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Abstract

Message sequence charts (MSC) and High-Level MSC (HMSC) is a visual nota-
tion for asynchronously communicating processes and a standard of the ITU. They
usually represent incomplete specifications of required or forbidden properties of
communication protocols. We consider in this paper two basic problems concerning
the automated validation of HMSC specifications, namely model-checking and syn-
thesis. We identify natural syntactic restrictions of HMSCs for which we can solve
the above questions. We show first that model-checking for globally-cooperative
(and locally-cooperative) HMSCs is decidable within the same complexity as for
the restricted class of bounded HMSCs. Furthermore, model-checking local-choice
HMSCs turns out to be as efficient as for finite-state (sequential) systems. The study
of locally-cooperative and local-choice HMSCs is motivated by the synthesis ques-
tion, i.e., the question of implementing HMSCs through communicating finite-state
machines (CFM) with additional message data. We show that locally-cooperative
and local-choice HMSCs are always implementable. Furthermore, the implementa-
tion of a local-choice HMSC is deadlock-free and of linear-size w.r.t. the additional
data.
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1 Introduction

Message sequence charts (MSC for short) is a visual notation for asynchronously
communicating processes and a standard of the ITU [14]. The usual applica-
tion of MSCs in telecommunication is for capturing requirements of commu-
nication protocols in form of scenarios at early design stages. MSCs usually
represent incomplete specifications, obtained from a preliminary view of the
system that abstracts away several details such as variables or message con-
tents. High-level MSCs (HMSCs for short) combine basic MSCs using choice
and iteration, thus describing possibly infinite collections of scenarios. They
have a graphical representation by means of directed graphs, with nodes la-
beled by finite MSCs.

Model-checking and synthesis are the two basic problems considered in this
paper. High-level MSCs are infinite-state systems, since the semantics implies
that communication channels are unbounded. Another important feature is
that high-level MSCs have a global control structure, that comes from the
diagram representation of MSCs and the graph structure of the HMSC. This
makes the model-checking problem undecidable, and it also raises serious prob-
lems for synthesis, where the control must be distributed. Our goal is to pro-
pose relaxed restrictions of high-level MSCs that ensure both decidability of
model-checking and synthesis, while preserving the infinite-state character of
high-level MSCs, i.e. without restricting the channels.

Model-checking. The detection of possible design failures of a protocol at early
stages is of critical importance, and the utility of HMSCs can be greatly en-
hanced by automatic validation methods. A preliminary specification of a pro-
tocol can suffer from several deficiencies, either related to the partial order of
events (e.g. race conditions [3,25]) or to the violation of user-defined properties
specified for instance in logics such as LTL or MSO. However, model-checking
HMSCs against such logics is either undecidable (for LTL see [4]) or extremely
time consuming (non elementary complexity for MSO interpreted on MSCs
[19]). A common approach is to specify the property by a set of MSCs given
by an HMSC, as usually done by engineers. The property HMSC can be in-
terpreted as the bad behaviors which have to be avoided by the model [4,25].

? Work partly supported by the European Community Research Training Network
“Games and Automata for Synthesis and Validation” (GAMES) and the ACI Ver-
sydis.
1 Current affiliation: TU München, I2, Boltzmannstr. 2, 85748 Garching, Germany.
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Unfortunately, this kind of model-checking is undecidable, even if we impose
bounded communication channels. This undecidability result motivated the
definition of regular (bounded) HMSCs [4,25,13]. A regular HMSC has the
property that the set of all linearizations of its MSCs is regular. With this
restriction, model-checking HMSC or LTL properties becomes of course de-
cidable. However, the situation is not at all satisfactory since regularity im-
poses a bound on message channels, or equivalently, that each message has to
be somehow acknowledged. This is a strong restriction, excluding very sim-
ple HMSCs such as a producer-consumer scenario, where a message is sent
an arbitrary number of times from a producer to a consumer. Such a simple
scenario is often needed, for instance to describe asynchronous transfers (see
e.g. the usb 1.1 specification [29]). More generally, any protocol involving a
read- or write-only process cannot be described by regular HMSCs.

The first objective of the paper is to show that we do not need to restrict the
channel size for obtaining a class with a decidable model-checking problem.
We propose in this paper globally-cooperative HMSCs and show that their
model-checking problem is decidable, actually within the same asymptotic
complexity bounds as for regular HMSCs.

Synthesis. A second basic validation step in protocol design is to know whether
the specification is implementable in a machine-oriented model - the synthe-
sis problem, see e.g. [28]. For HMSC specifications, synthesis has a specific
flavor. First, we seek for fully distributed implementations, which are in gen-
eral much harder to obtain than sequential ones [28,20,17]. Second, HMSCs
usually describe a set of possibly incomplete requirements, which means that
the model can be refined compared to the specification. Notice finally that an
implementable model can be itself model-checked using for instance SDL tools
(Specification and description languages, ITU Z.100 ). There is a large body
of papers considering the implementability of HMSC specifications. Previous
work considered implementations by statecharts as state-based model [16,10].
Another line of research used communicating finite state machines (CFM or
message passing automata) [1,2,24], which is also the model used in this paper.
In both models, no global control is available, contrary to an HMSC descrip-
tion. In order to install a distributed control, the machine realization may need
further message data or even exchange additional control or synchronization
messages.

Our second goal is to exhibit general techniques for synthesizing such a dis-
tributed control. For this, we adopt a moderate view of implementation: we
allow additional message contents while ruling out extra control messages.
The reason is that additional messages mean additional process synchroniza-
tion, which is not desirable (or even impossible) in a given environment. On
the other hand, additional message contents make sense since message data
(e.g. call parameters) is often abstracted away in the specification. Still, our
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implementation semantics by CFMs is more general than the one introduced
in [1] and used in [2,23] where a parallel product of communicating finite-
state automata is employed to realize the (linear) behavior of each process of
the given HMSC. In particular, the possibility of adding information through
messages is explicitly ruled out in [1]. Actually, the implementation semantics
of [1,2] was shown to be undecidable even for regular HMSCs, which was the
motivation for considering safe implementations in [1,18].

We propose in this paper three classes of HMSCs that do not restrict the com-
munication channels: globally-cooperative and two subclasses thereof, locally-
cooperative and local-choice HMSCs. Globally-cooperative HMSCs have been
introduced independently in [23], whereas locally-cooperative HMSCs are de-
fined in this paper. The local-choice property has been considered in [11].
Globally-cooperative HMSCs extend the well studied class of regular HMSCs
[25,4,13]. In a nutshell, regular HMSCs correspond exactly to globally-cooper-
ative HMSCs that use only bounded communication channels.

In the first part of the paper (Section 4) we consider the model-checking prob-
lem stated as intersection (negative property) or inclusion (positive property)
of HMSCs. That is, the property to be tested is also described by an HMSC.
We show that negative and positive model-checking for globally-cooperative
HMSCs are PSPACE- and EXPSPACE-complete, respectively, which is as
good as the model-checking for regular HMSCs while being applicable to a
much larger class of infinite-state HMSCs. For locally-cooperative HMSCs,
negative model-checking is still PSPACE-complete, whereas positive model-
checking lies between PSPACE and EXPSPACE. For the third subclass, local-
choice HMSCs, we are able to obtain better complexities. Namely, we show
that negative model-checking can be solved in quadratic time, whereas positive
model-checking is PSPACE-complete.

In the second part of the paper we consider the synthesis of communicat-
ing finite-state machines from locally-cooperative, resp. local-choice HMSCs
(Sections 5.1 and 5.2). We show that both HMSCs classes are always imple-
mentable by CFMs, however the quality of the implementations differs consid-
erably. Locally-cooperative HMSCs can be implemented with an exponential
overhead in the finite control and the message contents, and the implemen-
tation is in general not deadlock-free. For local-choice HMSCs we present a
linear-size, deadlock-free implementation by CFMs. For globally-cooperative
HMSCs we conjecture that they are implementable, too, albeit with a lot of
deadlocks.

The last contribution of this paper considers the question whether a CFM is
deadlock-free (Section 6). We note that CFMs obtained from HMSCs have
the property that for each execution there is an equivalent one that uses
only bounded channels. We call such CFMs existentially-bounded and we show
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that reachability and deadlock-freeness for existentially-bounded CFMs is de-
cidable (PSPACE-complete). In contrast, both problems are undecidable for
general CFMs [5]. Therefore, we are able to test whether a CFM implemen-
tation of an HMSC is deadlock-free or not.

A preliminary version of this paper was presented in [9].

Related work. Model-checking regular HMSCs against HMSC properties was
shown to be decidable in [4,25]. For partial-order logics, decidability of model-
checking was obtained w.r.t. MSO [19] and TLC [27].

Synthesis (realizability, inference) of CFM from MSC specifications has been
introduced in [1], where it is shown that the problem is co-NP complete for
finite sets of finite MSCs, however solvable in polynomial time for deadlock-
free (safe) realizability. In [2] this question is considered for HMSCs and it is
shown that realizability is in general undecidable (even for regular HMSCs),
however deadlock-free realizability of regular HMSCs is in EXPSPACE. The
matching lower bound is shown in [18], where it is also shown that the upper
bound still holds for globally-cooperative HMSCs. The implementation model
considered in these papers consists of CFMs with no additional message data,
i.e. a parallel product of communicating finite-state machines corresponding to
the exact behavior of the single processes. A weaker framework (only messages
with same content are FIFO-ordered) is used in [23], where it it is shown that
it is decidable whether a given globally-cooperative HMSC is realizable. Our
approach is similar to the one used in [24] for implementing regular HMSCs.
Finally, [6] considers the implementation of HMSCs by Petri nets with a larger
set of behaviors and [11] identifies particular classes of HMSCs that are im-
plementable by CFMs without additional message data.

