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Abstract. A monotone system of min-max-polynomial equations(min-max-
MSPE) over the variablesX1, . . . , Xn has for everyi exactly one equation
of the formXi = fi(X1, . . . , Xn) where eachfi(X1, . . . , Xn) is an expres-
sion built up from polynomials with non-negative coefficients, minimum- and
maximum-operators. The question of computing least solutions of min-max-
MSPEs arises naturally in the analysis ofrecursive stochastic games[5, 6, 14].
Min-max-MSPEs generalize MSPEs for which convergence speed results of
Newton’s method are established in [11, 3]. We present the first methods for ap-
proximatively computing least solutions of min-max-MSPEs which converge at
least linearly. Whereas the first one converges faster, a single step ofthe second
method is cheaper. Furthermore, we computeǫ-optimal positional strategies for
the player who wants to maximize the outcome in a recursive stochastic game.

1 Introduction

In this paper we studymonotone systems of min-max polynomial equations(min-max-
MSPEs). A min-max-MSPE over the variablesX1, . . . ,Xn contains for every1 ≤ i ≤
n exactly one equation of the formXi = fi(X1, . . . ,Xn) where everyfi(X1, . . . ,Xn)
is an expression built up from polynomials with non-negative coefficients, minimum-
and maximum-operators. An example of such an equation isX1 = 3X1X2+5X2

1∧4X2

(where∧ is the minimum-operator). The variables range over non-negative reals. Min-
max-MSPEs are called monotone becausefi is a monotone function in all arguments.

Min-max-MSPEs naturally appear in the study of two-player stochastic games and
competitive Markov decision processes, in which, broadly speaking, the next move is
decided by one of the two players or by tossing a coin, depending on the game’s posi-
tion (see e.g. [12, 7]). The min and max operators model the competition between the
players. The product operator, which leads to non-linear equations, allows to deal with
recursive stochastic games [5, 6], a class of games with an infinite number of positions,
and having as special caseextinction games, games in which players influence with
their actions the development of a population whose membersreproduce and die, and
the player’s goals are to extinguish the population or keep it alive (see Section 3).

Min-max-MSPEs generalize several other classes of equation systems. If product is
disallowed, we obtain systems of min-maxlinear equations, which appear in classical
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two-person stochastic games with a finite number of game positions. The problem of
solving these systems has been thoroughly studied [1, 8, 9].If both min andmax are
disallowed, we obtain monotone systems of polynomial equations, which are central
to the study of recursive Markov chains and probabilistic pushdown systems, and have
been recently studied in [4, 11, 3]. If only one ofmin or max is disallowed, we obtain
a class of systems corresponding to recursive Markov decision processes [5]. All these
models have applications in the analysis of probabilistic programs with procedures [14].

In vector form we denote a min-max-MSPE byX = f(X) whereX denotes the
vector(X1, . . . ,Xn) andf denotes the vector(f1, . . . , fn). By Kleene’s theorem, if
a min-max-MSPE has a solution then it also has aleastone, denoted byµf , which
is also the relevant solution for the applications mentioned above. Kleene’s theorem
also ensures that the iterative processκ(0) = 0, κ(k+1) = f(κ(k)), k ∈ N, the
so-called Kleene sequence, converges toµf . However, this procedure can converge
very slowly: in the worst case, the number of accurate bits ofthe approximation grows
with the logarithmof the number of iterations (cf. [4]). Thus, the goal is to replace the
functionf by an operatorG : R

n → R
n such that the respective iterative process also

converges toµf but faster. In [4, 11, 3] this problem was studied for min-max-MSPEs
without themin andmax operator. There,G was chosen as one step of the well-known
Newton’s method (cf. for instance [13]). This means that, for a given approximatex(k),
the next approximatex(k+1) = G(x(k)) is determined by theunique solutionof a
linear equation system which is obtained from the first orderTaylor approximation off
atx(k). It was shown that this choice guaranteeslinear convergence, i.e., the number of
accurate bits growslinearly in the number of iterations. Notice that when characterizing
the convergence behavior the term linear does not refer to the size off .

However, this technique no longer works for arbitrary min-max-MSPEs. If we ap-
proximatef at x(k) through its first order Taylor approximation atx(k) there is no
guarantee that the next approximate still lies below the least solution, and the sequence
of approximants may even diverge. For this reason, the PReMotool [14] uses round-
robin iteration for min-max-MSPEs, an optimization of Kleene iteration. Unfortunately,
this technique also exhibits “logarithmic” convergence behavior in the worst case.

