
Deciding Equivalence of Top-Down XML
Transformations in Polynomial Time

Joost Engelfrieta Sebastian Manethb Helmut Seidlc

a Leiden Institute of Advanced Computer Science, The Netherlands
engelfri@liacs.nl

b NICTA and University of NSW, Sydney, Australia
sebastian.maneth@nicta.com.au

c Institut für Informatik, Technische Universität München, Germany
seidl@in.tum.de

Abstract

Many useful XML transformations can be expressed by deterministic top-down tree trans-
ducers. A normal form is presented for such transducers (extended with the facility to in-
spect their input trees). A transducer in normal form has a unique canonical form which
can be obtained by a minimization procedure, in polynomial time. Thus, equivalence of
transducers in normal form can be decided in polynomial time. If the transducer is total,
the normal form can be obtained in polynomial time as well.

Key words: XML , top-down tree transducer, equivalence, minimization

1 Introduction

The transformation of XML documents is of fundamental importance for practical
XML processing. Transformations are needed, e.g., for insertion of derived format-
ing information or for adaptation of documents to the particular syntax demanded
by a given application. Many routine XML -transformations aresimple, i.e., can
be produced by a single top-down traversal over the tree structure underlying the
input document. Such transformations include simple filterings, relabelings, inser-
tions, and deletions as well as duplications of elements. Simple transformations
can conveniently be expressed by means ofdeterministic top-down tree transduc-
ersrunning over a ranked-tree encoding of the given input document. An example
of a top-down XML transformation is shown in Figure 1; it copies the input docu-
ment and additionally constructs a table of contents containing the titlest1, . . . , tn

Preprint submitted to Elsevier Science 14 January 2009

sec
nil

sec
title

nil

title

doc

nil
title

toc

title

doc

sec

title

title
sec sec

title

title
sec

nil

title
nil

tn sn

..
.

tn

t1

t2
t2 s2

t1 s1

..
.

t2 s2

t1 s1

..
.

tn sn

Fig. 1. A typical top-down XML translation.

of all sections. A top-down tree transducer is a simple functional program: func-
tions recursively generate trees through pattern matchingon their single input tree
argument. Here we consider a slightly extended model, by allowing the transducer
to inspect its input tree, even the parts that it does not transform into output. The
resulting deterministic top-down tree transducerwith inspectionis more robust: for
instance, the corresponding class of transformations is closed under composition
(see [10]).

We are interested in the problem of deciding whether or not two such transduc-
ers realize the same transformation. In 1978, Zachar showedthat this problem is
decidable for deterministic bottom-up (or: frontier-to-root) tree transducers [28].
Only two years later, equivalence has also been shown decidable for deterministic
top-down (or root-to-frontier) tree transducers byÉsik [9] (see also [5] and Sec-
tion IV.9 of [13]). The involved algorithm, however, is based on upper bounds on
the difference of sizes of intermediate trees appearing in derivations of the trans-
ducers. Since the algorithm explicitly keeps track of very large “difference trees”, it
seems hard to extract an efficient implementation. Instead,we introduce a new nor-
mal form for deterministic top-down tree transducers (withinspection): we prove
that every such transducer can be transformed effectively into an equivalentearliest
transducer, which means that it produces its output in a uniform way and “as early
as possible”. We also prove that earliest transducers have aunique canonical form
that can be obtained by a kind ofminimization, in polynomial time. Hence, two
transducers are equivalent iff their canonical forms are the same (up to renaming of
states). This provides a new way to decide equivalence of deterministic top-down
tree transducers, which takes polynomial time for earliesttransducers. While the
normal form can be achieved for every deterministic top-down tree transducer with
inspection, we show that it can be obtained even in polynomial time for total trans-
ducers, i.e., transducers whose translation is defined for every input tree. Thus,
equivalence of total transducers can be decided in polynomial time. The canoni-
cal form can be seen as the generalization of a correspondingcanonical form for
deterministic finite-state string transducers as considered by Mohri [20].

These methods can also be extended to provide a procedure fordeciding equiv-

2

alence of deterministic top-down tree transducers with regular look-ahead. Such
transducers additionally allow to test input trees for membership in arbitrary regu-
lar tree languages. For practical purposes, such as query evaluation of XPATH, this
is a very useful property as it allows to check for the existence of (bottom-up) tree
patterns in the input. Note also that every deterministicbottom-uptree transducer
can be transformed into an equivalent deterministic top-down tree transducer with
look-ahead [4]. Finally, note that for nondeterministic top-down tree transducers
the equivalence problem is undecidable, because this already holds forε-free (one-
way) finite-statestring transducers [14].

