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Abstract. A monotone system of min-max-polynomial equati@m-max-
MSPE) over the variablex(y, ..., X,, has for every: exactly one equation
of the form X; = fi(X1,..., X») where eachf;(X1,...,X,) is an expres-
sion built up from polynomials with non-negative coefficients, minimumd an
maximum-operators. The question of computing least solutions of mia-ma
MSPEs arises naturally in the analysisre€ursive stochastic gam¢s, 6, 14].
Min-max-MSPEs generalize MSPEs for which convergence speedtsesf
Newton’s method are established in [11, 3]. We present the first mefloodp-
proximatively computing least solutions of min-max-MSPEs which cawet
least linearly. Whereas the first one converges faster, a single step sécond
method is cheaper. Furthermore, we computgtimal positional strategies for
the player who wants to maximize the outcome in a recursive stochastic game

1 Introduction

In this paper we studgnonotone systems of min-max polynomial equatfors-max-
MSPESs). A min-max-MSPE over the variabl&s, . . ., X,, contains for every <i <
n exactly one equation of the forii; = f;(X;,..., X,,) where everyf;(X1,..., X,,)
is an expression built up from polynomials with non-negatwefficients, minimum-
and maximum-operators. An example of such an equatiai is- 3X; Xo+5X2A\4X5
(whereA is the minimum-operator). The variables range over noratiegreals. Min-
max-MSPEs are called monotone becafiss a monotone function in all arguments.
Min-max-MSPEs naturally appear in the study of two-playteckastic games and
competitive Markov decision processes, in which, broagkyaking, the next move is
decided by one of the two players or by tossing a coin, depegnain the game’s posi-
tion (see e.g. [12, 7]). The min and max operators model thepedition between the
players. The product operator, which leads to non-lineaaggns, allows to deal with
recursive stochastic games [5, 6], a class of games withfeaitéhnnumber of positions,
and having as special casgtinction gamesgames in which players influence with
their actions the development of a population whose mentegreduce and die, and
the player’s goals are to extinguish the population or keafive (see Section 3).
Min-max-MSPEs generalize several other classes of equayistems. If product is
disallowed, we obtain systems of min-miixxear equations, which appear in classical
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two-person stochastic games with a finite number of gameiposi The problem of
solving these systems has been thoroughly studied [1, 8,99th min andmax are
disallowed, we obtain monotone systems of polynomial egnst which are central
to the study of recursive Markov chains and probabilistishalown systems, and have
been recently studied in [4, 11, 3]. If only onemin or max is disallowed, we obtain
a class of systems corresponding to recursive Markov aecjmiocesses [5]. All these
models have applications in the analysis of probabilistigpams with procedures [14].

In vector form we denote a min-max-MSPE By = f(X) whereX denotes the
vector (X1, ..., X, ) and f denotes the vectqifs, ..., f,). By Kleene’s theorem, if
a min-max-MSPE has a solution then it also hdsastone, denoted by.f, which
is also the relevant solution for the applications mentibabove. Kleene's theorem
also ensures that the iterative proces® = 0, kD) = f(k®), k € N, the
so-called Kleene sequence, convergeg fo However, this procedure can converge
very slowly: in the worst case, the number of accurate bith@fapproximation grows
with thelogarithm of the number of iterations (cf. [4]). Thus, the goal is tolege the
function f by an operatoty : R™ — R™ such that the respective iterative process also
converges tq.f but faster. In [4, 11, 3] this problem was studied for min-aMdSPEs
without themin andmax operator. There(s was chosen as one step of the well-known
Newton’s method (cf. for instance [13]). This means thatafgiven approximate (%),
the next approximate:**1) = G(x*)) is determined by thenique solutionof a
linear equation system which is obtained from the first ofidgtor approximation off
atz(®) . It was shown that this choice guarantéieear convergenge.e., the number of
accurate bits growiinearly in the number of iterations. Notice that when charactegizin
the convergence behavior the term linear does not refeetsite off.

However, this technique no longer works for arbitrary miexaMSPEs. If we ap-
proximate f at 2(*) through its first order Taylor approximation at*) there is no
guarantee that the next approximate still lies below thstlgalution, and the sequence
of approximants may even diverge. For this reason, the PRebld14] uses round-
robin iteration for min-max-MSPESs, an optimization of Kiedteration. Unfortunately,
this technique also exhibits “logarithmic” convergencédogor in the worst case.