In this paper we overcome the problem of Newton’s method. Instead of approxi-
matingf (at the current approximatex(k)) by a linear function, both of our methods
approximatef by apiecewiselinear function. In contrast to the applications of New-
ton’s method in [4, 11, 3], this approximation may not have aunique fixpoint, but it has
a least fixpointwhich we use as the next approximatex(k+1) = G(x(k)). Our first
method uses an approximation off atx(k) whose least fixpoint can be determined us-
ing the algorithm forsystems of rational equationsfrom [9]. The approximation off at
x(k) used by our second method allows to use linear programming tocomputex(k+1).
Our methods are the first algorithms for approximatively computingµf which converge
at least linearly, provided thatf is quadratic, an easily achievable normal form.

The rest of the paper is organized as follows. In Section 2 we introduce basic con-
cepts and state some important facts about min-max-MSPEs. Aclass of games which
can be analyzed using our techniques is presented in Section3. Our main contribution,
the two approximation methods, is presented and analyzed inSections 4 and 5. In Sec-
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tion 6 we study the relation between our two approaches and compare them to previous
work. We conclude in Section 7. Missing proofs can be found ina technical report [2].

2 Notations, Basic Concepts and a Fundamental Theorem

As usual,R andN denote the set of real and natural numbers. We assume0 ∈ N. We
write R≥0 for the set of non-negative real numbers. We use bold lettersfor vectors, e.g.
x ∈ R

n. In particular0 denotes the vector(0, . . . , 0). The transpose of a matrix or a
vector is indicated by the superscript⊤. We assume that the vectorx ∈ R

n has the
componentsx1, . . . , xn. Similarly, thei-th component of a functionf : R

n → R
m

is denoted byfi. As in [3], we say thatx ∈ R
n hasi ∈ N valid bits of y ∈ R

n iff
|xj − yj | ≤ 2−i|yj | for j = 1, . . . , n. We identify a linear function fromR

n to R
m

with its representation as a matrix fromRm×n. The identity matrix is denoted byI.
The Jacobianof a functionf : R

n → R
m at x ∈ R

n is the matrix of all first-order
partial derivatives off atx, i.e., them×n-matrix with the entry∂fi

∂Xj
(x) in thei-th row

and thej-th column. We denote it byf ′(x).
The partial order≤ on R

n is defined by settingx ≤ y iff xi ≤ yi for all i =
1, . . . , n. We writex < y iff x ≤ y andx 6= y. The operators∧ and∨ are defined by
x ∧ y := min{x, y} andx ∨ y := max{x, y} for x, y ∈ R. These operators are also
extended component-wise toRn and point-wise toRn-valued functions. A function
f : D ⊆ R

n → R
m it called monotoneon M ⊆ D iff f(x) ≤ f(y) for every

x,y ∈ M with x ≤ y. Let X ⊆ R
n andf : X → X. A vectorx ∈ X is called

fixpoint of f iff x = f(x). It is the least fixpointof f iff y ≥ x for every fixpoint
y ∈ X of f . If it exists we denote the least fixpoint off by µf . We callf feasibleiff
f has some fixpointx ∈ X.

Let us fix a setX = {X1, . . . ,Xn} of variables. We call a vectorf = (f1, . . . , fm)
of polynomialsf1, . . . , fm in the variablesX1, . . . ,Xn a system of polynomials. f is
calledlinear (resp.quadratic) iff the degree of eachfi is at most1 (resp.2), i.e., every
monomial contains at most one variable (resp. two variables). As usual, we identifyf
with its interpretation as a function fromRn to R

m. As in [11, 3] we callf amonotone
system of polynomials(MSP for short) iff all coefficients are non-negative.

Min-max-MSPs.Given polynomialsf1, . . . , fk we callf1 ∧ · · · ∧ fk amin-polynomial
and f1 ∨ · · · ∨ fk a max-polynomial. A function that is either a min- or a max-
polynomial is also calledmin-max-polynomial. We call f = (f1, . . . , fn) a system
of min-polynomialsiff every componentfi is a min-polynomial. The definition ofsys-
tems of max-polynomialsandsystems of min-max-polynomialsis analogous. A system
of min-max-polynomials is calledlinear (resp.quadratic) iff all occurring polynomials
are linear (resp.quadratic). By introducing auxiliary variables every system of min-
max-polymials can be transformed into aquadraticone in time linear in the size of the
system (cf. [11]). A system of min-max-polynomials where all coefficients are from
R

n
≥0 is called amonotone system of min-max-polynomials(min-max-MSP) for short.

The termsmin-MSPandmax-MSPare defined analogously.

Example 1.f(x1, x2) = (1
2x2

2 + 1
2 ∧ 3, x1 ∨ 2)⊤ is a quadratic min-max-MSP.