The XPATH query language is a popular formalism for selecting nodes from an
XML document. A wide range of query and transformation languages, such as
XQuery and XSLT, use XPath as their node selection formalism. An XPATH ex-
pression is similar to a regular expression and is evaluatedon the paths of the
XML tree, starting at the root node. The containment and equivalence problems
are already coNP complete for a small fragment of XPATH which only uses child,
descendant, wildcard, and filter (branching) [18]. In the absence of any one of the
operations descendant, wildcard, or filter, containment isin PTIME [27,2,19]. It is
possible to express an XPATH query through a tree transducer: every input node is
copied to the output, and a new unary “select symbol” is inserted above each node
selected by the query. However, even simple queries such as “select alla-nodes that
have ab-node descendant” cannot be realized by a top-down transducer in this way
(because the transducer does not know of the presence ofb-node descendants upon
visiting ana-node). To remedy this problem, one can first relabel the input tree by
the run of a tree automaton, or, equivalently, add regular look-ahead. Top-down tree
transducers with regular look-ahead (which can be tested for equivalence using our
methods) can indeed realize the above mentioned fragment ofXPATH. Note, how-
ever, that the use of nested filters in an XPATH query is similar to a conjunction and
will cause the look-ahead tree automaton to be of exponential size in the size of the
query.

2 Preliminaries

Top-down tree transducers conventionally work on ranked trees. This means that
the number of children of a node is determined by therank of the symbol at that
node. We therefore consider ranked alphabetsΣ consisting of finitely many sym-
bols; each symbola ∈ Σ is implicitly equipped with a rank in{0, 1, . . .}, where
rank 0 indicates thata is the potential label of a leaf. We assume that a ranked
alphabet contains at least one symbol of rank 0.

The setTΣ of rankedtreesover the ranked alphabetΣ then is defined by

t ::= a(t1, . . . , tk)

3

wherea ranges over symbols inΣ of rankk. As usual, we also writea for the tree
a(). Note that, since there is at least one symbol of rank 0,TΣ 6= ∅. We represent the
nodes of a tree in Dewey notation, i.e., by sequences of numbers (for readability,
numbers in the sequence are separated using dots). Formally, the setV (t) of nodes
of the treet is inductively defined as:V (t) = {ε} ∪ {i.v | 1 ≤ i ≤ k, v ∈ V (ti)}
if t = a(t1, . . . , tk), a ∈ Σ of rank k ≥ 0 andt1, . . . , tk ∈ TΣ. Thus, the empty
sequenceε represents the root oft andu.i represents thei-th child of the nodeu
of t. In abuse of notation, we also use “.” to denote concatenation of sequences of
numbers. A nodev is an ancestor of nodew if there is a (possibly empty) sequence
of numbersu such thatw = v.u. The size oft, denoted size(t), is the number|V (t)|
of its nodes. The depth oft, denoted depth(t), is the maximal number of nodes on
a path int from the root to a leaf.

A patternis a prefix of a tree. Formally the set of all patterns is given by the set of
all trees inTΣ∪{⊤}, where⊤ is a new symbol of rank zero which is not inΣ. Assume
p is a pattern containing exactlyk occurrences of⊤, andp1, . . . , pk is a sequence
of patterns. Then the patternq = p[p1, . . . , pk] is obtained fromp by replacing the
i-th occurrence of⊤ (in left-to-right order) withpi. Note that the resultq is a tree,
i.e., does not contain occurrences of⊤, iff the p1, . . . , pk are all trees.

Consider the setPΣ = TΣ∪{⊤} ∪{⊥} of all patterns enhanced with an extra bottom
element⊥ (not in Σ ∪ {⊤}). On this set, we define a partial ordering by⊥ ⊑ p
for all p, andp ⊑ p′ for patternsp, p′ iff p = p′[p1, . . . , pk] for suitable patterns
p1, . . . , pk. The latter means that every non-⊤ node ofp′ is also a node ofp and has
the same label in both patterns. Intuitively,p′ is a prefix ofp. With respect to this
ordering, every setX ⊆ PΣ has a least upper boundp =

⊔
X. If X is empty or

just contains⊥, p = ⊥. Otherwise,p is a pattern and the setV of non-⊤ nodes ofp
consists of all nodesv such that every ancestor ofv is in V (p′) for all p′ ∈ X \ {⊥}
and has the same label fromΣ in all p′ ∈ X\{⊥}. In particular ifV = ∅, the least
upper bound ofX is given by the pattern⊤. Since every subset ofPΣ has a least
upper bound,PΣ is a complete lattice.

While the length of a strictly decreasing chain inPΣ can be infinite, the length of
a strictly increasingchain is always finite. More precisely, the number of elements
in a strictly increasing chain above a patternp is bounded by the number of non-⊤
nodes inp.

3 Deterministic Top-Down Tree Transducers

A deterministic top-down tree transducer(t-transducer for short) is a tupleT =
(Q, Σ, ∆, δ, A), where

• Q is a finite set of states,

4

• Σ and∆ are ranked input and output alphabets, respectively, disjoint with Q,
• δ is the (possibly partial) transition function, and
• A is the axiom.

The axiomA has the formp[q1(x0), . . . , qr(x0)] for a variablex0 meant to be bound
to the input tree, a patternp ∈ T∆∪{⊤}, and a sequenceq1, . . . , qr, r ≥ 0, of states
in Q.

For every stateq in Q and input symbola ∈ Σ of rankk the transition functionδ
contains at most one transition, which is of the form

q(a(x1, . . . , xk)) → p[q1(xi1), . . . , qr(xir)]

wherex1, . . . , xk are distinct variables,p ∈ T∆∪{⊤} is a pattern,q1, . . . , qr ∈ Q, and
xij are variables occurring among thex1, . . . , xk. For every stateq and input symbol
a let δ(q, a) be the right-hand side of the transition forq anda if it is defined, and
let δ(q, a) be undefined otherwise.

