Flat and One-Variable Clauses for Single Blind Copying Protocols: the XOR Case

Helmut Seidl Kumar Neeraj Verma

TU München, Germany

RTA 2009

Single blind copying in cryptographic protocols

The Needham-Schroeder public key example:

$$
\begin{array}{ll}
\text { 1. } & A \longrightarrow B:\left\{A, N_{a}\right\}_{K_{b}} \\
\text { 2. } & B \longrightarrow A:\left\{N_{a}, N_{b}\right\}_{K_{a}} \\
\text { 3. } & A \longrightarrow B:\left\{N_{b}\right\}_{K_{b}}
\end{array}
$$

For our modeling we consider safe abstractions: unbounded number of sessions, nonces may be non-fresh.

Modeling intruder's knowledge

1. $A \longrightarrow B:\left\{A, N_{a}\right\}_{K_{b}} \quad I\left(\left\{A, N_{a}\right\}_{K_{b}}\right)$
2. $B \longrightarrow A:\left\{N_{a}, N_{b}\right\}_{K_{a}} \neg I\left(\{A, x\}_{K_{b}}\right) \vee I\left(\left\{x, N_{b}\right\}_{K_{a}}\right.$
3. $A \longrightarrow B:\left\{N_{b}\right\}_{K_{b}} \quad \neg I\left(\left\{N_{a}, x\right\}_{K_{a}}\right) \vee I\left(\{x\}_{K_{b}}\right)$

Secrecy of $N_{b}: \neg I\left(N_{b}\right)$.
\Rightarrow Clauses with at most one variable.

We abstracted all the nonces to only finitely many.
Less severe (still safe) abstractions are also possible.

$$
\begin{array}{ll}
\text { 1. } & A \longrightarrow B:\left\{A, N_{a}\right\}_{K_{b}} \\
\text { 2. } & B \longrightarrow A:\left\{N_{a}, N_{b}\right\}_{K_{a}} \\
\neg I\left(\{A, x\}_{K_{b}}\right) \vee I\left(\left\{x, N_{b}(x)\right\}_{K_{a}}\right. \\
\text { 3. } & A \longrightarrow B:\left\{N_{b}\right\}_{K_{b}} \\
\ldots
\end{array}
$$

The generated nonce is now a function of the received nonce (in the style of [Blanchet01])

This is still a one-variable clause.

Other abilities of the intruder

$$
\begin{array}{ll}
I(\text { encrypt }(x, y)) \vee \neg I(x) \vee \neg I(y) & \text { Intruder can encrypt messages } \\
I(\text { pair }(x, y)) \vee \neg I(x) \vee \neg I(y) & \text { Intruder can form pairs } \\
I(x) \vee \neg I(\text { encrypt }(x, y)) \vee \neg I(y) & \text { Intruder can decrypt messages } \\
I(x) \vee \neg I(\text { pair }(x, y)) & \text { Intruder can unpair messages } \\
I(y) \vee \neg I(\text { pair }(x, y)) & \\
& \\
\Rightarrow \text { Flat clauses } &
\end{array}
$$

The class \mathcal{C} of Comon-Lundh and Cortier

- Clauses with at most one variable
- Flat clauses: $\bigvee_{i} \pm_{i} P_{i}\left(f_{i}\left(x_{i}^{1}, \ldots, x_{i}^{n_{i}}\right)\right) \vee \bigvee_{j} \pm_{j} Q_{j}\left(x_{j}\right)$ for each $i,\left\{x_{i}^{1}, \ldots, x_{i}^{n_{i}}\right\}$ are all the variables in the clause

The class \mathcal{C} of Comon-Lundh and Cortier

- Clauses with at most one variable
- Flat clauses: $\bigvee_{i} \pm_{i} P_{i}\left(f_{i}\left(x_{i}^{1}, \ldots, x_{i}^{n_{i}}\right)\right) \vee \bigvee_{j} \pm_{j} Q_{j}\left(x_{j}\right)$ for each $i,\left\{x_{i}^{1}, \ldots, x_{i}^{n_{i}}\right\}$ are all the variables in the clause

Previous upper bound:
Known lower bounds:

Our techniques give upper bounds: NEXPTIME
DEXPTIME in Horn case
\Rightarrow The secrecy problem is DEXPTIME ... even DEXPTIME-complete!