3



A min-max-MSPf = (f1, . . . , fn)⊤ can be considered as a mapping fromR
n
≥0 to

R
n
≥0. The Kleene sequence(κ(k)

f )k∈N is defined byκ(k)
f := fk(0), k ∈ N. We have:

Lemma 1. Let f : R
n
≥0 → R

n
≥0 be a min-max-MSP. Then: (1)f is monotone and

continuous onRn
≥0; and (2) If f is feasible (i.e.,f has some fixpoint), thenf has a

least fixpointµf andµf = limk→∞ κ
(k)
f .

Strategies.Assume thatf denotes a system of min-max-polynomials. A∨-strategyσ
for f is a function that maps every max-polynomialfi = fi,1 ∨ · · · ∨ fi,ki

occurring
in f to one of thefi,j ’s and every min-polynomialfi to fi. We also writefσ

i for σ(fi).
Accordingly, a∧-strategyπ for f is a function that maps every min-polynomialfi =
fi,1 ∧ · · · ∧ fi,k occurring inf to one of thefi,j ’s and every max-polynomialfi to
fi. We denote the set of∨-strategies forf by Σf and the set of∧-strategies forf by
Πf . Fors ∈ Σf ∪ Πf , we writefs for (fs

1, . . . ,f
s
n)⊤. We defineΠ∗

f := {π ∈ Πf |
fπ is feasible}. We drop the subscript whenever it is clear from the context.

Example 2.Considerf from Example 1. Thenπ : 1
2x2

2 + 1
2 ∧ 3 7→ 3, x1 ∨ 2 7→ x1 ∨ 2

is a∧-strategy. The max-MSPfπ is given byfπ(x1, x2)
⊤ = (3, x1 ∨ 2)⊤. ⊓⊔

We collect some elementary facts concerning strategies.

Lemma 2. Let f be a feasible min-max-MSP. Then (1)µfσ ≤ µf for everyσ ∈ Σ;
(2) µfπ ≥ µf for everyπ ∈ Π∗; (3) µfπ = µf for someπ ∈ Π∗.

In [5] the authors consider a subclass of recursive stochastic games for which they
prove that a positional optimal strategy exists for the player who wants to maximize
the outcome (Theorem 2). The outcome of such a game is the least fixpoint of some
min-max-MSPf . In our setting, Theorem 2 of [5] implies that there exists a∨-strategy
σ such thatµfσ = µf — provided thatf is derived from such a recursive stochastic
game. Example 3 shows that this property does not hold for arbitrary min-max-MSPs.

Example 3.Considerf from Example 1. Letσ1, σ2 ∈ Σ be defined byσ1(x1∨2) = x1

andσ2(x1 ∨ 2) = 2. Thenµfσ1 = (1, 1)⊤, µfσ2 = (5
2 , 2)⊤ andµf = (3, 3)⊤. ⊓⊔

The proof of the following fundamental result is inspired bythe proof of Theorem 2 in
[5]. Although the result looks very natural it is non-trivial to prove.

Theorem 1. Letf be a feasible max-MSP. Thenµfσ = µf for someσ ∈ Σ.

3 A Class of Applications: Extinction Games

In order to illustrate the interest of min-max-MSPs we considerextinction games, which
are special stochastic games. Consider a world ofn different speciess1, . . . , sn. Each
speciessi is controlled by one of two adversarial players. For eachsi there is a non-
empty setAi of actions. An actiona ∈ Ai replaces a single individual of speciessi

by other individuals specified by the actiona. The actions can be probabilistic. E.g.,
an action could transform an adult rabbit to zero individuals with probability0.2, to an
adult rabbit with probability0.3 and to an adult and a baby rabbit with probability0.5.
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Another action could transform an adult rabbit to a fat rabbit. The max-player (min-
player) wants to maximize (minimize) the probability that some initial population is
extinguished. During the game each player continuously chooses an individual of a
speciessi controlled by her/him and applies an action fromAi to it. Note that actions on
different species are never in conflict and the execution order is irrelevant. What is the
probability that the population is extinguished if the players follow optimal strategies?

To answer those questions we set up a min-max-MSPf with one min-max-
polynomial for each species, thereby following [10, 5]. ThevariablesXi represent the
probability that a population with only a single individualof speciessi is extinguished.
In the rabbit example we haveXadult = 0.2 + 0.3Xadult+ 0.5XadultXbaby∨Xfat, assum-
ing that the adult rabbits are controlled by the max-player.The probability that an initial
population withpi individuals of speciessi is extinguished is given by

∏n
i=1((µf)i)

pi .
The stochastic termination games of [5, 6, 14] can be considered as extinction games.
In the following we present another instance.

