2σ ∨C} whenever S is a set of clauses, ±A1σ ∨C ∈ S,
A1 → A2 ∈ R and σ is some substitution. Hence we replace literals in a clause by smaller
literals. The relation is extended to tableaux as usual.

Next note that in the above resolution example, even if f(s1[x], . . . , sn[x]) is non-
ground, some si may be ground. Hence the resolvent may have ground as well as non-
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ground literals. We avoided this in Section 5 by initial preprocessing. Now we may think of
splitting these resolvents during the resolution procedure. This however will be difficult to
simulate using the alternative resolution procedure on succinct representations of tableaux
because we will generate doubly exponentially many one-variable clauses. To avoid this
we use a variant of splitting called splitting-with-naming [Riazanov and Voronkov 2001].
Instead of creating two branches after splitting, this rule puts both components into the
same set, but with tags to simulate branches produced by ordinary splitting. Fix a finite set
P of predicate symbols. P-clauses are clauses whose predicates are all from P. Introduce
fresh zero-ary predicates C for P-clauses C modulo renaming, i.e. C1 = C2 iff C1σ = C2

for some renaming σ. Literals ±C for P-clauses C are splitting literals. The splitting-
with-naming rule is defined as: S →nspl (S \ {C1 tC2})∪ {C1 ∨−C2, C2 ∨C2} where
C1 t C2 ∈ S, C2 is non-empty and has only non-splitting literals, and C1 has at least one
non-splitting literal. Intuitively C2 represents the negation of C2. We will use both split-
ting and splitting-with-naming according to some predefined strategy. Hence for a finite
set Q of splitting atoms, define Q-splitting as the restriction of the splitting-with-naming
rule where the splitting atom produced is restricted to be from Q. Call this restricted re-
lation as →Q−nspl. This is extended to tableaux as usual. Now once we have generated
the clauses C1 ∨ −C2 and C2 ∨ C2 we would like to keep resolving on the second part of
the second clause till we are left with the clause C2 (possibly with other positive splitting
literals) which would then be resolved with the first clause to produce C1 (possibly with
other positive splitting literals) and only then the literals in C1 would be resolved upon.
Such a strategy cannot be ensured by ordered resolution, hence we introduce a new rule.
An ordering < over non-splitting atoms is extended to the ordering <s by letting q <s A
whenever q is a splitting atom and A is a non-splitting atom, and A <s B whenever A, B
are non-splitting atoms and A < B. We define modified ordered binary resolution by the
following rule:

C1 ∨ A − B ∨ C2

C1σ ∨ C2σ

where σ = mgu(A, B) and the following conditions are satisfied:
(1) C1 has no negative splitting literal, and A is maximal in C1.
(2) (a) either B ∈ Q, or

(b) C2 has no negative splitting literal, and B is maximal in C2.
As usual we rename the premises before resolution so that they do not share variables. This
rule says that we must select a negative splitting literal to resolve upon in any clause, pro-
vided the clause has at least one such literal. If no such literal is present in the clause, then
the ordering <s enforces that a positive splitting literal will not be selected as long as the
clause has some non-splitting literal. We write S V<s

S ∪ {C} to say that C is obtained
by one application of the modified binary ordered resolution or the (unmodified) ordered
factorization rule on clauses in S. This is extended to tableaux as usual. A Q-splitting-
replacement strategy is a function φ such that T (→Q−nspl ∪ →spl ∪ →R)∗φ(T ) for any
tableaux T . Hence we allow both normal splitting and Q-splitting. Modified ordered reso-
lution with Q-splitting-replacement strategy φ is defined by the relation: S V<s,φ,R φ(T )
whenever S ∪ cl(R) V<s

T . This is extended to tableaux as usual. The above modified
ordered binary resolution rule can be considered as an instance of ordered resolution with
selection [Bachmair and Ganzinger 2001], which is known to be sound and complete even
with splitting and its variants. Our manner of extending < to <s is essential for complete-
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ness. We now show that soundness and completeness hold even under arbitrary ordered
replacement strategies.1 Wlog we forbid the useless case of replacement rules contain-
ing splitting symbols. The relation < is enumerable if the set of all ground atoms can
be enumerated as A1, A2, . . . such that if Ai < Aj then i < j. The subterm ordering is
enumerable.

THEOREM 7.1. Modified ordered resolution, w.r.t. a stable and enumerable ordering,
with splitting and Q-splitting and ordered literal replacement is sound and complete for
any strategy. I.e. for any set S of P-clauses, for any strict stable and enumerable partial
order < on atoms, for any set R of ordered replacement rules, for any finite set Q of
splitting atoms, and for any Q-splitting-replacement strategy φ, S ∪ cl(R) is unsatisfiable
iff S V∗

<s,φ,R T for some closed T .

PROOF. See Appendix B.

For the rest of this section fix a set S of one-variable P-clauses and complex P-clauses
whose satisfiability we need to decide.

Definition 7.2. Let Ng be the set of non-ground terms occurring as arguments in lit-
erals in the one-variable clauses of S. We rename all terms in Ng to contain only the
variable xr+1. Wlog assume xr+1 ∈ Ng. Let Ngs be the set of non-ground subterms of
terms in Ng, and Ngr = {s[xr+1] | s is non-ground and irreducible,and for some t, s[t] ∈
Ngs}. Define Ngrr = {s1[. . . [sm] . . .] | s1[. . . [sn] . . .] ∈ Ngs, m ≤ n, and each si

is non-trivial and irreducible}. Define the set of predicates Q = {Ps | P ∈ P, s ∈ Ngrr}.
Note that P ⊆ Q. Define the set of replacement rules R = {Ps1 . . . sm−1(sm[xr+1]) →
Ps1 . . . sm([xr+1]) | Ps1 . . . sm ∈ Q, sm is non-trivial}. They are clearly ordered w.r.t.
the subterm ordering ≺ defied in Section 5. Let G be the set of ground subterms of terms
occurring as arguments in literals in S. Define the set Q0 = {±P (t) | P ∈ P, t ∈ G} of
splitting atoms.

The purpose of the splitting atoms in Q0 is to remove ground literals from a non-ground
clause. All sets defined above have polynomial size.

Definition 7.3. Let Q ⊇ Q0 be any finite set of splitting atoms.

For dealing with the class C we only need Q = Q0, but for a more precise analysis of the
Horn fragment in the next Section, we need Q to also contain some other splitting atoms.

Definition 7.4. Define the sets Ngr1 = {xr+1} ∪ {f(s1, . . . , sn) | ∃g(t1, . . . , tm) ∈
Ngr · {s1, . . . , sn} = {t1, . . . , tm}} and G1 = {f(s1, . . . , sn) | ∃g(t1, . . . , tm) ∈ G |
{s1, . . . , sn} = {t1, . . . , tm}}.

Both Ngr1 and G1 have exponential size. The terms in Ngr1 are produced by resolution
of non-ground one-variable clauses with complex clauses, and are also irreducible. In the
ground case we get terms in G1. We will implicitly use various relationships between these
sets.

LEMMA 7.5. (1) Every ground subterm of a term in Ngr (resp. Ngr1) is in G.

1It seems that completeness can be obtained as a special case of Bachmair and Ganzinger’s general redundancy
criteria [Bachmair and Ganzinger 2001], as suggested by an anonymous referee. As we have not checked all the
details, we have still kept our original alternative proof.
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(2) Every non-ground strict subterm of a term in Ngr (resp. Ngr1) is in Ngrr.

(3) In particular, every strict subterm of a term in Ngr (resp. Ngr1) is in Ngrr ∪ G.

For a set P′ of predicates and a set U of terms, the set P′[U ] of atoms is defined as usual.
For a set V of atoms the set −V and ±V of literals is defined as usual. The following types
of clauses will be required during resolution:

(C1) clauses C ∨ D, where C is an ε-block with predicates from Q, and D ⊆ ±Q.
(C2) clauses C ∨ D where C is a renaming of a one-variable clause with literals from

±Q(Ngr1), C has at least one non-trivial literal, and D ⊆ ±Q.
(C3) clauses C∨D where C is a non-empty clause with literals from±Q(Ngr1[Ngrr[G1]]),

and D ⊆ ±Q.
(C4) clauses C ∨D where C =

∨k
i=1 ±iPi(fi(x

i
1, . . . , x

i
ni

))∨
∨l

j=1 ±jQj(xj) is a com-
plex clause with each Pi ∈ Q, each ni ≥ 2, each Qj ∈ P and D ⊆ ±Q.

We have already argued why we need splitting literals in the above clauses, and why we
need Ngr1 instead of Ngr in type C2. In type C3 we have Ngrr in place of the set Ngs that
we had in Section 5, to take care of interactions between one-variable clauses and complex
clauses. In type C4 the trivial literals involve predicates only from P (and not Q). This is
what ensures that we need only finitely many fresh predicates (those from Q \ P) because
these are the literals that are involved in replacements when this clause is resolved with a
one-variable clause. We have also required that each ni ≥ 2. This is only to ensure that
types C2 and C4 are disjoint. The clauses that are excluded because of this condition are
necessarily of type C2.

Definition 7.6. The Q0-splitting steps that we use in this section consist of replacing a
tableau T | S by the tableau T | (S \{C∨L})∪{C∨−L, L∨L}, where C is non-ground,
L ∈ ±P(G) and C∨L ∈ S. The replacement steps we are going to use are of the following
kind:

(1) replacing clause

C1[x] = C ∨ ±P (t1[. . . [tn[x]] . . .])

by clause

C2[x] = C ∨ ±Pt1 . . . tn−1(tn[x])

where P ∈ P, tn−1, tn[xr+1] ∈ Ngr are non-trivial, and t1[. . . [tn] . . .] ∈ Ngrr. We have

{C1[xr+1]} ∪ cl(R)[Ngrr] �p C2[xr+1]

(2) replacing ground clause

C1 = C ∨ ±P (t1[. . . [tn[g]] . . .])

by clause

C2 = C ∨ ±Pt1 . . . tn−1(tn[g])

where P ∈ P, g ∈ Ngrr[G1], t1[. . . [tn] . . .] ∈ Ngrr, and tn−1, tn ∈ Ngr are non-trivial.
This replacement is done only when t1[. . . [tn[g]] . . .] ∈ Ngrr[Ngrr[G1]] \ Ngr1[Ngrr[G1]].
We have

{C1} ∪ cl(R)[Ngrr[Ngrr[G1]]] �p C2
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Define the Q0-splitting-replacement strategy φ as one which repeatedly applies first ε-
splitting, then the above Q0-splitting steps, then the above two replacement steps till no
further change is possible. Then V≺s,φ,R gives us a sound and complete method for
testing unsatisfiability.

As in Section 6 we now define a succinct representation of tableaux and an alternative
resolution procedure for them. As we said, a literal L ∈ Q0 represents −L. Hence:

Definition 7.7. For a clause C we define C as the clause obtained by replacing every
±L by the literal ∓L.

This is extended to sets of clauses as usual. Observe that if S �p C then S �p C.

Definition 7.8. As in Section 6, U = {f(x1, . . . , xn) | f ∈ Σ, and each xi ∈ Xr}.
The functions eps and comp of Section 6 are now modified to return clauses of type C1
and C4 respectively. For a set S of clauses, define ov(S) as the set of clauses of type C2 in
S, and gr(S) as the set of clauses of type C3 in S. The function π is as before.

We need to define which kinds of instantiations are to be used to generate propositional
implications.

Definition 7.9. For a clause C, define

I1(C) = C[U[Ngrr ∪ Ngrr[Ngrr[G1]]]] ∪ C[Ngr1] ∪ C[Ngr1[Ngrr[G1]]]
I2(C) = {C[xr+1]} ∪ C[Ngrr[G1]]
I3(C) = {C}
I4(C) = π(C) ∪ C[Ngrr ∪ Ngrr[Ngrr[G1]]]

The instantiations defined by Ii are necessary for clauses of type Ci. Observe that
C[U ] ⊆ I1(C). For a set S of clauses, define Ii(S) =

⋃
C∈S Ii(C). For a set S of

clauses of type C1-C4 define I(S) = I1(eps(S))∪ I2(ov(S))∪ I3(gr(S))∪ I4(comp(S))∪
cl(R)[Ngrr ∪ Ngrr[Ngrr[G1]]]. Note that instantiations of clauses in cl(R) are necessary
for the replacement rules, as argued above.