Note that the axiom and the right-hand sides of transitions are trees over the ranked
alphabet∆∪Q∪X, where each state inQ has rank 1,X = {xi | i ≥ 0} is the set of
variables, and each variable has rank 0. Similarly, the left-hand sides of transitions
are trees overΣ ∪ Q ∪ X.

The transducer istotal if δ(q, a) is defined for allq ∈ Q anda ∈ Σ. Thesizeof T ,
denoted|T |, is the sum of the size of its axiom and the sizes of the left-hand sides
and right-hand sides of its transitions.

The semantics[[q]] of every stateq of the transducer is a partial functionTΣ → T∆

which is defined by recursion over its argument. Assume the arguments of the
function [[q]] is of the form s = a(s1, . . . , sk). Assume further thatδ(q, a) =
p[q1(xi1), . . . , qr(xir)]. If the recursive calls[[qj]](sij) return resultstj , then the call
[[q]](s) returns the value[[q]](s) = p[t1, . . . , tr]. If on the other hand,δ(q, a) is un-
defined or one of the recursive calls[[qj]](sij) is undefined, then the function[[q]] is
also undefined fors. In the following, we denote the domain of[[q]] by DOM(q).

The t-transducerT realizesa partial function[[T]] : TΣ → T∆. Assume that the
axiom ofT is given byA = p[q1(x0), . . . , qr(x0)]. Then the domain of[[T]], denoted
DOM(T) and also called thedomain ofT , is defined byDOM(T) = DOM(q1)∩· · ·∩
DOM(qr). For everys ∈ DOM(T), the output[[T]](s) of the transducerT on inputs
is defined by:

[[T]](s) = p[[[q1]](s), . . . , [[qr]](s)].

We call two t-transducersT1 andT2 equivalentif [[T1]] = [[T2]]. A partial function
that can be realized by a t-transducer is called at-translation.

In this paper we will, without loss of generality, only deal with t-transducers of
which all states are reachable. A state of a t-transducerT is calledreachableif

5

it occurs in the axiom ofT or in δ(q, a) for some reachable stateq and some in-
put symbola. Intuitively, this means that it occurs in a (not necessarily successful)
computation ofT starting with the axiom. The reachable states can be determined
in time linear in|T | by depth-first search of the directed graph with the states as
nodes and an edge fromq to q′ if q′ occurs inδ(q, a) for somea, starting with
the states in the axiom. Obviously, the unreachable states of a t-transducer can be
removed, together with their transitions. Thus, for every t-transducerT an equiva-
lent t-transducerT ′ can be constructed in linear time, such that all states ofT ′ are
reachable.

If t-transducerT2 can be obtained from t-transducerT1 by a (bijective) renaming of
states, we will identifyT1 andT2. Note that, since all states are reachable, this can
be checked in linear time.

Top-down tree transducers were introduced by Thatcher and Rounds [24,23] (see
also [11] for a survey on tree transducers). Conventionally, a top-down tree trans-
ducer has an initial state, instead of an axiom. It should be clear that this choice has
no impact on the class of t-translations: to simulate a conventional transducer (with
initial stateq0) using our model, simply define the axiom asq0(x0). Conversely, to
simulate our transducer, with axiomp[q1(x0), . . . , qr(x0)], by a conventional one,
add the new stateq0 as initial state and, for every input symbola such thatδ(qi, a)
is defined for alli ∈ {1, . . . , r}, defineδ(q0, a) as the treep[δ(q1, a), . . . , δ(qr, a)].

Example 1 We define a t-transducerTX = (Q, Σ, ∆, δ, A) that realizes the trans-
lation of XML documents with section and title markup as described in the Intro-
duction. The transducer has statesQ = {q0, t, e, n, id}, Σ containing at least the
symbols doc, sec, title, and nil,∆ = Σ∪ {toc}, axiomA = q0(x0), and the follow-
ing transitions inδ:

q0(doc(x1, x2)) → doc(toc(t(x1), id(x1)), n(x2))

t(sec(x1, x2)) → title(e(x1), t(x2))

t(nil) → nil

e(title(x1, x2)) → id(x1)

n(nil) → nil

where the stateid has the obvious transitions to realize the identity onTΣ. Note
that the right-hand side of the first transition isp[t(x1), id(x1), n(x2)] wherep is
the pattern doc(toc(⊤,⊤),⊤). 2

Wildcards

Query languages such as XPATH support a wildcard operator for selecting a node
with anylabel. Such a mechanism for dealing with arbitrary labels isalso present in

6

pattern matching constructs of mainstream programming languages in the form of
the “default case”. For a fixed, finite set of ranks, this can beobtained in our setting
by enhancing the ranked input alphabetΣ with special symbols “∗k”, representing
input labels of rankk that are arbitrary, but not inΣ. Then, a transition of the
form q(∗k(x1, . . . , xk)) → ∗k(q(x1), . . . , q(xk)) copies any non-Σ symbol from
the input to the output tree. Note that in the context of XML we typically work on
binary trees (with leaves representing the empty hedge) andhenceforth only need
one incarnation of the∗-symbol of rank two.