The primaries game.Hillary Clinton has to decide her strategy in the primaries.Her
team estimates that undecided voters have not yet decided tovote for her for three
possible reasons: they consider her (a) cold and calculating, (b) too much part of Wash-
ington’s establishment, or (c) they listen to Obama’s campaign. So the team decides
to model those problems as species in an extinction game. Thelarger the population
of a species, the more influenced is an undecided voter by the problem. The goal of
Clinton’s team is to maximize the extinction probabilities.

Clinton’s possible actions for problem (a) areshowing emotionsor concentrating
on her program. If she shows emotions, her team estimates that the individual of prob-
lem (a) is removed with probability0.3, but with probability0.7 the action backfires
and produces yet another individual of (a). This and the effect of concentrating on her
program can be read off from Equation (1) below. For problem (b), Clinton can choose
between concentrating on her voting record or her statement“I’ll be ready from day 1”.
Her team estimates the effect as given in Equation (2). Problem (c) is controlled by
Obama, who has the choice between his “change” message, or attacking Clinton for her
position on Iraq, see Equation (3).

Xa = 0.3 + 0.7X2
a ∨ 0.1 + 0.9Xc (1)

Xb = 0.1 + 0.9Xc ∨ 0.4Xb + 0.3Xc + 0.3 (2)

Xc = 0.5Xb + 0.3X2
b + 0.2 ∧ 0.5Xa + 0.4XaXb + 0.1Xb (3)

What should Clinton and Obama do? What are the extinction probabilities, assuming
perfect strategies? In the next sections we show how to efficiently solve these problems.

4 Theτ -Method

Assume thatf denotes a feasible min-max-MSP. In this section we present our first
method for computingµf approximatively. We call itτ -method. This method com-
putes, for each approximatex(i), the next approximatex(i+1) as the least fixpoint of a
piecewise linear approximationL(f ,x(i))∨x(i) (see below) off atx(i). This approx-
imation is a system oflinear min-max-polynomials where all coefficients of monomials
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of degree1 are non-negative. Here, we call such a system amonotone linear min-max-
system(min-max-MLSfor short). Note that a min-max-MLSf is not necessarily a min-
max-MSP, since negative coefficients of monomials of degree0 are allowed, e.g. the
min-max-MLSf(x1) = x1 − 1 is not a min-max-MSP.

In [9] a min-max-MLSf is considered as a system of equations (calledsystem of
rational equationsin [9]) which we denote byX = f(X) in vector form. We identify
a min-max-MLSf with its interpretation as a function fromR

n
to R

n
(R denotes the

complete latticeR ∪ {−∞,∞}). Sincef is monotone onR
n
, it has a least fixpoint

µf ∈ R
n

which can be computed using the strategy improvement algorithm from [9].
We now define the min-max-MLSL(f ,y), a piecewise linear approximation off

at y. As a first step, let us consider a monotone polynomialf : R
n
≥0 → R≥0. Given

some approximatey ∈ R
n
≥0, a linear approximationL(f,y) : R

n → R of f at y is
given by the first order Taylor approximation aty, i.e.,

L(f,y)(x) := f(y) + f ′(y)(x − y), x ∈ R
n.

This is precisely the linear approximation which is used forNewton’s method. Now
consider a max-polynomialf = f1 ∨ · · · ∨ fk : R

n → R. We define the approximation
L(f,y) : R

n → R of f at y by L(f,y) := L(f1,y) ∨ · · · ∨ L(fk,y). We emphasize
that in this case,L(f,y) is in general not a linear function but a linear max-polynomial.
Accordingly, for a min-MSPf = f1 ∧ · · · ∧ fk : R

n → R, we defineL(f,y) :=
L(f1,y) ∧ · · · ∧ L(fk,y). In this caseL(f,y) is a linear min-polynomial. Finally, for
a min-max-MSPf : R

n → R
n, we define the approximationL(f ,y) : R

n → R
n of

f aty by L(f ,y) := (L(f1,y), . . . ,L(fn,y))⊤ which is a min-max-MLS.

Example 4.Consider the min-max-MSPf from Example 1. The approximation
L(f , ( 1

2 , 1
2 )) is given byL(f , ( 1

2 , 1
2 ))(x1, x2) =

(
1
2x2 + 3

8 ∧ 3, x1 ∨ 2
)
. ⊓⊔

Using the approximationL(f ,x(i)) we define the operatorNf : R
n
≥0 → R

n
≥0 which

gives us, for an approximatex(i), the next approximatex(i+1) by

Nf (x) := µ(L(f ,x) ∨ x), x ∈ R
n
≥0.

Observe thatL(f ,x) ∨ x is still a min-max-MLS (at least after introducing auxiliary
variables in order to eliminate components which contain∨- and∧-operators).

Example 5.In Example 4 we have:Nf ( 1
2 , 1

2 )=µ(L(f , ( 1
2 , 1

2 )) ∨ ( 1
2 , 1

2 )⊤)=(11
8 , 2)⊤.