In this paper we overcome the problem of Newton’'s methodebts of approxi-
mating f (at the current approximate(*)) by a linear function, both of our methods
approximatef by apiecewisdinear function. In contrast to the applications of New-
ton’s method in [4, 11, 3], this approximation may not hawenaue fixpointbut it has
aleast fixpointwhich we use as the next approximat&*+? = G(x*)). Our first
method uses an approximation pfat z(*) whose least fixpoint can be determined us-
ing the algorithm foisystems of rational equatiofi®m [9]. The approximation of at
) used by our second method allows to use linear programmiogrtputex (5 1),
Our methods are the first algorithms for approximatively pating .. f which converge
at least linearly, provided thaft is quadratic, an easily achievable normal form.

The rest of the paper is organized as follows. In Section 2ntreduce basic con-
cepts and state some important facts about min-max-MSPERS& of games which
can be analyzed using our techniques is presented in S&ct@ur main contribution,
the two approximation methods, is presented and analyz8ddtions 4 and 5. In Sec-



tion 6 we study the relation between our two approaches amghace them to previous
work. We conclude in Section 7. Missing proofs can be founa technical report [2].

2 Notations, Basic Concepts and a Fundamental Theorem

As usual,R andN denote the set of real and natural numbers. We assumé. We
write R for the set of non-negative real numbers. We use bold I€tergectors, e.g.
« € R™. In particular0 denotes the vectd, ..., 0). The transpose of a matrix or a
vector is indicated by the superscript We assume that the vecter € R™ has the

componentsy, . .., z,. Similarly, thei-th component of a functiorf : R" — R™
is denoted byf;. As in [3], we say thate € R™ hasi € N valid bits ofy € R" iff
lz; —y;| < 27%y;| for j = 1,...,n. We identify a linear function fronR”™ to R™

with its representation as a matrix froRi"*". The identity matrix is denoted by.
The Jacobianof a functionf : R® — R™ atx € R" is the matrix of all first-order
partial derivatives off atz, i.e., them xn-matrix with the entry24- (z) in the-th row

and thej-th column. We denote it by’ (x).

The partial order< on R”™ is defined by settinge < y iff z; < y, for all i =
1,...,n. We writex < y iff x < y andx # y. The operatorg. andV are defined by
x Ay = min{z,y} andz V y := max{z,y} for z,y € R. These operators are also
extended component-wise R and point-wise tdR"-valued functions. A function
f : D C R*™ — R™ it called monotoneon M C D iff f(x) < f(y) for every
z,y € Mwithe <y.LetX CR*andf : X — X. Avectorz € X is called
fixpointof f iff x = f(«). It is theleast fixpointof f iff y > a for every fixpoint
y € X of f. If it exists we denote the least fixpoint ¢gfby 1 f. We call f feasibleiff
f has some fixpoint € X.

LetusfixasetX = {Xy,..., X, } of variables. We call a vectgf = (f1,..., fm)
of polynomialsfy, ..., f,. in the variablesXy, ..., X,, asystem of polynomials is
calledlinear (resp.quadratig iff the degree of eaclf; is at mostl (resp.2), i.e., every
monomial contains at most one variable (resp. two varidbls usual, we identifyf
with its interpretation as a function froR" to R™. As in [11, 3] we callf amonotone
system of polynomial®SP for short) iff all coefficients are non-negative.

Min-max-MSPsGiven polynomialsfy, ..., fr we call f; A --- A fi amin-polynomial
and f1 V --- V fr a max-polynomial A function that is either a min- or a max-
polynomial is also calledgnin-max-polynomialWe call f = (f1,..., f.) asystem

of min-polynomialsff every componentf; is a min-polynomial. The definition afys-
tems of max-polynomiandsystems of min-max-polynomidésanalogous. A system
of min-max-polynomials is callelinear (resp.quadratig iff all occurring polynomials
are linear (respquadratiq. By introducing auxiliary variables every system of min-
max-polymials can be transformed intgaadraticone in time linear in the size of the
system (cf. [11]). A system of min-max-polynomials wherkcaalefficients are from
RZ,, is called amonotone system of min-max-polynomi@sn-max-MSF for short.
The termamin-MSPandmax-MSPare defined analogously.

Example 1. f(z1,22) = (323 + 3 A 3,21 v 2) T is a quadratic min-max-MSP.



A min-max-MSPf = (fi,...,f.)" can be considered as a mapping fréty, to
RZ,. The Kleene sequen(ﬁesgck))keN is defined byﬁgck) = f¥(0), k € N. We have:

Lemmal. Let f : RY, — R%, be a min-max-MSP. Then: (¥) is monotone and
continuous orR%;; and (2) If f is feasible (i.e..f has some fixpoint), thefi has a

least fixpointu f andpf = limg_, o :@}k).

