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Abstract

Many useful XML transformations can be expressed by detastic top-down tree trans-
ducers. A normal form is presented for such transducereifded with the facility to in-
spect their input trees). A transducer in normal form hasiguacanonical form which
can be obtained by a minimization procedure, in polynomrakt Thus, equivalence of
transducers in normal form can be decided in polynomial tiththe transducer is total,
the normal form can be obtained in polynomial time as well.
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1 Introduction

The transformation of XIL documents is of fundamental importance for practical
XML processing. Transformations are needed, e.g., for ingsestiderived format-
ing information or for adaptation of documents to the paittc syntax demanded
by a given application. Many routine N -transformations argimple i.e., can
be produced by a single top-down traversal over the treetsiel underlying the
input document. Such transformations include simple filtgs, relabelings, inser-
tions, and deletions as well as duplications of elementapk transformations
can conveniently be expressed by meandeaierministic top-down tree transduc-
ersrunning over a ranked-tree encoding of the given input dantmAn example
of a top-down XuL transformation is shown in Figure 1; it copies the input docu
ment and additionally constructs a table of contents coimgithe titlesty, .. ., ¢,
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Fig. 1. A typical top-down XML translation.

of all sections. A top-down tree transducer is a simple fiometl program: func-

tions recursively generate trees through pattern matabintdpeir single input tree
argument. Here we consider a slightly extended model, loyvatlg the transducer
to inspect its input tree, even the parts that it does nostoam into output. The

resulting deterministic top-down tree transduegh inspectioris more robust: for

instance, the corresponding class of transformationsosed under composition
(see [10]).

We are interested in the problem of deciding whether or not $uch transduc-
ers realize the same transformation. In 1978, Zachar shtwetdhis problem is
decidable for deterministic bottom-up (or: frontier-twat) tree transducers [28].
Only two years later, equivalence has also been shown deeiftar deterministic
top-down (or root-to-frontier) tree transducers Bgik [9] (see also [5] and Sec-
tion 1V.9 of [13]). The involved algorithm, however, is basen upper bounds on
the difference of sizes of intermediate trees appearingrivations of the trans-
ducers. Since the algorithm explicitly keeps track of vargé “difference trees”, it
seems hard to extract an efficient implementation. Insteadntroduce a new nor-
mal form for deterministic top-down tree transducers (vifitspection): we prove
that every such transducer can be transformed effectimtdyan equivalergarliest
transducer, which means that it produces its output in atmifvay and “as early
as possible”. We also prove that earliest transducers hawegae canonical form
that can be obtained by a kind ofinimization in polynomial time. Hence, two
transducers are equivalent iff their canonical forms aeesime (up to renaming of
states). This provides a new way to decide equivalence efmatistic top-down
tree transducers, which takes polynomial time for earliestsducers. While the
normal form can be achieved for every deterministic top-atee transducer with
inspection, we show that it can be obtained even in polynimi@ for total trans-
ducers, i.e., transducers whose translation is definedvienyenput tree. Thus,
equivalence of total transducers can be decided in polyaloiimie. The canoni-
cal form can be seen as the generalization of a correspomdimgnical form for
deterministic finite-state string transducers as consaiby Mohri [20].

These methods can also be extended to provide a procedudedming equiv-



alence of deterministic top-down tree transducers withulaglook-ahead. Such
transducers additionally allow to test input trees for mership in arbitrary regu-
lar tree languages. For practical purposes, such as qualyation of XPATH, this
is a very useful property as it allows to check for the exiséeof (bottom-up) tree
patterns in the input. Note also that every deterministitom-uptree transducer
can be transformed into an equivalent deterministic toprdtvee transducer with
look-ahead [4]. Finally, note that for nondeterministiptown tree transducers
the equivalence problem is undecidable, because thigiglfeads fors-free (one-
way) finite-statestring transducers [14].

The XPATH query language is a popular formalism for selecting nodes fan
XML document. A wide range of query and transformation laamggs, such as
XQuery and XSLT, use XPath as their node selection formalSmXPATH ex-
pression is similar to a regular expression and is evaluatethe paths of the
XML tree, starting at the root node. The containment and earieal problems
are already coNP complete for a small fragment e+ which only uses child,
descendant, wildcard, and filter (branching) [18]. In theeaaize of any one of the
operations descendant, wildcard, or filter, containmemt BTIME [27,2,19]. It is
possible to express anPXTH query through a tree transducer: every input node is
copied to the output, and a new unary “select symbol” is ieskabove each node
selected by the query. However, even simple queries suaeect all.-nodes that
have a-node descendant” cannot be realized by a top-down traesduthis way
(because the transducer does not know of the preserteearfe descendants upon
visiting ana-node). To remedy this problem, one can first relabel thetitnee by
the run of a tree automaton, or, equivalently, add regutzse-mhead. Top-down tree
transducers with regular look-ahead (which can be testeglfoivalence using our
methods) can indeed realize the above mentioned fragmeteaifH. Note, how-
ever, that the use of nested filters in aPaXH query is similar to a conjunction and
will cause the look-ahead tree automaton to be of exporamiin the size of the

query.

2 Preliminaries

Top-down tree transducers conventionally work on rankedstr This means that
the number of children of a node is determined by riduek of the symbol at that
node. We therefore consider ranked alphabetonsisting of finitely many sym-
bols; each symbal € ¥ is implicitly equipped with a rank i{0, 1, ...}, where
rank O indicates that is the potential label of a leaf. We assume that a ranked
alphabet contains at least one symbol of rank 0.

The setZy, of rankedtreesover the ranked alphabgtthen is defined by

to=a(ty,... t)



wherea ranges over symbols A of rank k. As usual, we also write for the tree
a(). Note that, since there is at least one symbol of rarik.0# (). We represent the
nodes of a tree in Dewey notation, i.e., by sequences of nimffr readability,
numbers in the sequence are separated using dots). Farthalsetl/ (¢) of nodes
of the treet is inductively defined as/(t) = {e¢} U {iv | 1 <i < k,v € V()}

if t = a(ty,...,tr),a € X ofrankk > 0 andty,...,t, € Tx. Thus, the empty
sequence represents the root efandw.i represents théth child of the nodeu

of ¢t. In abuse of notation, we also usé to denote concatenation of sequences of
numbers. A node is an ancestor of node if there is a (possibly empty) sequence
of numbers: such thatv = v.u. The size ot, denoted sizg), is the numbefV'(¢)|

of its nodes. The depth of denoted deptfi), is the maximal number of nodes on
a path inz from the root to a leaf.

A patternis a prefix of a tree. Formally the set of all patterns is givernhe set of

all trees inZy 7y, whereT is a new symbol of rank zero which is notih Assume

p IS a pattern containing exactlyoccurrences ofl, andp, ..., p; IS a sequence
of patterns. Then the pattegn= p[p;, ..., px] is obtained fromp by replacing the
1-th occurrence off (in left-to-right order) withp;. Note that the resulj is a tree,

i.e., does not contain occurrencesiqfiff the pq, . .., p, are all trees.

Consider the sey, = 75,1y U { L} of all patterns enhanced with an extra bottom
elementL (notin X U {T}). On this set, we define a partial ordering hyC p
for all p, andp C p/ for patternsp, p’ iff p = p/[p1, ..., px| for suitable patterns
pi,-..,pr. The latter means that every ndnnode ofy’ is also a node gf and has
the same label in both patterns. Intuitivedy,is a prefix ofp. With respect to this
ordering, every seK C Py has a least upper bound= |] X. If X is empty or
just containsL, p = L. Otherwisep is a pattern and the sitof non-T nodes of
consists of all nodes such that every ancestorofs in V (p') forall p’ € X\ { L}
and has the same label fromin all p’ € X\{_L}. In particular ifVV = (), the least
upper bound ofX is given by the patterii. Since every subset @5, has a least
upper boundpPs. is a complete lattice.

While the length of a strictly decreasing chaing can be infinite, the length of
a strictlyincreasingchain is always finite. More precisely, the number of elerment
in a strictly increasing chain above a patteris bounded by the number of non-
nodes inp.

3 Deterministic Top-Down Tree Transducers

A deterministic top-down tree transducgrtransducer for short) is a tupleé =
(Q,%,A, 5, A), where

e () is afinite set of states,



e Y andA are ranked input and output alphabets, respectively,idisjoth @),
e J is the (possibly partial) transition function, and
e Aisthe axiom.