We collect basic properties ofNf in the following lemma:

Lemma 3. Letf be a feasible min-max-MSP andx,y ∈ R
n
≥0. Then:

1. x,f(x) ≤ Nf (x);
2. x = Nf (x) wheneverx = f(x);
3. (Monotonicity ofNf ) Nf (x) ≤ Nf (y) wheneverx ≤ y;
4. Nf (x) ≤ f(Nf (x)) wheneverx ≤ f(x);
5. Nf (x) ≥ Nfσ (x) for every∨-strategyσ ∈ Σ;
6. Nf (x) ≤ Nfπ (x) for every∧-strategyπ ∈ Π;
7. Nf (x) = Nfπ (x) for some∧-strategyπ ∈ Π.
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In particular Lemma 3 implies that the least fixpoint ofNf is equal to the least fixpoint
of f . Moreover, iteration based onNf is at least as fast as Kleene iteration. We therefore
use this operator for computing approximates to the least fixpoint. Formally, we define:

Definition 1. We call the sequence(τ (k)
f ) of approximates defined byτ (k)

f := N k
f (0)

for k ∈ N theτ -sequence forf . We drop the subscript if it is clear from the context.

Proposition 1. Let f be a feasible min-max-MSP. Theτ -sequence(τ (k)) for f (see
definition 1) is monotonically increasing, bounded from above byµf , and converges to
µf . Moreover,κ(k) ≤ τ (k) for all k ∈ N.

We now show that the new approximation method converges at least linearly to the
least fixpoint. Theorem 6.2 of [3] implies the following lemma about the convergence
of Newton’s method for MSPs, i.e., systems without maxima and minima.

Lemma 4. Letf be a feasible quadratic MSP. The sequence(τ (k))k∈N converges lin-
early toµf . More precisely, there is akf ∈ N such thatτ (kf +i·(n+1)·2n) has at leasti
valid bits ofµf for everyi ∈ N.

We emphasize that linear convergence is the worst case. In many practical examples,
in particular if the matrixI − f ′(µf) is invertible, Newton’s method convergesexpo-
nentially. We mean by this that the number of accurate bits of the approximation grows
exponentiallyin the number of iterations.

As a first step towards our main result for this section, we useLemma 4 to show
that our approximation method converges linearly wheneverf is a max-MSPs. In this
case we obtain the same convergence speed as for MSPs.

Lemma 5. Letf be a feasible max-MSP. LetM := {σ ∈ Σ | µfσ = µf}. The setM

is non-empty andτ (i)
f ≥ τ

(i)
fσ for all σ ∈ M andi ∈ N.

Proof. Theorem 1 implies that there exists a∨-strategyσ ∈ Σ such thatµfσ = µf .
Thus M is non-empty. Letσ ∈ M . By induction onk Lemma 3 impliesτ (k)

f =

N k
f (0) ≥ N k

fσ (0) = τ
(k)
fσ for everyk ∈ N. ⊓⊔

Combining Lemma 4 and Lemma 5 we get linear convergence for max-MSPs:

Theorem 2. Letf be a feasible quadratic max-MSP. Theτ -sequence(τ (k)) for f (see
definition 1) converges linearly toµf . More precisely, there is akf ∈ N such that
τ (kf +i·(n+1)·2n) has at leasti valid bits ofµf for everyi ∈ N.

A direct consequence of Lemma 5 is that theτ -sequence(τ (i)
f ) converges exponentially

if (τ
(i)
fσ ) converges exponentially for someσ ∈ Σ with µfσ = µf . This is in particular

the case if the matrixI − (fσ)′(µf) is invertible. In order to extend this result to min-
max-MSPs we state the following lemma which enables us to relate the sequence(τ (i)

f )

to the sequences(τ (i)
fπ ) whereµfπ = µf .

Lemma 6. Let f be a feasible min-max-MSP andm denote the number of strategies
π ∈ Π with µf = µfπ. There is a constantk ∈ N such that for alli ∈ N there exists
some strategyπ ∈ Π with µf = µfπ andτ

(i)
fπ ≤ τ

(k+m·i)
f .
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We now present the main result of this section which states that our approximation
method converges at least linearly also in the general case,i.e., for min-max-MSPs.

Theorem 3. Letf be a feasible quadratic min-max-MSP andm denote the number of
strategiesπ ∈ Π with µf = µfπ. Theτ -sequence(τ (k)) for f (see definition 1) con-
verges linearly toµf . More precisely, there is akf ∈ N such thatτ (kf +i·m·(n+1)·2n)

has at leasti valid bits ofµf for everyi ∈ N.