StrategiesAssume thatf denotes a system of min-max-polynomialsvAstrategyo
for f is a function that maps every max-polynomfal= f; 1 v --- V f; 5, occurring
in f to one of thef; ;'s and every min-polynomiaf; to f;. We also writef; for o(f;).
Accordingly, an-strategyr for f is a function that maps every min-polynomjgl =
fia N -+ A fig occurring in f to one of thef; ;'s and every max-polynomiaf; to
fi. We denote the set of-strategies forf by >y and the set of\-strategies forf by
IIy. Fors € Xp U Iy, we write f° for (f5,..., f,)". We definell} := {r € Il |
f™ is feasiblg. We drop the subscript whenever it is clear from the context.

Example 2.Considerf from Example 1. Them : 3234+ 3 A3+ 3, 11V 2 — x1 V2

is aA-strategy. The max-MSP™ is given by f™ (x1,z2) " = (3,21 V2) . O
We collect some elementary facts concerning strategies.

Lemma 2. Let f be a feasible min-max-MSP. Then (1f° < uf for everyo € X;
2) uf™ > wuf foreverym € I1*; (3) uf™ = pf for somer € IT*.

In [5] the authors consider a subclass of recursive stoichgatmes for which they
prove that a positional optimal strategy exists for the efayho wants to maximize
the outcome (Theorem 2). The outcome of such a game is thefieasint of some
min-max-MSP#. In our setting, Theorem 2 of [5] implies that there exists-strategy

o such thatuf? = uf — provided thatf is derived from such a recursive stochastic
game. Example 3 shows that this property does not hold fatranp min-max-MSPs.

Example 3.Considerf from Example 1. Let;, 0o € X' be defined by (z1V2) = a4
andoy(z1 vV 2) = 2. Thenpf7 = (1,1) 7, pf?* = (5,2) " anduf = (3,3)". O

The proof of the following fundamental result is inspiredthg proof of Theorem 2 in
[5]. Although the result looks very natural it is non-tril/ta prove.

Theorem 1. Let f be a feasible max-MSP. Thetf? = pf for somes € X.

3 AClass of Applications: Extinction Games

In order to illustrate the interest of min-max-MSPs we cdaséxtinction gameswvhich
are special stochastic games. Consider a world different species,, ..., s,. Each
speciess; is controlled by one of two adversarial players. For eacthere is a non-
empty setd; of actions. An actioru € A; replaces a single individual of species
by other individuals specified by the actian The actions can be probabilistic. E.g.,
an action could transform an adult rabbit to zero individuaith probability0.2, to an
adult rabbit with probability).3 and to an adult and a baby rabbit with probabilit.



Another action could transform an adult rabbit to a fat rabbhe max-player (min-
player) wants to maximize (minimize) the probability thate initial population is
extinguished. During the game each player continuoushosé® an individual of a
species; controlled by her/him and applies an action fragimto it. Note that actions on
different species are never in conflict and the executioerolirrelevant. What is the
probability that the population is extinguished if the @ayfollow optimal strategies?

To answer those questions we set up a min-max-MSRith one min-max-
polynomial for each species, thereby following [10, 5]. MagiablesX; represent the
probability that a population with only a single individualspeciess; is extinguished.
In the rabbit example we havEaguir = 0.2 4 0.3 Xaduit+ 0.5 X adutXbaby V Xtat, aSSUM-
ing that the adult rabbits are controlled by the max-playke probability that an initial
population withp; individuals of species; is extinguished is given by["_, ((uf):).
The stochastic termination games of [5, 6, 14] can be coresidas extinction games.
In the following we present another instance.

The primaries gameHlillary Clinton has to decide her strategy in the primarider
team estimates that undecided voters have not yet decidedtéofor her for three
possible reasons: they consider her (a) cold and calcglgti too much part of Wash-
ington’s establishment, or (c) they listen to Obama’s cagmpaSo the team decides
to model those problems as species in an extinction gamelarger the population
of a species, the more influenced is an undecided voter byrtitggm. The goal of
Clinton’s team is to maximize the extinction probabilities

Clinton’s possible actions for problem (a) askowing emotionsr concentrating
on her program|If she shows emotions, her team estimates that the indil/mfuyprob-
lem (a) is removed with probabilitg.3, but with probability0.7 the action backfires
and produces yet another individual of (a). This and theceffié concentrating on her
program can be read off from Equation (1) below. For problbjn€linton can choose
between concentrating on her voting record or her stateffibe ready from day 1”.
Her team estimates the effect as given in Equation (2). Brol{t) is controlled by
Obama, who has the choice between his “change” messageackiag Clinton for her
position on Iraq, see Equation (3).