Some standard techniques

The binary resolution rule:

$$
\frac{C_{1} \vee P(s) \neg P(t) \vee C_{2}}{C_{1} \sigma \vee C_{2} \sigma}(\sigma=m g u(s, t))
$$

Soundness and completeness: the empty clause \square (false) can be derived iff the given set of clauses is unsatisfiable.

A general technique which decides various fragments of first-order logic, including two-variable fragment, guarded fragment, ...

Example

Input clauses
$P(a) \quad P(f(x)) \Leftarrow P(x) \quad \neg P(f(f(a)))$

Resolution produces
$P(f(a)) \quad P(f(f(a))) \quad \square$
\Rightarrow The set of clauses is unsatisfiable.

Example

Input clauses
$P(a) \quad P(f(x)) \Leftarrow P(x) \quad \neg P(f(f(a)))$

Resolution produces
$P(f(a)) \quad P(f(f(a))) \quad \square$
\Rightarrow The set of clauses is unsatisfiable.

Problem: non-termination in case of satisfiability.

Ordered resolution

Select only the maximal literals in a clause during resolution.

Soundness and completeness are preserved.

Input clauses
$P(a) \quad P(f(x)) \Leftarrow P(x) \quad \neg P(f(f(a)))$

Resolution produces:
$\neg P(f(a)) \quad \neg P(a)$

Ordered resolution, for a suitable ordering, on the class \mathcal{C} leads to a linear bound on the height of terms in produced clauses.
\Rightarrow 3-EXPTIME decision procedure [Comon-Lundh, Cortier]

This analysis is too coarse to obtain optimal complexity.

We are going to use different algorithms, instead of reanalyzing the same algorithm.

One-variable clauses

Generalize alternating pushdown systems on strings:

$$
\begin{array}{ll}
P(a) & \\
P\left(f_{1}\left(f_{2}\left(f_{3}(x)\right)\right)\right) & \Leftarrow Q\left(g_{1}\left(g_{2}(x)\right)\right) \\
P(x) & \Leftarrow P_{1}(x) \wedge P_{2}(x)
\end{array}
$$

We now allow arbitrary arities and repetition of variables.

$$
P(f(x, g(h(a), g(x, x))) \Leftarrow Q(x) \wedge R(f(x, x))
$$

Decomposition of one-variable terms

One variable terms are composed of irreducible terms.
$s[x]=s_{1}\left[\ldots\left[s_{n}[x]\right] \ldots\right]$.

\Rightarrow One-variable terms behave like strings.
\Rightarrow Satisfiability for one-variable clauses is DEXPTIME-complete.
(As for alternating pushdown systems)

Flat clauses

$$
P(f(x, y, x)) \Leftarrow Q(g(y, y, x, y)) \wedge R(x) \wedge S(y) \wedge T(y) \wedge U(h(x, y))
$$

Generalize alternating two-way automata, equality constraints between brothers, permutation and repetition of arguments.

NEXPTIME-completeness (DEXPTIME-completeness in the Horn case) is well-known for various restricted cases:
\star either the maximal arity is a constant

* or the same sequence of variables occurs in all non-trivial atoms in a clause

We show the same complexity for the general case.

Idea: resolution modulo propositional reasoning

The resolution step

$$
\frac{P(x) \Leftarrow Q(f(x, x)) \quad Q(f(x, y)) \Leftarrow R(y)}{P(x) \Leftarrow R(x)}
$$

can be broken into an instantiation step

$$
\frac{Q(f(x, y)) \Leftarrow R(y)}{Q(f(x, x)) \Leftarrow R(x)}
$$

and a propositional implication generation step

$$
\frac{D_{1} \vee L \neg \neg \vee D_{2}}{D_{1} \vee D_{2}}
$$

\Rightarrow Generate interesting propositional implications, and avoid intermediate clauses.

Use the fact that propositional satisfiability is in NP.