2 Preliminaries

In this section we recall the specification formalism of message sequence charts
(MSC) and high-level message sequence charts (HMSC) based on the ITU
standard Z.120 [14]. Each message sequence chart describes a scenario or an
execution of a communication protocol in which processes communicate with
each other over point-to-point, error-free FIFO channels. An MSC scenario
consists in a description of the messages sent and received, the local events,
and the ordering between them. The event ordering is based on a process
ordering and a message ordering. In the visual description of MSCs, each
process is represented by a vertical line, which gives a total order on the events
belonging to that process. Messages are usually represented by horizontal or
slanted arrows from the sending process to the receiving one.
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Definition 1 An MSC over process set P is a tuple M = 〈E, <,P, t, C, m〉
where:

• E = ·
⋃

p∈P Ep is the disjoint union of the sets Ep, comprising the events
located on process p. We denote by P (e) ∈ P the location of event e.

• Every event is either a communication event (send or receive) or a local
event. We write E = S ·∪R ·∪L as a disjoint union, with S denoting the
sends, R the receives and L the local events.

• C is a finite set of message contents and local action names.
• t : E → A = {p!q(a), p?q(a), lp(a) | p, q ∈ P, p 6= q, a ∈ C} labels each event

by its type t(e), with t(e) = p!q(a) if e ∈ Ep ∩ S is a send event of message
a from p to q, t(e) = p?q(a) if e ∈ Ep ∩ R is a receive event of message a
by p from q and t(e) = lp(a) if e ∈ Ep ∩ L is a p-local event describing the
local action a.

• m : S −→ R is a bijection that pairs up send and receive events (matching
function). If m(e) = f , then t(e) = p!q(a) and t(f) = q?p(a) for some
p, q ∈ P and a ∈ C.

• < ⊆ E × E is the relation defined by the two conditions below:
· The restriction of < to Ep is a total order, for every process p ∈ P.
· For all e, f ∈ E, m(e) = f implies e < f .
The relation < is required to be acyclic and is called visual order.

A message (e, f) is a pair of matching send and receive events, i.e., m(e) = f .
We assume that channels are FIFO, that is, whenever m(e) = f , m(e′) = f ′,
e < e′ and t(e) = p!q(a), t(e′) = p!q(a′) for some p, q ∈ P, a, a′ ∈ C, we also
have f < f ′.

The results of this paper are independent of this assumption. For non FIFO
channels we have to add some information in the type t(e) of an event e.
Formally, we have to extend the set of types A to A × N and we require that
m(e) = f only if t(e) = (p!q(a), k) and t(f) = (q?p(a), k) for some p, q, a and
k ∈ N.

Since the visual order is required to be acyclic, its reflexive-transitive closure
<∗ is a partial order on E. For sake of simplicity we will use the same notation
≤ for the partial order <∗. A linearization of < is a total order � extending
≤. For any MSC M we denote by Lin(M) the set of labeled linearizations of
M :

Lin(M) = {t(e1) · · · t(ek) | e1 · · · ek is a linearization of M} .

Note that with the FIFO property, any labeled linearization x ∈ Lin(M)
suffices to reconstruct the MSC M , since the type mapping t : E → A encodes
all the information needed.

If the matching m is a partial, injective function then we speak about a partial
MSC. For every x ∈ A∗ we denote by msc(x) the partial MSC defined by
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p q r s p q r s

Fig. 1. The left part of the figure depicts an MSC on 4 processes p, q, r, s consisting
of 4 messages. It is generated by the HMSC on the right side.

pairing the k-th event of type p!q(a) with the k-th event of type q?p(a) (if
they exist).

The size of an MSC is the number of events it contains.

Since the specification of a communication protocol includes many scenarios, a
high-level description is needed for combining them together and defining infi-
nite sets of (finite or infinite) scenarios. The standard description of the norm
Z.120 uses non deterministic branching, concatenation and iteration for defin-
ing finite or infinite sets of MSCs (see the examples in Figures 1, 4). Formally,
a high-level MSC (HMSC) G = 〈V, R, v0, vf , λ〉 is a finite transition system
(V, R, v0, vf) with transition set R ⊆ V ×V , initial node v0 and terminal node
vf . Each node v is labeled by the finite MSC λ(v). We assume that each λ(v)
is non empty, except possibly for v = vf . We also assume that every node is
accessible from v0 and from each node there is a path to vf . An execution of G
is the labeling λ(v0)λ(v1) · · ·λ(vk) of some path v0 = v0, v1, . . . , vk = vf in G,
i.e., (vi, vi+1) ∈ R for every 0 ≤ i < k. The set of executions of G is denoted
by L(G), the set of linearizations of executions of G is denoted by Lin(G).
The size of an HMSC is the sum of the sizes of its nodes.

Of course, the semantics of HMSCs depends on the definition of the MSC
product. We consider the usual weak product of MSCs, as defined in the fol-
lowing. Let M1 = 〈E1, <1,P , t1 , C1 , m1〉 and M2 = 〈E2, <2,P, t2, C2 , m2〉
be MSCs over the same set of processes P. Their product M1M2 is defined as
the MSC 〈E1 ·

⋃

E2, <, P, t1 ∪ t2, C1 ∪ C2 , m1 ∪ m2〉 over the disjoint union of
event sets, with the visual order given by:

< = <1 ∪ <2 ∪{(e, f) ∈ E1 × E2 | P (e) = P (f)} .

That is, events of M1 precede the events of M2 for each process, respectively.
Note that there is no synchronization between different processes when moving
from one node to the next one (this is called weak sequencing). Hence, it is
possible that one process is still involved in some actions of M1, while another
process has advanced to an event of M2. We also say that M1 is a prefix of
M1M2.
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p s

Fig. 2. A globally-cooperative HMSC.

3 A Panorama of HMSC Classes

In this section we introduce two of the subclasses of infinite-state HMSCs de-
fined in this paper, globally-cooperative and locally-cooperative HMSCs. As
mentioned in the introduction, both variants of model-checking HMSCs (inter-
section and inclusion) are undecidable for general HMSCs, even with bounded
channels. The very reason for undecidability is that loops can simulate count-
ing, as explained below.

Let us denote for an MSC M the set of processes that occur in M by P (M).
Clearly, we have M1M2 = M2M1 for any MSCs M1, M2 with P (M1)∩P (M2) =
∅. We write in this case M1 ‖ M2 and we say that M1, M2 are independent.
Notice that (M1M2)

∗ = {Mn
1 Mn

2 | n ≥ 0} if M1 ‖ M2.

The communication graph of an MSC M is a directed graph with a node p for
each process p ∈ P (M) that sends or receives a message, together with edges
p → q whenever M contains a message from p to q.

Definition 2 (globally-cooperative) An HMSC G = 〈V, R, v0, vf , λ〉 is called
globally-cooperative, if every MSC labeling a loop of the transition system
(V, R) has a weakly connected communication graph.

The HMSC in Figure 1 is not globally-cooperative, since the communication
graph of the loop has two weakly connected components, one over {p, q} and
the other over {r, s}. The HMSC in Figure 2 is globally-cooperative since the
communication graph of its loop consists of one edge p → s.

Compared with globally-cooperative HMSCs, the previously defined regular
HMSCs impose a more severe restriction on communication.

Definition 3 (regular) [25,4] An HMSC is called regular, if every MSC la-
beling a loop of the transition system has a strongly connected communication
graph.

For example, the HMSC in Figure 3 is regular, unlike the HMSC of Figure 2,
which has no acknowledgment message from s to p.
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p s

Fig. 3. A regular HMSC.

The link between globally-cooperative and regular HMSCs is summarized by
the proposition below. An HMSC has universally-bounded channels if there
exists some integer B such that for every x ∈ Lin(G) and every prefix y ≤ x,
the difference between the number of send symbols and receive symbols in y
is at most B.

Proposition 4 An HMSC G is regular if and only if it is globally-cooperative
and it has universally bounded channels.

PROOF. Assume first that G is regular. By definition, the communication
graph of each loop is strongly connected, hence also weakly connected. More-
over, since Lin(G) is regular [4,25], the second property also follows.

Conversely, let G be globally-cooperative and assume that channels are uni-
versally bounded. Consider a loop in the transition system, say labeled by M .
Since every state is reachable from the initial node, and the final node is reach-
able from every state, we find MSCs M1, M2 such that M1M

∗M2 ⊆ L(G). We
want to show that the communication graph of M must be strongly connected.

Suppose by contradiction that this is not the case, and let p → q be an edge
such that p, q do not belong to the same strongly connected component. The
edge p → q corresponds to a message from p to q in M , say to (e, f). Consider
the two occurrences of the message (e, f) in MM . The event f in the first
M and the event e in the second M cannot be ordered, since otherwise there
would be a path from q to p in the communication graph of M (which is the
same as the graph of MM). Hence, MM has a linearization where the two
occurrences of e appear before the two occurrences of f . Similarly, every M k

has a linearization where the k occurrences of e appear before the occurrences
of f . Therefore, G does not have universally bounded channels, contradiction.

A natural subclass of globally-cooperative HMSCs is obtained by requiring
that for every transition (v, v′) ∈ R the two MSCs labeling v, v′ are not inde-
pendent. Intuitively, this restriction avoids mixing the parallel product with
the sequential transition relation of the underlying HMSC graph.
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Definition 5 (locally-cooperative) An HMSC G = 〈V, R, v0, vf , λ〉 is called
locally-cooperative, if for every (v, v′) ∈ R, the MSCs λ(v), λ(v′), λ(v)λ(v′) all
have weakly connected communication graphs.