Definition 7.10. For a set T of clauses define the following properties:

—C satisfies property P1T iff C[xr+1] ∈ T .

—C satisfies property P2T iff I(T ) �p I2(C).

—C satisfies property P3T iff I(T ) �p I3(C).

—C satisfies property P4T iff I(T ) �p I4(C).

For sets of clauses S and T , define S v T to mean that every C ∈ S is of type Ci and
satisfies property PiT for some 1 ≤ i ≤ 4. This is extended to tableaux as usual. We first
consider the effect of one step of the above resolution procedure without splitting. This
will help us to reuse this result in the Horn case in Section 8 where we use another variant
of splitting. Accordingly let φ0 be the variant of φ which applies replacement rules and
Q0-splitting, but no ε-splitting.

PROPOSITION 7.11. Let S be a set of clauses of type C1-C4. If S V≺s,φ0,R S′ then
one of the following statements holds.

—S′ v S
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—S′ = S ∪ {C} ∪ S′′, C is a renaming of B1[xi1 ] t . . . t Bk[xik
] t D, each Bi is an

ε-block, 1 ≤ i1, . . . , ik ≤ r, D ⊆ ±Q, I(S) �p C, and S′′ is a set of clauses of type C3
and ∅ �p S′′. If k ≥ 2 then D has no literals −q with q ∈ Q \ Q0.

PROOF. The set S′′ in the second statement will contain the clauses L∨L added by Q0-
splitting, while C will be the clause produced by binary resolution or factoring, possibly
followed by applications of replacement rules and by replacement of ground literals L by
−L. Hence S′′ = ∅ in all cases except when we need to perform Q0-splitting.

First we consider resolution steps where splitting literals are resolved upon. A positive
splitting literal cannot be chosen to resolve upon in a clause unless the clause has no literals
other than positive splitting literals. Hence this clause is C1 = q ∨ q1 ∨ . . . ∨ qm of type
C1, The other clause must be C2 = C ′

2 ∨ −q of type Ci for some 1 ≤ i ≤ 4. Resolution
produces clause C = C ′

2 ∨ q1 ∨ . . . ∨ qm of type Ci, and no replacement or splitting rules
apply. We have {C1, C2} �p C and {C1, C2} �p C. Hence I(S) ⊇ {C1} ∪ Ii(C2) �p

Ii(C). If i = 1 then the second statement of the lemma holds because Ii(C) contains a
renaming of C . If i > 1 then the first statement holds.

Now we consider binary resolution steps where no splitting literals are resolved upon.
This is possible only when no negative splitting literals are present in the premises. Then
the resolvent has no negative splitting literals. Q0-splitting may create negative splitting
literals, but none of them are from Q \ Q0. Hence the last part of the second statement
of the lemma is always true. In the following D, D1, . . . denote subsets of Q0. When we
write C ∨ D, it is implicit that C has no splitting literals. We have the following cases:

(1) We do resolution between two clauses C1 and C2 from S, both of type C1, and the
resolvent C is of type C1. Hence no splitting or replacement rules apply, S ′ = S ∪ {C},
I(S) ⊇ {C1[xr+1], C2[xr+1]} �p C [xr+1]. Hence the second statement holds.

(2) We do resolution between a clause C1[xr+1] = C ′
1[xr+1]∨D1∨±P (xr+1), of type

C1, and a clause C2[xr+1] = ∓P (t[xr+1])∨C ′
2[xr+1]∨D2, of type C2, both from S upto

renaming, and the resolvent is C[xr+1] = C ′
1[t[xr+1]]∨C ′

2[xr+1]∨D1∨D2. By ordering
constraints t[xr+1] ∈ Ngr1 is non-trivial. All literals in C ′

1[t[xr+1]] ∨ C ′
2[xr+1] are of

the form ±′Q(t′[xr+1]) with t′[xr+1] ∈ Ngr1. Hence no splitting or replacement rules
apply and S′ = S ∪ {C}. C1[Ngr1] ∪ {C2[xr+1]} �p C[xr+1]. Hence I(S) ⊇ I1(C1) ∪
I2(C2) ⊇ C1[Ngr1] ∪ C1[Ngr1[Ngrr[G1]]] ∪ {C2[xr+1]} ∪ C2[Ngrr[G1]] �p {C[xr+1]} ∪
C[Ngrr[G1]] = I2(C[xr+1]). If C ′

1 is non-empty or C ′
2 has some non-trivial literal then

C[xr+1] is of type C2, S′ v S and the first statement holds. If C ′
1 is empty and C ′

2 has
only trivial literals, then C is of type C1 and the second statement holds.

(3) We do resolution between a clause C1[xr+1] = C ′
1[xr+1]∨D1 ∨±P (xr+1) of type

C1, and a clause C2 = ∓P (t) ∨ C ′
2 ∨ D2 of type C3, both from S upto renaming, and

the resolvent is C = C ′
1[t] ∨ C ′

2 ∨ D1 ∨ D2. We know that t ∈ Ngr1[Ngrr[G1]]. Hence
no splitting or replacement rules apply. (The first item of Definition 7.6 does not apply
because C is ground and the second item does not apply because t ∈ Ngr1[Ngrr[G1]]. Q0-
splitting does not apply because C is ground.) We have S ′ = S ∪ {C}. {C1[t], C2} �p C.
Hence I(S) ⊇ I1(C1[xr+1]) ∪ I3(C2) ⊇ C1[Ngr1[Ngrr[G1]]] ∪ {C2} �p I3(C) = {C}. If
C ′

1 or C ′
2 is non-empty. then C[xr+1] is of type C3, S′ v S and the first statement holds.

If C ′
1 and C ′

2 are empty then C is of type C1 and the second statement holds.

(4) We do resolution between a clause C1[xr+1] = C ′
1[xr+1]∨D1 ∨±P (xr+1) of type

C1, and a clause C2[x1, . . . ,xr] = ∓P (f(x1, . . . , xn))∨C ′
2[x1, . . . ,xr]∨D2 of type C4,
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both from S upto renaming, and the resolvent is C[x1, . . . ,xr ] = C ′
1[f(x1, . . . , xn)] ∨

C ′
2[x1, . . . ,xr] ∨ D1 ∨ D2. (By ordering constraints we have chosen a non trivial lit-

eral from C2 for resolution). No splitting or replacement rules apply and S ′ = S ∪
{C}. We have C1[U] ∪ {C2[x1, . . . ,xr]} ⊇ {C1[f(x1, . . . , xn)], C2[x1, . . . ,xr]} �p

C[x1, . . . ,xr]. Hence C1[U] ∪ π(C2[x1, . . . ,xr]) �p π(C [x1, . . . ,xr]) and C1[U[Ngrr

∪ Ngrr[Ngrr[G1]]] ∪ C2[Ngrr ∪ Ngrr[Ngrr[G1]]]) �p C [Ngrr ∪ Ngrr[Ngrr[G1]]]. Hence
I(S) ⊇ I1(C1) ∪ I4(C2) �p I4(C).
—Suppose C ′

1 is non-empty or C ′
2 has some non-trivial literal. Then C is of type C4. The

only trivial literals in C[x1, . . . ,xr ] are those in C ′
2[x1, . . . ,xr] and hence they involve

predicates from P. Hence C[x1, . . . ,xr] is of type C4 and the first statement holds.
—Suppose C ′

1 is empty and C ′
2 has only trivial literals. Then C[x1, . . . ,xr] = B1[xi1 ] t

. . . t Bk[xik
] ∨ D1 ∨ D2 where 1 ≤ i1, . . . , ik ≤ r, and each Bi is an ε-block. The

second statement holds.

(5) We do resolution between a clause C1[xr+1] = C ′
1[xr+1]∨D1 ∨±P (s[xr+1]) and

a clause C2[xr+1] = ∓P (t[xr+1]) ∨ C ′
2[xr+1] ∨ D2, both of type C2, and both from S

upto renaming, and the resolvent is C[xr+1] = C ′
1[xr+1]σ ∨C ′

2[xr+2]σ ∨D1 ∨D2 where
σ = mgu(s[xr+1], t[xr+2]) (we renamed the second clause before resolution). We know
that s[xr+1], t[xr+1] ∈ Ngr1, and by ordering constraints both s and t are non-trivial. By
Lemma 5.1 one of the following cases holds:
—xr+1σ = xr+2σ = xr+1. C[xr+1] = C ′

1[xr+1] ∨ C ′
2[xr+1]. Hence no splitting

or replacement rules apply and S ′ = S ∪ {C}. We have {C1[xr+1], C2[xr+1]} �p

C[xr+1]. Hence I2(C1[xr+1]) ∪ I2(C2[xr+1]) �p I2(C[xr+1]) 3 C[xr+1]. If C ′
1 or C ′

2

contains some non-trivial literal then C[xr+1] is of type C2 and the first condition holds.
If C ′

1 and C ′
2 contain only trivial literals then C is of type C1 and the second condition

holds.
—xr+1σ,xr+2σ ∈ Ngrr[G] ⊆ Ngrr[G1]. Then every literal in C[xr+1] is of the form
±′Q(u) with u ∈ Ngr1[Ngrr[G1]]. No splitting or replacement rules apply, as in case 3
above, and S′ = S ∪ {C}. I(S) ⊇ C1[Ngrr[G1]] ∪ C2[Ngrr[G1]] �p {C} = I3(C). If
C ′

1 or C ′
2 is non-empty then C is of type C3 and the first statement holds. If C ′

1 and C ′
2

are empty then C is of type C1 and the second statement holds.

(6) We do resolution between a clause C1[xr+1] = C ′
1[xr+1] ∨ D1 ∨ ±P (s[xr+1]) of

type C2, and a ground clause ∓P (t) ∨ C ′
2 ∨ D2 of type C3, both from S upto renaming,

and the resolvent is C = C ′
1[xr+1]σ ∨ C ′

2 ∨ D1 ∨ D2 where σ is a unifier of s[xr+1] and
t. We know that s[xr+1] ∈ Ngr1, t ∈ Ngr1[Ngrr[G1]], and by ordering constraints, s is
non-trivial. We have the following cases:
—t ∈ G1. Then xr+1σ is a strict subterm of t hence xr+1σ ∈ G ⊆ Ngrr[G1].
—t ∈ Ngr1[Ngrr[G1]] \ G1. Hence we can assume that t = t1[t

′] for some non-trivial
t1[xr+1] ∈ Ngr1 and some t′ ∈ Ngrr[G1]. (Note that this can be assumed even when
t ∈ Ngrr[G1] \ G1 because in that case we can write t = t1[t

′′[t′′′]] where t1 ∈ Ngr ⊆
Ngr1, t1[t

′′[xr+1]] ∈ Ngrr and t′′′ ∈ G1. Hence t′′[xr+1] ∈ Ngrr and we can take
t′ = t′′[t′′′].) Let s′ = xr+1σ. As s[s′] = t1[t

′] hence s[xr+1] and t1[xr+2] have a
unifier σ = {xr+1 7→ s′,xr+2 7→ t′}. From Lemma 5.1, one of the following is true:
—s[xr+1] = t1[xr+1]. Hence we have xr+1σ = s′ = t′ ∈ Ngrr[G1].
—xr+1σ1,xr+2σ1 is in U [V ] where

—U is the set of strict ground subterms of Ngr1, hence is contained in G, and
—V is the set of non-ground strict subterms of Ngr1, hence is contained in Ngrr ∪ G.
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Hence xr+1σ1,xr+2σ1 ∈ Ngrr[G] ⊆ Ngrr[G1]. Hence s′ ∈ Ngrr[G1].

