
Flat and One-Variable Clauses for Single Blind Copying Protocols:

the XOR Case

Helmut Seidl Kumar Neeraj Verma

TU München, Germany

RTA 2009



Single blind copying in cryptographic protocols

The Needham-Schroeder public key example:

1. A −→ B : {A, Na}Kb

2. B −→ A : {Na, Nb}Ka

3. A −→ B : {Nb}Kb

For our modeling we consider safe abstractions: unbounded number of

sessions, nonces may be non-fresh.



Modeling intruder’s knowledge

1. A −→ B : {A, Na}Kb
I({A, Na}Kb

)

2. B −→ A : {Na, Nb}Ka
¬I({A, x}Kb

) ∨ I({x, Nb}Ka

3. A −→ B : {Nb}Kb
¬I({Na, x}Ka

) ∨ I({x}Kb
)

Secrecy of Nb : ¬I(Nb).

⇒ Clauses with at most one variable.



We abstracted all the nonces to only finitely many.

Less severe (still safe) abstractions are also possible.

1. A −→ B : {A, Na}Kb
. . .

2. B −→ A : {Na, Nb}Ka
¬I({A, x}Kb

) ∨ I({x, Nb(x)}Ka

3. A −→ B : {Nb}Kb
. . .

The generated nonce is now a function of the received nonce (in the

style of [Blanchet01])

This is still a one-variable clause.



Other abilities of the intruder

I(encrypt(x, y)) ∨ ¬I(x) ∨ ¬I(y) Intruder can encrypt messages

I(pair(x, y)) ∨ ¬I(x) ∨ ¬I(y) Intruder can form pairs

I(x) ∨ ¬I(encrypt(x, y)) ∨ ¬I(y) Intruder can decrypt messages

I(x) ∨ ¬I(pair(x, y)) Intruder can unpair messages

I(y) ∨ ¬I(pair(x, y))

⇒ Flat clauses



The class C of Comon-Lundh and Cortier

– Clauses with at most one variable

– Flat clauses:
∨

i ±iPi(fi(x
1
i , . . . , x

ni

i )) ∨
∨

j ±jQj(xj)

for each i, {x1
i , . . . , x

ni

i } are all the variables in the clause



The class C of Comon-Lundh and Cortier

– Clauses with at most one variable

– Flat clauses:
∨

i ±iPi(fi(x
1
i , . . . , x

ni

i )) ∨
∨

j ±jQj(xj)

for each i, {x1
i , . . . , x

ni

i } are all the variables in the clause

Previous upper bound: 3-DEXPTIME

Known lower bounds: NEXPTIME

DEXPTIME in Horn case

Our techniques give upper bounds: NEXPTIME

DEXPTIME in Horn case

⇒ The secrecy problem is DEXPTIME . . . even DEXPTIME-complete!



Some standard techniques

The binary resolution rule:

C1 ∨ P (s) ¬P (t) ∨ C2
(σ = mgu(s, t))

C1σ ∨ C2σ

Soundness and completeness: the empty clause � (false) can be derived

iff the given set of clauses is unsatisfiable.

A general technique which decides various fragments of first-order logic,

including two-variable fragment, guarded fragment, . . .



Example

Input clauses

P (a) P (f(x)) ⇐ P (x) ¬P (f(f(a)))

Resolution produces

P (f(a)) P (f(f(a))) �

⇒ The set of clauses is unsatisfiable.



Example

Input clauses

P (a) P (f(x)) ⇐ P (x) ¬P (f(f(a)))

Resolution produces

P (f(a)) P (f(f(a))) �

⇒ The set of clauses is unsatisfiable.

Problem: non-termination in case of satisfiability.



Ordered resolution

Select only the maximal literals in a clause during resolution.

Soundness and completeness are preserved.

Input clauses

P (a) P (f(x)) ⇐ P (x) ¬P (f(f(a)))

Resolution produces:

¬P (f(a)) ¬P (a) �



Ordered resolution, for a suitable ordering, on the class C leads to a

linear bound on the height of terms in produced clauses.

⇒ 3-EXPTIME decision procedure [Comon-Lundh, Cortier]

This analysis is too coarse to obtain optimal complexity.

We are going to use different algorithms, instead of reanalyzing the

same algorithm.



One-variable clauses

Generalize alternating pushdown systems on strings:

P (a)

P (f1(f2(f3(x)))) ⇐ Q(g1(g2(x)))

P (x) ⇐ P1(x) ∧ P2(x)

We now allow arbitrary arities and repetition of variables.