The axiomA has the formp[q (zo), . . ., ¢-(x¢)] for a variabler, meant to be bound
to the input tree, a pattemn e 7a,¢7}, and a sequenasg, ..., q,, r > 0, of states

in Q.

For every state in (Q and input symbol € ¥ of rank k& the transition functior
contains at most one transition, which is of the form

Q(a(xb cee >'Tk>> - p[Ch(xil)? cee 7QT(xir)]

wherez, ..., x; are distinct variableg, € 7au¢y is a patterng,, ..., ¢, € Q, and
r,;, are variables occurring among thg . . ., x;.. For every state and input symbol
a let d(q, a) be the right-hand side of the transition fpanda if it is defined, and
let §(q, a) be undefined otherwise.

Note that the axiom and the right-hand sides of transitioasraes over the ranked
alphabeAUQU X, where each state i has rank 1X = {z; | i > 0} is the set of
variables, and each variable has rank 0. Similarly, theHaftd sides of transitions
aretreesover U Q U X.

The transducer i®tal if §(q, a) is defined for ally € @ anda € ¥. Thesizeof T,
denotedT'|, is the sum of the size of its axiom and the sizes of the lefidrsides
and right-hand sides of its transitions.

The semantic$q| of every statey of the transducer is a partial functid@y, — 7

which is defined by recursion over its argument. Assume thgaraents of the
function [¢] is of the forms = a(sy,...,sk). Assume further thab(q,a) =

plar (i), ..., g (w4,)]. If the recursive callgq;](s;,) return results;, then the call
[¢](s) returns the valuéqg](s) = p[t1,...,t.]. If on the other handj(q, a) is un-
defined or one of the recursive callg](s;, ) is undefined, then the functide] is

also undefined fos. In the following, we denote the domain ff] by bom(q).

The t-transducef’ realizesa partial function[7] : 7, — 7A. Assume that the
axiom of T'is given byA = p|q1 (xo), - . . , ¢-(x0)]. Then the domain df7'], denoted
DoM(T') and also called théomain ofT’, is defined bypom(7') = DOM(¢;)N- - -N
DOM(g,). For everys € boM(T'), the outpuf[ 7] (s) of the transducef on inputs
is defined by:

[T](s) = pllaal(s), - -, [a](5)].

We call two t-transducer®; and7;, equivalentf [77] = [73]. A partial function
that can be realized by a t-transducer is call¢édranslation

In this paper we will, without loss of generality, only deaithwvt-transducers of
which all states are reachableA state of a t-transducér is calledreachableif



it occurs in the axiom of" or in §(¢, a) for some reachable stageand some in-

put symbola. Intuitively, this means that it occurs in a (not necesgailccessful)
computation off’ starting with the axiom. The reachable states can be detedni

in time linear in|7’| by depth-first search of the directed graph with the states as
nodes and an edge fromto ¢ if ¢’ occurs ind(q, a) for somea, starting with

the states in the axiom. Obviously, the unreachable stétas$-transducer can be
removed, together with their transitions. Thus, for eveimathsducefl” an equiva-

lent t-transducef” can be constructed in linear time, such that all stategs’' @fre
reachable.

If t-transducefl; can be obtained from t-transducgrby a (bijective) renaming of
states, we will identifyl; andT5. Note that, since all states are reachable, this can
be checked in linear time.

Top-down tree transducers were introduced by Thatcher anohds [24,23] (see
also [11] for a survey on tree transducers). Conventionaltpp-down tree trans-
ducer has an initial state, instead of an axiom. It shouldéxr that this choice has
no impact on the class of t-translations: to simulate a cotweal transducer (with

initial stateqy) using our model, simply define the axiom@$z,). Conversely, to

simulate our transducer, with axiopfy; (xo), .. ., ¢.(zo)], by a conventional one,
add the new statg as initial state and, for every input symhosuch thav(g;, a)

is defined for ali € {1,...,r}, definej(qo, a) as the tre@[d(qi, a), . . ., 6(g, a)].

Example 1 We define a t-transducéty = (Q, >, A, , A) that realizes the trans-
lation of XML documents with section and title markup as described inrtre-
duction. The transducer has statgs= {qo, t, e, n, id}, ¥ containing at least the
symbols doc, sec, title, and niy = X U {toc}, axiomA = gy(x), and the follow-
ing transitions inj:

QQ(dOC<IL'1, {L'Q)) — dOC(tOC(t(IL’l), ’Ld(l’l)), n({lfg))

t(se€xy, zy)) — title(e(xq),t(xs))

t(nil) — nil

e(title(zq, x2)) — id(xq)

n(nil) — nil
where the statéd has the obvious transitions to realize the identityZon Note

that the right-hand side of the first transitionpig(z,), id(x1), n(x2)] wherep is
the pattern dogoc(T,T), T). O

Wildcards

Query languages such a®XrH support a wildcard operator for selecting a node
with anylabel. Such a mechanism for dealing with arbitrary labe#dss presentin



pattern matching constructs of mainstream programminguages in the form of
the “default case”. For a fixed, finite set of ranks, this caoliained in our setting
by enhancing the ranked input alphabgtvith special symbols#,”, representing
input labels of rankk that are arbitrary, but not i&. Then, a transition of the
form q(s«p (1, ..., 2)) — *k(q(x1),...,q(x)) copies any nors symbol from
the input to the output tree. Note that in the context efiXwe typically work on
binary trees (with leaves representing the empty hedgehandeforth only need
one incarnation of the-symbol of rank two.

Deterministic Top-Down Tree Automata

A deterministic top-down tree automatgdtta for short) is a t-transduced =
(@Q,%,A,6,A) such thatA = X, A = go(zo) for someq, € @ called theinitial
state and every transition in is of the form

qla(zy, ..., xx)) — alq(x1), ... qr(xy)).

In what follows, ¢o (o) will be abbreviated by, anda(q;(x1), ..., q(xx)) by
a1 Gk

The language accepted kipe dtta)M is boM (M), which equalDom(g,). Note
that M realizes the identity on its domain, i.€)M/[(s) = s for everys € bom(M).

We will say that a dtta/ is minimalif for all statesg, ¢’ of M: bom(q) # 0, and
if ¢ # ¢’ thenboM(q) # DoM(¢'). Recall that we only consider t-transducers (and
hence dtta’s) of which all states are reachable.

The following two facts are well known:
Proposition 2

(1) The domain of every t-transducBrcan be accepted by some dfté-. More-
over, M can be constructed froffi in exponential time.

(2) For every dttaM with bom(M) # () an equivalent minimal dttd/’ can be
constructed in polynomial time. Two minimal dtta’s are eglent iff they are
the same; hencel/’ is unique.

The first fact is shown in (the proof of) Theorem 3.1 of [4] byteaghtforward
subset construction. Thus, the statedf are sets of states @f. WhenM 1 arrives
in stateB at a node of the input treé; is the set of all states @f that arrive at that
node in parallel. Moreovef,(B, a) is defined iffd(q, a) is defined for ally € B,
and sopoM(B) is the intersection of atbom(q), ¢ € B.

The second fact is well known (see [12] or Section 11.11 of |[H&d [21]) but is
also easy to prove. For the sake of completeness we brieftysiighe proof (also



because our formalism differs slightly from those in [12213). Every dtta can

be viewed as a context-free grammar, with the states asmainids, and with a
productiong — a(qi, - .., qx) corresponding to the transitioa(zy, ..., x;)) —
a(qi(z1), ..., qx(zx)). The useless nonterminals can be removed from a context-
free grammar (and thus from the dtta) in linear time, cf.,,é&Sgction 7.4.3 in [15],

or [3]. Identifying all statesy, ¢’ with bom(¢q) = DOM(¢') then gives a minimal
dtta equivalent to the given one. To see that these pairatd#sstan be determined

in polynomial time, define the relatica on the set of states of the dtta to be the
largest equivalence relation such thaj i ¢/, then

(@) d(q,a) is defined iffé(¢’, a) is defined, and
(b) if 6(q,a) = q1---qx andd(q’,a) = q; - - - q;, theng; = ¢; for all 5.

It is easy to show thabom(q) = DoM(¢) iff ¢ = ¢. The equivalence relation
can be computed in polynomial time by a standard fixpoinatten.

Now consider two minimal dtta’d/ and )/’ that are equivalent. Define the relation
q = ¢’ as above, witly a state from\/ andq’ a state from)/’. It is straightforward
to show that= is a bijection between the states/af andM/’, and that\/ and M’
are the same up to the renamiagf states.

Similar arguments will be used (in greater detail) for tapvd tree transducers.