In each case we have xr+1σ = s′ ∈ Ngrr[G1]. Hence all literals in C ′
1[xr+1]σ are of

the form ±Q(t) with t ∈ Ngr1[Ngrr[G1]]. All literals in C ′
2 are of the form ±′Q(t) with

t ∈ Ngr1[Ngrr[G1]]. Hence no splitting or replacement rules apply and S ′ = S ∪ {C}.
I(S) ⊇ I2(C1[xr+1]) ∪ I3(C2) ⊇ C1[Ngrr[G1]] ∪ {C2} �p {C} = I3(C). If C ′

1 or C ′
2 is

non-empty then C is of type C3 and the first statement holds. If C ′
1 and C ′

2 are empty then
C is of type C1 and the second statement holds.

(7) We do resolution between a clause C1[xr+1] = C ′
1[xr+1] ∨ D1 ∨ ±P (s[xr+1])

of type C2, and a clause C2[x1, . . . ,xr] = ∓P (f(x1, . . . , xn)) ∨ C ′
2[x1, . . . ,xr] ∨ D2

of type C4, both from S upto renaming, and ±P (s[xr+1]) and ∓P (f(x1, . . . , xn)) are
the literals resolved upon from the respective clauses. (By ordering constraints we have
chosen a non-trivial literal to resolve upon in the second clause). By ordering constraints
s[xr+1] ∈ Ngr1 is non-trivial. Hence we have the following two cases for s[xr+1] =
f(s1[xr+1], . . . , sn[xr+1]).
(a) We have some 1 ≤ i, j ≤ n such that xi = xj but si[xr+1] 6= sj [xr+1]. By
Lemma 5.2, the only possible unifier of the terms s[xr+1] and f(x1, . . . , xn) is σ such
that xr+1σ = g is a ground subterm of si or sj and xkσ = sk[g] for 1 ≤ k ≤ n. As
s[xr+1] ∈ Ngr1, we have g ∈ G and each sk[xr+1] ∈ Ngrr ∪ G. Hence xr+1σ ∈ G and
each xkσ ∈ Ngrr[G]∪G ⊆ Ngrr[G1]. The resolvent C = C ′

1[xr+1]σ ∪C ′
2[x1, . . . ,xr]σ ∨

D1 ∨ D2 is ground. Each literal in C ′
1[xr+1]σ is of the form ±′Q(t) with t ∈ Ngr1[G] ⊆

Ngr1[Ngrr[G1]]. Each literal in C ′
2[x1, . . . ,xr]σ is of the form ±′Q(t) where the following

cases can arise:
—t = f ′(xi1 , . . . , xim

)σ such that {xi1 , . . . , xim
} = {x1, . . . , xn}.

Then t = f ′(si1 , . . . , sim
)[g] ∈ Ngr1[G1] ⊆ Ngr1[Ngrr[G1]].

—t = xkσ ∈ Ngrr[G1] ⊆ Ngr1[Ngrr[G1]] for some 1 ≤ k ≤ n, where the literal ±′Q(xk)
is from C2.

We conclude that all non-splitting literals in C are of the form ±′Q(t) with t ∈ Ngr1[
Ngrr[G1]], and no splitting or replacement rules apply. We have S ′ = S ∪ {C}. I(S) ⊇
I2(C1[xr+1]) ∪ I4(C2[x1, . . . ,xr]) ⊇ C1[Ngrr[G1]] ∪ C2[Ngrr[G1]] �p {C} = I3(C). If
C ′

1 or C ′
2 is non-empty then C is of type C3, and the first statement holds. If C ′

1 and C ′
2

are empty then C of type C1 and the second condition holds.
(b) For all 1 ≤ i, j ≤ n, if xi = xj then si[xr+1] = sj [xr+1].
Then s[xr+1] and f(x1, . . . , xn) have mgu σ such that xkσ = sk[xr+1] ∈ Ngrr ∪ G for
1 ≤ k ≤ n and xσ = x for x /∈ {x1, . . . , xn}. The resolvent C[xr+1] = C ′

1[xr+1] ∨
C ′

2σ ∨ D1 ∨ D2 is a one-variable clause. {C1[xr+1]} ∪ C2[Ngrr ∪ G] �p C[xr+1]. All
literals in C ′

1[xr+1] are of the form ±′Q(t) with t ∈ Ngr1, and no replacement rules apply
on them. All literals in C ′

2[x1, . . . ,xr]σ are of the form ±′Q(t[xr+1]) where the following
cases can arise:
—t[xr+1] = f ′(xi1 , . . . , xim

)σ such that {xi1 , . . . , xim
} = {x1, . . . , xn}. Then t[xr+1] ∈

Ngr1. No replacement rules apply on such a literal.
—t[xr+1] = xkσ = sk[xr+1] ∈ Ngrr for some 1 ≤ k ≤ n, where the literal ±′Q(xk)

is from C2. Hence we must have Q ∈ P. Let sk[xr+1] = t1[. . . [tp[xr+1]] . . .] for
some p ≥ 0 where each ti[xr+1] ∈ Ngr is non-trivial and irreducible. Such a literal is
replaced by the literal ±′Qt1 . . . tp−1(tp[xr+1]) and we know that tp ∈ Ngr ⊆ Ngr1.
This new clause is obtained by propositional resolution between the former clause and
clauses from cl(R)[Ngrr].
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—t[xr+1] = xkσ = sk ∈ G for some 1 ≤ k ≤ n, where the literal ±′Q(xk) is from
C2. Hence we must have Q ∈ P. No replacement rules apply on such a literal. If C
contains only ground literals then this literal is left unchanged. Otherwise we perform
Q0-splitting and this literal is replaced by the literal −±′Q(sk) and also a new clause
C ′′ = ±′Q(sk) ∨ ±′Q(sk) of type C3 is added to S. If C ′ is the new clause obtained
by this splitting then C ′ is clearly propositionally equivalent to the former clause. Also
C ′′ = ∓′Q(sk) ∨ ±′Q(sk) is a propositionally valid statement.

We conclude that after zero or more replacement and splitting rules, we obtain a clause
C ′[xr+1], together with a set S ′′ of clauses of type C3, {C[xr+1]} ∪ cl(R)[Ngrr] �p

{C ′[xr+1]}, ∅ �p S′′, and S′ = S∪{C ′}∪S′′. {C1[xr+1]}∪C2[Ngrr∪G]∪cl(R)[Ngrr] �p

C ′[xr+1]. Hence I(S) ⊇ I2(C1) ∪ I4(C2) ⊇ {C1[xr+1]} ∪ C1[Ngrr[G1]] ∪ C2[Ngrr ∪
Ngrr[Ngrr[G1]]]∪ cl(R)[Ngrr]∪ cl(R)[Ngrr[Ngrr[G1]]] �p I2(C

′)∪ I3(S
′′) = C ′[xr+1]∪

C ′[Ngrr[G1]] ∪ S′′. If C ′ is of type C2 or C3 then the first statement holds. Otherwise C ′

is of type C1 and the second statement holds.

(8) We do resolution between a clause C1 = C ′
1 ∨ D1 ∨ ±P (s) and a clause C2 =

∓P (s) ∨ C ′
2 ∨ D2, both ground clauses of type C3 from S, and the resolvent is C =

C ′
1 ∨ C ′

2 ∨ D1 ∨ D2. No replacement or splitting rules apply and we have S ′ = S ∪ {C}.
I(S) ⊇ {C1, C2} �p I3(C) = {C}. If C ′

1 or C ′
2 is non-empty then C is of type C3, and

the first statement holds. If C ′
1 and C ′

2 are empty then C is of type C1 and the second
statement holds.

(9) We do resolution between a ground clause C1 = C ′
1∨D1∨±P (s) of type C3, and a

clause C2[x1, . . . ,xr] = ∓P (f(x1, . . . , xn))∨C ′
2[x1, . . . ,xr]∨D2 of type C4, both from

S upto renaming, and ±P (s) and ∓P (f(x1, . . . , xn)) are the literals resolved upon from
the respective clauses. We know that s ∈ Ngr1[Ngrr[G1]]. Hence we have the following
two cases for s.
(a) s ∈ Ngr1[Ngrr[G1]] \ G1. Hence s must be of the form f(s1, . . . , sn)[g] for some
f(s1, . . . , sn) ∈ Ngr1 and some g ∈ Ngrr[G1] (The symbol f is same as in the lit-
eral ∓P (f(x1, . . . , xn)) otherwise this resolution step would not be possible). We have
each si ∈ Ngrr ∪ G. The mgu σ of s and f(x1, . . . , xn) is such that xiσ = si[g] ∈
Ngrr[Ngrr[G1]]. The resolvent C = C ′

1 ∨ C ′
2[x1, . . . ,xr]σ ∨ D1 ∨ D2 is a ground clause.

All literals in C ′
1 are of the form ±′Q(t) with t ∈ Ngr1[Ngrr[G1]] hence no replacement

rules apply on them. The literals in C ′
2[x1, . . . ,xr]σ are of the form ±′Q(t) where the

following cases are possible:
—t = f ′(xi1 , . . . , xim

)σ where {xi1 , . . . , xim
} = {x1, . . . , xn}. Then f ′(si1 , . . . , sim

) ∈
Ngr1. Hence t ∈ Ngr1[Ngrr[G1]]. No replacement rules apply on such a literal.

—t = xiσ ∈ Ngrr[Ngrr[G1]] for some 1 ≤ i ≤ n. If t ∈ Ngr1[Ngrr[G1]] then no replace-
ment rules apply on this literal. Otherwise we have t ∈ Ngrr[Ngrr[G1]]\Ngr1[Ngrr[G1]].
We have t = t1[. . . [tp[t

′]] . . .] for some irreducible non-trivial non-ground terms t1,
. . . , tp ∈ Ngr with p ≥ 0 such that t1[. . . [tp[y]]] ∈ Ngrr and t′ ∈ Ngrr[G1], and the
replacement strategy replaces this literal by the literal ±′Qt1 . . . tp−1(tp[t

′]), and we
know that tp ∈ Ngr ⊆ Ngr1 so that tp[t

′] ∈ Ngr1[Ngrr[G1]]. This new clause can
be obtained by propositional resolution between the former clause and clauses from
cl(R)[Ngrr[Ngrr[G1]]]

We conclude that after zero or more replacement rules, we obtain a ground clause C ′, all
of whose non-splitting literals are of the form ±′Q(t) with t ∈ Ngr1[Ngrr[G1]], and which
is obtained by propositional resolution from {C} ∪ cl(R)[Ngrr[Ngrr[G1]]]. No splitting

ACM Transactions on Computational Logic, Vol. V, No. N, March 2007.



Flat and One-Variable Clauses: Cryptographic Protocols with Single Blind Copying · 25

rules apply and S ′ = S ∪ {C ′}. {C1} ∪ C2[Ngrr[Ngrr[G1]]] �p C hence I(S) ⊇ I3(C1) ∪
I4(C2) ∪ cl(R)[Ngrr[Ngrr[G1]]] �p I3(C

′) = {C ′}. If C ′
1 or C ′

2 is non-empty then C is of
type C3, and the first statement holds. If C ′

1 and C ′
2 are empty then C is of type C1 and the

second statement holds.
(b) s ∈ G1. For the resolution step to be possible we must have s = f(s1, . . . , sn). Each
si ∈ G. The mgu σ of s and f(x1, . . . , xn) is such that each xiσ = si. The resolvent
C = C ′

1 ∨C ′
2[x1, . . . ,xr]σ∨D1 ∨D2 is a ground clause. All literals in C ′

1 are of the form
±′Q(t) with t ∈ Ngr1[Ngrr[G1]]. The literals in C ′

2[x1, . . . ,xr]σ are of the form ±′Q(t)
where the following cases are possible:
—t = f ′(xi1 , . . . , xim

)σ where {xi1 , . . . , xim
} = {x1, . . . , xn}.

Then t = f ′(si1 , . . . , sim
) ∈ G1 ⊆ Ngr1[Ngrr[G1]].