Deterministic Top-Down Tree Automata

A deterministic top-down tree automaton(dtta for short) is a t-transducerM =
(Q, Σ, ∆, δ, A) such that∆ = Σ, A = q0(x0) for someq0 ∈ Q called theinitial
state, and every transition inδ is of the form

q(a(x1, . . . , xk)) → a(q1(x1), . . . , qk(xk)).

In what follows,q0(x0) will be abbreviated byq0, anda(q1(x1), . . . , qk(xk)) by
q1 · · · qk.

The language accepted bythe dttaM is DOM(M), which equalsDOM(q0). Note
thatM realizes the identity on its domain, i.e.,[[M]](s) = s for everys ∈ DOM(M).

We will say that a dttaM is minimal if for all statesq, q′ of M : DOM(q) 6= ∅, and
if q 6= q′ thenDOM(q) 6= DOM(q′). Recall that we only consider t-transducers (and
hence dtta’s) of which all states are reachable.

The following two facts are well known:

Proposition 2

(1) The domain of every t-transducerT can be accepted by some dttaMT . More-
over,MT can be constructed fromT in exponential time.

(2) For every dttaM with DOM(M) 6= ∅ an equivalent minimal dttaM ′ can be
constructed in polynomial time. Two minimal dtta’s are equivalent iff they are
the same; hence,M ′ is unique.

The first fact is shown in (the proof of) Theorem 3.1 of [4] by a straightforward
subset construction. Thus, the states ofMT are sets of states ofT . WhenMT arrives
in stateB at a node of the input tree,B is the set of all states ofT that arrive at that
node in parallel. Moreover,δ(B, a) is defined iffδ(q, a) is defined for allq ∈ B,
and so,DOM(B) is the intersection of allDOM(q), q ∈ B.

The second fact is well known (see [12] or Section II.11 of [13], and [21]) but is
also easy to prove. For the sake of completeness we briefly discuss the proof (also

7

because our formalism differs slightly from those in [12,13,21]). Every dtta can
be viewed as a context-free grammar, with the states as nonterminals, and with a
productionq → a(q1, . . . , qk) corresponding to the transitionq(a(x1, . . . , xk)) →
a(q1(x1), . . . , qk(xk)). The useless nonterminals can be removed from a context-
free grammar (and thus from the dtta) in linear time, cf., e.g., Section 7.4.3 in [15],
or [3]. Identifying all statesq, q′ with DOM(q) = DOM(q′) then gives a minimal
dtta equivalent to the given one. To see that these pairs of states can be determined
in polynomial time, define the relation≡ on the set of states of the dtta to be the
largest equivalence relation such that ifq ≡ q′, then

(a) δ(q, a) is defined iffδ(q′, a) is defined, and
(b) if δ(q, a) = q1 · · · qk andδ(q′, a) = q′1 · · · q

′
k, thenqj ≡ q′j for all j.

It is easy to show thatDOM(q) = DOM(q′) iff q ≡ q′. The equivalence relation≡
can be computed in polynomial time by a standard fixpoint iteration.

Now consider two minimal dtta’sM andM ′ that are equivalent. Define the relation
q ≡ q′ as above, withq a state fromM andq′ a state fromM ′. It is straightforward
to show that≡ is a bijection between the states ofM andM ′, and thatM andM ′

are the same up to the renaming≡ of states.

Similar arguments will be used (in greater detail) for top-down tree transducers.

Transducers with Inspection

To be able to find, for every transducer, an equivalent transducer in (earliest) normal
form, as discussed in the Introduction, we need a slight extension of the t-transducer.
If a t-transducer inspects a subtree of the input tree, then it also has to produce out-
put on that subtree; in other words, if a subtree is deleted, it cannot be inspected. In
this way the t-transducer differs from the finite-state string transducer, which must
always read the whole input string (possibly producing empty output). It is exactly
this feature that is responsible for the fact that the t-translations are not closed under
composition, see Section I of [23]. We now add to the t-transducer the facility to
inspect subtrees that are deleted, by allowing it to run a dtta in parallel with itself.
This makes sense from the point of view of XML transformations, because such
transformations are usually defined on trees that are valid with respect to a (gen-
eralized) DTD. Here we only allow DTD’s that can be expressedby a dtta. The
general case of an arbitrary regular tree language is treated at the end of this paper
(cf. also the transformational systems of [23]).

A deterministic top-down tree transducer with inspection(i-transducer for short) is
a pairT = (P, I) where

• P = (QP , Σ, ∆, δP , A) is a t-transducer and
• I = (QI , Σ, Σ, δI , c0(x0)) is a dtta

8

with the same input alphabet, and withQP ∩ QI = ∅. We define the set of states
and the transition function ofT to beQ = QP ∪ QI andδ = δP ∪ δI respectively.
The states inQP are calledprocessingstates, and those ofQI inspectingstates,
with c0 being theinitial inspecting state. Similarly, the transitions inδP andδI are
called processing and inspecting transitions, respectively. In what follows, we will
also specify i-transducerT as one tuple(Q, Σ, ∆, δ, A, c0), whereQP , QI , δP , δI

are assumed to be specified implicitly. The size ofT is |T | = |P | + |I|.

The translation realized byT is the restriction of[[P]] to DOM(I), i.e., it is the
partial function

[[T]] = {(s, [[P]](s)) | s ∈ DOM(P) ∩ DOM(I)}.