Optimal complexity results for several classes:

	General case	Horn case
One-variable	DEXPTIME-complete	DEXPTIME-complete
Flat clauses	NEXPTIME-complete	DEXPTIME-complete
Combination	NEXPTIME-complete	DEXPTIME-complete

Secrecy of cryptographic protocols with single blind copying is DEXPTIME-complete.

Extension: adding the XOR theory

Algebraic properties of cryptographic primitives often need to be considered for a precise analysis.

Frequently occurring properties include those of associativity and commutativity, properties of modular exponentiation, XOR,...

We consider the XOR theory:

$$
\begin{aligned}
x+(y+z) & =(x+y)+z \\
x+y & =y+x \\
x+0 & =x \\
x+x & =0
\end{aligned}
$$

We generalize our clauses.

- Arbitrary one-variable clauses, possibly containing the XOR symbol
- Flat clauses, without the XOR symbol
- One intruder clause $I(x+y) \Leftarrow I(x) \wedge I(y)$

We generalize our clauses.

- Arbitrary one-variable clauses, possibly containing the XOR symbol
- Flat clauses, without the XOR symbol
- One intruder clause $I(x+y) \Leftarrow I(x) \wedge I(y)$

Allowing arbitrary many clauses of the form

$$
P_{1}(x+y) \Leftarrow P_{2}(x) \wedge P_{3}(y)
$$

leads to undecidability.

Problem 1: no stable ordering

Usual orderings useful for ordered resolution don't work in the XOR case.

With the subterm ordering we have

$$
x<f(x+f(f(0)))
$$

But applying the substitution $x \mapsto f(f(0))$, we must have:

$$
f(f(0))<f(0)
$$

Solution: the substitution $x \mapsto f(f(0))$ involves only ground subterms from the input set. Do all such problematic substitutions separately, and then do ordered resolution.

Problem 2: The intruder clause resolves with itself to give larger and larger clauses.

$$
\frac{I(x+y) \Leftarrow I(x) \wedge I(y) \quad I\left(x^{\prime}+y^{\prime}\right) \Leftarrow I\left(x^{\prime}\right) \wedge I\left(y^{\prime}\right)}{I\left(x+x^{\prime}+y^{\prime}\right) \Leftarrow I(x) \wedge I\left(x^{\prime}\right) \wedge I\left(y^{\prime}\right)}
$$

Problem 2: The intruder clause resolves with itself to give larger and larger clauses.

$$
\frac{I(x+y) \Leftarrow I(x) \wedge I(y) \quad I\left(x^{\prime}+y^{\prime}\right) \Leftarrow I\left(x^{\prime}\right) \wedge I\left(y^{\prime}\right)}{I\left(x+x^{\prime}+y^{\prime}\right) \Leftarrow I(x) \wedge I\left(x^{\prime}\right) \wedge I\left(y^{\prime}\right)}
$$

Solution: replace this with special deduction rules, e.g.:

$$
\frac{P(x) \Leftarrow I(f(x)+g(x)) \quad I(f(x)+h(x)) \Leftarrow Q(x)}{P(x) \Leftarrow I(g(x)+h(x)) \wedge Q(x)}
$$

Problem 2: The intruder clause resolves with itself to give larger and larger clauses.

$$
\frac{I(x+y) \Leftarrow I(x) \wedge I(y) \quad I\left(x^{\prime}+y^{\prime}\right) \Leftarrow I\left(x^{\prime}\right) \wedge I\left(y^{\prime}\right)}{I\left(x+x^{\prime}+y^{\prime}\right) \Leftarrow I(x) \wedge I\left(x^{\prime}\right) \wedge I\left(y^{\prime}\right)}
$$

Solution: replace this with special deduction rules, e.g.:

$$
\frac{P(x) \Leftarrow I(f(x)+g(x)) \quad I(f(x)+h(x)) \Leftarrow Q(x)}{P(x) \Leftarrow I(g(x)+h(x)) \wedge Q(x)}
$$

Elementary decision procedure :-))

Conclusion

- General techniques from automata theory and automated deduction help in verification of cryptographic protocols.
- Precise complexity for our XOR class not yet known.