—t = xiσ = si ∈ G ⊆ Ngr1[Ngrr[G1]] for some 1 ≤ i ≤ n.
Hence all non-splitting literals in C are of the form ±′Q(t) with t ∈ Ngr1[Ngrr[G1]]. No
replacement rules or splitting rules apply and S ′ = S ∪ {C}. {C1} ∪ C2[G] �p C hence
I(S) �p I3(C) = {C}. If C ′

1 or C ′
2 is non-empty then C is of type C3 and the first

statement holds. If C ′
1 and C ′

2 are empty then C is of type C1 and the second statement
holds.

(10) We do resolution between two clauses C1[x1, . . . ,xr] and C2[x1, . . . ,xr], both of
type C4, and both from S upto renaming. We rename the second clause as C2[xr+1, . . . ,x2r]
by applying the renaming σ0 = {x1 7→ xr+1, . . . ,xr 7→ x2r}. By ordering constraints,
C1[x1, . . . ,xr] = C ′

1[x1, . . . ,xr ] ∨ D1 ∨ P (f(x1, . . . , xn)) and C2[xr+1, . . . ,x2r ] =
−P (f(y1, . . . , yn))∨C ′

2[xr+1, . . . ,x2r]∨D2 and the resolvent is C[x1, . . . ,xr] = C ′
1[x1,

. . . ,xr]σ ∨C ′
2[xr+1, . . . ,x2r]σ ∨D1 ∨D2 where, by Lemma 6.2, σ is such that {x1, . . . ,

xn}σ ⊆ {x1, . . . , xn} and yiσ = xiσ for 1 ≤ i ≤ n. π(C1) ∪ π(C2) �p C[x1, . . . ,xr].
Hence I(S) ⊇ I4(C1[x1, . . . ,xr]) ∪ I4(C2[x1, . . . ,xr]) = π(C1[x1, . . . ,xr]) ∪ C1[Ngrr

∪ Ngrr[Ngrr[G1]]] ∪ π(C2[x1, . . . ,xr]) ∪ C2[Ngrr ∪ Ngrr[Ngrr[G1]]] �p π(C[x1, . . . ,
xr]) ∪ C[Ngrr ∪ Ngrr[Ngrr[G1]]] = I4(C[x1, . . . ,xr ]).
—Suppose C ′

1 or C ′
2 has a non-trivial literal. Then C is of type C4, no replacement or

splitting rules apply, S ′ = S ∪ {C} and the first statement holds.
—Suppose C ′

1 and C ′
2 contain no non-trivial literal. Then C[x1, . . . ,xr] = B1[xi1 ]t . . .t

Bk[xik
] ∨ D1 ∨ D2 with 1 ≤ i1, . . . , ik ≤ r, each Bi being an ε-block. No splitting or

replacement rules apply (ε-splitting is forbidden by φ0), and S′ = S ∪{C}. The second
statement holds.

(11) We do a resolution step in which one of the premises is a clause from cl(R). Every
clause in cl(R) is of type C2. Also trivially I2(C) ⊆ I(T ). Hence this case can be dealt
with in the same way as in the case where one of the premises of resolution is a clause of
type C2.

Next we consider factoring steps. Factoring on a clause of type C1 or C3 is possible
only if the two involved literals are the same, hence this is equivalent to doing nothing.

(1) We do factoring on a clause C1[xr+1] = C ′
1[xr+1] ∨ ±P (s[xr+1]) ∨ ±P (t[xr+1])

of type C2, and from S upto renaming. We know that s[xr+1], t[xr+1] ∈ Ngr1, and by
ordering constraints s and t are non trivial. The clause obtained is C[xr+1] = C ′

1[xr+1]σ∨
±P (s[xr+1])σ where σ is a unifier of s[xr+1] and t[xr+1]. If s[xr+1] 6= t[xr+1] then by
Lemma 5.2 xr+1σ is a ground strict subterm of s or t, hence xr+1σ ∈ G ⊆ Ngrr[G1]. Each
literal in C is of the form ±′Q(t′) where t′ ∈ Ngr1[Ngrr[G1]]. Hence C is of type C3. No
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splitting or replacement rules apply and S ′ = S ∪ {C}. We have C ∈ C1[Ngrr[G1]].
I(S) ⊇ I2(C1[xr+1]) ⊇ C1[xr+1][Ngrr[G1]] ⊇ I3(C) = {C}. The first statement holds.

(2) We do factoring on a clause C1[x1, . . . ,xr] of type C4, and from S upto renaming,
to obtain the clause C[x1, . . . ,xr]. By ordering constraints non-trivial literals must be
chosen for factoring. Then C[x1, . . . ,xr] is again of type C4 and C[x1, . . . ,xr] ∈ π(C1).
I(S) ⊇ I4(C1) = π(C1) ∪C1[Ngrr ∪Ngrr[Ngrr[G1]]] �p I4(C). The first statement holds.

The alternative resolution procedure for testing unsatisfiability by using succinct rep-
resentations of tableaux is now defined by the rule: T | S I T | S ∪ {B1 t D} |
S ∪ {B2} | . . . | S ∪ {Bk} whenever I(S) �p B1 t . . . t Bk t D, each Bi is an ε-block,
1 ≤ i1, . . . , ik ≤ r and D ⊆ ±Q. The simulation property now states:

LEMMA 7.12. If S v T and S V≺s,φ,R T then T I∗ T ′ for some T ′ such that
T v T ′.

S
v

//

V≺s,φ,R

��

T

I
∗

��

T
v

// T ′

PROOF. As S V≺s,φ,R T , we have some S ′ such that S V≺s,φ0,R S′ and T is ob-
tained from S′ by ε-splitting steps. From Proposition 7.11, one of the following cases
holds.

—S′ v S. Then S′ contains only clauses of type C1-C4 and no ε-splitting is applicable.
Hence T = S′ v S. As T v S and S v T hence T v T because of transitivity of v.
Thus T is the required T ′.

—S′ = S∪{C}∪S′′, C is a renaming of B1[xi1 ]t . . .tBk[xik
]tD where each Bi is an

ε-block, 1 ≤ i1, . . . , ik ≤ r, D ⊆ ±Q, I(S) �p C and S′′ is a set of clauses of type C3
and ∅ �p S′′. We have T = S∪S′′ ∪{B1 tD} | S ∪S′′∪{B2} | . . . | S∪S′′ ∪{Bk}.
We have S ∪ S′′ ∪ {B1 t D} v T ∪ {B1 t D} and S ∪ S′′ ∪ {Bi} v T ∪ {Bi} for
1 ≤ i ≤ k. We show that the required T ′ is T ∪{B1 tD} | T ∪{B1} | . . . | T ∪{Bk}.
As S v T hence I(T ) �p I(S) �p C. Hence T I T ′.

Hence as for flat clauses we obtain:

THEOREM 7.13. Satisfiability for the class C is NEXPTIME-complete.

PROOF. Let S be a finite set in C whose satisfiability we want to show. We proceed
as in the proof of Theorem 6.7. Wlog if C ∈ S then C is either a complex clause or a
one-variable clause. Clearly S is satisfiable iff S ∪ cl(R) is satisfiable. At the beginning
we apply the replacement steps using R as long as possible and then Q0-splitting as long
as possible. Hence wlog all clauses in S are of type C1-C4. Then we non-deterministically
add a certain number of clauses of type C1 to S. Then we check that the resulting set S ′

does not contain 2, and is saturated in the sense that: if C = B1[xi1 ]t . . .tBk[xik
]tD,

each Bi is an ε-block, 1 ≤ i1, . . . , ik ≤ r, D ⊆ ±Q0, and Bj [xr+1] /∈ S′ for some
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1 ≤ j ≤ k, then I(S ′) 2p C. There are exponentially many such C to check for since the
number of splitting literals is polynomial. The size of I(S ′) is exponential.

8. THE HORN CASE

We show that in the Horn case, the upper bound can be improved to DEXPTIME. The
essential idea is that propositional satisfiability of Horn clauses is in PTIME instead of
NPTIME. But now we need to eliminate the use of tableaux altogether. To this end, we re-
place the ε-splitting rule of Section 7 by splitting-with-naming. Accordingly we instantiate
the set Q used in Section 7 as Q = Q0 ∪Q1 where Q1 = {C | C is a non-empty negative
ε-block with predicates from P}. We know that binary resolution and factorization on
Horn clauses produces Horn clauses. Replacements on Horn clauses using the rules from
R produces Horn clauses. Q1-splitting on Horn clauses produces Horn clauses. E.g. clause
P (x1)∨−Q(x1)∨−R(x2) produces P (x1)∨−Q(x1)∨−−R(x2) and −R(x2)∨−R(x2).
Q0-splitting on P (f(x)) ∨ −Q(a) produces P (f(x1)) ∨ −−Q(a) and −Q(a) ∨ −Q(a)
which are Horn. However Q0-splitting on C = −P (f(x1)) ∨ Q(a) produces C1 =
−P (f(x1)) ∨ −Q(a) and C2 = Q(a) ∨ Q(a). C2 is not Horn. But C1 = C and
C2 = −Q(a) ∨ Q(a) are Horn. Finally, as Q1 has exponentially many atoms, we must
restrict their occurrences in clauses. Accordingly, for 1 ≤ i ≤ 4, define clauses of type
Ci’ to be clauses C of the type Ci, such that C is Horn and has at most r negative literals
from Q1. (C is defined as before, hence it leaves atoms from Q1 unchanged). Now the
Q-splitting-replacement strategy φh first applies the replacement steps of Section 7 as long
as possible, then applies Q0-splitting as long as possible and then applies Q1-splitting as
long as possible. Succinct representations are now defined as: S vh T iff for each C ∈ S,
C is of type Ci’ and satisfies PiT for some 1 ≤ i ≤ 4. The abstract resolution procedure is
defined as: TIhT ∪ {B1 ∨−q2 ∨ . . .∨−qk tDtE}∪ {Bi ∨Bi | 2 ≤ i ≤ k} whenever
I(T ) �p C, C = B1[xi1 ] t . . . t Bk[xik

] t D t E, C is Horn, 1 ≤ i1, . . . , ik ≤ r, B1 is
an ε-block, Bi is a negative ε-block and 2 ≤ i ≤ k, D ⊆ ±Q0 and E ⊆ ±Q1 such that if
k = 1 then E has at most r negative literals, and if k > 1 then E has no negative literal.
The v and I relations are as in Section 7.

LEMMA 8.1. If S vh T and S V≺s,φh,R S1 then TIh
∗T1 and S1 vh T1 for some

T1.

PROOF. Let φ0 be as in Section 7. As S V≺s,φh,R S1 hence we have some S ′ such that
S V≺s,φ0,R S′ and S1 is obtained from S′ by applying Q1-splitting steps. As discussed
above, all clauses C ∈ S1 ∪ S′ are such that C is also Horn. If S ′ is obtained by resolving
upon splitting literals, then one of the premises must be just a positive splitting literal. The
other premise has at most r literals of the form −q with q ∈ Q1, hence the resolvent has
at most r literals of the form −q with q ∈ Q1. In case non-splitting literals are resolved
upon then the premises cannot have any negative splitting literal and the resolvent has no
negative splitting literal. Q0-splitting does not create literals from ±Q1. Hence all clauses
in S′ have at most r literals of the form −q with q ∈ Q1. Now by Proposition 7.11, one of
the following conditions holds.

—S′ v S. Then Q1-splitting is not applicable on clauses in S ′ and S1 = S′ v S. From
transitivity of v we have S1 v T . Then from the above discussion we conclude that
S1 vh T .