X,=034+07X2 Vv 0.1+09X, (1)
X, =014+09X., V 04X,+0.3X.+0.3 2)
X.=05X, +03X2+02 A 05X, +04X,X, +0.1X, (3)

What should Clinton and Obama do? What are the extinction pititfies, assuming
perfect strategies? In the next sections we show how toeftigi solve these problems.

4 TheT-Method

Assume thatf denotes a feasible min-max-MSP. In this section we presanfiist
method for computing:.f approximatively. We call itr-method. This method com-
putes, for each approximai€?, the next approximate(“+1) as the least fixpoint of a
piecewise linear approximatiof( f, (") v (V) (see below) off atx(*). This approx-
imation is a system dinear min-max-polynomials where all coefficients of monomials



of degreel are non-negative. Here, we call such a systempaotone linear min-max-
systen{min-max-MLSor short). Note that a min-max-ML$ is not necessarily a min-
max-MSP, since negative coefficients of monomials of de@raee allowed, e.g. the
min-max-MLS f(z1) = z; — 1 is not a min-max-MSP.

In [9] @ min-max-MLS f is considered as a system of equations (cadlestem of
rational equationsn [9]) which we denote byX = f(X) in vector form. We identify
a min-max-MLSf with its interpretation as a function from toR" (R denotes the
complete latticeR U {—o0, co0}). Since f is monotone oR”, it has a least fixpoint
1f € R" which can be computed using the strategy improvement ahgorirom [9].

We now define the min-max-MLE&(f,y), a piecewise linear approximation ¢f
aty. As a first step, let us consider a monotone polynorfiialR%, — R>(. Given
some approximatg € RZ,, a linear approximatior(f,y) : R" — R of f aty is
given by the first order Taylor approximationzati.e.,

L y) () :=fy)+ fy)(z—y), @R

This is precisely the linear approximation which is used N@wton’s method. Now
consider a max-polynomigl = f; vV --- V fi : R™ — R. We define the approximation
L(f,y) :R" = Rof faty by L(f,y) := L(f1,y) V-V L(fr,y). We emphasize
that in this case£( f, y) is in general not a linear function but a linear max-polynaimi
Accordingly, for a min-MSPf = f; A -+ A fr : R — R, we definel(f,y) :=
L(fi,y) A+ ANL(fr,y). Inthis casel(f,y) is a linear min-polynomial. Finally, for
a min-max-MSPf : R — R"”, we define the approximatia8(f,y) : R — R™ of
fatyby £(f,y) = (L(f1,9),---,L(fr,y)) " Whichis a min-max-MLS.

Example 4.Consider the min-max-MSPFf from Example 1. The approximation
L(f,(3,3))isgivenbyL(f, (3, 3))(21,22) = (322 + 2 A3, 21 v 2). 0

Using the approximatior(f, (")) we define the operato¥y : R%, — RZ, which
gives us, for an approximate”), the next approximate“+1) by

Ni(z) == p(L(f,z) V), x € RY,.

Observe thall(f, x) V « is still a min-max-MLS (at least after introducing auxiljar
variables in order to eliminate components which contaiandA-operators).

Example 5.In Example 4 we haveVy (3, 3)=n(L(f,(3.3) V (3, 3) ")=(&,2)".
We collect basic properties df; in the following lemma:

Lemma 3. Let f be a feasible min-max-MSP aady € RZ,. Then:
@, f(x) < Nj();
. x = Ny(x) whenever = f(x);
. (Monotonicity ofNs) N (z) < N¢(y) whenever < y;
. Ng(z) < f(Ng(x)) whenever < f(x);
(x) > Ny (x) for everyV-strategyo € X;
Ny (z) < Ng=(x) for everyA-strategyr € I1;
(x) = Ny~ (x) for somen-strategyr € I1.

~NoUhAwWNR



In particular Lemma 3 implies that the least fixpoint\d} is equal to the least fixpoint
of f. Moreover, iteration based d¥iy is at least as fast as Kleene iteration. We therefore
use this operator for computing approximates to the legsofint. Formally, we define:

Definition 1. We call the sequenc(e-gf)) of approximates defined lﬁfk) = N}“(O)
for k € N ther-sequence foif. We drop the subscript if it is clear from the context.