Transducers with Inspection

To be able to find, for every transducer, an equivalent tracesdin (earliest) normal
form, as discussed in the Introduction, we need a slighteita of the t-transducer.
If a t-transducer inspects a subtree of the input tree, thelso has to produce out-
put on that subtree; in other words, if a subtree is deleteannot be inspected. In
this way the t-transducer differs from the finite-statengtriransducer, which must
always read the whole input string (possibly producing gnopitput). It is exactly
this feature that is responsible for the fact that the tdi@ions are not closed under
composition, see Section | of [23]. We now add to the t-trasd the facility to
inspect subtrees that are deleted, by allowing it to runaidtparallel with itself.
This makes sense from the point of view of XML transformasgiobecause such
transformations are usually defined on trees that are vatid nespect to a (gen-
eralized) DTD. Here we only allow DTD’s that can be expresgd dtta. The
general case of an arbitrary regular tree language is tteditihe end of this paper
(cf. also the transformational systems of [23]).

A deterministic top-down tree transducer with inspeciistnransducer for short) is
a pair?” = (P, I) where

e P=(Qp, %X, A dp, A)isat-transducer and
o [ = (Q[, Z, Z, 5[, CQ(IIZ’Q)) is a dtta



with the same input alphabet, and withy N Q; = (. We define the set of states
and the transition function df to be@ = Qp U Q; andé = dp U §; respectively.
The states i) p are calledprocessingstates, and those @J; inspectingstates,
with ¢y being theinitial inspecting state. Similarly, the transitionsdip andd; are
called processing and inspecting transitions, respégtivewhat follows, we will
also specify i-transducéf as one tupl€@, >, A, d, A, ¢o), whereQp, Qr,0p,0;
are assumed to be specified implicitly. The sizg'a$ |T'| = |P| + |1].

The translation realized byl is the restriction of[ P] to bom(7), i.e., it is the
partial function

[T] =A{(s,[P](s)) | s € bom(P)nbom(I)}.

Thedomain ofT" is defined to b®om(7") = boM(P)NDOM(I); in other words, it
is the domain of 7]. We observe thabom(7") can be accepted by some ditg,
which can be constructed in exponential time. In fact, a dftawith bom(Mp) =
DOM(P) can be constructed in exponential time by Proposition 2 tlaed)/; can
be obtained from\/p and/ by an obvious product construction in quadratic time.

Two i-transducer§; andT; are callecequivalentf [71] = [T3]. A partial function
that can be realized by an i-transducer is calledtaanslation

For a given input alphabét, let I;, be the (unique) total dtta with set of stafed};
note thatbom(/,;) = 7y, and that/,, is minimal. An i-transducet” = (P, I,4) is
“really” a t-transducer. For that reason, every t-trangdwall also be considered to
be an i-transducer. An i-transducetasal if it corresponds to a total t-transducer.

By definition, the i-translations are just the restrictimighe t-translations to the
dtta languages. Equivalently, the i-translations are twpositions of the dtta
translations (which are the identities on dtta language#) the t-translations.
Thus, every i-translation is the composition of two t-tdatiens. This also holds

in the other direction, because the class of i-translatisrdosed under compo-
sition, as shown in [10]. The closedness of the i-trangtationder composition
(as opposed to the t-translations) is important when isolacers are considered
as queries on ML databases, because it allows the use of views: an i-querg on a
i-view of the database can be replaced by an equivalentnyqurethe database.

4 Common Prefixes

Consider a processing statef an i-transducef’ with nonempty domaimom(q).
Define the pattern

pref(¢) = | |{[4l(s) | s € DOM(q)}



as thecommon prefiof all outputs possibly produced lgy Since the set of patterns
is a complete lattice, the pattepnef(q) is well defined.

Example 3 Consider the total t-transduceér with the following two transitions:

q(a(z1,22)) — dq(z1),d(q(z1),€))
q(e) — d(d(e,e),d(e,e)).

Obviously, all outputs generated by the stattart with the patterd(T,d(T,e)).
In fact, the common prefix of all outputs produced pis the patterrpref(q) =
dd(T,T),d(T,e)). O

We will show how to compute the common prefixeeef(q), ¢ € Qp, under
the assumption that the transdu@éiis uniform. An i-transducef’ = (P, ) =
(@Q,%,A,0,A,c) is calleduniformif [ is a minimal dtta and there is a mapping
p: Qp — Q with the following properties (for alf, ¢, g, ¢ € Q):

(1) p(q) = o if g occurs inA;
(2) if p(q) = cthen, for every, € 3
(@) d(q,a) is defined iffé(c, a) is defined, and
(b) if, for the same variable;, ¢(z;) occurs ind(q,a) andé(x;) in d(c, a),
thenp(q) = c.

The fact thabom(c;) # DOM(c,) for distinct states:, co € @, will only play a
role in the proof of Theorem 15. It will, however, be frequgnised thabom(c)
is nonempty for every € Q.

Note that since all states d? are reachable, the mappingis unique (when it
exists). Moreover, ifl" is uniform, p can easily be computed in linear time (by an
obvious variant of depth-first search). The mappingill be called therelevance
mapof the uniform i-transducer.

Intuitively, uniformity of 7" = (P, I) means that, during a computation Bfand

I on an input tress, starting with the axiomd and the initial state, respectively,
the processing states are keeping track of the inspectutg @iy uniformity prop-
erties (1) and (2b)). Since, as will be shown in the next lemima dttal accepts
poM(T'), the processing states “follow” the behavior of the staté aff the current
node ofs. This means that a processing stateith p(¢) = ¢ continues its com-
putation, at a certain node ef iff the inspecting state does (by uniformity prop-
erty (2a)). In this wayy only processes “relevant” subtreessotn fact,Dom(c) is

the set of all input subtrees that are processed tyrring the computations df

(starting withA andc) on input trees fronbom(7'). SinceDoM(c¢) # (), this also
implies that every processing stat€lobccurs in at least one such computation.

Next we state some easy properties of uniform transducers.

10



Lemmad LetT = (Q,%,A, 4, A, ) be a uniform i-transducer with relevance
mapp. Then the following statements hold.

(1) If p(q) = ¢, thenboM(c) C DOM(q).

(2) boM(cy) = bom(T).

(3) Foreveryc € Q; ands € Ty, there is a trees’ € DoM(c) such that for every
qWith p(q) = ¢, [q](s") = [q](s) if s € DOMm(q).

(4) If p(q) = c, thenpref(q) = [ [{[¢](s) | s € DOM(c)}.

PROOF. (1) We proceed by induction on the structurespfand show that €
DOM(c) impliess € DOM(q). Assume that = a(sy,...,s;) € DOM(c). Then
there existy, ..., ¢, such that(c,a) = ¢; - - - ¢, ands; € DOM(¢;) for 1 < i < k.
By uniformity property (2a)j(q, a) is defined, say(q, a) = plgi (s, ), - - -, - (24,)],
and by uniformity property (2b)y(q;) = ¢;; forall j = 1,...,r. By induction,
si; € DOM(q;). Hencelq](s) = p[[a:](ss,), - - -, [¢](s:.)], and sos € boM(q).

(2) If A = plgi(20), .. ., ¢r(x0)], thenbOM(T) = (DOM(qy) M --- N DOM(gr)) N
DOM(cg). By uniformity property (1), and by statement (1) of this lmn this
equalsboM(cy).

(3) The proof is by induction on the structureofLet s = a(sy, ..., si). Assume
first thatd(c, a) is undefined. Thei(q, a) is undefined for every with p(q¢) = ¢,
by uniformity property (2a). And sdjg|(s) is undefined for every such, i.e.,
s ¢ DOM(q). Thus we can take' to be any element afiom(c), which is nonempty
by minimality of 7.

Now assume thail(c, a) is defined, say(c, a) = ¢; - - - ¢x. By induction, there exist
input treess; € boM(¢;), 1 < i < k, such that ifo(q) = ¢;, then[g](s}) = [q](s:)
if s, € DoM(g). Now takes” = a(s],. .., s}). Obviouslys’ € DoM(c). For everyq
with p(q) = ¢, if g(z;) occurs ind(q, a), thenp(g) = ¢; by uniformity property (2b).
From that it easily follows that’ has the desired property.

(4) This is an immediate consequence of statement (3).

Note that uniformity does not imply that the processingestdhat arrive at a par-
ticular node of the input tree (and hence are mapped to the s@pecting state),
all have the same domain.