—S′ = S∪{C}∪S′′, C is a renaming of B1[xi1 ]t. . .tBk[xik
]tD, each Bi is an ε-block,
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1 ≤ i1, . . . , ik ≤ r, D ⊆ ±Q, I(S) �p C, and S′′ is a set of clauses of type C3 and
∅ �p S′′. Also if k ≥ 2 then D has no literals −q with q ∈ Q1. As C is Horn, wlog Bi is
negative for i ≥ 2. Hence S1 = S′∪{B1∨−q2∨. . .∨−qktD}∪{Bi∨Bi | 2 ≤ i ≤ k}.
We show that the required T1 is T ∪{B1∨−q2∨. . .∨−qktD}∪{Bi∨Bi | 2 ≤ i ≤ k}.
Each Bi ∪Bi is of type C1’. As C ∈ S ′ hence D has at most r literals −q with q ∈ Q1.
Hence if k = 1 then B1 ∨−q2 ∨ . . .∨−qk tD is also of type C1’. If k ≥ 2 then D has
no negative literals −q with q ∈ Q1, and B1 ∨−q2 ∨ . . .∨−qk tD is again of type C1’
since k ≤ r. As S vh T we have I(T ) �p I(S) �p C. Hence TIhT1. Finally, clearly
S1 v T1 hence S1 vh T1.

Now for deciding satisfiability of a set of flat and one-variable clauses we proceed as in
the non-Horn case. But now instead of non-deterministically adding clauses, we compute
a sequence S = S0IhS1IhS2 . . . starting from the given set S, and proceeding don’t
care non-deterministically, till no more clauses can be added, and then check whether
2 has been generated. The length of this sequence is at most exponential. Computing
Si+1 from Si requires at most exponential time because the number of possibilities for
C in the definition of I above is exponential in the size of S. (Note that this idea of
Q1-splitting would not have helped in the non-Horn case because we cannot bound the
number of positive splitting literals in a clause in the non-Horn case, whereas Horn clauses
by definition have at most one positive literal). Also note that APDS can be encoded using
flat Horn clauses. Hence:

THEOREM 8.2. Satisfiability for the classes CHorn andFHorn is DEXPTIME-complete.

Together with Theorem 4.1, this gives us optimal complexity for protocol verification:

THEOREM 8.3. Secrecy of cryptographic protocols with single blind copying, with
bounded number of nonces but unbounded number of sessions is DEXPTIME-complete.

8.1 Alternative Normalization Procedure

While Theorem 8.2 gives us the optimum complexity for the Horn case, we outline here
an alternative normalization procedure for deciding satisfiability in the Horn case, in the
style of [Nielson et al. 2002]. Our goal is to show that the Horn case can be dealt with
using simpler techniques. This may also be interesting for implementations, since it avoids
exhaustive generation of instantiations of clauses. Define normal clauses to be clauses
which have no function symbol in the body, have no repetition of variables in the body,
and have no variables in the body other than those in the head. Sets of normal definite
clauses involving unary predicates can be thought of as generalizations of tree automata,
by adopting the convention that term t is accepted at state P iff atom P (t) is reachable.
I.e. states are just unary predicates. (Intersection-)emptiness and membership properties
are defined as usual.

LEMMA 8.4. Emptiness and membership properties are decidable in polynomial time
for sets of normal definite clauses.

PROOF. Let S be the set of clauses. To test emptiness of a state P , we remove arguments
of predicate symbols in clauses, and treat predicates as proposition symbols. Then we add
the clause −P and check satisfiability of the resulting propositional Horn clause set.
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To test if t is accepted at P , let T be the set of subterms of t. Define a set S ′ of clauses
as follows. If Q(s) ∨ −Q1(x1) ∨ . . . ∨ −Qn(xn) ∈ S and sσ ∈ T for some substitution
σ then we add the Horn clause Q(sσ) ∨ −Q1(x1σ) ∨ . . . ∨ −Qn(xnσ) to S′. Finally we
add −P (t) to S′ and test its unsatisfiability. S ′ is computable in polynomial time. Also S ′

has only ground clauses, hence satisfiability is equivalent to propositional unsatisfiability,
by treating each ground literal as a propositional symbol.

For the rest of this section fix a set S of one-variable P-clauses and flat P-clauses. Let
Q, Ng, Ngs, Ngr, Ngrr, Ngr1, G, and G1 be defined as before with respect to this set S

of clauses. We will be dealing only with 2Q-clauses. The intuition behind the normal-
ization procedure is as follows. We use states which are sets {P1, P2, . . . , } ⊆ Q, which
intuitively represent the intersection of the states P1, P2, . . .. These new states are de-
noted by p, q, p1, . . .. The state {P} for P ∈ Q is also written as P . We try to make
non-normal clauses redundant by resolving them with normal clauses. For example the
normal clause p1(f(x)) ⇐ p2(g(x)) is resolved with the normal clause p2(g(x)) ⇐ p3(x)
to produce the clause p1(f(x)) ⇐ p3(x). We also generate new clauses corresponding
to conjunctions of states. For example p2(g(x)) ⇐ p3(x) and q2(g(x)) ⇐ q3(x) can be
used to produce the clause (p2 ∪ q2)(g(x)) ⇐ p3(x) ∧ q3(x) which produces the clause
(p2 ∪ q2)(g(x)) ⇐ (p3 ∪ q3)(x).

For terms, literals and clauses M , the measure ||M || of M is defined as the number of
distinct subterms of terms occurring in M . Let M be the maximum measure of the clauses
occurring initially in S. Let Mf be the maximum number of non-trivial literals in complex
clauses occurring in S. Let Mo be the maximum measure of the terms in Ngr1. Wlog we
assume that M ≥ Mf + Mo. If it were not the case, then we add a suitable one-variable
clause to S to make it so. Also wlog Mf ≥ r + 2 and r ≥ 1. We consider the following
types of clauses

(C1”) ε-clauses with predicates from 2Q and having at most M variables.

(C2”) non-ground clauses which are renamings of one variable clauses with literals from
±2Q(Ngr1) ∪ ±2Q(Ngr1[Ngrr[G1]]). The measure of the clause is at most M.

(C3”) ground clauses with literals from ±2Q(Ngr1[Ngrr[G1]]), and having at most M + r
literals.

(C4”) complex clauses
∨k

i=1 ±ipi(fi(x
i
1, . . . , x

i
ni

))∨
∨l

j=1 ±jqj(xj), with each pi ⊆ Q,
k ≤ Mf , each ni ≥ 2, each qj ⊆ P.

We consider pt1 . . . tn to be an abbreviation of the predicate {Pt1, . . . tn | P ∈ p} ⊆
Q where p ⊆ P. Let Cl be the set of clauses pt1 . . . ti−1(ti[x]) ⇐ pt1 . . . ti(x) and
pt1 . . . ti(x) ⇐ pt1 . . . ti−1(ti[x]) where p ⊆ P and t1 . . . ti ∈ Ngrr. Let I1 be the set or
clauses of the form (p1 ∪ p2)(x) ⇐ p1(x) ∧ p2(x) where ∅ 6= p1, p2 ⊆ Q and p1 6= p2.
Let I2 be the set of clauses of the form p1(x) ⇐ (p1 ∪ p2)(x) for the same p1 and p2, and
I = I1 ∪ I2.

We use the following normalization steps. The fourth step is called eager. During
normalization, we always apply eager steps on the current clause set, whenever any are
applicable, before proceeding.

(1) If clause C ∨ −p1(t) ∨ −p2(t) is present in the current clause set then we add the
clause C ∨ −(p1 ∪ p2)(t).
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(2) If clause C ∨ −p(x) is present in the current clause set then we add the clause C,
provided that p is non-empty from the current set of normal clauses and that x does
not occur in C.

(3) If clause C ∨ −p(t) is present in the current clause set then we add the clause C,
provided that t is ground and is accepted at p from the current set of normal clauses.

(4) Let p ⊆ P, t1[. . . [tn[x]] . . .] ∈ Ngrr, g ∈ Ngrr[G1] and tn−1, tn ∈ Ngr are non-
trivial. Clause ±p(t1[. . . [tn[x]] . . .]) ∨C of type C2”is eagerly replaced by the clause
±pt1 . . . tn−1(tn[x])∨C. Clause ±p(t1[. . . [tn[g]] . . .])∨C is eagerly replaced by the
clause ±pt1 . . . tn−1(tn[g])∨C if t1[. . . [tn[g]] . . .] ∈ Ngrr[Ngrr[G1]]\Ngr1[Ngrr[G1]].

(5) Suppose p(s)∨C is a normal clause and q(x) ⇐ p(x) an ε-clause, both present in the
current clause set. Then the clause q(s) ∨ C is added to the clause set.

(6) Suppose clause C ∨ −p(t) is present in the current clause set and t is a non-ground
functional term, and p(s)∨D is a normal clause, other than an ε-clause, present in the
current clause set, and both clauses are renamed so as not to share any variables. Also
suppose that the first normalization step above is not applicable on C ∨ −p(t). Then
the clause (C ∨ D)σ is added to the clause set where σ is mgu of s and t.

(7) Suppose p1(s)∨C and p2(t)∨D are two normal clauses other than ε-clauses, renamed
so as not to share any variables. Then the clause (p1 ∨ p2)(sσ) ∨ Cσ ∨ Dσ is added
where σ = mgu(s, t).

LEMMA 8.5. Let clause set S2 is obtained from clause set S1 by one normalization
step, and I ∪ Cl ⊆ S1. Then I ∪ Cl ⊆ S2 and exactly the same set of ground atoms are
derivable from S1 and S2.

PROOF. No clause, other than those of type C2”, ever get deleted, hence trivially I ∪
Cl ⊆ S2.

Except for the eager replacement step, the other steps involve adding a new clause. Be-
cause of the presence of clauses from I this new clause can always be obtained by resolution
steps between suitable instances of old clauses (without any ordering constraints between
the clauses, i.e. w.r.t. the empty ordering). Hence they do not let us derive anything new.

The eager replacement step involves replacing a clause C1 by a clause C2. C1 can be
obtained by resolution steps between clauses from Cl∪{C2}. Similarly C2 can be obtained
by resolution steps between clauses from Cl ∪ {C1}.

LEMMA 8.6. Let S be a set of clauses of the form (C1”-C4”) with I∪Cl ⊆ S. Let S1

be the set of clauses produced by a normalization step followed by eager steps as long as
they are applicable. Then S1 also has only clauses of the form (C1”-C4”).

PROOF. The result is easy for the first three and the fifth normalization steps. The fourth
step is not applicable. We now consider the sixth step. The unifications involved are as in
the previous sections, the new arguments here being to take care of the size restrictions.
Let C1 be the non-normal clause and C2 the normal clause involved. Note that because
the first kind of normalization step is not applicable on C1 hence C1 does not have literals
−p1(t) and −p2(t) with p1 6= p2. Hence if C1 is of type C2”, then it has at most M + 1
literals. We have the following cases. We use the notation C [∨ ± p(t)] to denote a clause
which is either C or C ∨ p(t).

(1) C1[xr+1] = C ′
1[xr+1] ∨ −p(s[xr+1]) and C2[xr+1] = p(t[xr+1]) [∨ − q(xr+1)]

are both of type C2”, with s[xr+1], t[xr+1] ∈ Ngr1, and s and t are non-trivial. If
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s[xr+1] = t[xr+1] then there is nothing to show. Otherwise as in case 5 of Proposi-
tion 7.11, we get a ground clause C all of whose literals are from the set ±2Q(Ngr1[
Ngrr[G1]]). C has fewer literals than C1 which has at most M + 1 literals.

(2) C1[xr+1] = C ′
1[xr+1] ∨ −p(s[xr+1]) is of type C2”, s[xr+1] ∈ Ngr1 is non-trivial,

and C2 = p(t) with t ∈ Ngr1[Ngrr[G1]]. As in case 6 of Proposition 7.11, we get a
ground clause C having only literals from the set ±2Q(Ngr1[Ngrr[G1]]). The number
of literals in C is less than in C1.

(3) We have C1[xr+1] = C ′
1[xr+1]∨−p(s[xr+1]) of type C2”, with s[xr+1] = f(s1[xr+1],

. . . , sn[xr+1]) ∈ Ngr1, and C2[x1, . . . ,xr] = p(f(x1, . . . , xn)) ⇐ p1(xi1 ) ∧ . . . ∧
pk(xik

) is of the form C4”, such that the xij
are the pairwise distinct. We have the

following cases.
(a) si[xr+1] = sj [xr+1] whenever xi = xj with 1 ≤ i, j ≤ n. Then we get the new

clause C[xr+1] = C ′
1[xr+1]∨−p1(si1 [xr+1])∨ . . .∨−pk(sik

[xr+1]). All terms
occurring in C occur already in C1. If some si is non-ground then replacement
rules may apply as in case 7 of Proposition 7.11, which do not create any new
subterms. The resulting clause is of the right form, which is shown as in case 7 of
Proposition 7.11.