Proposition 1. Let f be a feasible min-max-MSP. Thesequencér(*)) for f (see
definition 1) is monotonically increasing, bounded fromabby. f, and converges to
wf. Moreoverk®) < ) forall k € N.

We now show that the new approximation method convergesaatllaearly to the
least fixpoint. Theorem 6.2 of [3] implies the following leramabout the convergence
of Newton’s method for MSPs, i.e., systems without maximé mmima.

Lemma 4. Let f be a feasible quadratic MSP. The seque(e®)), <y converges lin-
early tou f. More precisely, there is &¢ € N such thatr (s +¢("+1)-2") has at least
valid bits of . f for everyi € N.

We emphasize that linear convergence is the worst case. my practical examples,
in particular if the matrixi — f'(uf) is invertible, Newton's method convergegpo-
nentially. We mean by this that the number of accurate bits of the ajppaiion grows
exponentiallyin the number of iterations.

As a first step towards our main result for this section, wellesama 4 to show
that our approximation method converges linearly whengvisra max-MSPs. In this
case we obtain the same convergence speed as for MSPs.

Lemma 5. Let f be a feasible max-MSP. L&f := {o € X | uf’ = pf}. The setM
is non-empty and-}” > T(f’3 forall o € M andi € N.

Proof. Theorem 1 implies that there exists/astrategyc € X' such thatuf’ = uf.
Thus M is non-empty. Letr € M. By induction onk Lemma 3 impIieSTgf) =

N}“(O) > Nk, (0) = -r;ka) for everyk € N. 0
Combining Lemma 4 and Lemma 5 we get linear convergence farMBPs:

Theorem 2. Let f be a feasible quadratic max-MSP. Thesequencér(¥)) for f (see
definition 1) converges linearly tpf. More precisely, there is & € N such that
7 kst (n41):2") hag at least valid bits of . f for everyi € N.

A direct consequence of Lemma 5 is thatﬂweequencéq-gf)) converges exponentially

if (rgfi) converges exponentially for somec X with . f° = pf. Thisis in particular
the case if the matriXx — (f7)’(nf) is invertible. In order to extend this result to min-
max-MSPs we state the following lemma which enables us &e¢he sequenc(e-;l))

to the sequence(s-y,),) whereuf™ = uf.

Lemma 6. Let f be a feasible min-max-MSP amd denote the number of strategies

7w € II with uf = pf™. There is a constarit € N such that for alli € N there exists
some strategy: € IT with uf = pf™ andrgfl < T;Hm'”.



We now present the main result of this section which statas dbr approximation
method converges at least linearly also in the general casdpr min-max-MSPs.

Theorem 3. Let f be a feasible quadratic min-max-MSP amddenote the number of
strategiesr € IT with uf = puf™. Ther-sequencér¥)) for f (see definition 1) con-
verges linearly tquf. More precisely, there is &¢ € N such thatr (s +im-(n+1)-2%)
has at least valid bits of . f for everyi € N.

The upper bound on the convergence rate provided by Theorisnbythe factorm
worse than the upper bound obtained for MSPs. Sincis the number of strategies
m € IT with uf™ = pf, mis trivially bounded by I7| but is usually much smaller. The
r—sequence{r}”) converges exponentially whenev(ergﬁ’l) converges exponentially
for everyr with uf™ = uf (see [2]). The latter condition is typically satisfied (ske t
discussion after Theorem 2).

In order to determine the approximaté ™) = N¢(7(®) from () we must com-
pute the least fixpoint of the min-max-MLS(f, 7)) v (). This can be done by using
the strategy improvement algorithm from [9]. The algoritlierates over/-strategies.
For each strategy it solves a linear program or alternatitetates over\-strategies.
The number of/-strategies used by this algorithm is trivially boundedHty tumber of
v-strategies fo (£, () v+ which is exponentially in the number otexpressions
occurring in(f,7®) v (. However, we do not know an example for which the al-
gorithm considers more than linearly many strategies.

5 Thewv-Method

The 7-method, presented in the previous section, uses strateggtion overv-
strategies to computd/;(y). This could be expensive, as there may be exponen-
tially many v-strategies. Therefore, we derive an alternative gerzatédin of Newton’s
method that in each step picks the currently most promighstrategy directly, without
strategy iteration.