Example 5 Consider the i-transducé&f = (P, I) with the input (and output) al-
phabet: consisting of a nullary input symbeland a binary input symbal, with
processing transition¥q,,a) = q(z1), 0(q2,a) = q(x2), 0(q,e) = e, and axiom
a(q1(zo), g2(x0)). The dttal is the minimal dtta accepting the domajn(e, e)}

of P. It has stateg, andc (with ¢, the initial state), and inspecting transitions
d(co,a) = ccandd(c,e) = . Thus,T is uniform with relevance map = {¢; —
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o, @2 — Co,q — c}. Note however, that the domain pf;] is {a(e,t) | t € T}
while the domain ofi¢.] is {a(t,e) | t € T }. The sets of relevant inputs for as
well as forg, are given bypoM(cy) = {a(e, e)}.

As an example application of statement (3) of Lemma 4, cemdite inspecting
statec, and the inputtree = a(e, a(e, e)) € DOM(¢;). Tofind atrees’ € boM(cy),
we first observe thal(cg, a) = cc. Thus,s’ = a(s), s,) wheres) is obtained from
cands; = e, ands, from c ands, = a(e, e). Sinced(c, e) is defined,s; = e. Since
d(c, a) is undefinedg, is chosen arbitrarily imom(c) = {e}, i.e., s, = e. Hence
s' = a(e, e) satisfies statement (3) of the lemm&as DoM(c¢y) and[¢:](s') = e =

[¢:](s). O

According to our definition, #otal i-transducefl’ is always uniform (withp(q) =
id for every processing statg. Consider the i-transducét = (P, I) whereP is
the t-transducef’y from Example 1, and is the minimal dtta fobom(P). If T
would be uniform, with relevance map then its first transition would imply that
p(t) = p(id), by uniformity property (2b). Bub(id, title) = title(id(x,), id(z2))
whereas)(t, title) is undefined, contradicting uniformity property (2a). Thiiss
not uniform.

We now show that every i-transducer with a nonempty domaigefiectively)
equivalent to a uniform transducer.

Lemma 6 For every i-transducef” with bom(T') # ), a uniform i-transducef”
can be constructed in exponential time such {1&j = [77].

PROOF. LetT = (P, I) = (Q, %, A, 4, A, ¢p) be an i-transducer witbom(T") #

(). By Proposition 2, a dtta acceptimgpm(7') can be constructed in exponential
time, and using polynomial time, this dtta can be turned amt@quivalent minimal
dtta. For this reason, we assume from now on tr@w (/) = boM(7"), and that/

is minimal (which is a first requirement for uniformity). lheuld be clear that the
construction in the remainder of the proof can be performgubiynomial time.

The idea for the new transducgt simply consists of incorporating the state of the
dtta / into the states of the t-transducBr when they are running in parallel on
the same input tree. Accordingly; = (P’, ) and the states o’ will be of the
form (q, c) with ¢ € Qp andc € @Q);. We will define the states and transitionsrof
inductively, and simultaneously show tlabm(c) C DoOM(q) for every statdg, c).

We observe here thatifom(c) C Dom(q), then(q, c) satisfies the following prop-
erty (f): for everya € 3, if d(c,a) is defined theri(q, a) is defined. In fact, if
d(c,a) = ¢1---cx, then there is a tree = a(sy, ..., s;) such thats € bom(c)
(becausdoM(c;) # 0 for all ¢;, by minimality of I); hences € bom(q) and so
d(q, a) is defined.
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If A =pl[gi(x0),...,q(x0)], then the axiomd’ of 7" is

A" = pl{q1, co)(x0)s - - -, (Gr, co)(20)]

where(q, co), - . ., {q-, co) are new states af’. Note thatbom(cy) = Dom(1) =
DOM(T') C DOM(¢q;)-

For a new statéq, ¢) of P’ and an input symbal € ¥ of rank £, assume that
d(c, a) is defined and given b¥(c, a) = ¢; - - - ¢. Then, by(), the t-transduceP
has a transition

qla(zy,...,zx)) = plar(ziy), - - qr(xs,)].
Accordingly, the new t-transducét’ has the transition:

(q,c)(alar, .. @) — pllav c)(@a,), -5 (@, ) (@3,)]

for further stategg;, c;;), j = 1,. .., . Itshould be clear thaiom(c;,) € DOM(g;):

If s; is an arbitrary element afom(c;), fori = 1,...,k, thens = a(sy,. .., sk)

is in DOM(c). Since we already know thaiom(c) € DOM(q), we obtain that

s € DOM(q), and hence;, € boM(q;). Note that this argument is correct because
all bom(¢;) are nonempty.

Obviously, by construction, the resulting transdu€éris uniform with the rele-
vance majp that maps every paifq, c¢) to its second component Moreover, it
is straightforward to verify by structural induction on irtireess that for every
state(q, c) of P', if s € DOM(c), thens € bom({q, c)) and[{(g, c)](s) = [¢](s).
SinceboM(cy) = DOM(T), this implies by construction of the axiodi of 7", that
[T] € [T"]. From the fact thabom(7T”) C bom(I) = boM(T'), we conclude that
T andT” are equivalent. O

The size ofT” in the proof of Lemma 6 heavily depends on the size of the dtta
acceptingpom(7T'), and hence on the number (of combinations) of differenestat
that arrive at a node of the input tree in parallel. In practice expect that this
number is not too large. In fact, the bulk of practical tratisins are ofinear size
increase i.e., the size of every output tree is bounded by a consitaiestthe size
of the corresponding input tree. It is well known by an oldutesf Aho and UlI-
man [1] that for any linear size increase (deterministip}tiown tree translation
there is (effectively) a transducer that is “finite-copyinghe latter means that the
number of states arriving at any input node is bounded by ataatr (called the
“copying number”). For a transducer with copying numbgthe size of the dtta
acceptingpoM(7') is at most exponential ia, and hence, so is the running time of
the construction of Lemma 6. Note that the transducer of Eptarh has copying
number 2.

Example 7 We will turn the t-transducefy = (Q, %, A, §, A) of Example 1 into
an equivalent uniform i-transducél, = (P’, /). The minimal dtta/ with domain
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poM(I) = bom(Tx) has the same states &g, with primes to distinguish them,
it has initial statey,, and the following transitions:

d1(qp,doc) = t'n’
or(t',seq = €'t
or(t',nil) =¢
or(e title) = id'id’
dr(n/,nil) =¢
whereid' has all transitions to realize the identity @a. The t-transducef’ has
stategq, ¢) for all ¢ € @, which we will again denote by, and it has stategd, t')
and(id, ¢'), which we will denote byid;, and:d., respectively. Note that(q) = ¢/,
plidy) =t = p(t), andp(id.) = ¢ = p(e). The axiom ofP’ is still gy(z(), and its
transitions are:

qgo(dodzy, x2)) — dodtoc(t(xy), idi(x1)), n(xs))

t(sedry, xe))  — title(e(z), t(z2))

(nil) — nil
id;(sedxy, v3)) — sedid,(x), id; (7))
id,(nil) — il

e(titte(zy,zo))  — id(zq)
ide(tit|6(l'1, IL’Q)) - t|t|6(2d(l’1), Zd(xZ))

n(nil) — nil
where, as before, the statéhas all transitions to realize the identity 5. O

We now turn to the computation of the common prefixes of unifetransducers.
For a uniform i-transducef’ with relevance map, let (7") denote the maximal
size of output trees produced for relevant input trees ofrmahdepth, i.e.;)(7") =
max{siz&[q](s)) | ¢ € @p,s € S, } Where, forc € Q;, S. = {s € bom(c) |
Vs’ € DOM(c) : depth(s) < depth(s’)}.

We observe that a specific collection of tregs= [¢](s,)), ¢ € Q@p, With s, €

S. for everyc € @y, can be computed in tim&(|7"| - n(T")). To see this, note
first that treess. € S., ¢ € @7, can be computed by an obvious variant of the
algorithm that computes the useful nonterminals of a cdfftexe grammar: when
the algorithm treats a transitidric, a) = ¢; - - - ¢, and treess., have already been
computed fori = 1, ..., k, the trees, is set toa(s,,, ..., s., ). It is easy to see that
the depth ofs. is minimal. The time taken by the algorithm is linear in thensu
of |I] (as it is a variant of the known algorithm) and the time to diown the
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treess,, i.e., the sum of their sizes. However, we do not wish to camgy but the
output treeg, = [¢](s.), for everyq € Qp with p(q) = c. So, instead, when the
algorithm treats a transitionc, a) = ¢; - - - ¢, it computes for each sughthe tree

t, = [¢](s.) by substituting; for everyg(z;) in 6(q, a). Note that since(q) = ¢;,

the treet, = [¢](s.,) was assumed to be computed before. The time taken by this
algorithm is linear in the sum dff| and the sizes of the trees, ¢ € Qp. Since
sizet,) < n(T), the time is linear inl| + |Qp| - n(T"), and so it iSO(|T'| - n(T)).