(b) There is some xi = xj and si[xr+1] 6= sj [xr+1]. As in case 7 of Proposition 7.11,
the new clause C is ground and has only literals from ±2Q(Ngr1[Ngrr[G1]]). C1

has at most M + 1 literals hence C has at most M + r literals.

(4) C1[xr+1, . . . ,xr] = C ′
1 ∨ −p(f(x1, . . . , xn)) is of form C4”, and C2[xr+1] = p(s[

xr+1]) [∨ − q(xr+1)] is of type C2”, with s[xr+1] = f(s1[xr+1], . . . , sn[xr+1]). We
again have the following cases.
—si[xr+1] = sj [xr+1] whenever xi = xj with 1 ≤ i, j ≤ n. Then we get the new

clause C[xr+1] = C ′
1[s1[xr+1], . . . , sn[xr+1]] [∨ − q(xr+1)]. We have ||C|| ≤

Mf + ||s|| ≤ Mf + Mo ≤ M. As in case 7 of Proposition 7.11 the new clause may
require further replacements which do not create any new subterms.

—We have some xi = xj but si[xr+1] 6= sj [xr+1]. We get a ground clause all of
whose literals are from ±2Q(Ngr1[Ngrr[G1]]). The number of literals is less than
in C1. Also C1 has at most M + r literals since at most r − 1 variables occur in
it, at most Mf non-trivial literals occur in it, and the first normalization step is not
applicable on it.

(5) C1[x1, . . . ,xr ] = C ′
1 ∨ −p(f(x1, . . . , xn)) is of form C4”, and C2 = p(s) where

s ∈ Ngr1[Ngrr[G1]]. We get a ground clause with fewer literals than C1, and all of
whose arguments are from ±2Q(Ngr1[Ngrr[G1]]) ∪ ±2Q(Ngrr[Ngrr[G1]]). Also C1

has at most M + r literals. Some eager replacement steps may apply as in case 9 of
Proposition 7.11.

(6) C1 is the clause C ′
1∨−p(f(x1, . . . , xn)) of form C4”, and C2 is the clause p(f(y1, . . . ,

yn)) ⇐ p1(yi1) ∧ . . . ∧ pk(yik
) is of the form C4”. The normalization step produces

a flat clause clause with at most r variables, and has fewer non-trivial literals that C1.

Next we consider normalization steps of the seventh type.

(1) The two normal clauses involved are C1[xr+1] = p1(s[xr+1]) [∨ − q1(xr+1)] and
C2[xr+1] = p2(t[xr+1]) [∨ − q2(xr+1)] of type C2”, with s and t being non-trivial.
If s[xr+1] = t[xr+1] then we get a clause C with ||C|| ≤ Mo ≤ M. Otherwise we get
a ground clause of the required form with at most three literals.
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(2) We have a normal clause C1[xr+1] = p1(s[xr+1]) [∨ − q1(xr+1)] of type C2”, and
a ground clause C2 = p2(t) with t ∈ Ngr1[Ngrr[G1]]. We get a ground clause of the
required form with at most two literals.

(3) We have a normal clause C1[xr+1] = p1(s[xr+1]) [∨ − q1(xr+1)] of the form C2”,
s[xr+1] = f(s1[xr+1], . . . , sn[xr+1]), and a normal clause C2[x1, . . . ,xr] = p(f(x1,
. . . , xn)) ⇐ p1(y1) ∧ . . . ∧ pk(yk) is of type C4”. Again we have the following two
cases.
—For all 1 ≤ i, j ≤ n, if xi = xj then si[xr+1] = sj [xr+1]. After some eager

replacement steps, we get a one variable clause which has no occurrences of terms
which do not occur already in C1.

—There is some xi = xj such that si[xr+1] 6= sj [xr+1]. We get a ground clause of
the right form and having at most r + 2 ≤ M literals.

(4) We have a normal ground clause C1 = p1(t) and another normal clause C2 =
p2(f(x1, . . . , xn)) ⇐ q1(xi1) ∧ . . . ∧ qk(xik

). After some eager replacement steps,
we get a ground clause C of the right form with at most r + 1 literals.

(5) The two normal clauses are ground clauses p(t) and q(t). The new clause is (p∪q)(t).

(6) The two normal clauses are complex clauses. We get a new complex clause with at
most one non-trivial literal.

We call a set saturated when application of any of the above normalization steps (always
followed by the eager steps as long as applicable) leaves the set unchanged.

LEMMA 8.7. Let S be a saturated set of clauses with I ∪ Cl ⊆ S. Then every atom
derivable from the set S is derivable from the normal clauses other than ε-clauses in S.

PROOF. Define the measure of a derivation to be (n1, n2) where n1 is the number of
applications of clauses of type C4”, and n2 is the total number of applications of clauses.
We consider the lexicographic ordering on this measure. We show that any derivation
involving a non-normal clause or an ε-clause can be transformed into a derivation of the
same atom but which has strictly smaller measure. It suffices to consider a derivation which
uses a non-normal clause or an ε-clause only at the last step. We have the following cases.

(1) Suppose clause C ∨ −q(x) is used as the last step where x does not occur in C. But
then C must be present in the clause set, and we get a derivation involving strictly
fewer steps. Also C cannot be of type C4”.

(2) Suppose a clause C ∨ −q(s) is used as the last step to derive some p(t), where s is
ground. But then q(s) is derivable using the normal clauses. Hence the clause C must
be present in the clause set, and we get a derivation involving strictly fewer steps. Also
C cannot be of type C4”.

(3) A clause p(x) ⇐ q(x) is used as the last step to derive the atom p(t). The second
last step involves application of some normal clause q(s) ∨ C. Since the clause set is
saturated, the last two steps can be replaced by an application of the clause p(s) ∨ C.
p(s) ∨ C is of type C4”only if q(s) ∨ C is of type C4”.

(4) Suppose a clause C1 ∨ −q(s1) is used as the last step where s is non-ground and
functional. Let σ1 be the ground substitution used at the last step. The derivation of
q(sσ1) uses some normal clause q(s2) ∨ C2 as the last step and some substitution σ2
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as the last step, so that s1σ1 = s2σ2. Assume that the two clauses have been renamed
so as not to share any variables. Then clearly we have a normalization step of the sixth
type to produce some clause C = C1σ ∨ C2σ. By definition of most general unifiers,
we also have a substitution σ3 such that C1σσ3 = C1σ1 and C2σσ3 = C2σ2. Hence
by applying this new clause we get a derivation with strictly fewer steps. Also this
new clause is of type C4”only if both the original clauses are of type C4”, in which
case, the new derivation will involve strictly fewer applications of clauses of type C4”.
In case this new clause is a clause of type C2”produced from a clause of type C2”and
a clause of type C4”, then some eager replacement steps may apply. In that case, given
the clauses of Cl, we still have a derivation with strictly fewer number of applications
of clauses of type C4”.

(5) Suppose the last step involves an application of a clause C ∨ −p1(x) ∨ −p2(x) and a
substitution σ, with xσ = s. Suppose the derivation of pi(s) uses a clause pi(si)∨Ci

as the last step with substitution σi, for i = 1, 2. Assume that these two clauses have
been renamed apart. s1 and s2 are unifiable and we have a mgu σ3. We get the new
clause C3 = (p1∪p2)(s1σ3)∨C1σ∨C2σ3. Also we have a ground substitution σ4 such
that s1σ3σ4 = s1σ1 = s = s2σ2 = s2σ3σ4, C1σ3σ4 = C1σ1 and C2σ3σ4 = C2σ2.
Hence we get a new derivation with strictly fewer clauses. Also the new clause C3 is
of type C4”only if both p1(s1) ∨ C1 and p2(s2) ∨ C2 are of type C4”, in which case,
the new derivation will involve strictly fewer applications of clauses of type C4”.
Eager replacement steps may apply in case the original clauses were of type C2”and
C4”respectively (or vice versa), so that C2 is of type C4”. In that case, thanks to
clauses from Cl, we still get a new derivation involving strictly fewer clauses of type
C4”.

We can now show the required result.

THEOREM 8.8. A set of flat and one-variable clauses can be normalized in exponential
time.

PROOF. We have the set S of input P-clauses. We add to S the clauses from I and Cl.
This does not affect the set of derivable atoms of the form P (t) with P ∈ P. We then
perform eager replacements. Now all clauses are of the form C1”-C4”.

We now apply the normalization steps till no new clauses can be added. If we obtain a
saturated set then we can remove the non-normal clauses and ε-clauses from it to get the
required set of normal clauses. We next show that we get a saturated set after generating
only exponentially many clauses.

First we consider consider clauses without literals of the form −p(t) and −q(t) with
p 6= q. Then because of the form of clauses, only linear number of literals are possible in
any clause. Since we have exponentially many predicates and exponentially many terms,
this gives us an exponential bound on the number of clauses.

Next we consider clauses which may have duplications of the above form. If the clause
was in the clause set at the beginning, then it has only linear number of literals. Otherwise
it was produced by a normalization step. This first five normalization steps never increase
the number of literals. The sixth and seventh step only use two clauses without repetitions
of the above form, and produce a clause having at most double the number of literals in
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either of the two clauses. Hence the number of literals is again linear.
Hence we generate only exponentially many clauses of linear size. This also means that

the number of emptiness and membership tests performed is only exponentially many.

Example 1. Consider the set S = {C1, . . . , C5} of clauses where

C1 = P (a)
C2 = Q(a)
C3 = P (f(g(x1, a), g(a,x1), a)) ∨ − P (x1)
C4 = P (f(g(x1, a), g(a,x1), b)) ∨ − P (x1)
C5 = R(x1) ∨ − P (f(x1,x1,x2)) ∨ −Q(x2)

C5 is not normal. Resolving it with C3 gives the clause

R(g(a, a)) ∨ −P (a) ∨ −Q(a)

As a is accepted at P and Q using the normal clauses C ′
1 and C ′

2, hence we get a new
normal clause

C6 = R(g(a, a))

Resolving C5 with C4 gives

R(g(a, a)) ∨ −P (a) ∨ −Q(b)

But b is not accepted at Q using the normal clauses hence this clause is rejected. Finally
C1 and C2 also give the normal clause

C7 = {P, Q}(a)

The resulting set of normal clauses is {C1, . . . , C4, C6, C7}.

9. CONCLUSION

We have proved DEXPTIME-hardness of secrecy for cryptographic protocols with single
blind copying, and have improved the upper bound from 3-DEXPTIME to DEXPTIME.
We have improved the 3-DEXPTIME upper bound for satisfiability for the class C to NEX-
PTIME in the general case and DEXPTIME in the Horn case, which match known lower
bounds. For this we have invented new resolution techniques like ordered resolution with
splitting modulo propositional reasoning, ordered literal replacements and decompositions
of one-variable terms. As byproducts we obtained optimum complexity for several frag-
ments of C involving flat and one-variable clauses. For implementation purposes we have
also given an exponential time normalization procedure to transform such clauses sets into
normal form on which various queries can be efficiently answered. Security for several
other decidable classes of protocols with unbounded number of sessions and bounded num-
ber of nonces is in DEXPTIME, suggesting that DEXPTIME is a reasonable complexity
class for such classes of protocols.

APPENDIX

A. PROOFS OF SECTION 5

We use the following unification algorithm, due to Martelli and Montanari. It is described
by the following rewrite rules on finite multisets of equations between terms; we let M be
any such multiset, and comma denote multiset union:
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(Delete). M, u
.
= u → M

(Decomp). M, f(u1, . . . , un)
.
= f(v1, . . . , vn) → M, u1

.
= v1, . . . , un

.
= vn

(Bind). M, x
.
= v → M [x := v], x

.
= v provided x is not free in v, but is free in M .