The upper bound on the convergence rate provided by Theorem 2is by the factorm
worse than the upper bound obtained for MSPs. Sincem is the number of strategies
π ∈ Π with µfπ = µf , m is trivially bounded by|Π| but is usually much smaller. The
τ -sequence(τ (i)

f ) converges exponentially whenever(τ
(i)
fπ ) converges exponentially

for everyπ with µfπ = µf (see [2]). The latter condition is typically satisfied (see the
discussion after Theorem 2).

In order to determine the approximateτ (i+1) = Nf (τ (i)) from τ (i) we must com-
pute the least fixpoint of the min-max-MLSL(f , τ (i))∨τ (i). This can be done by using
the strategy improvement algorithm from [9]. The algorithmiterates over∨-strategies.
For each strategy it solves a linear program or alternatively iterates over∧-strategies.
The number of∨-strategies used by this algorithm is trivially bounded by the number of
∨-strategies forL(f , τ (i))∨τ (i) which is exponentially in the number of∨-expressions
occurring inL(f , τ (i)) ∨ τ (i). However, we do not know an example for which the al-
gorithm considers more than linearly many strategies.

5 Theν-Method

The τ -method, presented in the previous section, uses strategy iteration over∨-
strategies to computeNf (y). This could be expensive, as there may be exponen-
tially many∨-strategies. Therefore, we derive an alternative generalization of Newton’s
method that in each step picks the currently most promising∨-strategy directly, without
strategy iteration.

Consider again a fixed feasible min-max-MSPf whose least fixpoint we want to
approximate. Assume thaty is some approximation ofµf . Instead of applyingNf to
y, as theτ -method, we now choose a strategyσ ∈ Σ such thatf(y) = fσ(y), and
computeNfσ (y), whereNfσ was defined in Section 4 asNfσ (y) := µ(L(fσ,y)∨y).
In the following we writeNσ instead ofNfσ if f is understood.

Assume for a moment thatf is a max-MSP and that there is a uniqueσ ∈ Σ such
thatf(y) = fσ(y). The approximantNσ(y) is the result of applying one iteration of
Newton’s method, becauseL(fσ,y) is not only a linearization offσ, but the first order
Taylor approximation off aty. More precisely,L(fσ,y)(x) = f(y)+f ′(y)·(x−y),
andNσ(y) is obtained by solvingx = L(fσ,y)(x). In this sense, theν-method is a
more direct generalization of Newton’s method than theτ -method. Formally, we define
theν-method by a sequence of approximates, theν-sequence.

Definition 2 (ν-sequence).A sequence(ν(k)
f )k∈N is calledν-sequenceof a min-max-

MSP f if ν
(0)
f = 0 and for eachk there is a strategyσ(k)

f ∈ Σ with f(ν
(k)
f ) =

fσ
(k)
f (ν

(k)
f ) andν

(k+1)
f = N

σ
(k)
f

(ν
(k)
f ). We may drop the subscript iff is understood.
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Notice the nondeterminism here if there is more than one∨-strategy that attains
f(ν(k)). The following proposition is analogous to Proposition 1 and states some basic
properties ofν-sequences.

Proposition 2. Let f be a feasible min-max-MSP. The sequence(ν(k)) is monotoni-
cally increasing, bounded from above byµf , and converges toµf . More precisely, we
haveκ(k) ≤ ν(k) ≤ f(ν(k)) ≤ ν(k+1) ≤ µf for all k ∈ N.

The goal of this section is again to strengthen Proposition 2towards quantitative con-
vergence results forν-sequences. To achieve this goal we again relate the convergence
of ν-sequences to the convergence of Newton’s method for MSPs. If f is an MSP,
Lemma 4 allows to argue about the Newton operatorNf when applied to approxi-
matesx ≤ µf . To transfer this result to min-max-MSPsf we need an invariant like

ν(k) ≤ µfσ(k)

for ν-sequences. As a first step to such an invariant we further restrict the
selection of theσ(k). Roughly speaking, the strategy in a componenti is only changed
when it is immediate that componenti has not yet reached its fixpoint.

Definition 3 (lazy strategy update).Letx ≤ fσ(x) for a σ ∈ Σ. We say thatσ′ ∈ Σ

is obtained fromx and σ by a lazy strategy updateif f(x) = fσ′

(x) and σ′(fi) =
σ(fi) holds for all componentsi with fi(x) = xi. We call aν-sequence(ν(k))k∈N lazy
if for all k, the strategyσ(k) is obtained fromν(k) andσ(k−1) by a lazy strategy update.

The key property of lazyν-sequences is the following non-trivial invariant.

Lemma 7. Let (ν(k))k∈N be a lazyν-sequence. Thenν(k) ≤ µfσ(k)π holds for all
k ∈ N and allπ ∈ Π∗.

The following example shows that lazy strategy updates are essential to Lemma 7 even
for max-MSPs.