Thedomain ofT is defined to beDOM(T) = DOM(P)∩DOM(I); in other words, it
is the domain of[[T]]. We observe thatDOM(T) can be accepted by some dttaMT ,
which can be constructed in exponential time. In fact, a dttaMP with DOM(MP) =
DOM(P) can be constructed in exponential time by Proposition 2, andthenMT can
be obtained fromMP andI by an obvious product construction in quadratic time.

Two i-transducersT1 andT2 are calledequivalentif [[T1]] = [[T2]]. A partial function
that can be realized by an i-transducer is called ani-translation.

For a given input alphabetΣ, letIid be the (unique) total dtta with set of states{id};
note thatDOM(Iid) = TΣ and thatIid is minimal. An i-transducerT = (P, Iid) is
“really” a t-transducer. For that reason, every t-transducer will also be considered to
be an i-transducer. An i-transducer istotal if it corresponds to a total t-transducer.

By definition, the i-translations are just the restrictionsof the t-translations to the
dtta languages. Equivalently, the i-translations are the compositions of the dtta
translations (which are the identities on dtta languages) with the t-translations.
Thus, every i-translation is the composition of two t-translations. This also holds
in the other direction, because the class of i-translationsis closed under compo-
sition, as shown in [10]. The closedness of the i-translations under composition
(as opposed to the t-translations) is important when i-transducers are considered
as queries on XML databases, because it allows the use of views: an i-query on an
i-view of the database can be replaced by an equivalent i-query on the database.

4 Common Prefixes

Consider a processing stateq of an i-transducerT with nonempty domainDOM(q).
Define the pattern

pref(q) =
⊔
{[[q]](s) | s ∈ DOM(q)}

9

as thecommon prefixof all outputs possibly produced byq. Since the set of patterns
is a complete lattice, the patternpref(q) is well defined.

Example 3 Consider the total t-transducerT1 with the following two transitions:

q(a(x1, x2)) → d(q(x1), d(q(x1), e))

q(e) → d(d(e, e), d(e, e)).

Obviously, all outputs generated by the stateq start with the patternd(⊤, d(⊤, e)).
In fact, the common prefix of all outputs produced byq is the patternpref(q) =
d(d(⊤,⊤), d(⊤, e)). 2

We will show how to compute the common prefixespref(q), q ∈ QP , under
the assumption that the transducerT is uniform. An i-transducerT = (P, I) =
(Q, Σ, ∆, δ, A, c0) is calleduniform if I is a minimal dtta and there is a mapping
ρ : QP → QI with the following properties (for allq, c, q̄, c̄ ∈ Q):

(1) ρ(q) = c0 if q occurs inA;
(2) if ρ(q) = c then, for everya ∈ Σ:

(a) δ(q, a) is defined iffδ(c, a) is defined, and
(b) if, for the same variablexi, q̄(xi) occurs inδ(q, a) and c̄(xi) in δ(c, a),

thenρ(q̄) = c̄.

The fact thatDOM(c1) 6= DOM(c2) for distinct statesc1, c2 ∈ QI will only play a
role in the proof of Theorem 15. It will, however, be frequently used thatDOM(c)
is nonempty for everyc ∈ QI .

Note that since all states ofP are reachable, the mappingρ is unique (when it
exists). Moreover, ifT is uniform,ρ can easily be computed in linear time (by an
obvious variant of depth-first search). The mappingρ will be called therelevance
mapof the uniform i-transducerT .

Intuitively, uniformity of T = (P, I) means that, during a computation ofP and
I on an input trees, starting with the axiomA and the initial statec0 respectively,
the processing states are keeping track of the inspecting state (by uniformity prop-
erties (1) and (2b)). Since, as will be shown in the next lemma, the dttaI accepts
DOM(T), the processing states “follow” the behavior of the state ofI at the current
node ofs. This means that a processing stateq with ρ(q) = c continues its com-
putation, at a certain node ofs, iff the inspecting statec does (by uniformity prop-
erty (2a)). In this way,q only processes “relevant” subtrees ofs. In fact,DOM(c) is
the set of all input subtrees that are processed byq during the computations ofT
(starting withA andc0) on input trees fromDOM(T). SinceDOM(c) 6= ∅, this also
implies that every processing state ofT occurs in at least one such computation.

Next we state some easy properties of uniform transducers.

10

Lemma 4 Let T = (Q, Σ, ∆, δ, A, c0) be a uniform i-transducer with relevance
mapρ. Then the following statements hold.

(1) If ρ(q) = c, thenDOM(c) ⊆ DOM(q).
(2) DOM(c0) = DOM(T).
(3) For everyc ∈ QI ands ∈ TΣ, there is a trees′ ∈ DOM(c) such that for every

q with ρ(q) = c, [[q]](s′) = [[q]](s) if s ∈ DOM(q).
(4) If ρ(q) = c, thenpref(q) =

⊔
{[[q]](s) | s ∈ DOM(c)}.