Then we have:
Theorem 8 LetT = (P, 1) = (Q, %, A, 6§, A, ¢y) be a uniform i-transducer.

The common prefixgsref(q), ¢ € Qp, can be computed in tim@(|7| - n(7)).
They are of size at mostT').

If A=plqi(zo),...,q(x0)], then

LILIT](s) | s € OM(T)} = plpref(q), . .., pref(q,)].

PROOF. For the complete latticé,, we construct the following system of in-
equations for the unknown patterfig ¢ € Qp:

YZI g p[Y;hv tet Y;b] whenever 6(Q> a) = p[(h(xh)v sy QT(xir)]'

Here, we define substitution to be strict, meaning ifat, . . ., p.] = L whenever
p; = L for some:. Each right-hand side in this constraint system is monotoni
its arguments, and hence the system has a least solutions@rdbok reveals that
it is distributive for argument sequences of patterns, ice.any nonempty sef
of sequence$py,...,p,) withp; # L forall j = 1,...,r and least upper bound

(ph e 7]37")1

p[ﬁh s 7]37"] = Ll{p[pla s 7p7"] ‘ (p17 s 7p7") € S}
Note that it is crucial that we have joint distributivity w.rnonempty sets of se-
guences of patterns and not just distributivity in each congmt separately: the
reason is that during the computation of the transducer iffereht components
may not be chosen independently of each other.
First, we show that the patterpsef(q), ¢ € @p, are a solution of the system of in-

equations. For that, let(q, a) = p[¢1(xs,), ..., q-(x;,)] be a processing transition
of T'. We claim that:

pref(q) 2 p[pref(q), ..., pref(q.)].
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Let p(q) = ¢, wherep is the relevance map @f. By (4) of Lemma 4,

pref(¢) = L{[4l(s) | s € poM(c)}
3 W{pllad(si), - - [ard(si,)] | s = alsi,. .. si) € DOM(c)}
= W{pllad(si) - - [a:1(si,)] | 51 € DOM(ca), ..., s, € DOM(ck)}
wherei(c,a) = ¢; - - - ¢, IS @an inspecting transition df, which exists by uniformity

property (2a). By joint distributivity, the least upper mloperation can be pushed
inwards:

Pl (el (si), - lar(si)) | 51 € DOM(er), . ., s € DOM(cy )]
plUflarl(s1) | 51 € pOM(ciy) - L[] (sr) | s € DOM(c, ) }]
plpref(qr), ..., pref(q,)]

where the latter equality follows again from (4) of Lemma dchusen(q;) = ¢;,
by uniformity property (2b).

In a similar way we can show the second statement of this éneoBy definition
of [T], (2) of Lemma 4, joint distributivity, uniformity propertyl), and (4) of
Lemma 4,

L{[T](s) | s € bOMm
= LH{pllal(s), - [¢]
= plla](s) | s € DOM(co)}, .. L{[a](s) | s € DOM(co)}]
= plpref(q1), .. ., pref(q.)].

—~

1)}

s)| | s € boM(co)}

—~

Now lety,, ¢ € Qp, denoteanysolution of our system of in-equations. We claim
thaty, 3 [¢](s) for everyq € @ and every input € bom(q). From this claim, we

deduce that
o 2 I{lal(s) | s € pom(q)} = pref(q).

Thus, the patternpref( ), q € Qp, constitute not just some solution of the system
of in-equations, but the least solution.

We prove the claim by structural induction enAssume that = a(s;,..., sx) €
DoM(q) andd(q,a) = plai(xs), - .., q-(z;. )] is a transition ofI". Sincey,, ¢ €
Qp, is a solution of the system of in-equations, we hayed p(y,,, - - - Yq]- BY

induction hypothesis for the;, y,, 3 [¢;](s;,), and therefore by monotonicity,

Yq - p[y(hv s 7y(I'r] - p[[[Q1]]<Si1)7 T [[QT]](Sir)] = [[Q]](S>

This completes the proof of the claim.
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In order to compute the least solution of our system of inagigns, we first com-
pute for every processing stagean output tree, = [¢](s) for some trees €
Sp()- As mentioned before this theorem, such treesan be computed in time
O(|T'| - n(T)). For eachy, the treet, is a lower bound for the pattepref(q), i.e.,
pref(q) 3 t,. Since sizé,) < n(T), the size ofpref(q) is at mosty(7"). Taking

t, as the initial value of the variablg,, subsequent fixpoint iteration will compute
the least solution, only replacing subtrees pWwith T. Therefore, the number of
updates to the variablg, is bounded by size,) < n(7"), and the least solution can
be computed in time quadratic jiy| - (7).

In the remainder of this proof we describe an algorithm tlmahputes the least
solution in time linear in7'| - n(7"). Construct a directed gragh = (V, ) and a
subsetS of V, as follows. The seV” of nodes consists of all paifg, v) with v a
node oft,. The setS C V consists of alkg, v) such that has an ancestar with
the following property: there is an in-equatidp J p[Y,,, . .., Y,,| such that is a
node ofp[t,, .. .., t,. ], with a label different from its label ity,. Note that if(q, v) ¢
S, thenwv is a node ofp[t,,, ..., ] for every in-equationt;, J p[Y,,,...,Y, ]
Finally, the set of edge# consists all pairg(q’, v'), (¢, v)) such that{q,v) ¢ S
and there are an in-equatiof) J p[Y,,,...,Y, ] and aj € {1,...,r} such that
¢ = ¢; andv = u;.v', whereu; is the j-th node ofp labeled withT (i.e.,v is a
node ofp[t,,, ..., 1, ] that “corresponds to” node of ¢, ). Intuitively, if (¢, v) € S
then in the first round of fixpoint iteration (withy as initial value ofY;), nodev is
removed front, (or replaced byr); and an edgé(q’, v'), (¢, v)) means that it/ is
removed from,, then in the next round is removed front,.

The setS can be computed by a depth-first left-to-right traversal,dor each in-
equationy, J p[Y,,, ..., Y, ], simultaneously traversingt,, , ..., t, ]. Since each
such traversal takes time sizg), the total time is linear itil’| - n(7"). Then the set
E can be computed in a similar way. Thdshas sizeD(|T'| - n(T)).

Now definep, to be the pattern such that 2 ¢,, andv € V(¢,) is a non-T node of
pg Iff (g, v) is not reachable frony in G. Thatp, is indeed a pattern, can easily be
proved: if (¢, w) is reachable front andw is an ancestor of in ¢,, then(q, v) is
reachable front. We now claim that the patterpg, ¢ € @) p, are the least solution
of the in-equations. We leave the straightforward proohtoreader: first show that
Pgr ¢ € Qp, 1s a solution, and then show thatyf, ¢ € Qp, is any solution with

y, 3 t, for all ¢, theny, 3 p, for all ¢. The nodesq, v) that are reachable frorsi
can be determined by depth-first searclGofin time linear in its size. Hence, the
patterng, can be determined in tim@(|7'| - n(7)). O

Consider a total transducér. For every processing stajeand every symbat of
rank 0, 7' has a transitiog(e) — ¢ for some tre¢ € 75. A rough upper bound
to the sizes of such trees is given by the sizeloitself, and son(7) < |T].
Hence, according to Theorem 8, the common prefixes for atlgesing states can
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be computed for total transducersqoadratictime, i.e., in timeO(|T'|?).

In the case of non-total uniform transducers, we do not heliarad the small trees
d(q, e) as for total transducers. Instead, however, we can rely fsoeessing state
¢, on someoutput treet returned by[q] on a relevant input tree € bom(p(q))

of minimal depth. Obviously, the depth of such a teeis at most the number of
inspecting states @f, which is at mostT'|. Accordingly, the size of the output tree
t = [q](s) is at most exponential ifl"|. Hence, the valug(7T’) of Theorem 8 can
be at most exponential in the size’Bf and so the common prefixes of a uniform
i-transducer can be computederponentiatime.