Example 6.Consider the MSPf(x, y) = ( 1
2 ∨ x, xy + 1

2 ). Let σ(0)( 1
2 ∨ x) = 1

2

and σ(1)( 1
2 ∨ x) = x. Then there is aν-sequence(ν(k)) with ν(0) = 0, ν(1) =

Nσ(0)(0) = ( 1
2 , 0), ν(2) = Nσ(1)(ν(1)). However, the conclusion of Lemma 7 does not

hold, because( 1
2 , 0) = ν(1) 6≤ µfσ(1)

= (0, 1
2 ). Notice thatσ(1) is not obtained by a

lazy strategy update, asf1(ν
(1)) = ν

(1)
1 . ⊓⊔

Lemma 7 falls short of our subgoal to establishν(k) ≤ µfσ(k)

, becauseΠ \ Π∗ might

be non-empty. In fact, we provide an example in [2] showing thatν(k) ≤ µfσ(k)π does

not always hold for allπ ∈ Π, even whenfσ(k)π is feasible. Luckily, Lemma 7 will
suffice for our convergence speed result.

The left procedure of Algorithm 1 summarizes thelazyν-methodwhich works by
computing lazyν-sequences. The following lemma relates theν-method for min-max-
MSPs to Newton’s method for MSPs.

Lemma 8. Let f be a feasible min-max-MSP and(ν(k)) a lazyν-sequence. Letm be
the number of strategy pairs(σ, π) ∈ Σ × Π with µf = µfσπ. Thenm ≥ 1 and there
is a constantkas ∈ N such that, for allk ∈ N, there exist strategiesσ ∈ Σ, π ∈ Π with
µf = µfσπ andν

(kas+m·k)
f ≥ τ

(k)
fσπ .
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Algorithm 1 lazyν-method

procedure lazy-ν(f , k)
assumes:f is a min-max-MSP
returns:ν(k), σ(k) obtained byk iterations

of the lazyν-method
ν ← 0

σ← anyσ ∈ Σ such thatf (0) = fσ(0)
for i from 1 to k do

ν ←Nfσ (ν)
σ← lazy strategy update fromν andσ

od
return ν, σ

procedureNf (y)
assumes:f is a min-MSP,y ∈ R

n

≥0

returns:µ(L(f , y) ∨ y)
g← linear min-MSP with

g(d) = L(f , y)(y + d)− y

u← κ
(n)
g

g̃← (g̃1, . . . , g̃n)⊤ where

g̃i =

{
0 if ui = 0
gi if ui > 0

d∗←maximizex1 + · · ·+ xn subject
to 0 ≤ x ≤ g̃(x) by 1 LP

return y + d∗

In typical cases, i.e., ifI − (fσπ)′(µf) is invertible for allσ ∈ Σ andπ ∈ Π with
µfσπ = µf , Newton’s method converges exponentially. The following theorem cap-
tures the worst-case, in which the lazyν-method still converges linearly.

Theorem 4. Let f be a quadratic feasible min-max-MSP. The lazyν-sequence
(ν(k))k∈N converges linearly toµf . More precisely, letm be the number of strat-
egy pairs(σ, π) ∈ Σ × Π with µf = µfσπ. Then there is akf ∈ N such that
ν(kf +i·m·(n+1)·2n) has at leasti valid bits ofµf for everyi ∈ N.

Next we show thatNfσ (y) can be computed exactly by solving a single LP. The
right procedure of Algorithm 1 accomplishes this by taking advantage of the follow-
ing proposition which states thatNfσ (y) can be determined by computing the least
fixpoint of some linear min-MSPg.

Proposition 3. Lety ≤ fσ(y) ≤ µf . ThenNfσ (y) = y+µg for the linear min-MSP
g with g(d) = L(fσ,y)(y + d) − y.

After having computed the linear min-MSPg, Algorithm 1 determines the0-
components ofµg. This can be done by performingn Kleene steps, since(µg)i = 0

whenever(κ(n)
g )i = 0. Let g̃ be the linear min-MSP obtained fromg by substituting

the constant0 for all componentsgi with (µg)i = 0. The least fixpoint of̃g can be
computed by solving a single LP, as implied by the following lemma. The correctness
of Algorithm 1 follows.

Lemma 9. Let g be a linear min-MSP such thatgi = 0 whenever(µg)i = 0 for all
componentsi. Thenµg is the greatest vectorx with x ≤ g(x).

The following theorem is a direct consequence of Lemma 7 for the case whereΠ =
Π∗. It shows the second major advantage of the lazyν-method, namely, that that the
strategiesσ(k) are meaningful in terms of games.