Since locally- and globally-cooperativity, and regularity are structural restric-
tions, we can test whether a HMSC satisfies one of these restrictions:

Proposition 6 Checking whether an HMSC is globally-cooperative (or regu-
lar) is co-NP-complete, whereas checking whether it is locally-cooperative can
be done in linear time.

PROOF. First we show how to check whether an HMSC is globally-cooper-
ative. We guess a subgraph H of G. Then we check (in polynomial time) that
there exists a loop passing through each node of H at least once. Moreover, the
communication graph is checked to be not weakly connected. This algorithm
is clearly co-NP.

For the lower bound we reduce 3-SAT to our problem. Let φ = C1 ∧ · · · ∧ Cm

be a 3-SAT formula over n variables x1, . . . , xn, and disjunctive clauses Ci =
l1i ∨ l2i ∨ l3i . The formula φ is satisfiable iff there exists a valuation such that
for every i ≤ m, at least one literal among l1i , l

2
i , l

3
i is true for the valuation.

The MSC-graph G contains two vertices NTi, NFi for each variable xi, plus
one initial and final node N0. Transitions go from from each NXi to each
NXi+1, for X ∈ {T, F} and 1 ≤ i < n. Moreover, G contains transitions from
N0 to NT1 and NF1, resp. from NTn and NFn back to N0. Hence, a simple
loop of G around N0 corresponds to a valuation of the variables: xi true means
that the loop goes through NTi, and xi false means that the loop goes through
NFi.

We describe now the MSCs used in the construction. There will be 3m + 2
processes (P 1

j , P 2
j , P 3

j )1≤j≤m, where P 1
j , P 2

j , P 3
j correspond to the clause Cj,

plus two extra processes P0, Pm+1.

Let M0 be an MSC consisting of two local actions, one on P0 and one on Pm+1,
and let N0 be labeled by M0.

We define now MSCs LT k
j , LF 1

j : The MSC LF 1
j consists of a message from P0

to P 1
j . The MSC LF 2

j consists of a message from P 1
j to P 2

j . The MSC LF 3
j

consists of a message from P 2
j to Pm+1. The MSCs LT 1

j and LT 2
j are both

empty, while LT 3
j consists of one message from P0 to P 2

j .

We label NTi by the product of all MSCs LT k
j such that lkj = xi, and of

all MSCs LF k
j such that lkj = xi. Symmetrically, let NFi be labeled by the

product of all MSCs LT k
j such that lkj = xi, and of all MSCs LF k

j such that
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Fig. 4. Regular HMSC which is not locally-cooperative.

lkj = xi.

Thus, the processes P0 and Pm+1 are connected in the communication graph
of a simple loop around N0 iff there exists a clause where all three literals
are false. Moreover, notice that if P0 and Pm+1 are connected in some loop,
then all processes occurring in that loop are connected (in the communication
graph): if LF 1

j , LF 3
j or LT 3

j appear in the loop, their processes are connected
either to P0 or to Pm+1. Concerning LF 2

j , its processes are either connected to
P0 because of LT 3

j (i.e., l3j is true) or to Pm+1 because of LF 3
j (i.e., l3j is false).

Hence, φ is satisfiable iff there exists a valuation such that for all 1 ≤ j ≤ m,
one of l1j , l

2
j , l

3
j is true in the valuation, iff there exists a simple loop with a non

connected communication graph.

Note that we can change slightly the construction for the lower bound for
regular HMSCs. It suffices to replace each message by a pair of messages,
back and forth.

We defined three subclasses of HMSCs, locally- and globally-cooperative HMSCs,
and regular HMSCs. Any locally-cooperative or regular HMSC is also globally-
cooperative by the definition of these classes. Locally-cooperative HMSCs and
regular HMSCs are expressively incomparable, see e.g. Figure 2 that depicts a
locally-cooperative HMSC which is not regular. On the other hand, Figure 4
depicts a regular HMSC which is not locally-cooperative.

We will show in Section 4 that the model-checking problem of the bigger class
of globally-cooperative HMSCs is decidable within the very same complexity as
for locally-cooperative or regular HMSCs. An implementation through CFMs
(albeit with deadlocks) is known for regular HMSCs [24]. In Section 5 we show
how to implement locally-cooperative HMSCs. However, the implementability
for globally-cooperative HMSCs remains open.

We end this section by explaining some motivation behind the definition of
globally-cooperative HMSCs. The main idea is that one can model-check an
HMSC w.r.t. a property given by another HMSC, provided that we are able to
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obtain a regular set of representatives for the set Lin(H) of one HMSC H, that
is compatible with the relation ‖. We call X ⊆ Lin(H) a set of representatives
for H, if for every MSC M ∈ L(G), we have Lin(M)∩X 6= ∅. We will explain
in the next section how to provide for any globally-cooperative HMSC such a
suitable set of representatives.

4 Model-Checking

Bounding message channels by forcing acknowledgments as required for regu-
lar HMSCs is a severe restriction, excluding such simple and common scenarios
as the one depicted in Figure 2. Such a scenario is however a locally-cooper-
ative HMSC. Although globally-cooperative HMSCs are much more general
than regular HMSCs, we can show that we are still able to do automata-based
model-checking with the same complexities. The underlying idea is that the
executions of a globally-cooperative HMSC can be captured by a suitable reg-
ular set of representative linearizations. As an example reconsider the HMSC
G of Figure 2. The set Lin(G) of linearizations of executions of G is obviously
non regular. However, the representative set X = (p!s s?p)∗ captures all the
information needed for doing model-checking against an HMSC property.

The plan of this section is as follows. First, we recall some basic facts from
the theory of Mazurkiewicz traces [21,7], that are crucial for our definition
of globally-cooperative HMSCs. Then we discuss the model-checking problem
for globally-cooperative and locally-cooperative HMSCs, respectively.

4.1 Mazurkiewicz Traces

Mazurkiewicz traces were proposed as a formal model for concurrent execu-
tions, where the concurrency is made explicit by describing the independence
between possible actions in the system. Formally, let ‖ ⊆ A × A be a sym-
metric, irreflexive independence (commutation) relation on the alphabet of
actions A. A Mazurkiewicz trace is just a set of words that can be obtained
from a given word σ ∈ A∗ by exchanging adjacent symbols a, b with a ‖ b.

We are interested here in computing closure sets under the independence re-
lation ‖. Let K ⊆ A∗ be a set of words. The ‖-closure of K ⊆ A∗ is the
smallest set [K]‖ containing K such that σabσ′ ∈ [K]‖ iff σbaσ′ ∈ [K]‖, for all
σ, σ′ ∈ A∗ and a ‖ b.

Unfortunately, the ‖-closure does not preserve regularity in general. Consider
for instance two letters a, b with a ‖ b. Then [(ab)∗]‖ is the set of words over

12



{a, b} with equally many a’s and b’s.

Mazurkiewicz trace theory provides a syntactical condition ensuring that the
‖-closure of a regular language remains regular. Given an automaton A, this
condition states that each loop of A is labeled by a connected word [22,26]. A
word w is called connected if its set of letters cannot be partitioned into non
empty subsets X, Y such that a ‖ b for all a ∈ X, b ∈ Y . If the condition is
true, then we can construct a non deterministic automaton recognizing the set
[L(A)]‖ which is of size at most 2O(n·℘), where n = |A| and ℘ is the minimal
number of cliques covering the graph (A, (A × A)\ ‖) [25].

4.2 Model-checking globally-cooperative and locally-cooperative HMSCs

It is easy to obtain an automaton A from an HMSC G such that L(A) ⊆
Lin(G) is a set of representatives. For this, it suffices to replace each node by
some linearization of the associated MSC and view the graph thus obtained
as a (word) automaton. Unfortunately, this set does not suffice for deciding
for instance whether L(G) ∩ L(H) 6= ∅ for some HMSCs G, H. Consider for
instance the HMSC G in Figure 1. The representative set obtained from G
could be X = (p!q q?p r!s s?r)∗. However, for the MSC shown in the left part,
one might choose the linearization (p!q q?p)2(r!s s?r)2, that does not belong
to X.

The idea is to consider a sort of message alphabet with an independence rela-
tion on it, and apply the construction of [25] for closing it under commutation.
Notice that defining the message alphabet is not easy. For instance, consider
the MSC labeling one of the nodes in Figure 4. Its two messages cannot be split
into two MSCs, and they must be considered together. Formally, a non empty
MSC is called atomic (atom, for short) if it cannot be written as M = M1M2

for non empty MSCs M1, M2. For instance, the two MSCs in Figure 8 are not
atomic, since the atoms correspond to single messages. It is not hard to see
that any MSC has a unique factorization into atomic MSCs, up to commut-
ing adjacent independent atoms, i.e. atoms M1, M2 such that M1 ‖ M2. The
decomposition of M can be obtained in linear time by computing the strongly
connected components in a directed graph obtained from the partial order
graph of M by adding back edges from r to s whenever (s, r) represents a
message, [12].

We are now ready to define the suitable set of representatives that allows
us to perform model-checking of an HMSC w.r.t. a property expressed by
another HMSC. For sake of simplicity and efficiency we rather define this
set of representatives (denoted La(G) below) on a sort of message alphabet
(atoms) instead of the event type alphabet.
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Definition 7 Let G = 〈V, R, v0, vf , λ〉 be an HMSC. We define Atom(G) as
the (finite) set of atoms occurring in the decomposition of MSCs from λ(V ).
We view Atom(G) as an alphabet, respectively ‖ as an independence relation
on this alphabet. Let also La(G) = {A1 · · ·Ak | A1 · · ·Ak ∈ L(G) and Ai ∈
Atom(G) for all i}.