Example 9 Consider the total transducé&i; of Example 3 with the transitions
d(q,a) = d(q(x1),d(q(z1),€e)) andd(q,e) = d(d(e,e),d(e,e)). The correspond-
ing system of in-equations is

Yy 2 d(Y, d(Yy.e))
Y, 3 d(d(e, e), d(e,e)).

Fixpoint iteration (starting withy® = 1) terminates after only three rounds:

yD = d(d(e,e),d(e,e))
y@ = d(d(T,T),d(T,e)) =y®

wherey®) denotes the-th Kleene approximation of the least solution for the vari-
ableY,.

Clearly, s, = e andt, = [¢](e) = d(d(e,e),d(e,e)). Thus, initializingY; with
t, gives the same iteration as above. For the gi@ph (V, E), V = {{(¢,v) | v €
V(t,)}. The setsS and E are obtained by comparing with p[t,, t,], wherep =
d(T,d(T,e)) is the pattern ob(q, a). This givesS = {(q,1.1), (q,1.2), (q,2.1)}
andE = {({q,¢),{(q,1))}. Hence the only reachable nodes(®fare those ins,
and sop, is obtained from, by replacing nodes$.1, 1.2, and2.1 by T, i.e.,p, =
dd(T,T),d(T,e)). O

5 Earliest Transducers

A uniform i-transducefl” is calledearliestif for every processing stategof 7" there
exist input trees; ands, such that the roots df;](s;) and[g¢](s2) have different
labels. In other wordgyref(q) = T for all processing states In particular, by the
second statement of Theorem 8, this implies that the pagtefithe axiom ofT’
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equals the least upper bound of all outputs produced hye.,

p=[HIT](s) | s € pOM(T)}.

Example 10 The uniform i-transducef’, = (P’, I) of Example 7 is not earliest,
because the roots of all outputsgf id., andn are labeled doc, title, and nil, re-
spectively. However["; can easily be turned into an equivalent earliest transducer
T% = (P", 1), as follows.

Replace state, by two statesgs and ¢2, and similarly for stateid.. Further-
more, remove state and remove the transitions fqp, id., andn. Replace the
axiom by doctoc(q}(z0), ¢3(xo)), nil), change the transition foid; and sec into
id,(sedxy, x5)) — sedtitle(idl(x,), id*(x,)), id,(z2)), and add the following tran-
sitions for the new states:

qs(doqzy, z2)) — t(x1)
g5 (dodzy, 22)
id} (title(xy, x5)) — id(zy)

id? (title(zy, 22)) — id(x2).

)
)

— Zdt(..'lfl)

Note thatP” does not process the second input subtree of doc any morthatut
I still inspects that tree to check that it is nil. This is thagen that we had to add
the inspection facility to the top-down tree transducerrishen to obtain our normal
form result. O

We now prove the normal form result mentioned in the Abstaact discussed in
the Introduction.

Theorem 11 Every i-transducefl” with boM(T') # () is effectively equivalent to
an earliest i-transducer”.

If T"is uniform, theril” can be constructed in tim@(|7'| - n(7")).

If T"is total, thenT” can be constructed in tim@(|T|?).

PROOF. By Lemma 6, we can construct for every transducer with norgmip-
main an equivalent uniform transducer. Therefore, assuraethe i-transducer
T = (P, 1) is uniform. By Theorem 8, we can compute for every processiate
q of T', the pattermpref(q) which is common to all outputs produced fyThe idea
then is to produce this common prefix as early as possiblesthiegwith the state
q, we additionally record the nodein the patterrpref(q) which is to be expanded
next. This means that the processing states of the newsedvaer!” = (P, ) are
of the form{q, v) whereq € Q) p, andv is one of the nodes giref(q) labeled with
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T. Note that the inspecting dtta @f is the same as the one’6f To ensure that all
states ofP’ are reachable, we will define the states and transitioi® mfductively.

If A=plgi(xg),...,q(x0)]isthe axiom ofl’, then the axiomA’ of 7" is given by:

A" = plpil{qr, vi1) (o), - -, (g1, v10,) (20)], - - -,
Prll@r, vr1)(0), -+, {Grs Vrg, ) (20)] ]

wherev; 1, ..., vy, is the left-to-right sequence of nodesyin= pref(q;) labeled
with T. All pairs (¢, v) in A’ are new states i’.

For a new statéqg, v) of P’ and an input symbal, assume that

5<Q7 CL) = p[¢h<xi1)> s 76]7"(xir)]

in P. Letp, = pref(q;) for j = 1,...,r. From the proof of Theorem 8 we know
thatpref(q) 3 p[p1, ..., p.]. Hencep is a node op[ps, . . ., p,|. Then we define

d'({q,v),a) = the subtree at nodeof the tree

pleil{a, via) (i), -5 (g, v (23], - - -
pr[(Qr; 'Ur,1>(xir)v SR <QT7 Ur,l7->(xi,-)] ]

in P, wherev; 1, ..., v;,, is the left-to-right sequence of nodes;inlabeled with
T. All pairs (¢, v') in §({q, v), a) are further states a?’.

SincepoM(/) = boMm(T) by (2) of Lemma 4, the following claim suffices to prove
that7” andT are equivalent. It can easily be shown by structural indumodin input
trees.

Claim: For every processing state, v) of 7" and every input tree € bom(q),
[{g,v)](s) is defined and equals the subtreddf(s) at nodev.

It should be clear thét” is uniform with relevance map defined byy'({q,v)) =
p(q), wherep is the relevance map d@f. The transducef” is also earliest: For
every processing state, v) of 7", nodev in pref(q) is labeledT . By the definition
of pref, this means that there are input tregsand s, such that the label of in
[¢](s1) is different from the label of) in [¢](s2); hence, by the claim above, the
roots of[{q, v)](s1) and[{g, v)](s2) have different labels.

It remains to consider the complexity bounds stated in te®rdm. According
to Theorem 8, the given bounds are sufficient to compute thenaan prefixes
pref(q), which are of size at mogtT"). Every transition ofl’ for a processing state
q gives rise to at mosj(7") transitions ofl” for processing stateg, v) where the
sum of the sizes of all right-hand sides is bounded by theraigize times)(T').
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Moreover, each new right-hand side can be produced in tineatiin its size. A
similar statement holds for the axioms. Hence, the construof 7" from 7" takes
timeO(|T|-n(T)). O

Example 12 Consider again the total transdudgrof Example 3, with axiomd =
q(zo) and transitions

q(a(zy,2)) — d(q(z1), d(g(21),€))
q(e) — d(d(e,e),d(e,e)).

We have seen in Example 9 thaef(q) = d(d(T, T),d(T,e)). Thus, the states of
the new transducéf] are(q, 1.1), (¢, 1.2), and(q, 2.1), which we will denote by
1, 2, and 3, respectively. The axiom of the new transdiites

A" =d(d(1(zp), 2(x0)), d(3(z0), €)).

Let us now construct the transitions 6f corresponding to the first transition of
T:. Note thatd(q, a) = plq(z1), q(x1)] for the patterrp = d(T,d(T,e)). Lett =
pref(q)[1(z1), 2(z1), 3(z1)] = d(d(1(z1), 2(z1)), d(3(z1), €)). Thend'({(g, v}, a) is
the subtree at node of the treeplt,t] = d(t,d(t,e)). Forv = 1.1,1.2,2.1 these
subtrees are: the first subtreetpthe second subtree gfandt itself, respectively.
Thus, the new transitions are

L(a(x1,29)) — d(1(21),2(21))
2(a(z1, v2)) — d(3(z1),€)
3(a(z1,z9)) — d(d(1(x1),2(21)), d(3(21), €)).

Sinced’'((g,v), e) is the subtree at node of §(q, e), the transitions off] corre-
sponding to the second transitionBfarei(e) — efori =1,2,3. O

6 Minimizing Earliest Transducers

The key property of earliest transducers is that they predbe respective output
trees in a canonical fashion. This means that for two pracgssates; andq’ of an
earliest i-transducer, with(q) = p(¢’), the (partial) functiongq] and[¢'] are equal
if and only if the patterns on the right-hand sides of all esponding transitions
are equal and the corresponding recursive calls in the-hght sides agree.

Formally, letT’ be an earliest i-transducer with relevance mpa@n the set)p of
processing states @fwe define the relatios to be the largest equivalence relation
~ that satisfies the following property):
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If ¢ ~ ¢, then

(@) plg) = p(¢'), and
(b) if 6(q,a) = plar(xs,), - - -, ar(w3,)] @NAS(q', a) = p'[qy (zir), - - - ,q;,(xi/ﬂ)],
thenp = p/,r=r',andforallj =1,...,r,i; =i’ andg; ~ ¢..