Consider again a fixed feasible min-max-M$Rvhose least fixpoint we want to
approximate. Assume thgtis some approximation qi f. Instead of applyingVy to
vy, as ther-method, we now choose a strategye X' such thatf(y) = f7(y), and
computeN- (y), whereN- was defined in Section 4 &¢- (y) := u(L(f7,y)Vy).

In the following we writeN,, instead of\V;- if f is understood.

Assume for a moment thgt is a max-MSP and that there is a unique X' such
that f(y) = f°(y). The approximantV; (y) is the result of applying one iteration of
Newton’s method, becaug® f“, y) is not only a linearization of 7, but the first order
Taylor approximation off aty. More preciselyL(f7,y)(z) = f(y)+f (y)-(z—v),
and N, (y) is obtained by solvinge = L£(f°,y)(x). In this sense, the-method is a
more direct generalization of Newton’s method thanith@ethod. Formally, we define
ther-method by a sequence of approximates, ubgequence

Definition 2 (v-sequence)A sequencéy}“)keN is calledv-sequencef a min-max-
MSP f if u}o) = 0 and for eachk there is a strategyr}k) € X with f(ugf“)) =

foj,’“ (y}k)) and,/;kJrl) =N o (ygf“)). We may drop the subscriptffis understood.
f



Notice the nondeterminism here if there is more than omrstrategy that attains
f(v®). The following proposition is analogous to Proposition il atates some basic
properties ofv-sequences.

Proposition 2. Let f be a feasible min-max-MSP. The sequefie€’) is monotoni-
cally increasing, bounded from above py¥, and converges tp f. More precisely, we
havex®) < v < f(L*)) < pE+D < 4 f forall k € N.

The goal of this section is again to strengthen Proposititowirds quantitative con-
vergence results far-sequences. To achieve this goal we again relate the canezg
of v-sequences to the convergence of Newton's method for M3$P&.id an MSP,
Lemma 4 allows to argue about the Newton operat@r when applied to approxi-
matesz < pf. To transfer this result to min-max-MSHKswe need an invariant like
v® < 7" for v-sequences. As a first step to such an invariant we furtheiotse
selection of ther(*), Roughly speaking, the strategy in a componieatonly changed
when it is immediate that componeras not yet reached its fixpoint.

Definition 3 (lazy strategy update).Letz < f°(z) forac € X. We say that’ € X
is obtained fromx and o by alazy strategy updaté f(x) = f",(:c) ando’'(f;) =
o(f;) holds for all componentswith f;(x) = z;. We call av-sequencér(¥)) < lazy
if for all %, the strategyr(*) is obtained from/(*) ando(*—1) by a lazy strategy update.

The key property of lazy-sequences is the following non-trivial invariant.

Lemma 7. Let (v*)),cy be a lazyv-sequence. Then®) < 1f"™ holds for all
ke Nandallr € IT*.

The following example shows that lazy strategy updates ssergial to Lemma 7 even
for max-MSPs.

Example 6.Consider the MSPf (z,y) = (3 V z,zy + 3). Let 0'(0)(% V) =1
andoM (3 v 2) = 2. Then there is as-sequencgr®)) with v»(® = 0, v =
N, (0) = (3,0), v@ = N, (v™)). However, the conclusion of Lemma 7 does not
hold, becausél,0) = v ufe = (o, 1). Notice thatoV) is not obtained by a

1
lazy strategy update, g5(v() = v\, i

Lemma 7 falls short of our subgoal to establist) < ;f°", becausdl \ II* might
be non-empty. In fact, we provide an example in [2] showire t*) < 1" ™ does
not always hold for allr € 11, even whenf”m“ is feasible. Luckily, Lemma 7 will
suffice for our convergence speed result.

The left procedure of Algorithm 1 summarizes lagy v-methodwhich works by
computing lazy-sequences. The following lemma relates#hmethod for min-max-
MSPs to Newton’s method for MSPs.