Consider as an example the HMSC G in Figure 4, and let a, b denote the
atomic MSCs labeling the initial and final node, respectively. We have La(G) =
{a, b}+ \ (a∗ ∪ b∗), with a ‖ b.

Proposition 8 Let G be a globally-cooperative HMSC of size s and over ℘
processes. Then La(G) is recognized by a non deterministic automaton of size
at most 2O(℘s).

PROOF. We first transform G into an equivalent automaton B with nodes
labeled by symbols from Atom(G). Formally, each node v is first replaced by a
path v1, . . . , vk, with vi labeled by an atom Mi such that λ(v) = M1 · · ·Mk. It
is easy to see that this transformation preserves the property of being globally-
cooperative.

Note that [L(B)]‖ = La(G). In the example in Figure 4 we have for instance
L(B) = a+b+ and [L(B)]‖ = {a, b}+ \ (a∗ + b∗). Since G is globally-cooper-
ative, each loop of B is labeled by a connected word, hence we can apply the
construction of [25] mentioned in Section 4.1. We obtain a non deterministic
automaton A recognizing [L(B)]‖ = La(G), of size at most 2O(℘s).

For locally-cooperative HMSCs G we obtain a smaller automaton recognizing
La(G). More precisely, the size of the automaton is exponential in the number
of processes, but polynomial in the size of the transition system.

Proposition 9 Let G be a locally-cooperative HMSC with n nodes and ℘ pro-
cesses. Let k be the maximal size of an MSC labeling a node of G. Then La(G)
is recognized by a non deterministic automaton of size at most (kn)2℘(℘+1)℘.

PROOF. Let G = 〈V, R, v0, vf , λ〉. First note that we cannot replace G by
an equivalent locally-cooperative HMSC with nodes labeled by atoms, since
this does not preserve the locally-cooperative property. Let x ∈ La(G) and
consider some accepting path σ = v1 · · · vm of G labeled by x. Let also x1 be
some prefix of x. We decompose the path v1 · · · vm ∈ V ∗ with respect to x1 as
follows: Let

σ = v1 · · · vm = α1β1α2 · · ·βk−1αkβk

14



with α1, βk ∈ V ∗, αi, βj ∈ V + for all 1 < i ≤ k, 1 ≤ j < k, such that the nodes
occurring in α1 · · ·αk are precisely the nodes of σ that have at least one atom
appearing in x1. We call a node w of some subpath αi half-full, if the MSC
λ(w) appears in x1, but not completely. Otherwise it is called full. A node of
a subpath βi is called empty.

We show first that every subpath αi, i > 1, starts with a half-full node. Indeed,
with G being locally-cooperative, there can be no transition from an empty
node to a full node, since two nodes linked by a transition share at least one
process.

In a second step, we show that the number of half-full nodes is at most ℘ (see
also Figure 5, where half-full nodes are grey, and full ones are black).

β1 βiα1 αi

Fig. 5. Path decomposition in locally-cooperative HMSC.

Let w be a half-full node with λ(w) = Y Z, where Y is the prefix of λ(w)
appearing in x1. By definition, Y and Z are both non empty. Since the com-
munication graph of λ(w) is weakly connected there is some process p ∈
P (Y )∩P (Z). Suppose that w′ is some half-full node occurring after w in σ, and
let λ(w′) = Y ′Z ′ be the decomposition of w′ w.r.t. x1. Then P (Z)∩P (Y ′) = ∅,
since Z is executed after Y ′ in x. Hence, p /∈ P (Y ′). This shows the claim.

We obtain a non deterministic automaton B recognizing La(G) as follows. A
state of B records the first and the last node of each αi, as well as the processes
that occurred so far in each αi. Moreover, we need to store the ordering and
the configurations corresponding to the half-full nodes of the subpaths αi.
Each transition of B either adds an atom to a half-full node of some αi, or
creates a new subpath αi (guessing a node). Whenever a node becomes full, the
automaton can choose (non deterministically) to join two adjacent subpaths.
The size of B is bounded by k℘n2℘(℘ + 1)℘, where n2℘ stands for the possible
first/last node of each subpath αi and the ordering of half-full nodes, k℘ stands
for the configurations of half-full nodes and (℘+1)℘ for the processes occurring
in the αi.

Theorem 10 Model-checking globally-cooperative HMSCs is decidable. More
precisely, let G1, G2 be globally-cooperative HMSCs. Then,

(1) Deciding whether L(G1) ∩ L(G2) 6= ∅ is PSPACE-complete.
(2) Deciding whether L(G1) ⊆ L(G2) is EXPSPACE-complete.

Moreover, the lower bound for the intersection problem also holds when G1, G2

are locally-cooperative.

15



PROOF. Using the unique decomposition of MSCs into atoms it can be
easily checked that:

(1) L(G1) ∩ L(G2) 6= ∅ iff La(G1) ∩ La(G2) 6= ∅.
(2) L(G1) ⊆ L(G2) iff La(G1) ⊆ La(G2).

Hence, we obtain the upper bounds using the exponential-size, non determin-
istic automata recognizing La(Gi).

The lower bound of the inclusion problem for globally-cooperative HMSCs
can be directly obtained from the EXPSPACE-hardness of the universality
problem for loop-connected automata, see [25].

For the intersection problem we encode accepting computations of a polyno-
mially space-bounded Turing machine T as executions in L(G1)∩L(G2), with
G1 and G2 locally-cooperative. Let Γ be the tape alphabet of T and let w be
an input of T . The proof idea is well-known: we encode a finite computation
C0 ` C1 ` · · · ` Cm of T on w by using two copies Ci and C̄i of each con-
figuration and by grouping factors in two different ways (see Figure 6). The
HMSC G1 then ensures that Ci and C̄i are identical. The HMSC G2 ensures
that for each i, C̄i and Ci+1 are successor configurations, and that C0 (resp.
C̄m) is the initial (resp. final) configuration.

C̄1

C0

C̄0

C1

C̄m

Cm
· · ·

· · ·

Fig. 6. TM computation.

The first issue is how to encode configurations. Let k be the length of any
configuration (filled with blanks if necessary) reached by T on input w. We
have k = p(|w|) for some polynomial p. We use k+2 processes P, P̄ , (Pi)1≤i≤k.
If the i-th symbol of a configuration C is a, then we encode it by the MSC
M i

a consisting of a single message named a from Pi to P . The encoding h(C)
of a configuration C is the concatenation of the encodings of symbols of C.
Similarly, if the i-th symbol of C̄ is ā, then we encode it by the MSC M̄ i

a

consisting of a message from Pi to P̄ named a, and we let h(C̄) be the
encoding of C̄. The encoding of a sequence of configurations C0, . . . , Cm is
h(C0)h(C̄0) · · ·h(Cm)h(C̄m).

Let Mi =
∑

a M i
a, M̄i =

∑

a M̄ i
a and Xi =

∑

a M i
aM̄

i
a, where the sum means a

choice. We easily construct G1 such that L(G1) = (X1 · · ·Xk)
∗ (see Figure 7).

Its node set is the disjoint union of nodes of X1, . . . , Xk, the nodes of X1 are
initial, the nodes of Xk are final, and there is a transition from any node of Xj

(resp. of Xk) to any node of Xj+1 (resp. of X1). Executions of G1 are exactly
encodings of finite sequences C0, . . . , Cm with Ci ∈ Γk. Formally, we add a
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unique initial node comprising all processes, and a unique final node. Note
that G1 is locally-cooperative.

a

a

a

a

b

b

a

a

b

b

b

b

b

b

P2 P̄P

P1 P̄P P2 P̄P

· · ·

Pk P̄P

P̄P P̄PPkP1 P̄P

Fig. 7. The HMSC G1 for the intersection problem

The definition of G2 is slightly more complicated since we have to consider
transitions of T . Assume that each configuration has the form /uqv. where
q is the current state of T , uv is written on the tape, and the head scans
the first symbol of v. Thus, the transitions are of the form aqb → qab′ (left
move) or aqb → ab′q (right move). A transition t = xyz → x′y′z′ per-
formed at head position i in a configuration is coded by the MSC Tt,i =
M̄ i−1

x M̄ i
yM̄

i+1
z M i−1

x′ M i
y′M i+1

z′ , and we let δi = {Tt,i | t transition of T}. Denote
by s1 · · · sk the initial configuration of T on w and by f1 · · · fk its accepting
configuration. Let Yi =

∑

a M̄ i
aM

i
a. It is again straightforward to construct a

locally-cooperative HMSC G2 such that

L(G2) = M1
s1
· · ·Mk

sk

[k−1
⋃

i=2

Y1 · · ·Yi−2 · δi · Yi+2 · · ·Yk

]∗

M̄1
f1
· · · M̄k

fk

Both G1 and G2 are of size O(k). Finally, an execution of L(G1)∩L(G2) is an
encoding of a sequence C0, . . . , Cm. Since it is an execution of G2, C0 is the
initial configuration of T on w, Cm is the final configuration, and Ci ` Ci+1.
Hence L(G1) ∩ L(G2) 6= ∅ iff the computation of T on w is accepting.

Note that the lower bounds for locally-cooperative HMSCs do not hold any-
more if we assume that all nodes are labeled by atomic MSCs. In this case
we can use the fact that any execution has a unique decomposition in atomic
MSC, hence both questions can be rephrased in terms of finite word automata.