P (f(x, g(h(a), g(x, x))) ⇐ Q(x) ∧ R(f(x, x))



Decomposition of one-variable terms

One variable terms are composed of irreducible terms.

s[x] = s1[. . . [sn[x]] . . .].

f

a g

f

b

h

x

f

a g

f f

h h b h h b

xxxx

= f(a, x)[g(x, x)[f(x, x, b)[h(x)]]]

⇒ One-variable terms behave like strings.

⇒ Satisfiability for one-variable clauses is DEXPTIME-complete.

(As for alternating pushdown systems)



Flat clauses

P (f(x, y, x)) ⇐ Q(g(y, y, x, y)) ∧ R(x) ∧ S(y) ∧ T (y) ∧ U(h(x, y))

Generalize alternating two-way automata, equality constraints between

brothers, permutation and repetition of arguments.

NEXPTIME-completeness (DEXPTIME-completeness in the Horn case)

is well-known for various restricted cases:

⋆ either the maximal arity is a constant

⋆ or the same sequence of variables occurs in all non-trivial atoms in a

clause

We show the same complexity for the general case.



Idea: resolution modulo propositional reasoning

The resolution step

P (x)⇐Q(f(x,x)) Q(f(x,y))⇐R(y)
P (x)⇐R(x)

can be broken into an instantiation step

Q(f(x,y))⇐R(y)
Q(f(x,x))⇐R(x)

and a propositional implication generation step

D1∨L ¬L∨D2

D1∨D2

⇒ Generate interesting propositional implications, and avoid

intermediate clauses.

Use the fact that propositional satisfiability is in NP.



Optimal complexity results for several classes:

General case Horn case

One-variable DEXPTIME-complete DEXPTIME-complete

Flat clauses NEXPTIME-complete DEXPTIME-complete

Combination NEXPTIME-complete DEXPTIME-complete

Secrecy of cryptographic protocols with single blind copying is

DEXPTIME-complete.



Extension: adding the XOR theory

Algebraic properties of cryptographic primitives often need to be

considered for a precise analysis.

Frequently occurring properties include those of associativity and

commutativity, properties of modular exponentiation, XOR,. . .

We consider the XOR theory:

x+(y+z) = (x+y)+z

x+y = y + x

x+0 = x

x+x = 0



We generalize our clauses.

• Arbitrary one-variable clauses, possibly containing the XOR symbol

• Flat clauses, without the XOR symbol

• One intruder clause I(x+y) ⇐ I(x) ∧ I(y)



We generalize our clauses.

• Arbitrary one-variable clauses, possibly containing the XOR symbol

• Flat clauses, without the XOR symbol

• One intruder clause I(x+y) ⇐ I(x) ∧ I(y)

Allowing arbitrary many clauses of the form

P1(x+y) ⇐ P2(x) ∧ P3(y)

leads to undecidability.



Problem 1: no stable ordering

Usual orderings useful for ordered resolution don’t work in the XOR case.

With the subterm ordering we have

x < f(x+f(f(0)))

But applying the substitution x 7→ f(f(0)), we must have:

f(f(0)) < f(0)

Solution: the substitution x 7→ f(f(0)) involves only ground subterms

from the input set. Do all such problematic substitutions separately, and

then do ordered resolution.



Problem 2: The intruder clause resolves with itself to give larger and

larger clauses.

I(x+y) ⇐ I(x) ∧ I(y) I(x′+y′) ⇐ I(x′) ∧ I(y′)

I(x+x′+y′) ⇐ I(x) ∧ I(x′) ∧ I(y′)



Problem 2: The intruder clause resolves with itself to give larger and

larger clauses.

I(x+y) ⇐ I(x) ∧ I(y) I(x′+y′) ⇐ I(x′) ∧ I(y′)

I(x+x′+y′) ⇐ I(x) ∧ I(x′) ∧ I(y′)

Solution: replace this with special deduction rules, e.g.:

P (x) ⇐ I(f(x)+g(x)) I(f(x)+h(x)) ⇐ Q(x)

P (x) ⇐ I(g(x)+h(x)) ∧ Q(x)



Problem 2: The intruder clause resolves with itself to give larger and

larger clauses.

I(x+y) ⇐ I(x) ∧ I(y) I(x′+y′) ⇐ I(x′) ∧ I(y′)

I(x+x′+y′) ⇐ I(x) ∧ I(x′) ∧ I(y′)

Solution: replace this with special deduction rules, e.g.:

P (x) ⇐ I(f(x)+g(x)) I(f(x)+h(x)) ⇐ Q(x)

P (x) ⇐ I(g(x)+h(x)) ∧ Q(x)

Elementary decision procedure :-))



Conclusion

• General techniques from automata theory and automated deduction

help in verification of cryptographic protocols.

• Precise complexity for our XOR class not yet known.