Theorem 5. Let Π = Π∗. Let (ν(k))k∈N be a lazyν-sequence. Thenν(k) ≤ µfσ(k)

holds for allk ∈ N.

As (ν(k)) converges toµf , the max-strategyσ(k) can be consideredǫ-optimal. In terms
of games, Theorem 5 states that the strategyσ(k) guarantees the max-player an outcome
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of at leastν(k). It is open whether an analogous theorem holds for theτ -method.

Application to the primaries example.We solved the equation system of Section 3 ap-
proximatively by performing5 iterations of the lazyν-method. Using Theorem 5 we
found that Clinton can extinguish a problem (a) individual with a probability of at least
Xa = 0.492 by concentrating on her program and her “ready from day 1” message.
(More than 70 Kleene iterations would be needed to infer thatXa is at least0.49.) As
ν(5) seems to solve above equation system quite well in the sense that

∥∥f(ν(5)) − ν(5)
∥∥

is small, we are pretty sure about Obama’s optimal strategy:he should talk about Iraq.
As ν

(2)
X1

> 0.38 andσ(2) mapsf1 to 0.3 + 0.7X2
1 , Clinton’s team can use Theorem 5 to

infer thatXa ≥ 0.38 by showing emotions and using her “ready from day 1” message.

6 Discussion

In order to compare our two methods in terms of convergence speed, assume that
f denotes a feasible min-max-MSP. SinceNf (x) ≥ Nfσ (Lemma 3.5), it follows

that τ
(i)
f ≥ ν

(i)
f holds for all i ∈ N. This means that theτ -method is as least

as fast as theν-method if one counts the number of approximation steps. Next, we
construct an example which shows that the number of approximation steps needed
by the lazyν-method can be much larger than the respective number neededby the
τ -method. It is parameterized with an arbitraryk ∈ N and given byf(x1, x2) =(
x2 ∧ 2, x2

1 + 0.25 ∨ x1 + 2−2(k+1)
)⊤

. Since the constant2−2(k+1) is represented
usingO(k) bits, it is of size linear ink. It can be shown (see [2]) that the lazyν-
method needs at leastk steps. More precisely,νf − τ (k) ≥ (1.5, 1.95). Theτ -method
needs exactly2 steps.

We now compare our approaches with the tool PReMo [14]. PReMoemploys 4 dif-
ferent techniques to approximateµf for min-max-MSPsf : It uses Newton’s method
only for MSPs without min or max. In this case both of our methods coincide with
Newton’s method. For min-max-MSPs, PReMo uses Kleene iteration, round-robin iter-
ation (called Gauss-Seidel in [14]), and an “optimistic” variant of Kleene which is not
guaranteed to converge. In the following we compare our algorithms only with Kleene
iteration, as our algorithms are guaranteed to converge anda round-robin step is not
faster thann Kleene steps.

Our methods improve on Kleene iteration in the sense thatκ(i) ≤ τ (i),ν(i) holds
for all i ∈ N, and our methods converge linearly, whereas Kleene iteration does not
converge linearly in general. For example, consider the MSPg(x) = 1

2x2+ 1
2 with µg =

1. Kleene iteration needs exponentially many iterations forj bits [4], whereas Newton’s
method gives exactly 1 bit per iteration. For the slightly modified MSPg̃(x) = g(x)∧1
which has the same fixpoint, PReMo no longer uses Newton’s method, as̃g contains a
minimum. Our algorithms still produce exactly 1 bit per iteration.

In the case of linear min-max systems our methods compute theprecise solution and
not only an approximation. This applies, for example, to themax-linear system of [14]
describing the expected time of termination of a nondeterministic variant of Quicksort.
Notice that Kleene iteration does not compute the precise solution (except for trivial
instances), even for linear MSPs without min or max.
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We implemented our algorithms prototypically in Maple and ran them on the
quadratic nonlinear min-max-MSP describing the termination probabilities of a re-
cursive simple stochastic game. This game stems from the example suite of PReMo
(rssg2.c) and we used PReMo to produce the equations. Both of our algorithms
reached the least fixpoint after 2 iterations. So we could compute the preciseµf and op-
timal strategies for both players, whereas PReMo computes only approximations ofµf .

7 Conclusion

We have presented the first methods for approximatively computing the least fixpoint
of min-max-MSPs, which are guaranteed to converge at least linearly. Both of them
are generalizations of Newton’s method. Whereas theτ -method converges faster in
terms of number of approximation steps, one approximation step of theν-method is
cheaper. Furthermore, we have shown that theν-method computesǫ-optimal strategies
for games. Whether such a result can also be established for theτ -method is still open.
A direction for future research is to evaluate our methods inpractice. In particular, the
influence of imprecise computation through floating point arithmetic should be studied.
It would also be desirable to find a bound on the “threshold”kf .
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