Proposition 11 Let G1, G2 be locally-cooperative HMSCs such that each node
is labeled by an atomic MSC. We have:

(1) Deciding whether L(G1) ∩ L(G2) 6= ∅ is a NLOGSPACE-complete prob-
lem.

(2) Deciding whether L(G1) ⊆ L(G2) is an PSPACE-complete problem.
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p q r p q s

M1 M2

Fig. 8. A locally-cooperative HMSC G.

4.3 Local-Choice HMSCs

A potential deficiency of HMSC specifications is the distributed choice along
branching paths, when a node has more than one successor, each with possi-
bly several minimal processes. The local-choice property [11] ensures precisely
that branching between executions is always controlled by a unique process.
We define local HMSCs below, as a slightly different variant of local-choice
HMSCs. Local HMSCs simplify the model-checking and implementation algo-
rithms. Moreover, we show that our definition has the same expressiveness as
the original definition of [11].

Definition 12 (local HMSCs) An HMSC G = 〈V, R, v0, vf , λ〉 is called lo-
cal if

(1) v0 has a single minimal event
(2) for each node v ∈ V , there is a process root(v) ∈ P (v) such that every

node w with (v, w) ∈ R has a unique minimal event, and this event is
located on root(v).

For instance, the HMSC of Figure 8 is local. Figure 7 depicts an HMSC which
is not local although every node has a unique minimal event, since this event
does not belong to the processes of each predecessor node. It is easy to see
that any local HMSC is locally-cooperative.

Local-choice was defined by different syntactic conditions in [11,8], but all
these definitions are easily seen to yield the same class of HMSCs. We have
chosen the simplest definition here, since it is easier to handle and it is com-
patible with locally-cooperative. Proposition 14 shows how to transform a
local-choice HMSC into a local one. Since this construction can be achieved
with a quadratic blow-up only, the complexity results for model-checking will
not be affected too much. Actually, the results stated for negative model-
checking (intersection) can be seen to hold with the very same complexity for
local-choice HMSC.

We call a node with at least two outgoing edges a branching node.
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Definition 13 (local-choice HMSCs, [11]) An HMSC G = 〈V, R, v0, vf , λ〉
is called local-choice if the following conditions are satisfied:

(1) Each path starting in v0 has a single minimal event.
(2) For each branching node v ∈ V and for v = vf , there is a process root(v)

such that every path from a node w with (v, w) ∈ R has a single minimal
event, and that event is located on root(v).

It is easy to see that local HMSCs are local-choice HMSCs, while locally-coo-
perative and local-choice are syntactically incomparable.

An important observation is that every path in a local-choice HMSC G where
all but the last node are non branching and different from vf , is of length
≤ |V |. Such a path will be called a non branching path. Moreover, for any
node v, there is a unique maximal non branching path starting in v that ends
either in a branching node or in the terminal node vf . We denote this path by
NPath(v). Consider now an accepting path σ of G. We decompose σ as

σ = σ0σ1 · · ·σk+1 ,

where each σi is a maximal non branching path (note that this decomposition
is unique). Let vi be the last node of σi−1 (see also Figure 9, where the tri-
angles represent the partial order graphs of the subpaths σi). Recall that vi

is branching (or vf) for all i ≤ k. Let also wi be the first node of σi, hence
σi = NPath(wi). By definition, pi = root(vi) ∈ P (wi) is the process on which
the minimal event of σi is located. Moreover, the local-choice condition ap-
plied to the branching node vi−1 ensures that pi also belongs to P (σi−1), since
otherwise σi−1σi · · ·σk would have more than one minimal event.
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wkw1v0=w0
vk+1=vf

Fig. 9. Path decomposition in local-choice HMSC.

The above decomposition of paths in a local-choice HMSC will be used by the
implementation algorithm (Section 5.2). Moreover, this decomposition yields
a simple transformation of local-choice HMSC into local HMSCs:

Proposition 14 For each local-choice HMSC we can construct an equivalent
local HMSC of quadratic size.

PROOF. Let G = 〈V, R, v0, vf , λ〉 be a local-choice HMSC. The nodes of
the local-choice HMSC G′ are all immediate successors of branching nodes,
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together with a new initial node w0 and a new final node wf . A successor v
of a branching node is labeled by λ(NPath(v)) (see e.g. v = wi in Figure 9).
Similarly, w0 is labeled by NPath(v0). Finally, λ(wf) is the empty MSC. The
transitions are given by:

• There is a transition (v, w) ∈ R′ in G′ whenever (x, w) ∈ R, where x is
the last node of NPath(v) (for v = w0 we require that x is the last node of
NPath(v0)).

• There is a transition (v, wf) ∈ R′ for all v such that NPath(v) ends in vf

(for v = w0 we require that NPath(v0) ends in vf).

It is obvious that the construction yields an equivalent, local HMSC G′. The
number of nodes of G′ is ≤ |V | + 2 and the size of each MSC labeling a node
of G′ is at most the size of G.

4.4 Model-checking local HMSCs

For the model-checking algorithms on local HMSCs we will transform a local
HMSC such that it is non decomposable according to Definition 15 below.
Intuitively, we will refine the MSCs labeling a path as much as possible, while
preserving the local property. This will ensure a kind of uniqueness (see Lemma
17) when comparing two or more paths to each other.

Given an event e of an MSC M , we denote by e↓ the set of events {f ∈ M |
e ≤ f} lying in the future of e.

Definition 15 Let M be an MSC and p a process. We say that M is p-
decomposable, if there exists an event e of M such that e↓ is an MSC containing
some event of process p, and M 6= e↓. Note that e↓ is required to contain for
every receive event the matching send, and vice-versa.

We say that a node v of an HMSC is p-decomposable, if the MSC labeling v
is p-decomposable. A local HMSC is called non decomposable, if no node v is
p-decomposable, with p = root(v).

Proposition 16 We can construct from a local HMSC G an equivalent, non
decomposable local HMSC G′ in time O(|G|2). Moreover, G′ is of size |G|.

PROOF. Let v be a node of G = 〈V, R, v0, vf , λ〉 and M1 = λ(v). We show
how to decompose inductively the node v. The decomposition is applied re-
peatedly to an MSC M w.r.t. a process p. We start with M1 and p1 = root(v)
(if v = vf then we choose p1 ∈ P (M1) arbitrarily). If M1 is p1-decomposable,
then let M1 = M2N1 be a p1-decomposition of M1 with |N1| minimal. Hence
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M

p
e

MSC

Fig. 10. p-decomposition of an MSC.

N1 is not p1-decomposable. Then we repeat the process with M = M2 and
p2 being the process of the minimal event of N1. The decomposition process
stops as soon as M is not p-decomposable for the current process p. We obtain
in this way a sequence Nl, . . . , N1 of MSCs where M1 = Nl · · ·N1 and every
Ni has a unique minimal event located on process pi+1. Moreover, pi ∈ P (Ni)
for all l > i ≥ 1. We replace now v by a new path wl, . . . , w1, where wi is la-
beled by the MSC Ni just defined. Note that the new path wl, . . . , w1 satisfies
the requirement of local HMSCs. Moreover, the MSCs labeling the nodes of
the new path are all non decomposable, by the minimality condition in each
decomposition step.

Applying this algorithm for each node v of G, we obtain an equivalent non
decomposable local HMSC G′. Since each event of G belongs to one and only
one node of G′, G′ has at most |G| nodes. Since each decomposition step needs
O(|G|) time, the algorithm is quadratic.

The next lemma says that for deciding whether two paths v1, . . . , vk and
w1, . . . , wl of a non decomposable local HMSC are labeled by the same MSCs,
we can proceed as follows. Assume that vi is labeled by Mi and wj is labeled
by Nj. Assume that there exists some index i such that Mj = Nj for all j ≤ i,
but Mi+1 6= Ni+1. In this case, we show that Ni+2 · · ·Nl is a suffix of Mi+1,
resp. Mi+2 · · ·Mk is a suffix of Ni+1. Notice that given vi+1 and wi+1, we can
decide effectively whether such factorizations of λ(vi+1) and λ(wi+1) exist.

Lemma 17 Let v1, . . . , vk and w1, . . . , wl be two paths of a non decomposable
local HMSC G and suppose that vi is labeled by Mi and wj is labeled by Nj. As-
sume further that M1 · · ·Mk = N1 · · ·Nl. Then one of the following conditions
is satisfied:

(1) M1 = N1.
(2) M1 = XN2 · · ·Nl and N1 = XM2 · · ·Mk, for some MSC X. Moreover,

P (M2 · · ·Mk) ∩ P (N2 · · ·Nl) = ∅.
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PROOF. If l = 1 or k = 1, then we are in the second case of the claim. Else,
let X = M1∩N1 be the intersection of M1, N1, i.e., the greatest common prefix
of M1, N1. We can write M1 = XY , N1 = XY ′, where P (Y ) ∩ P (Y ′) = ∅ and
X is an MSC. We can also write N2 · · ·Nl = Y Z for some MSC Z. Then,
M2 · · ·Mk = Y ′Z.

We show first that at least one of the MSCs Y, Y ′, Z must be empty. Suppose by
contradiction that all of Y, Y ′, Z are non empty. Let e be a minimal event of Z.
Since Y Z = N2 · · ·Nl has a unique minimal event we must have P (e) ∈ P (Y ).
By symmetry, P (e) ∈ P (Y ′). But then P (Y ) ∩ P (Y ′) 6= ∅, a contradiction.

The case where Z is empty corresponds to the second case of the claim.

By symmetry we suppose now that Y is empty, thus M1 is a prefix of N1.
We want to show that Y ′ is also empty, i.e., M1 = N1. We first show that
N1 = M1 · · ·Mj for some j, and finally that j = 1.