PROOF. (1) We proceed by induction on the structure ofs, and show thats ∈
DOM(c) implies s ∈ DOM(q). Assume thats = a(s1, . . . , sk) ∈ DOM(c). Then
there existc1, . . . , ck such thatδ(c, a) = c1 · · · ck andsi ∈ DOM(ci) for 1 ≤ i ≤ k.
By uniformity property (2a),δ(q, a) is defined, sayδ(q, a) = p[q1(xi1), . . . , qr(xir)],
and by uniformity property (2b),ρ(qj) = cij for all j = 1, . . . , r. By induction,
sij ∈ DOM(qj). Hence[[q]](s) = p[[[q1]](si1), . . . , [[qr]](sir)], and sos ∈ DOM(q).

(2) If A = p[q1(x0), . . . , qr(x0)], thenDOM(T) = (DOM(q1) ∩ · · · ∩ DOM(qr)) ∩
DOM(c0). By uniformity property (1), and by statement (1) of this lemma, this
equalsDOM(c0).

(3) The proof is by induction on the structure ofs. Let s = a(s1, . . . , sk). Assume
first thatδ(c, a) is undefined. Thenδ(q, a) is undefined for everyq with ρ(q) = c,
by uniformity property (2a). And so,[[q]](s) is undefined for every suchq, i.e.,
s /∈ DOM(q). Thus we can takes′ to be any element ofDOM(c), which is nonempty
by minimality of I.

Now assume thatδ(c, a) is defined, sayδ(c, a) = c1 · · · ck. By induction, there exist
input treess′i ∈ DOM(ci), 1 ≤ i ≤ k, such that ifρ(q̄) = ci, then[[q̄]](s′i) = [[q̄]](si)
if si ∈ DOM(q̄). Now takes′ = a(s′1, . . . , s

′
k). Obviouslys′ ∈ DOM(c). For everyq

with ρ(q) = c, if q̄(xi) occurs inδ(q, a), thenρ(q̄) = ci by uniformity property (2b).
From that it easily follows thats′ has the desired property.

(4) This is an immediate consequence of statement (3).2

Note that uniformity does not imply that the processing states that arrive at a par-
ticular node of the input tree (and hence are mapped to the same inspecting state),
all have the same domain.

Example 5 Consider the i-transducerT = (P, I) with the input (and output) al-
phabetΣ consisting of a nullary input symbole and a binary input symbola, with
processing transitionsδ(q1, a) = q(x1), δ(q2, a) = q(x2), δ(q, e) = e, and axiom
a(q1(x0), q2(x0)). The dttaI is the minimal dtta accepting the domain{a(e, e)}
of P . It has statesc0 and c (with c0 the initial state), and inspecting transitions
δ(c0, a) = cc andδ(c, e) = ε. Thus,T is uniform with relevance mapρ = {q1 7→

11

c0, q2 7→ c0, q 7→ c}. Note however, that the domain of[[q1]] is {a(e, t) | t ∈ TΣ}
while the domain of[[q2]] is {a(t, e) | t ∈ TΣ}. The sets of relevant inputs forq1 as
well as forq2 are given byDOM(c0) = {a(e, e)}.

As an example application of statement (3) of Lemma 4, consider the inspecting
statec0 and the input trees = a(e, a(e, e)) ∈ DOM(q1). To find a trees′ ∈ DOM(c0),
we first observe thatδ(c0, a) = cc. Thus,s′ = a(s′1, s

′
2) wheres′1 is obtained from

c ands1 = e, ands′2 from c ands2 = a(e, e). Sinceδ(c, e) is defined,s′1 = e. Since
δ(c, a) is undefined,s′2 is chosen arbitrarily inDOM(c) = {e}, i.e.,s′2 = e. Hence
s′ = a(e, e) satisfies statement (3) of the lemma:s′ ∈ DOM(c0) and[[q1]](s

′) = e =
[[q1]](s). 2

According to our definition, atotal i-transducerT is always uniform (withρ(q) =
id for every processing stateq). Consider the i-transducerT = (P, I) whereP is
the t-transducerTX from Example 1, andI is the minimal dtta forDOM(P). If T
would be uniform, with relevance mapρ, then its first transition would imply that
ρ(t) = ρ(id), by uniformity property (2b). Butδ(id, title) = title(id(x1), id(x2))
whereasδ(t, title) is undefined, contradicting uniformity property (2a). Thus, T is
not uniform.

We now show that every i-transducer with a nonempty domain is(effectively)
equivalent to a uniform transducer.

Lemma 6 For every i-transducerT with DOM(T) 6= ∅, a uniform i-transducerT ′

can be constructed in exponential time such that[[T ′]] = [[T]].

PROOF. Let T = (P, I) = (Q, Σ, ∆, δ, A, c0) be an i-transducer withDOM(T) 6=
∅. By Proposition 2, a dtta acceptingDOM(T) can be constructed in exponential
time, and using polynomial time, this dtta can be turned intoan equivalent minimal
dtta. For this reason, we assume from now on thatDOM(I) = DOM(T), and thatI
is minimal (which is a first requirement for uniformity). It should be clear that the
construction in the remainder of the proof can be performed in polynomial time.

The idea for the new transducerT ′ simply consists of incorporating the state of the
dtta I into the states of the t-transducerP , when they are running in parallel on
the same input tree. Accordingly,T ′ = (P ′, I) and the states ofP ′ will be of the
form 〈q, c〉 with q ∈ QP andc ∈ QI . We will define the states and transitions ofP ′

inductively, and simultaneously show thatDOM(c) ⊆ DOM(q) for every state〈q, c〉.