Lemma 8. Let f be a feasible min-max-MSP aiid(*)) a lazyv-sequence. Let be
the number of strategy paife, 7) € X' x IT with uf = pf°™. Thenm > 1 and there
is a constank,s € N such that, for allk € N, there exist strategies € X, = € IT with

_ o (ktzs+m'k) (k)
uf =unf andyf > T pon-



Algorithm 1 lazy v-method

procedureVy (y)

assumesf is a min-MSPy € R,

returns:u(L(f,y) Vy) -
g < linear min-MSP with

g(d)=L(f,y)y+d) -y

procedure lazy+(f, k)

assumesf is a min-max-MSP

returnsy ™) o(*) obtained byk iterations
of the lazyv-method

v—20 n
o «—anyo € X such thatf(0) = f7(0) U Ry ~NT
for i from 1 to k do g (91""’%") ifwheieo
v Ny (v) 51':{ >0
o < lazy strategy update from ando . Lo ¢ .
od d" — maX|m|zexl~+ -+ 4z, subject
retum v, o to0 <x <g(x)bylLP

return y + d*

In typical cases, i.e., if — (f°7) (uf) is invertible for allc € X andw € IT with
wf’™ = nf, Newton's method converges exponentially. The followihgdrem cap-
tures the worst-case, in which the lazymethod still converges linearly.

Theorem 4. Let f be a quadratic feasible min-max-MSP. The lazysequence
(v™*))ren converges linearly tquf. More precisely, letn be the number of strat-
egy pairs(o,m) € X x II with uf = pf°". Then there is &y € N such that
pkgFim(n+1)2") hag at least valid bits of . f for everyi € N.

Next we show that\y-(y) can be computed exactly by solving a single LP. The
right procedure of Algorithm 1 accomplishes this by takimtyantage of the follow-
ing proposition which states thafs- (y) can be determined by computing the least
fixpoint of some linear min-MSHg.

Proposition 3. Lety < f7(y) < uf. ThenNy- (y) = y + ug for the linear min-MSP
gwithg(d) = L(f,y)(y +d) — y.

After having computed the linear min-MSE, Algorithm 1 determines the)-
components ofig. This can be done by performingKleene steps, sincgug); = 0
whenever(n(g"’))i = 0. Let g be the linear min-MSP obtained frognby substituting
the constand for all componentsy; with (ug); = 0. The least fixpoint ofy can be
computed by solving a single LP, as implied by the followieghma. The correctness
of Algorithm 1 follows.

Lemma 9. Let g be a linear min-MSP such that = 0 whenever(ug); = 0 for all
components. Thenug is the greatest vectar with x < g(x).

The following theorem is a direct consequence of Lemma 7Herdase wherél =
IT*. It shows the second major advantage of the laaypethod, namely, that that the
strategies () are meaningful in terms of games.

Theorem 5. Let IT = IT*. Let (v(*)),cy be a lazyv-sequence. Then®) < ufe”
holds for allk € N.

As (v®)) converges to.f, the max-strategy (*) can be consideredoptimal In terms
of games, Theorem 5 states that the strateé§yguarantees the max-player an outcome
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of at leasty*). It is open whether an analogous theorem holds forrtimeethod.

Application to the primaries examplé/e solved the equation system of Section 3 ap-
proximatively by performing iterations of the lazy,-method. Using Theorem 5 we
found that Clinton can extinguish a problem (a) individu@hsa probability of at least
X, = 0.492 by concentrating on her program and her “ready from day 1"sags.
(More than 70 Kleene iterations would be needed to infer #ats at least).49.) As

v®) seems to solve above equation system quite well in the seagpf(v®)) — v |

is small, we are pretty sure about Obama'’s optimal strategyshould talk about Iraq.
As uﬁ?l) > 0.38 ando(?) mapsf; t0 0.3 + 0.7X?, Clinton’s team can use Theorem 5 to
infer thatX, > 0.38 by showing emotions and using her “ready from day 1” message.

6 Discussion

In order to compare our two methods in terms of convergeneedspassume that
f denotes a feasible min-max-MSP. Sinkg(x) > Ny- (Lemma 3.5), it follows

that 77 > v holds for alli € N. This means that the--method is as least
as fast as thes-method if one counts the number of approximation stepst,Nex
construct an example which shows that the number of appatiom steps needed
by the lazyv-method can be much larger than the respective number nédsdtt:
T-method. It is parameterized with an arbitrdtye N and given byf(z1,22) =

(z2 A2, 23 +0.25Vay + 2*2(’“+1>)T. Since the constarz—2(*+1) is represented
using O(k) bits, it is of size linear ink. It can be shown (see [2]) that the lary
method needs at leaststeps. More precisely,f — 7(*) > (1.5,1.95). Ther-method
needs exactlg steps.

We now compare our approaches with the tool PReMo [14]. PRexoloys 4 dif-
ferent techniques to approximatef for min-max-MSPsf: It uses Newton’s method
only for MSPs without min or max. In this case both of our meh@oincide with
Newton’s method. For min-max-MSPs, PReMo uses Kleendiiteraound-robin iter-
ation (called Gauss-Seidel in [14]), and an “optimistictigat of Kleene which is not
guaranteed to converge. In the following we compare ourrétgus only with Kleene
iteration, as our algorithms are guaranteed to convergeaanodind-robin step is not
faster tham Kleene steps.