Let j be the first index such that N1 ⊆ M1 · · ·Mj. By contradiction, assume
that the minimal event e of N2 belongs to some Mi, i ≤ j. Let f be the
minimal event of Mi. Suppose first that f = e. Using the local property of
G, we infer that Mi · · ·Mj is a prefix of N2 · · ·Nl, hence N1 ⊆ M1 · · ·Mi−1,
contradicting the minimality of j. Because f < e, the event f belongs to N1.
Since e is a send event, and f < e in N1N2, there exists some event g ≥ f
in N1 with P (g) = P (e) = p. But this is a contradiction, since N1 is not
p-decomposable. (Note that the restriction of the future of f to N1 is an MSC
since f is the minimal event of Mi.) Therefore, N1 = M1 · · ·Mj.

We have l ≥ 2, thus j < k. Hence, root(Mj) = min(Mj+1) = min(N2) =
root(N1). Thus, there exists some event f in Mj with p = P (f) = root(Mj).
So e = min(Mj) ≤ f and events e, f belong to N1. But this means that N1

is p-decomposable, since e↓ restricted to N1 is an MSC. Therefore, we must
have e = min(N1), i.e. j = 1, and Y ′ is empty.

We can show now the main result of this section.

Theorem 18 Let G and G′ be two local HMSCs. Then we have:

(1) Deciding whether L(G)∩L(G′) 6= ∅ is NLOGSPACE-complete. Moreover,
this question can be solved deterministically in time O((|G| + |G′|)2).

(2) Deciding whether L(G) ⊆ L(G′) is PSPACE-complete.

PROOF. Both lower bounds follow from classical results on finite word au-
tomata.
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Let G = 〈V, R, v0, vf , λ〉 and G′ = 〈V ′, R′, v′0, v′f , λ′〉.

Intersection problem We show that the intersection problem can be solved
in time O((|G|+|G′|)2). By Proposition 16 applied to G and G′, we can suppose
that both HMSCs are local and non decomposable.

Assume that L(G) ∩ L(G′) 6= ∅. Then there exist two paths of G, G′ labeled
by M = M1 · · ·Mk and N = N1 · · ·Nl with M = N , thus satisfying the
hypothesis of Lemma 17.

We define a graph G × G′ with set of states V × V ′. We let (v, v′) −→G×G′

(w, w′) in G × G′ if λ(v) = λ′(v′), (v, w) ∈ R in G and (v′, w′) ∈ R′ in G′.

We will check the second condition of Lemma 17 using a set of target nodes
T of G × G′. Let (v, v′) ∈ T iff:

(1) λ(v) = XY and λ′(v′) = XY ′, where P (Y ) ∩ P (Y ′) = ∅.
(2) Y ′ labels a path from a successor of v to a final state of G (if Y ′ is empty

then v = vf in G). Symmetrically, Y labels a path from a successor of v ′

to a final state of G′ (if Y is empty then v′ = v′f in G′).

We can determine whether (v, v′) belongs to the target set using depth-first
search in G, G′ for finding a path from a successor of v′ (if v′ is not final) that
is labeled by Y , and symmetrically for Y ′. Hence, the target set T can be built
in time O(|G × G′|).

By Lemma 17, L(G) ∩ L(G′) 6= ∅ iff T is reachable from (v0, v′0). Hence, this
problem can be solved in time linear in the number of nodes of G × G′, thus
in time O(|G| · |G′|). This leads to the overall bound O((|G| + |G′|)2).

For the NLOGSPACE upper bound, we sketch the main ingredients of the
proof. As usual for accessibility problems, it suffices to store one node of G×G′

at a time. Given two nodes v, w in a local HMSC such that (v, w) ∈ R and
v (resp. w) has e (resp. f) as minimal event, the MSC labeling v is uniquely
determined by (e, f). Precisely, it comprises the events that are in the future of
e but not in that of f . Thus, a node of G×G′ can be represented by two pairs
(e, f), (e′, f ′) of events, one in G and one in G′. With similar arguments, we
can test whether (v, v′) −→G×G′ (w, w′) holds in G×G′ in NLOGSPACE. For
the target set, note that each of the MSCs X, Y, Y ′ occurring in the definition
of T has a single minimal event. Hence we can reason as above for deciding in
NLOGSPACE whether a node of G × G′ belongs to T .

Inclusion problem We show now that the inclusion problem is in PSPACE.
We want to know whether there exists an accepting path in G labeled by M
such that no path of G′ labeled by M is accepting. This is done in the usual
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way, by guessing a path ρ in G and considering all possible paths in G′ that

may match. For this we define a graph Ĝ × G′ from G×G′, that corresponds
roughly to a subset construction on G′. The guessed path ρ in G determines
all possibly matching paths in G′, each of which is in one of the two cases of
Lemma 17. At any time, we consider a node v of G and a set W ′ of nodes of
G′ according to case 1 of Lemma 17. Whenever (v, v ′) with v′ ∈ W ′ belongs
to the target set T , we store the suffix of v′ which remains to be matched

in G, according to case 2 of Lemma 17. Hence, a state of Ĝ × G′ is a triple
(v, W ′, S) where v is a node of G, W ′ is a subset of nodes of G′ and S is a set
of suffixes of MSCs of nodes in G′.

Formally, let Suff be the set of suffixes of MSCs labeling the nodes of G′. The

state set of Ĝ × G′ is V ×2V ′

×2Suff. Transitions are defined as (v1, W
′
1, S1) −→

(v2, W
′
2, S2), with

• (v1, v2) ∈ R
• W ′

2 = {v′
2 | ∃v′

1 ∈ W ′
1, (v1, v

′
1) −→G×G′ (v2, v

′
2)

2 }
• S2 is defined by the following two conditions:
(A) if M = λ(v1)Y for some M ∈ S1, then Y ∈ S2,
(B) if (v2, v

′
2) ∈ T for some v′

2 ∈ W ′
2, and λ(v′

2) = XY ′ with X = λ(v2)∩λ′(v′
2),

then Y ′ ∈ S2.

Notice that in case B above, if λ(v2) = λ(v′
2), then the empty MSC belongs

to S2. We define a set of final nodes T̂ of Ĝ × G′: let (v, W ′, S) ∈ T̂ if v
is final in G and the empty MSC does not belong to S. The initial state is
(v0, {v′0}, {Y ′}), where λ(v0) = XY, λ′(v′0) = XY ′ with P (Y ) ∩ P (Y ′) = ∅. If
such an X does not exist, then clearly L(G) 6⊆ L(G′).

We show now that a state of T̂ is reachable if and only if L(G) \ L(G′) 6= ∅.
As this question is a reachability problem in a graph of exponential size, the
PSPACE upper bound follows directly.

Assume that there exists an accepting path ρ = v0 · · · vl in G such that no
matching path of G′ is accepting. The path ρ uniquely defines a path ρ̂ =

v̂0 · · · v̂l of Ĝ × G′ with v̂i = (vi, W
′
i , Si), for all i. We show that v̂l ∈ T̂ .

Assume by contradiction that the empty MSC belongs to Sl. Let us consider
a transition v̂k → v̂k+1 that generates a suffix Y ′ in Sk+1 (Case B above)
leading to the empty MSC in Sl on ρ̂ (applying case A above). Thus, there
exists a transition (v′

k, v
′
k+1) ∈ R′ in G′ such that the pair (vk+1, v

′
k+1) ∈ T .

Moreover λ(v′
k+1) = (λ(vk+1)∩λ′(v′

k+1))Y
′. By the definition of the transitions

(W ′-component), we have λ(vi) = λ′(v′
i) for all i ≤ k. By the choice of k,

λ′(v′
k+1 · · · v

′
m) = λ(vk+1 · · ·vl), hence λ′(v′

0 · · · v
′
m) = λ(ρ) with v′

m final in G′

(due to the definition of the target set T ), a contradiction.

2 That is, λ(v1) = λ′(v′1) and (v′1, v
′
2) ∈ R′.
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Conversely, assume that there exists an accepting path

(v0, W
′
0, S0), . . . , (vl, W

′
l , Sl)

in Ĝ × G′ and (vl, W
′
l , Sl) ∈ T̂ . Let M = λ(v0 · · · vl). Assume by contradiction

that there exists an accepting path v′
0 · · ·v

′
m of G′ labeled by M . Then we

can apply Lemma 17. So there exists an index k such that λ(vi) = λ′(v′
i) for

all i ≤ k, and (vk+1, v
′
k+1) ∈ T . Then v′

k+1 ∈ W ′
k+1, and Y ′ ∈ Sk+1, where

λ′(v′
k+1) = (λ′(v′

k+1) ∩ λ(vk+1))Y
′. By the definition of T , the empty MSC

belongs to Sl, a contradiction.

5 Implementing HMSC Specifications

The most natural implementation model for HMSCs are communicating finite
state machines (CFM), as used for instance in the ITU Z.100 [15] specification
language SDL.

A CFM A consists of a network of finite state machines A = (Ap)p∈P that
communicate over unbounded, error-free channels. In general we assume that
channels are FIFO (if for instance the given HMSC is FIFO), but we can
modify the semantics of receives if the MSCs contain overtaking of messages.
The content of a channel is a word over a finite alphabet C. With each pair
(p, q) ∈ P2 of distinct processes we associate a channel Bp,q. Each finite state
machine Ap is described by a tuple Ap = (Sp, Ap,→p, Fp) consisting of a
set of local states Sp, a set of actions Ap, a set of local final states Fp and a
transition relation →p⊆ Sp×Ap×Sp. The computation begins in an initial state
s0 ∈

∏

p∈P Sp. The actions of Ap are either local actions or sending/receiving a
message. We use the same notations as for MSCs. Sending message a ∈ C from
process p to process q is denoted by p!q(a) and it means that a is appended to
the channel Bp,q. Receiving message a by p from q is denoted by p?q(a) and
it means that a must be the first message in channel Bq,p, which will be then
removed from Bq,p (supposing FIFO). In the non FIFO case we specify the
type of the message that can be received next (cf. the semantics of a receive
in the message queue of UNIX system V). A local action a on process p is
denoted by lp(a).