We observe here that ifDOM(c) ⊆ DOM(q), then〈q, c〉 satisfies the following prop-
erty (†): for everya ∈ Σ, if δ(c, a) is defined thenδ(q, a) is defined. In fact, if
δ(c, a) = c1 · · · ck, then there is a trees = a(s1, . . . , sk) such thats ∈ DOM(c)
(becauseDOM(ci) 6= ∅ for all ci, by minimality of I); hences ∈ DOM(q) and so
δ(q, a) is defined.

12

If A = p[q1(x0), . . . , qr(x0)], then the axiomA′ of T ′ is

A′ = p[〈q1, c0〉(x0), . . . , 〈qr, c0〉(x0)]

where〈q1, c0〉, . . . , 〈qr, c0〉 are new states ofP ′. Note thatDOM(c0) = DOM(I) =
DOM(T) ⊆ DOM(qi).

For a new state〈q, c〉 of P ′ and an input symbola ∈ Σ of rank k, assume that
δ(c, a) is defined and given byδ(c, a) = c1 · · · ck. Then, by(†), the t-transducerP
has a transition

q(a(x1, . . . , xk)) → p[q1(xi1), . . . qr(xir)].

Accordingly, the new t-transducerP ′ has the transition:

〈q, c〉(a(x1, . . . , xk)) → p[〈q1, ci1〉(xi1), . . . , 〈qr, cir〉(xir)]

for further states〈qj , cij〉, j = 1, . . . , r. It should be clear thatDOM(cij) ⊆ DOM(qj):
If si is an arbitrary element ofDOM(ci), for i = 1, . . . , k, thens = a(s1, . . . , sk)
is in DOM(c). Since we already know thatDOM(c) ⊆ DOM(q), we obtain that
s ∈ DOM(q), and hencesij ∈ DOM(qj). Note that this argument is correct because
all DOM(ci) are nonempty.

Obviously, by construction, the resulting transducerT ′ is uniform with the rele-
vance mapρ that maps every pair〈q, c〉 to its second componentc. Moreover, it
is straightforward to verify by structural induction on input treess that for every
state〈q, c〉 of P ′, if s ∈ DOM(c), thens ∈ DOM(〈q, c〉) and [[〈q, c〉]](s) = [[q]](s).
SinceDOM(c0) = DOM(T), this implies by construction of the axiomA′ of T ′, that
[[T]] ⊆ [[T ′]]. From the fact thatDOM(T ′) ⊆ DOM(I) = DOM(T), we conclude that
T andT ′ are equivalent. 2

The size ofT ′ in the proof of Lemma 6 heavily depends on the size of the dtta
acceptingDOM(T), and hence on the number (of combinations) of different states
that arrive at a node of the input tree in parallel. In practice we expect that this
number is not too large. In fact, the bulk of practical translations are oflinear size
increase, i.e., the size of every output tree is bounded by a constant times the size
of the corresponding input tree. It is well known by an old result of Aho and Ull-
man [1] that for any linear size increase (deterministic) top-down tree translation
there is (effectively) a transducer that is “finite-copying”. The latter means that the
number of states arriving at any input node is bounded by a constantc (called the
“copying number”). For a transducer with copying numberc, the size of the dtta
acceptingDOM(T) is at most exponential inc, and hence, so is the running time of
the construction of Lemma 6. Note that the transducer of Example 1 has copying
number 2.

Example 7 We will turn the t-transducerTX = (Q, Σ, ∆, δ, A) of Example 1 into
an equivalent uniform i-transducerT ′

X = (P ′, I). The minimal dttaI with domain

13

DOM(I) = DOM(TX) has the same states asTX , with primes to distinguish them,
it has initial stateq′0, and the following transitions:

δI(q
′
0, doc) = t′n′

δI(t
′, sec) = e′t′

δI(t
′, nil) = ε

δI(e
′, title) = id′

id′

δI(n
′, nil) = ε

whereid′ has all transitions to realize the identity onTΣ. The t-transducerP ′ has
states〈q, q′〉 for all q ∈ Q, which we will again denote byq, and it has states〈id, t′〉
and〈id, e′〉, which we will denote byidt andide, respectively. Note thatρ(q) = q′,
ρ(idt) = t′ = ρ(t), andρ(ide) = e′ = ρ(e). The axiom ofP ′ is still q0(x0), and its
transitions are:

q0(doc(x1, x2)) → doc(toc(t(x1), idt(x1)), n(x2))

t(sec(x1, x2)) → title(e(x1), t(x2))

t(nil) → nil

idt(sec(x1, x2)) → sec(ide(x1), idt(x2))

idt(nil) → nil

e(title(x1, x2)) → id(x1)

ide(title(x1, x2)) → title(id(x1), id(x2))

n(nil) → nil

where, as before, the stateid has all transitions to realize the identity onTΣ. 2

We now turn to the computation of the common prefixes of uniform i-transducers.
For a uniform i-transducerT with relevance mapρ, let η(T) denote the maximal
size of output trees produced for relevant input trees of minimal depth, i.e.,η(T) =
max{size([[q]](s)) | q ∈ QP , s ∈ Sρ(q)} where, forc ∈ QI , Sc = {s ∈ DOM(c) |
∀s′ ∈ DOM(c) : depth(s) ≤ depth(s′)}.