Note that= is well defined. In fact, the set of equivalence relations(gnis a
complete lattice with respect t0 (the inverse of inclusion), with intersection as
joinand@p x @ p as bottom element. For a given equivalence relatiotet f(~)

be the equivalence relation such that(~) ¢’ iff statements (a) and (b) hold. Since
f is monotone, it has a least fixpoint, which is the equivaleetsdion=. Thus,=
equals;>o f/(Qp x Qp) and can be computed by fixpoint iteration. Clearly, the
number of iterations is at mold |, and each iteration step compares at mQst>
pairs of states. Hence the total number of comparisons ioat|@py|>. However,

if one keeps track of representatives of the equivalenaseloff (Qp x Qp),
then it is not difficult to see that at mo&t(|Q p|?) comparisons are needed. Since
each comparison takes at m@¥|7’|) time, = can be computed in tim@(|T'|?).

The equivalence relatiog and its computation are similar to those in the mini-
mization of deterministic top-down tree automata, cf. [B21] and Section 3.

Theorem 13 Let T = (@, %, A, 0, A, ¢y) be an earliest i-transducer, with rele-
vance map. Then the following holds:

(1) The equivalence relatioa can be computed in tim@(|7']3).
(2) For processing stateg ¢’ of T' with p(q) = p(¢'), the following three state-
ments are equivalent:
@ ¢=4¢"
(0) [q] = [4T;
(©) [al(s) = [¢'](s) for all s € DOM(p(q)).

PROOF. Since assertion (1) was proved above, it remains to proetass (2).

(a) = (b). Assume thag = ¢'. Itis straightforward to show by structural induction
on input treess thats € DoM(q) iff s € bom(¢'), and that[¢](s) = [¢'](s)
whenevers € DoMm(q). Hence[q] = [¢].

(b) = (c) is obvious, by (1) of Lemma 4.

(c) = (a). To prove this, it suffices to show that the relationdefined as follows,
satisfies the property«) above: Forq, ¢ € Qp, ¢ ~ ¢ iff p(q) = p(¢') and
[4](s) = [a'](s) for all s € DOM(p(q)).

So, assume that ~ ¢/, and letc = p(q) = p(¢'). Assume further thai(q, a) =
pla(zy), - ¢ (ws,)] @andd(q’, a) = p'lq)(zy), - "’qf/“’(xii-/)] in T'. Then, by uni-
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formity property (2a)¢(c, a) is defined. Leb(c,a) = ¢; - - - ¢,. Now consider arbi-
trary input trees; € DOM(¢;), 7 = 1,..., k. Note that sinc®@om(c¢;) # 0, there is
at least one such tree for everyThens = a(sy, ..., sx) isin DOM(c). Therefore,
sinceq ~ ¢/,

pllad(si), - (@] (si)] = lal (s) = [q'1(s) = P'llaal (sir), - - [T (s, ))-

We must show thap = p', » = ¢/, and forj € {1,...,r},4; = i} andg; ~ gj.
For a contradiction, assume that# p'. If at some node the patterng andp’
have different labels in\, then[q](s) # [¢'](s). Since each symbol in the output
alphabetA has a unique rank, it suffices to consider the caseitraitsome node

is labeled by & € A andp atv is labeledT. Letv be thej-th occurrence ofl in p.
This means thaly;](s;;) is a tree of the formi(- - - ). Since this holds for arbitrary
s;; € DOM(c;, ), we obtain from (4) of Lemma 4 (which is applicable by unifaym
property (2b)) thapref(q;) = d(---) # T, which contradicts the earliest property
of T'. Hencep = p" andr = r'. Next, we show that for alf, i; = 4’. This follows
by a similar argument: assume for a contradiction thag /. Then the output
trees produced by botfy andq; cannot depend on their input trees. If, however,
[4;1(s) = t for everys € DOM(c;,), thent = pref(q;) contradicting the earliest
assumption off". Consequentlyi; = i’ for all j.

Finally we show that for allj, ¢; ~ ¢}. By uniformity property (2b),0(q;) =
p(q;) = c;;. Hence it remains to prove thag;](s) = [q;](5) for all s € bom(c;; ).
As before, consider arbitrary input tregs€ DOM(c;), with s;, = 5. Thens =
a(sy,...,s) isinbom(c), and

pllad(si), - (@] (si)] = lal(s) = [q'](s) = pllail (siv), - - [ D (si )]
We conclude thafg;](s;;) = [qj[(si;). O

From an earliest i-transducér and the equivalence relatiea defined above, we
can construct, in linear time, a new i-transdu@erby replacing each processing
state by its equivalence class w.et. The resulting transducer is equivalentfto
and again an earliest transducer.

In fact, suppose that; = ¢, and replacey; by ¢, in the axiom or in the right-
hand side of some transition @f. By Theorem 13]¢;] = [g¢]. Hence, by the
definition of the semantics of a t-transducer, this does hahge[7] or any of
the [¢]. Also, because(q1) = p(q2), the same relevance maystill satisfies the
uniformity properties. Sinc¢q] has not changed, neither haef(¢). Hence the
transducer is still earliest. Thus, we can pick a represieataf each equivalence
class of=, iterate this replacement procedure, and finally disregirstates that
are not representatives.

We will say that an earliest i-transducgris canonicalif for all processing states
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q,q of T:if p(q) = p(¢') andq # ¢, then[q] # [¢'] (i.e., if every equivalence
class of= is a singleton). Note th&t is canonical. From the above discussion and
Theorem 13 we obtain the following result.

Theorem 14 For every earliest i-transducef a canonical i-transducef” can be
constructed in tim&(|T|?) such thaf7"] = [T7].

Thus, by Theorem 11, every i-transdudémwith nonempty domain is equivalent
to a canonical i-transducer. In the next theorem we prove(timto renaming of
states) that canonical transduceurgque Thus, it is the unique minimal earliest
i-transducer realizing7']. Here, minimality is meant w.r.t. to the number of pro-
cessing stategwith p(q) = ¢, for each inspecting state

Theorem 15 LetT}, T5 be equivalent canonical i-transducers. THEnand7; are
the same (up to renaming of states).

PROOF. SinceT) = (P, I;) andTy, = (P, I;) are equivalent, their domains
are equal. Thus, by (2) of Lemma 4, and [, are equivalent minimal dtta’s, and
so, by Proposition 2, they are the same. Thus, in what folleesssume w.l.0.g.
that7; andT;, have the same inspecting dtt&: = (P, [) and7; = (P, I) with
DOM(I) = DOM(T}) = DOM(T3). Assume w.l.o.g. tha®p, N Qp, = 0. It remains
to show that”, and P, are the same.

From the transducefs , T,, we construct an i-transducér= (P, I) where the set
of processing states @t is given byQpr = Qp, U @p,, the transition functiod

of 7" is the union ofdp, anddp,, the relevance mapis the union of the relevance
maps ofl; andT5, and the axiom of " is given byA = ::(A4;, A,) for a new output
symbol:: whereA, = p,[¢\" (z), . .. ,qﬁ’(’f) (z0)] is the axiom ofl}, (v = 1, 2).
Obviously,T" is uniform w.r.t. p. Moreover, it should be clear that for every state
q € Qp,, [q] is the same i7" andT,. So,pref(q) is also the same, and herifas
earliest.

Let us have a look at the axioms ©f, T, andT'. We first observe that, = p»
since:

pr = [[7:1(s) | s € pom(1)} = | {[T:](s) | s € DOM(I)} = pa

which follows from the facts thdt;, 7, are earliest (cf. the beginning of Section 5)
and equivalent. Then alsé!) = r® =: r,

Furthermore (foralj = 1,...,r andv = 1,2), [[qj(-l)]](s) = [[qj(-z)]](s) forall s €
DOM(I). Let ¢ be the initial state off. By uniformity property (1),p(q](-1)) =
p(¢”)) = co. Therefore by Theorem 13" = ¢\ forall j = 1,...,r, where= is
the equivalence relation on the state§ odis defined for Theorem 13.
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We now prove that the equivalence relatisrnconstitutes a bijection between the
setsQp, and@p,. For that, we first observe that for eveyy € Qp, there exists
¢ € @Qp, such thaty; = ¢», and vice versa. Since all states’6f and7; are
reachable, this can easily be proved by induction on the itiefirof reachability.
In fact, we just proved the base case of this induction, aedritluction step is
immediate from the definition of (and uniformity property (2a)). Therefore, the
relation= is left- and right-total. Now assume that = ¢, andgq, = ¢5. Then
p(a1) = p(g2) = p(gs) and, by Theorem 13g:] = 2] = [45]. Hencegs = g5,
becausél; is canonical. The same argument applied with the rol€s; aind 7,
exchanged, concludes the proof thais a bijection betweery p, and@p, .