A configuration C = (q, B) of a CFM A = (Ap)p∈P is described by a global
state q of S =

∏

p∈P Sp and the contents B ∈ (C∗)P×P of all channels. The
transition relation of the CFM is denoted by →, its transitive-reflexive closure
is denoted as usual by

∗
→. The configuration with global state s0 and empty

channels is the initial configuration. An execution σ = C1
a1→ C2

a2→ · · ·
am−1

→
Cm of A is a finite →-path. The labeling of the execution σ is the sequence
a1 · · ·am−1. Note that the labeling of an execution σ defines in a natural way
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a partial MSC msc(σ).

We denote an execution of the CFM as successful, if each process p ends in
some final state from Fp and all channels are empty. The set of successful
executions of A is denoted L(A) and is a set of finite MSCs. A configuration
C is a deadlock if there is no successful execution starting from C. The size of
A is

∑

p |Ap|.

A CFM implementation of an HMSC will refine the HMSC specification by
adding for instance data to the message contents. We will call A a CFM
implementation of the HMSC G if the projection of L(A) on the original
message contents of G coincides with L(G).

5.1 Locally-cooperative HMSCs

The simplest realization of an HMSC G by a CFM is the one where the
automaton Ap corresponding to process p generates the projection of L(G) on
p. This approach is used in [2,23]. Consider again the HMSC G1 of Figure 8
(page 18), and let M be the MSC given by the projections πp(M) = p!r p!s,
πq(M) = q?s q?r, πr(M) = r?p r!q and πs(M) = s?p s!q, pictured in Figure
11. Then M does not belong to L(G1) although πt(M) ∈ πt(L(G1)) for all

q r sp

Fig. 11. An MSC M 6∈ L(G1)

t ∈ {p, q, r, s}. Hence G1 is not realizable according to [2].

We describe our implementation of locally-cooperative HMSCs first on our ex-
ample G1. One can observe that G1 can be implemented if process p anticipates
the next choice between the nodes M1 and M2 and sends the prediction with
the current message. Processes r and s then forward the prediction to q. In
this way, process q knows whether the next message should be received from r
or from s. In the example above, this would mean that process p will send with
the first message its next choice (node M1). Since predictions are forwarded,
this will prevent process q to receive the message from s that corresponds to
M2.

The general solution will assign a leader process to each transition (p in the
example) i.e., a process that occurs in both nodes of the transition, and decides
about some nodes to be executed in the future (a kind of prediction).
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For a node v ∈ V of G = 〈V, R, v0, vf , λ〉, let P (v) denote the processes
occurring in λ(v). For a path σ = v0v1 · · · vk of G let P (σ) =

⋃

i P (vi) be the
processes occurring in σ. Moreover, we define first(σ, p) for all p ∈ P as the
first node containing p in σ:

first(σ, p) =







⊥ if p /∈ P (σ),

vj, where j = min{` ≥ 0 | p ∈ P (v`)} otherwise.

Similarly, if σ has at least i + 1 nodes, let last(σ, i, p) be the last node among
the first (i + 1) ones containing p:

last(σ, i, p) =







⊥ if p /∈ P (v0v1 · · · vi),

vj, where j = max{` ≤ i | p ∈ P (v`)} otherwise.

Let G = 〈V, R, v0, vf , λ〉 be a locally-cooperative HMSC. A triple (v, ν, l) ∈
V × (V ∪ {⊥})P × P is a realizable prediction if

• either ν(p) = ⊥ for all p ∈ P and v = vf ,
• or there exist a path σ = v0v1 · · · vk in G, and a transition (v, v0) ∈ R such

that
· l ∈ P (v) ∩ P (v0), and
· ν(p) = first(σ, p) for each process p. In particular, ν(l) = v0.

The process l is called the leader of the transition (v, ν(l)) with respect to
(v, ν, l). Note that realizable predictions can be precomputed iteratively in
polynomial time.

From a locally-cooperative HMSC G = 〈V, R, v0, vf , λ〉, we build a commu-
nicating automaton AG as follows. Each process is initialized with the same
input (realizable prediction) i0 = (v0, ν0, l0), with v0 = v0. The automaton
associated with process p is described by the algorithm below.

p:

(v,ν,`) = (v0,ν0,`0);

while (true)

{
m = (v,ν,`);
if (p ∈ P(v)) // test useful only for the first node of p

execute(v,m);// deadlocks if p receives a prediction

// other than m

v’ = ν(p);
if (v’ == ⊥)

halt();

if (v’ == ν(`)) // v’ is the successor of v

(ν’,`’) = guess_next(v’,ν);
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else (ν’,`’) = guess(v’);

v = v’; ν = ν’; `= `’;
}

The call guess next(v′, ν) chooses nondeterministically a prediction and a
leader (ν ′, `′) for the next node v′, such that (v′, ν ′, `′) is realizable and the
new prediction ν ′ is compatible with the old prediction ν for processes not
occurring in v′:

ν|P\P (v′) = ν ′
|P\P (v′) (C)

The call guess(v’) guesses nondeterministically a pair (ν ′, `′) such that (v′, ν ′, `′)
is realizable. In this case, process p makes a prediction about a node p′ that
is not a direct R-successor of v. This prediction is needed since all processes
of a node must agree on some future information. The call halt() terminates
the execution of p in an accepting state. Finally, the call execute(v,m) con-
sists in executing the actions of p of the MSC labeling v, but overloading the
messages to be sent or received with m. The weak connectivity of each MSC
ensures that all processes executing a node must choose the same value for m
in order to complete that node without deadlocking.

Proposition 19 Let G be a locally-cooperative HMSC. Then AG is a CFM
implementation of L(G) of size nO(℘), where n is the number of nodes of G
and ℘ is the number of processes.

PROOF. Since AG can simulate any execution of G by guessing precisely
the path corresponding to a given execution we see that every execution of
G corresponds to a successful execution of AG. For the other direction let
x ∈ L(AG) and let y be the MSC obtained from x by removing the additional
message contents introduced by the algorithm. We will determine a path σ in
G such that y = λ(σ).

Since x ∈ L(AG), every process p executes a sequence of states, and halts when
its prediction function ν satisfies ν(p) = ⊥. We define the path σ inductively.

Let σ0 = v0 = v0. If ν0 = ⊥P , then we let σ = σ0; otherwise, ν0 6= ⊥P implies
ν0(l0) 6= ⊥, since (v0, ν0, l0) is realizable. Assume now that we have constructed
a sequence (vk, lk, νk)0≤k≤i such that:

a) σi = v0v1 · · · vi is a path in G;
b) for any process p, the sequence of events of process p along the path σi,

πp(σi), is a prefix of πp(y);
c) the common leader chosen during the execution of vi is li ∈ P (vi);
d) the common prediction function chosen during the execution of vi is νi.

These conditions are fulfilled for i = 0. Assume that they hold for a given i,
and that νi(li) 6= ⊥. Then vi+1 = νi(li) is a state of G and (vi, vi+1) ∈ R by
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by the definition of a realizable prediction. Hence σi+1 = v0 · · · vi+1 is a path
of G. Moreover, li ∈ P (vi+1), and the algorithm for process li shows that li
executes vi+1 immediately after having completed vi.

We show first that every process p ∈ P (vi+1) executes vi+1 after σi. As-
sume that p executes some state v 6= vi+1 after its execution of σi. Let
vj = last(σi, i, p) be the last node executed by p in σi and let νj be the
associated prediction. Then j 6= i since p ∈ P (vi) would imply v = vi+1 since
the execution did not deadlock. By assumption, v = νj(p). The prediction
functions νk, j < k ≤ i guessed by lj satisfy the compatibility condition (C),
so in particular νk(p) = νj(p) for j ≤ k ≤ i, so v = νi(p). Since νi is realizable
by a path τ of G and p ∈ P (vi+1) we obtain that v = νi(p) = first(τ, p) = vi+1,
a contradiction.

Since vi+1 is executed without deadlock, the new leader li+1 and the new
prediction function νi+1 are well-defined.

Let now k be maximal such that σk satisfies conditions a) to d) above, and
let σ = σk. We claim that y = λ(σ). If this is not the case, πp(σ) would be a
strict prefix of πp(y) for some p ∈ P. Since p executes some actions after those
of πp(σ), it has to execute at least the state v = νj(p) = νk(p). But νk(lk) = ⊥
by maximality of k, so this is a contradiction to σk being executed without
deadlock.

Remark 20 Note that we can fix a leader for each transition of the HMSC
beforehand. This decreases the degree of non determinism and the possibility of
deadlocking. We used a leader in our algorithm for simplifying the description
of the implementation.

5.2 Local-Choice HMSCs

The implementation algorithm described in the previous section cannot avoid
deadlocks for the resulting CFM, since the future predictions are chosen by
each process separately. An unavoidable problem is that branching in an
HMSC is not controlled by a single process, as it is the case for local HMSCs.