Our methods improve on Kleene iteration in the senseafiat< =) v holds
for all i € N, and our methods converge linearly, whereas Kleene iteratbes not
converge linearly in general. For example, consider the MSP = %x2+% with g =
1. Kleene iteration needs exponentially many iterationg foits [4], whereas Newton’s
method gives exactly 1 bit per iteration. For the slightlydiied MSPg(x) = g(z) A1
which has the same fixpoint, PReMo no longer uses Newton’sadetsj contains a
minimum. Our algorithms still produce exactly 1 bit per é&gon.

In the case of linear min-max systems our methods compufgrdugse solution and
not only an approximation. This applies, for example, torttex-linear system of [14]
describing the expected time of termination of a nondeteistic variant of Quicksort.
Notice that Kleene iteration does not compute the precikgisn (except for trivial
instances), even for linear MSPs without min or max.
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We implemented our algorithms prototypically in Maple arah them on the
quadratic nonlinear min-max-MSP describing the termoratprobabilities of a re-
cursive simple stochastic game. This game stems from themggasuite of PReMo
(rssg2. c) and we used PReMo to produce the equations. Both of ouritigm
reached the least fixpoint after 2 iterations. So we couldpdgmthe precisg f and op-
timal strategies for both players, whereas PReMo compuiigsapproximations of. f.

7 Conclusion

We have presented the first methods for approximatively caimg the least fixpoint
of min-max-MSPs, which are guaranteed to converge at lgasarly. Both of them
are generalizations of Newton's method. Whereas#thmethod converges faster in
terms of number of approximation steps, one approximatiep ef ther-method is
cheaper. Furthermore, we have shown thattireethod computes-optimal strategies
for games. Whether such a result can also be establishedforriethod is still open.
A direction for future research is to evaluate our methodsractice. In particular, the
influence of imprecise computation through floating poiithanetic should be studied.
It would also be desirable to find a bound on the “threshélgl”

AcknowledgementWe thank the anonymous referees for valuable comments.

References

1. A. Condon. The complexity of stochastic gamkd. and Comp.96(2):203-224, 1992.

2. J. Esparza, T. Gawlitza, S. Kiefer, and H. Seidl. Approximative ogstior monotone sys-
tems of min-max-polynomial equations. Technical report, Technisktiersitit Minchen,
Institut fur Informatik, February 2008.

3. J. Esparza, S. Kiefer, and M. Luttenberger. Convergencehibicssof Newton’s method for
monotone polynomial equations. froceedings of STACBages 289-300, 2008.

4. K. Etessami and M. Yannakakis. Recursive Markov chains, agtichgrammars, and mono-
tone systems of nonlinear equations SFACSpages 340—-352, 2005.

5. K. Etessami and M. Yannakakis. Recursive Markov decisiongas®s and recursive
stochastic games. roc. ICALP 2005volume 3580 oL NCS Springer, 2005.

6. K. Etessamiand M. Yannakakis. Efficient qualitative analysis osessf recursive Markov
decision processes and simple stochastic gameSTACSpages 634—645, 2006.

7. J. Filar and K. VriezeCompetitive Markov Decision process&pringer, 1997.

8. T. Gawlitza and H. Seidl. Precise fixpoint computation through strateggtiga. InEuro-
pean Symposium on Programming (ESAMCS 4421, pages 300-315. Springer, 2007.

9. T. Gawlitza and H. Seidl. Precise relational invariants through strategyide. In J. Duparc
and T. A. Henzinger, editor§&SL, volume 4646 oL NCS pages 23—40. Springer, 2007.

10. T. Harris.The Theory of Branching Process&pringer, 1963.

11. S. Kiefer, M. Luttenberger, and J. Esparza. On the conveegehblewton’s method for
monotone systems of polynomial equationsSIFOC pages 217-226. ACM, 2007.

12. A. Neyman and S. SorinStochastic Games and Application&luwer Academic Press,
2003.

13. J. Ortega and W. Rheinboldterative solution of nonlinear equations in several variables
Academic Press, 1970.

14. D. Wojtczak and K. Etessami. PReMo: An analyzer for probabilistangve models. In
Proc. of TACASvolume 4424 o£NCS pages 66—71. Springer, 2007.

12