(Fail1). M, x
.
= v → ⊥ provided x is free in v and x 6= v.

(Fail2). M, f(u1, . . . , um)
.
= g(v1, . . . , vn) → ⊥ provided f 6= g.

We consider that equations u
.
= v are unordered pairs of terms u, v, so that in particular

u
.
= v and v

.
= u are the same equation. ⊥ represents failure of unification. If s and t are

unifiable, then this rewrite process terminates, starting from s
.
= t, on a so-called solved

form z1
.
= u1, . . . , zk

.
= uk; then σ = {z1 7→ u1, . . . , zk 7→ uk} is an mgu of s

.
= t.

LEMMA A.1. Let s[x] and t[y] be two non-ground non-trivial one-variable terms, and
x 6= y. Let U be the set of non-ground strict subterms of s and t and let V be the set of
ground strict subterms of s and t. If s[x] and t[y] are unifiable then they have a mgu σ such
that one of the following is true:

—σ = {x 7→ u[y]} where u ∈ U .

—σ = {y 7→ u[x]} where u ∈ U .

—σ = {x 7→ u, y 7→ v} where u, v ∈ U [V ].

PROOF. Note that V ⊆ U [V ] since U contains the trivial terms also. We use the above
unification algorithm. We start with the multiset M0 = s

.
= t. We claim that if M0 →+ M

then M is of one of the following forms:

(1) s1[x]
.
= t1[y], . . . , sn[x]

.
= tn[y], where each si, ti ∈ U ∪ V , some si ∈ U and some

tj ∈ U .

(2) s1[u1[y
′]]

.
= t1[y

′], . . . , sn[un[y′]]
.
= tn[y′], x′ .

= u[y′] where u ∈ U , each ui is a
subterm of u, each si, ti ∈ U ∪ V , x′ ∈ {x, y} and y′ ∈ {x, y} \ {x′}.

(3) s1[u1]
.
= t1[y

′], . . . , sn[un]
.
= tn[y′], x′ .

= u where u ∈ V , each ui is a subterm of u,
each si, ti ∈ U ∪ V , some ti ∈ U , x′ ∈ {x, y} and y′ ∈ {x, y} \ {x′}.

(4) M ′, x
.
= u, y

.
= v where u, v ∈ U [V ], and no variables occur in M ′.

(5) ⊥.

As s and t are non-trivial, and x and y are distinct, hence (Delete) and (Bind) do not
apply on M0. Applying (Decomp) on M0 leads us to type (1). Applying (Fail1) or (Fail2)
on any M leads us to ⊥. Applying (Delete) and (Decomp) on type (1) keeps us in type (1).
Applying (Bind) on type (1) leads to type (2) or (3) depending on whether the concerned
variable is replaced by a non-ground or ground term. Applying (Delete) on type (2) leads
to type (2) itself. Applying (Decomp) on type (2) leads to type (2) itself. (Bind) applies
on M of type (2) only if M contains some y′ .

= v where v is ground. We must have
v ∈ V . The result is of type (4). Applying (Delete) and (Decomp) rules on type (3) leads
to type (3) itself. (Bind) applies on M of type (3) only if M contains some y ′ .

= v where
v is ground. We must have v ∈ U [V ]. The result is of type (4). Applying (Delete) and
(Decomp) on type (4) leads to type (4) itself, and (Bind) does not apply.

Now we look at the solved forms. Solved forms of type (1) are of the form either
x

.
= u[y] with u ∈ U , or y

.
= u[x] with u ∈ U , or x

.
= u, y

.
= v with u, v ∈ V ⊆ U [V ]. M

of type (2) is in solved form only if n = 0. Hence the solved forms are again of the form
x

.
= u[y] or y

.
= u[x] with u ∈ U . M of type (3) is in solved form only if n = 1, hence M
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is of the form x
.
= u, y

.
= v with u, v ∈ U [V ]. Solved forms of type (4) are again of type

x
.
= u, y

.
= v with u, v ∈ U [V ] (i.e. M ′ is empty).

PROOF OF LEMMA 5.1. By Lemma A.1, s[x] and t[y] have a mgu σ′ such that one of
the following is true:

—σ′ = {x 7→ u[y]} where u ∈ U . We have s[u[y]] = t[y]. As t is irreducible and s is
non-trivial, this is possible only if u is trivial. Hence s[y] = t[y], so s[x] = t[x]. This is
a contradiction.

—σ′ = {y 7→ u[x]} where u ∈ U . This case is similar to the previous case.

—σ′ = {x 7→ u, y 7→ v} where u, v ∈ U [V ]. As σ′ is the mgu and maps x and y to
ground terms, hence σ = σ′.

PROOF OF LEMMA 5.2. We use the above unification algorithm. We start with the mul-
tiset M0 = s[x]

.
= t[x]. If M0 →+ M then M is of one of the following forms:

(1) s1[x]
.
= t1[x], . . . , sn[x]

.
= tn[x] where each si is a strict subterm of s and each ti is a

strict subterm of t

(2) M, x
.
= u where u is a ground strict subterm of s or t, and no variables occur in M

(3) ⊥.

Then it is easy to see that the only possible solved forms are the empty multiset, or x
.
= u

where u is a ground strict subterm of s or t. But the empty multiset cannot give us a unifier
since s[x] 6= t[x].

B. PROOFS OF SECTION 7

PROOF OF THEOREM 7.1. A standard Herbrand interpretation is a Herbrand interpre-
tation H such that C ∈ H iff H does not satisfy C. This leads us to the notion of
standard satisfiability as expected. The given set S of P-clauses is satisfiable iff it is
standard-satisfiable. Ordered resolution, factorization and splitting preserve satisfiability
in any given Herbrand interpretation, and Q-splitting preserves satisfiability in any given
standard-Herbrand interpretation. Also if T →R T ′ then T ∪ cl(R) is satisfiable in a
Herbrand interpretation iff T ′ ∪ cl(R) is satisfiable in that interpretation. This proves cor-
rectness: if S V∗

<s,φ,R T and T is closed then S ∪ cl(R) is unsatisfiable.
For completeness we replay the proof of [Goubault-Larrecq 2004] for ordered resolution

with selection specialized to our case, and insert the arguments required for the replacement
rules. Since < is enumerable, we have an enumeration A′

1, A
′
2, . . . of all ground atoms

such that if A′
i < A′

j then i < j. Also there are only finitely many splitting atoms in Q,
all of which are smaller than non-splitting atoms. Hence the set of all (splitting as well as
non-splitting) atoms can be enumerated as A1, A2, . . . such that if Ai <s Aj then i < j.
Clearly all the splitting atoms occur before the non-splitting atoms in this enumeration.
Consider the infinite binary tree T whose nodes are literal sequences of the form ±1A1 ±2

A2 . . . ±k Ak for k ≥ 0. The two successors of the node N are N + Ak+1 (the left
child) and N − Ak+1 (the right child). If k = 0 then N is a root node. Furthermore
we write −N = ∓1Ai ∓2 A2 . . . ∓k Ak. These trees are known as semantic trees in
the literature [Joyner Jr. 1976]. A clause C fails at a node N if there is some ground
substitution σ such that for every literal L ∈ C, Lσ is in −N . For any set T of clauses
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define TT as the tree obtained from T by deleting the subtrees below all nodes of T where
some clause of T fails. A failure-witness for a set T of clauses is a tuple (T′, C•, θ•) such
that T′ = TT is finite, CN is a clause of T for each leaf node N of T′, and θN is a ground
substitution for each leaf node N of T′ such that for −N contains every L ∈ CNθN . We
define ν(T′) as the number of nodes in T′. For any failure witness of the form (T′, C•, θ•)
and for any leaf node N = ±1A1 ±2 A2 . . . ±k Ak of T′, define µ1(CN , θN ) as follows:
– If CN /∈ cl(R) then µ1(CN , θN ) is the multiset of integers which contains the integer i
as many times as there are literals ±A′ ∈ CN such that A′θN = Ai.
– If CN ∈ cl(R) then µ1(CN , θN ) is the empty multiset.
We define µ−(T′, C•, θ•) as the multiset of the values µ1(CN , θN ) where N ranges over
all leaf nodes of T′. We define µ(T′, C•, θ•) = (ν(T′), µ−(T′, C•, θ•)). We consider the
lexicographic ordering on pairs, i.e. (x1, y1) < (x2, y2) iff either x1 < x2, or x1 = x2 and
y1 < y2. Since S ∪ cl(R) is unsatisfiable, from K önig’s Lemma [Kleene 2002]:

LEMMA B.1. S ∪ cl(R) has a failure witness.

LEMMA B.2. If T has a failure witness (TT , C•, θ•) such that TT is not just the root
node, then there is some T ′ with a failure witness (TT ′ , C ′

•, θ
′
•) such that T V<s

T ′ and
µ(TT ′ , C ′

•, θ
′
•) < µ(TT , C•, θ•).

PROOF. We generalize the notion of mgu as usual, and we write mgu(s1
.
= . . .

.
= sn)

for the most general substitution which makes s1, . . . , sn equal. We iteratively define a
sequence R0, R1, . . . of nodes, none of which is a leaf node. R0 is the empty sequence
which is not a leaf node. Suppose we have already defined Ri. As Ri is not a leaf node, Ri

has a descendant Ni such that Ni − Bi is rightmost leaf node in the subtree of TT rooted
at Ri.

(1) If Bi is a non-splitting atom then stop the iteration.

(2) Otherwise Bi is a splitting atom.
(2a) If the subtree rooted at Ni + Bi has some leaf node N such that −Bi ∈ CN then

stop the iteration.
(2b) Otherwise Ni +Bi cannot be a leaf node, by definition of failure witnesses. Define

Ri+1 = Ni + Bi and continue the iteration.

TT is finite hence the iteration terminates. Let k be the largest integer for which Rk, and
hence Nk and Bk are defined. For 0 ≤ i ≤ k−1, Bi is a splitting literal. The only positive
literals in the sequence Nk are from the set {B0, . . . , Bk−1}, since we followa left branch
only in step (2b). Nk − Bk is a leaf node of TT .

Suppose the iteration stopped in case (1) above. Then Nk has some descendant N such
that its two children N − B and N + B are leaf nodes of TT , and B is a non-splitting
literal. As Bk is a non-splitting literal, no negative splitting literals are present in CN−B

or CN+B . CN−B is of the form C1 ∨B′
1 ∨ . . .∨B′

m(m ≥ 1) such that B′
1θN−B = . . . =

B′
mθN−B = B and each literal in C1θN−B is present in −N . The literals B′

1, . . . , B
′
m

are then maximal in CN−B and can be selected for resolution. CN+B is of the form
C2 ∨ −B′′

1 ∨ . . . ∨ −B′′
n(n ≥ 1) such that B′′

1 θN+B = . . . = B′′
nθN+B = B and each

literal in C2θN+B is present in −N . The literals B′′
1 , . . . , B′′

n are then maximal in CN+B

and can be selected for resolution. We assume that CN−B and CN+B are renamed apart so
as not to share variables. Let θ be a ground substitution which maps each x ∈ fv(CN−B) to
xθN−B and x ∈ fv(CN+B) to xθN+B . We have B′

1θ = . . . = B′
mθ = B′′

1 θ = . . . = B′′
nθ.
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Then σ = mgu(B′
1

.
= . . .

.
= B′

m

.
= B′′

1
.
= . . .

.
= B′′

n) exists. Hence we have some
ground substitution θ′ such that σθ′ = θ. Hence by repeated applications of the ordered
factorization and ordered binary resolution rule, we obtain the resolvent C = C1σ ∨ C2σ,
and T V<s

T ′ = T ∪ {C}. We have Cθ′ = C1θ ∨ C2θ. Hence C fails at node N .
Then TT ′ is finite and ν(TT ′) < ν(TT ). Hence by choosing any C ′

• and θ′• such that
(TT ′ , C ′

•, θ
′
•) is a failure witness for T ′, we have µ(TT ′ , C ′

•, θ
′
•) < µ(TT , C•, θ•).