Roughly speaking, the idea for implementing local HMSCs is that before the
execution branches, the minimal process of the future execution knows that
it has to choose the next node (through a call of guess() below). If a process
is not the minimal process of the next branching, then its next action will be
a receive. In this case, it stays in a polling state until it receives a message
telling him what node it is currently executing (stored in a variable called
current node). A polling state means that the only possible actions are re-
ceives of arbitrary messages from arbitrary processes. Here is the algorithm
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for the polling state of process p.

polling()

while (true) {
if p receives a message containing v

{
current node = v;

return;

} }

Here is the algorithm for process p.

initialization();

while (true) {
if (p 6= root(current node))

polling();

else { v = guess(current node);

current node = v; }
execute(current node);

}

The current node is initialized in initialization() by letting the value
of current node be v0. The call execute(w) means that process p executes
πp(w). In this case each message sent by p contains in addition w.

The correctness proof of the algorithm is easy, since each node is connected
and admits a unique minimal event on a process occurring in the previous
node. Then each process (except for the minimal process of the current node)
begins its execution by receiving a message, so it gets informed about the
current node. We obtain an implementation of linear size for local HMSCs.

Proposition 21 For any local HMSC, one can construct a deadlock-free CFM
implementation of linear size.

6 Existentially-Bounded CFM and Deadlock Detection

In this section we consider a subclass of communicating finite state machines,
called existentially-bounded CFM. Intuitively, a CFM is existentially-bounded
if every execution can be simulated using bounded channels. Since imple-
mentations of HMSCs yield existentially-bounded CFMs, it is natural to ask
whether a existentially-bounded CFM is deadlock-free. We show below how to
decide this question in polynomial space. Notice that for unrestricted CFMs
this question is undecidable [5].
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Recall that a CFM execution is successful if it ends with empty channels and
each process reaches some local final state. A configuration C is a deadlock
if there is no successful execution starting from C. Finally, for x ∈ A∗ we
let msc(x) denote the partial MSC defined by pairing the k-th event of type
p!q(a) with the k-th event of type q?p(a) (if they exist).

Let A =
⋃

p∈P Ap be the set of possible actions of a CFM over process set P.
Two executions σ, σ′ are called equivalent if msc(σ) = msc(σ′) and σ, σ′ start
in the same configuration. In this case we write σ ∼ σ′.

An execution σ of a CFM is called existentially-b-bounded, if every configura-
tion of σ is such that the size of every channel is bounded by b. If C

∗
→ C ′ is

b-bounded, then we say that C is b-reachable from C.

Definition 22 (existentially-b-bounded CFM) Let b > 0. A CFM is existen-
tially-b-bounded if every successful execution σ starting in the initial configu-
ration admits some successful, b-bounded execution σ ′ ∼ σ. A CFM is called
existentially-bounded if it is existentially-b-bounded.

Proposition 23 Let A be a existentially-b-bounded CFM and let C be b-
reachable from the initial configuration of A. Then C is not a deadlock if
and only if there is some b-bounded, successful execution starting from C.

PROOF. We assume that C is not a deadlock configuration, that is, there
exists some successful execution σ starting in C and labeled by v ∈ A∗. More-
over, let τ = C0

u
→ C be a b-bounded execution, with u ∈ A∗. Since A is

an existentially-b-bounded CFM there exists also a successful, b-bounded ex-
ecution σ′ such that σ′ ∼ τσ, that is, σ′ and τσ are equivalent. Let w ∈ A∗

be the labeling of σ′, hence msc(w) = msc(uv). Hence, we can write w =
u0v1u1 · · · vkukvk+1 with msc(u) = msc(u0 · · ·uk), and for all i ≤ j and every
process p, either πp(uj) = ε or πp(vi) = ε.

We show that the execution starting in C and labeled by v1 · · · vk+1 is b-
bounded. Note first that v1 · · · vk+1 is well-defined starting from C, since for
any pair p, q of processes, |vi|a 6= ε for some a = p?q(c) implies |ui · · ·uk|a′ =
ε for any a′ = p?q(c′), thus a is possible after executing u0 · · ·ukv1 · · · vi−1.
Moreover, there can be no channel of size more than b in vi after executing
u0 · · ·ukv1 · · · vi−1, since if |vi|a 6= ε for some a = p!q(c) then |ui · · ·uk|a′ = ε
for any a′ = p!q(c′).

Proposition 24 The following problem is PSPACE-complete:

Input: Integer b (unary representation) and a existentially-b-bounded CFM A.
Question: Is A deadlock-free?
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PROOF. The upper bound is provided by Proposition 23. For the lower
bound we give a reduction from the non empty intersection problem for finite
automata. Assume that A1, . . . ,An are finite automata over a mutual alphabet
M. Without restriction, we suppose that for every Ai and every state we can
reach a final state. We use n processes p1, . . . , pn that exchange messages over
the alphabet M∪{#}. Process p1 starts by sending a message # to pn. Then
p1 starts simulating A1 such that for each transition it sends a message to p2

corresponding to the transition label. Finally, from each final state of A1 it
can go to a new state d1 after sending # to p2 (state d1 has no successor).
For each i > 1 process pi simulates the automaton Ai such that for each
transition labeled by some a ∈ M it must first receive the message a from
pi−1 and then it sends a to pi+1. Upon receiving # from pi−1 in a final state of
Ai it can move to a new state di, after sending # to pi+1. If i = n then it also
receives the message # from p1. It can be easily checked that the intersection
of A1, . . . ,An is non empty if and only if there is some successful, 1-bounded
execution starting from the initial configuration.

Corollary 25 The following problem is PSPACE-complete:

Input: Integer b (unary representation) and a existentially-b-bounded CFM A.
Question: Is L(A) 6= ∅?

The last proposition allows to connect the model-checking problem and the
implementation by CFMs. We first define the synchronized product of two
CFM implementations of HMSCs G1, G2. Let Ai = (Ai

p)p∈P , Ai
p = (Si

p,→
i
p

, s0
i , F

i
p), be a CFM implementation of Gi. The synchronized product A1 ×A2

is the CFM A = (Ap)p∈P with Ap = (Sp,→p, s
0, Fp) given by:

• Sp = S1
p × S2

p ,

• (s1, s2)
a

−→p (s′1, s
′
2) if s1, s

′
1 ∈ S1

p , s2, s
′
2 ∈ S2

p , si
ai−→i

ps
′
i for each i = 1, 2.

The actions a, a1, a2 are either of the form ai = p!q(ci) and a = p!q(c1, c2),
or ai = p?q(ci) and a = p?q(c1, c2). Moreover, the projection of c1, c2 on the
message contents of G1, G2, must be identical.

• The initial state of A is s0 = (s0
1, s

0
2), where s0

i is the initial state of Ai. Let
also Fp = F 1

p × F 2
p be the set of local p-final states of A.

Theorem 26 Let C be a class of HMSCs that are CFM implementable. Then
the model-checking problem for C (intersection and inclusion, resp.) is decid-
able.

PROOF. Suppose that Ai is a CFM implementation of Gi. Moreover, let
bi be the channel bound for Gi. That is, any atom in Atom(Gi) has some
linearization such that the difference between send and receive symbols is at
most bi, for any prefix. Then the CFMs A1,A2 are existentially-b-bounded,
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Class C: G.-Cooperative L.-Cooperative local-choice

∈ C ? co-NP P P

∩ = ∅ PSPACE NLOG if ℘ is constant NLOG

⊆ EXPSPACE PSPACE if ℘ is constant PSPACE

Implem. ? |G|O(℘) |G|

Fig. 12. Model-checking and implementation infinite-state HMSCs.

with b = max(b1, b2).

Moreover, for the negative model-checking we have L(G1) ∩ L(G2) 6= ∅ iff
L(A1 × A2) 6= ∅. For the positive model-checking we have L(G1) 6⊆ L(G2)
iff L(A1 × 2A2) 6= ∅, where 2A denotes the powerset CFM associated with
A, obtained by synchronizing on actions of same type and identical original
contents.

Conclusion

We have shown that model-checking is decidable for a large class of infinite-
state HMSCs, globally-cooperative HMSCs. Moreover, the complexity remains
the same as for the more restricted class of regular HMSCs. For local-choice
HMSCs, we have shown how to perform model-checking with the same com-
plexity as for finite automata. The precise complexity of the inclusion problem
for locally-cooperative HMSCs remains open, we only know that it lies be-
tween PSPACE and EXPSPACE. The implementation of locally-cooperative
HMSCs raises the question whether we can decide for a given locally-cooper-
ative HMSC if it can be implemented without deadlocks in our framework.
The table below summarizes our results.
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[26] E. Ochmański. Recognizable trace languages. In V. Diekert and G. Rozenberg,
editors, The Book of Traces, chapter 6, pages 167–204. World Scientific,
Singapore, 1995.

[27] D. Peled. Specification and verification of message sequence charts.
In Proceedings of Formal Techniques for Distributed System Development,
FORTE/PSTV 2000, Pisa, Italy, pages 139–154, 2000.

[28] A. Pnueli and R. Rosner. Distributed reactive systems are hard to synthesize.
In Proceedings of the IEEE Symposium on Foundations of Computer Science,
FOCS’90, IEEE, pages 746–757, 1990.

[29] USB 1.1 specification, http://www.usb.org/developers/docs/usbspec.zip

35


	Introduction
	Preliminaries
	A Panorama of HMSC Classes
	Model-Checking
	Mazurkiewicz Traces
	Model-checking globally-cooperative and locally-cooperative HMSCs
	Local-Choice HMSCs
	Model-checking local HMSCs

	Implementing HMSC Specifications
	Locally-cooperative HMSCs
	Local-Choice HMSCs

	Existentially-Bounded CFM and Deadlock Detection
	References