It should be clear thaP; and P, are the same up to the renamiagof states. We
have already seen that their axioms are the same, and tbeggsing transitions
are the same by uniformity property (2a) and the definitiogof O

As a consequence of Theorems 11, 14, and 15, we obtain theresaih of this
paper.

Theorem 16 Every i-transducefl’ with DoM(T") # () is effectively equivalent to a
unique canonical i-transducef(T"). If 7" is uniform thernc(7") can be constructed
intimeO(|T|? - n(T)?3). If T is total thenc(T') can be constructed in tim@(|T'|°).

If T"is earliest, thern:(T') can be constructed in tim@(|7|?).

We observe that if" is total then so is:(7), because the constructions in Theo-
rems 11 and 14 do not change the inspecting dtta.

Recall from the discussion following Theorem 8 that thedtrtal parameten(7")

is at most exponential ifY’|. Thus, for arbitrary uniform transducéers¢(7") can be
constructed in exponential time. This implies, by Lemmah@t bur construction
of ¢(T") from T' takes double exponential time in general. This is the bessipte
because, as shown in the next example, the siz€Iof can be double exponential
in the size off".

Example 17 For everyn > 1 we will describe a t-transducéi, = (Q, %, A, ), A)
of sizeO(n) such that the domain df,, contains a single input treg, of depth
exponential im, andt, = [T,,](so) has size double exponentialin Since[T,,] =
{(s0, o) }, the canonical i-transduce(T,,) has axion, (cf. the beginning of Sec-
tion 5), and so the size ef7,,) is double exponential in the size Bf.

Let> = {0, 1, #, e} wheree has rank 0 and the other symbols have rank 1. Thus,
the trees ovek: are monadic, and can be written (and viewed) as strings in the
usual way, e.g., the stririj e denotes the tre@(1(e)). The unique input tree in the
domain ofT}, is

S0 = WoHFWIFF - - - #Wan_1€
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wherew; is the reverse of the binary representation of the numibef lengthn.
Thus, forn = 3, s = 00041004010#110#001#1014#0114#111e. To recognize
s, transducefl;,, usesn parallel computations where thigh computation checks
the correctness of thieth bits of allw;.

Thus,T,, has states of the forp, ¢, ) withp € {1,...,n+1},q € {#,1,0},and

r € {0, 1}. The first component is a counter that enalflggo walk from onei-th

bit to the nexti-th bit. The second component indicates that, during thi& vae
symbol# has not yet been encountereg)( or that it was encountered, and after
that no0 was read {) or at least oné was read (). At the end of the walk, the
third component is checked to be equal to the currehtbit, and, on the basis of
the second component, is changed to the expected value néxteth bit.

Let A = {b,a, e} with ranksn, 2, and0, respectively. The axiom df,, is A =
b({n+1,1,0)(zo),...,(2,1,0)(xg)). Thei-th state{n — i+ 2, 1, 0) of A is going to
check the-th bits. In the transitions df, that follow, we user to stand forz;, we
assume that,»" € {0,1} andi € {1,...,n}, and we use dots to indicate that the
second subtree afis identical to the first subtree. The latter means that thpudu
tree produced by each state is a full binary tree duee} of the same depth as the
input tree, and hence of size double exponential.in

n+1,1,1)(1(z)) — a((1,4,0)(x),...)
n+1,1,0)(0(z)) — a((1, 4, 1)(x),...)
n+1,0,r)(r(x)) — a({(1,#,7)(x),...)

(

{

{

(i, 46, 7)(r"(x)) = al(i+ 1, #,7)(2),.. )
(i, 4, 1) (3 (x)) ), )
(i, 1,7)(1(x)) —a((i+1,1,7r)(z),...)
(i, 1,7)(0(x)) — a((t+1,0,7)(x),...)
(1,0,7)(r"(2)) —a((i+1,0,7)(x),...)
(i, 9,0)(e) —e

The last transition means that the input tree is only acdepteen all bits wish to
turn intoO.

We observe that since a t-transducer with monadic inpus issessentially an alter-
nating finite automaton with universal branching only (wkhé&wed as an acceptor
of its domain), the above construction is closely relatetthéowell-known fact that
such automata are exponentially more succinct than detesticifinite automata,
even for singleton languagest

It follows from Theorem 16 that two i-transducefs and7; (with nonempty do-
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mains) are equivalent iff(77) and ¢(75) are the same. Thus, as a corollary we
(re)obtain the decidability of equivalence.

Theorem 18 The equivalence of deterministic top-down tree transdsi(sith in-
spection) is decidable. If the transducers are total or it then equivalence can
be decided in polynomial time.

By Theorem 16, equivalence of total transducers can bedtastéme O(n°), and
equivalence of earliest transducers in tiflé:?), wheren is the sum of the sizes
of the transducers. We also observe that for i-transduc#hsavmonadic output
alphabet (which means that all output symbols have rank @Gk d), all con-
structions in this paper can be done in polynomial time. leegguivalence of such
transducers (of which finite-state string transducers agegial case) can also be
tested in polynomial time.

A useful extension of the top-down tree transducer is thedimpn tree transducer
with regular look-ahead4]. Such a transducer can test its input subtrees for mem-
bership in arbitrary regular tree languages, by means ofexmaistic bottom-up
tree automaton called the “look-ahead automaton”. Clethily also extends the
i-transducer, which can only restrict its input subtreesitta languages (cf. [10]
where the i-transducer is shown to be equivalent to a péaticype of top-down
tree transducer with regular look-ahead, and cf. [26] fanr@esy on different types

of regular look-ahead).

Alternatively, one can think of a transducer with regulaskeahead as the com-
position of two translations: The first translation relab#ie input tree (each-
labeled nodey of the input tree is relabeled by, ¢4, ..., ;) if the look-ahead
automaton arrives in state at thei-th subtree ofv). The second translation is
an ordinary top-down tree transducer, running on the rédabi@put tree. We can
use the decision procedure for equivalence of determinisp-down tree trans-
ducers [9] to decide equivalence of deterministic top-déree transducers;, 75
with regular look-ahead, but it is more convenient to useofémm 18: Letrel be
the relabeling that adds, to each node of the input tree,able-dhead states at
all children nodes for the look-ahead automata of both ttacsrs. Then we con-
struct for eachl; the i-transducefl! = (P;, ;) which realizes the transduction
{(rel(s),[T:](s)) | s € boM(T;)}. The dttal; checks whether the input is a correct
relabelingrel(s) of an input trees of 7;, and the t-transducé?; simulatesl; on the
relabeled input tree. Clearly; is equivalent tdl;, iff 77 is equivalent td/;.

Corollary 19 The equivalence problem for deterministic top-down treasduc-
ers with regular look-ahead is decidable.

This corollary can be used to check whether or not two tracescu(possibly with
look-ahead) are equivalent on a given regular/geff input trees, i.e., on a gener-
alized DTD, by letting their look-ahead automata (addiby) check membership
of the input tree inR.
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7 Open Problems

In the context of X1L there have been attempts to generalize top-down translucer
to unranked trees, e.g., [16,25,17,22]. Such transduearsot be simulated by or-
dinary top-down tree transducers on ranked-tree encodiegsuse they implicitly
support concatenation of trees. Is equivalence of suckdrarers decidable? Can
they be transformed into a normal form similar to the one gmé=d here?

Another popular model of tree transducer is the macro traesttucer [8,11,22].

It can be seen as a generalization of top-down tree transslbgeadding context-

parameters to states. It is a long standing open problemhehet not equivalence
for deterministic macro tree transducers is decidableeRicit has been proved
that equivalence is decidable for deterministic macro traesducers that are of
linear size increase [6], i.e., for which the size of everypoiti tree is bounded

by a constant times the size of the corresponding input Neée that this result

is incomparable to Theorem 18: the methods from [6] do ngb ienever the

transducers produce output whose size is not linearly bedihg the size of the

corresponding input. Finally, note that the restrictiomwdcro tree transducers to
monadic output (all output symbols and states have rank&nrt) corresponds to
the “top-down tree-to-string transducers” [5,7] for whithlso still remains open

whether or not equivalence is decidable.
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