If the iteration did not stop in case (1) but in case (2a) then it means that Bk is a splitting
literal. Then CNk−Bk

= C1 ∨ +Bk (with Bk /∈ C1). C1 has no negative splitting literals.
Hence the only literals in C1 are positive splitting literals. Hence the literal Bk can be
chosen from CNk−Bk

for resolution. The subtree rooted at Nk + Bk has some leaf node
N such that −Bk ∈ CN . Then CN = C2 ∨ −Bk (and −Bk /∈ C2). Hence −Bk can
be selected from CN for resolution. We obtain the resolvent C2 ∨ C1 which fails at N .
Let T ′ = T ∪ {C1 ∨ C1}. We have ν(TT ′ ) ≤ ν(TT ). If N ′ is the highest ancestor
of N where C2 ∨ C1 fails then N ′ is a leaf of TT ′ and we define C ′

N ′ = C2 ∨ C1 and
θ′N ′ = θN . We have µ1(C

′
N ′ , θ′N ′) < µ1(CN , θN ) since all literals in C1 are splitting

literals ±q such that q occurs strictly before Bk in the enumeration A1, A2, . . .. (Also note
that CN /∈ cl(R) because CN contains a splitting literal). All other leaf nodes N ′′ of TT ′

are also leaf nodes of TT and we define C ′
N ′′ = CN ′′ and θ′N ′′ = θN ′′ . Then (TT ′ , C ′

•, θ
′
•)

is a failure witness for T ′ and we have µ−(TT ′ , C ′
•, θ

′
•) < µ−(TT , C•, θ•). Hence we

have µ(TT ′ , C ′
•, θ

′
•) < µ(TT , C•, θ•).

LEMMA B.3. If T has a failure witness (TT , C•, θ•) and T →Q−nspl T ′ then T ′ ∪
cl(R) has a failure witness (TT ′∪cl(R), C

′
•, θ

′
•) with µ(TT ′∪cl(R), C

′
•, θ

′
•) ≤ µ(TT , C•, θ•).

PROOF. Let C = C1 t C2 ∈ T , C2 is a non-empty P-clause, C1 has at least one non-
splitting literal, and T →Q−nspl T ′ = (T \ {C})∪{C1 ∨−C2, C2 ∨C2}. If C 6= CN for
any leaf node N of TT then there is nothing to show. Now suppose C = CN where N is a
leaf node of TT . If CN ∈ cl(R) then there is nothing to prove. Now suppose CN /∈ cl(R).
As C is constrained to contain at least one non-splitting literal, hence the literal sequence
N has at least one non-splitting literal. By the chosen enumeration A1, A2, . . ., either C2

or −C2 occurs in the literal sequence N .

—If C2 occurs in N then C1 ∨−C2 fails at N . Let N ′ be the highest ancestor of N where
it fails. N ′ is a leaf node of TT ′ . We define C ′′

N ′ = C1 ∨ −C2 and θ′′N ′ = θN . All
other leaf nodes N ′′ of TT ′ are also leaf nodes of TT and we define C ′′

N ′′ = CN ′′ and
θ′′N ′′ = θN ′′ . (TT ′ , C ′′

• , θ′′• ) is a failure witness for T ′. As C2 has at least one non-
splitting literal, we have µ1(C

′′
N ′ , θ′′N ′) < µ1(CN , θN ) (recall that CN /∈ cl(R)) so that

µ(TT ′ , C ′′
• , θ′′• ) ≤ µ(TT , C•, θ•). As T ′ ⊆ T ′ ∪ cl(R) hence the result follows.

—If −C2 occurs in N then C2 ∨ C2 fails at N . Since C1 has at least one non-splitting
literal, as in the previous case, we obtain a failure witness (TT ′ , C ′′

• , θ′′• ) such that
µ(TT ′ , C ′′

• , θ′′• ) ≤ µ(TT , C•, θ•).

LEMMA B.4. If T has a failure witness (TT , C•, θ•) and T →spl T1 | T2 then T1 ∪
cl(R) and T2 ∪ cl(R) have failure witnesses (TT1∪cl(R), C

′
•, θ

′
•) and (TT2∪cl(R), C

′′
• , θ′′• )

such that µ(TT1∪cl(R), C
′
•, θ

′
•) ≤ µ(TT , C•, θ•) and µ(TT2∪cl(R), C

′′
• , θ′′• ) ≤

µ(TT , C•, θ•).
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PROOF. Let C = C1 t C2 ∈ T such that C1 and C2 share no variables, and we have
T →spl T1 | T2 where Ti = T ∪ {Ci}. We prove the required result for T1, the other
part is symmetric. If C 6= CN for any leaf node N of TT then there is nothing to show.
Now suppose C = CN for some leaf node N of TT . If CN ∈ cl(R) then there is nothing
to show. Now suppose CN /∈ cl(R). Since C1 ⊆ C, hence C1 also fails at N . Let
N ′ be the highest ancestor of N where C1 fails. N ′ is a leaf node of TT1

. We define
C ′′′

N ′ = C and θ′′′N ′ = θ. All other leaf nodes N ′′ of TT1
are also leaf nodes of TT , and

we define C ′′′
N ′′ = CN ′′ and θ′′′N ′′ = θN ′′ . (TT1

, C ′′′
• , θ′′′• ) is a failure witness for T1.

Also µ1(C
′′′
N ′ , θ′′′N ′) ≤ µ1(CN , θN ) (recall that CN /∈ cl(R)). Hence µ(TT ′ , C ′′′

• , θ′′′• ) ≤
µ(TT , C•, θ•). As T1 ⊆ T1 ∪ cl(R), hence the result follows.

The following arguments are the ones that take care of replacement steps.

LEMMA B.5. If T has a failure witness (TT , C•, θ•) and T →R T ′ then T ′ ∪ cl(R)
has a failure witness (TT ′∪cl(R), C

′
•, θ

′
•) with µ(TT ′∪cl(R), C

′
•, θ

′
•) ≤ µ(TT , C•, θ•).

PROOF. Let C1 = C ′
1 ∨ ±Aσ ∈ T , R = A → B ∈ R, and T →R T ′ = (T \

{C1}) ∪ {C} where C = C ′
1 ∨ ±Bσ. If C1 6= CN for any leaf node of TT then there

is nothing to prove. Now suppose that C1 = CN for some leaf node N of TT . Let
N = ±1A1 . . . ±k Ak. If C1 ∈ cl(R) then T ⊆ T ′ ∪ cl(R), and there is nothing to
prove. Now suppose C1 /∈ cl(R). We have a ground substitution θ such that C1θ = C ′

1θ∨
±Aσθ ⊆ {∓1A1, . . . ,∓kAk}. As R is ordered we have A ≥ B. Hence Aσθ ≥ Bσθ.
Hence either ±Bσθ ∈ {∓1A1, . . . ,∓kAk} or ∓Bσθ ∈ {∓1A1, . . . ,∓kAk}.

—Suppose ±Bσθ ∈ {∓1A1, . . . ,∓kAk}. Since C1θ = C ′
1θ ∨ ±Aσθ ⊆ {∓1A1, . . . ,

∓kAk}, hence Cθ = C ′
1θ ∨ ±Bσθ ⊆ {∓1A1, . . . ,∓kAk}. Hence C fails at N . Let

N ′ be the highest ancestor of N where C fails. N ′ is a leaf node of TT ′ . We define
C ′′

N ′ = C and θ′′N ′ = θ. All other leaf nodes N ′′ of TT ′ are also leaf nodes of TT ,
and we define C ′′

N ′′ = CN ′′ and θ′′N ′′ = θN ′′ . (TT ′ , C ′′
• , θ′′• ) is a failure witness for T ′.

Also µ1(C
′′
N ′ , θ′′N ′) ≤ µ1(CN , θN ) (recall that CN /∈ cl(R)). Hence µ(TT ′ , C ′

•, θ
′
•) ≤

µ(TT , C•, θ•). As T ′ ⊆ T ′ ∪ cl(R), hence the result follows.

—Suppose ∓Bσθ ∈ {∓1A1, . . . ,∓kAk}. Since ±Aσθ =∈ {∓1A1, . . . ,∓kAk}, hence
the clause ∓A ∨ ±B ∈ cl(R) fails at N . Let N ′ be the highest ancestor of N where
∓A ∨ ±B fails. N ′ is a leaf node of TT ′∪{∓A∨±B}. We define C ′′

N ′ = C and θ′′N ′ = θ.
All other leaf nodes N ′′ of TT ′∪{∓A∨±B} are also leaf nodes of TT , and we define
C ′′

N ′′ = CN ′′ and θ′′N ′′ = θN ′′ . (TT ′∪{∓A∨±B}, C
′′
• , θ′′• ) is a failure witness for T ′ ∪

{∓A ∨ ±B}. Also µ1(C
′′
N ′ , θ′′N ′) ≤ µ1(CN , θN ) since µ1(C

′′
N ′ , θ′′N ′) is the empty

multiset. Hence µ(TT ′∪{∓A∨±B}, C
′′
• , θ′′• ) ≤ µ(TT , C•, θ•). As T ′ ∪ {∓A ∨ ±B} ⊆

T ′ ∪ cl(R), hence the result follows.

For a tableaux T = S1 | . . . | Sn, define T ∪ S = S1 ∪ S | . . . | Sn ∪ S. We define
a failure witness for such a T to be a multiset {(TS1

, C1
• , θ1

•), . . . , (TSn
, C1

• , θn
• )} where

each (TSi
, Ci

•, θ
i
•) is a failure witness of Si. We define

µ({TS1
, C1

• , θ1
•), . . . , (TSn

, C1
• , θn

• }) = {µ(TS1
, C1

• , θ1
•), . . . , µ(TSn

, C1
• , θn

• )}.
Then it is clear that S ∪ cl(R) has a failure witness and whenever any T has a failure
witness in which one of the trees has at least two nodes, then T V<s,φ,R T ′ for some T ′

such that T ′ ∪ cl(R) has a strictly smaller failure witness. Hence we have some T such
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that S V∗
<s,φ,R T and T ∪ cl(R) has a failure witness in which each tree is a root node.

Then T ∪ cl(R) is closed. Hence T is closed.
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Canada, 82–96.

CHANDRA, A. K., KOZEN, D. C., AND STOCKMEYER, L. J. 1981. Alternation. Journal of the ACM 28, 1
(Jan.), 114–133.

CHARATONIK, W. AND PODELSKI, A. 1997. Set constraints with intersection. In 12th Annual IEEE Symposium
on Logic in Computer Science (LICS’97). IEEE Computer Society Press, 362–372.

COMON, H. AND CORTIER, V. 2005. Tree automata with one memory, set constraints and cryptographic proto-
cols. Theoretical Computer Science 331, 1, 143–214.

COMON, H., CORTIER, V., AND MITCHELL, J. 2001. Tree automata with one memory, set constraints and ping-
pong protocols. In 28th International Colloquium on Automata, Languages, and Programming (ICALP’2001),
F. Orejas, P. G. Spirakis, and J. van Leeuwen, Eds. LNCS, vol. 2076. Springer-Verlag, Crete, Greece, 682–693.

COMON-LUNDH, H. AND CORTIER, V. 2003a. New decidability results for fragments of first-order logic
and application to cryptographic protocols. In 14th International Conference on Rewriting Techniques and
Applications (RTA’03), R. Nieuwenhuis, Ed. LNCS, vol. 2706. Springer-Verlag, Valencia, Spain, 148–164.

COMON-LUNDH, H. AND CORTIER, V. 2003b. Security properties: Two agents are sufficient. In 12th European
Symposium on Programming (ESOP’03). LNCS, vol. 2618. Springer-Verlag, Warsaw, Poland, 99–113.

CORTIER, V. 2003. Vérification automatique des protocoles cryptographiques. Ph.D. thesis, ENS Cachan,
France.

DURGIN, N. A., LINCOLN, P., MITCHELL, J., AND SCEDROV, A. 1999. Undecidability of bounded security
protocols. In Workshop on Formal Methods and Security Protocols (FMSP’99). Trento, Italy.
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