We observe that a specific collection of treestq = [[q]](sρ(q)), q ∈ QP , with sc ∈
Sc for every c ∈ QI , can be computed in timeO(|T | · η(T)). To see this, note
first that treessc ∈ Sc, c ∈ QI , can be computed by an obvious variant of the
algorithm that computes the useful nonterminals of a context-free grammar: when
the algorithm treats a transitionδ(c, a) = c1 · · · ck and treessci

have already been
computed fori = 1, . . . , k, the treesc is set toa(sc1 , . . . , sck

). It is easy to see that
the depth ofsc is minimal. The time taken by the algorithm is linear in the sum
of |I| (as it is a variant of the known algorithm) and the time to write down the

14

treessc, i.e., the sum of their sizes. However, we do not wish to computesc, but the
output treestq = [[q]](sc), for everyq ∈ QP with ρ(q) = c. So, instead, when the
algorithm treats a transitionδ(c, a) = c1 · · · ck, it computes for each suchq the tree
tq = [[q]](sc) by substitutingtq̄ for everyq̄(xi) in δ(q, a). Note that sinceρ(q̄) = ci,
the treetq̄ = [[q̄]](sci

) was assumed to be computed before. The time taken by this
algorithm is linear in the sum of|I| and the sizes of the treestq, q ∈ QP . Since
size(tq) ≤ η(T), the time is linear in|I| + |QP | · η(T), and so it isO(|T | · η(T)).

Then we have:

Theorem 8 LetT = (P, I) = (Q, Σ, ∆, δ, A, c0) be a uniform i-transducer.

The common prefixespref(q), q ∈ QP , can be computed in timeO(|T | · η(T)).
They are of size at mostη(T).

If A = p[q1(x0), . . . , qr(x0)], then

⊔
{[[T]](s) | s ∈ DOM(T)} = p[pref(q1), . . . , pref(qr)].

PROOF. For the complete latticeP∆, we construct the following system of in-
equations for the unknown patternsYq, q ∈ QP :

Yq ⊒ p[Yq1, . . . , Yqr
] whenever δ(q, a) = p[q1(xi1), . . . , qr(xir)].

Here, we define substitution to be strict, meaning thatp[p1, . . . , pr] = ⊥ whenever
pi = ⊥ for somei. Each right-hand side in this constraint system is monotonic in
its arguments, and hence the system has a least solution. A closer look reveals that
it is distributive for argument sequences of patterns, i.e., for any nonempty setS
of sequences(p1, . . . , pr) with pj 6= ⊥ for all j = 1, . . . , r and least upper bound
(p̄1, . . . , p̄r),

p[p̄1, . . . , p̄r] =
⊔
{p[p1, . . . , pr] | (p1, . . . , pr) ∈ S}.

Note that it is crucial that we have joint distributivity w.r.t. nonempty sets of se-
quences of patterns and not just distributivity in each component separately: the
reason is that during the computation of the transducer the different components
may not be chosen independently of each other.

First, we show that the patternspref(q), q ∈ QP , are a solution of the system of in-
equations. For that, letδ(q, a) = p[q1(xi1), . . . , qr(xir)] be a processing transition
of T . We claim that:

pref(q) ⊒ p[pref(q1), . . . , pref(qr)].

15

Let ρ(q) = c, whereρ is the relevance map ofT . By (4) of Lemma 4,

pref(q) =
⊔
{[[q]](s) | s ∈ DOM(c)}

⊒
⊔
{p[[[q1]](si1), . . . , [[qr]](sir)] | s = a(s1, . . . , sk) ∈ DOM(c)}

=
⊔
{p[[[q1]](si1), . . . , [[qr]](sir)] | s1 ∈ DOM(c1), . . . , sk ∈ DOM(ck)}

whereδ(c, a) = c1 · · · ck is an inspecting transition ofT , which exists by uniformity
property (2a). By joint distributivity, the least upper bound operation can be pushed
inwards:

. . . = p[
⊔
{([[q1]](si1), . . . , [[qr]](sir)) | s1 ∈ DOM(c1), . . . , sk ∈ DOM(ck)}]

= p[
⊔
{[[q1]](s1) | s1 ∈ DOM(ci1)}, . . . ,

⊔
{[[qr]](sr) | sr ∈ DOM(cir)}]

= p[pref(q1), . . . , pref(qr)]

where the latter equality follows again from (4) of Lemma 4, becauseρ(qj) = cij

by uniformity property (2b).

In a similar way we can show the second statement of this theorem: By definition
of [[T]], (2) of Lemma 4, joint distributivity, uniformity property(1), and (4) of
Lemma 4,

⊔
{[[T]](s) | s ∈ DOM(T)}

=
⊔
{p[[[q1]](s), . . . , [[qr]](s)] | s ∈ DOM(c0)}

= p[
⊔
{[[q1]](s) | s ∈ DOM(c0)}, . . . ,

⊔
{[[qr]](s) | s ∈ DOM(c0)}]

= p[pref(q1), . . . , pref(qr)].

Now let yq, q ∈ QP , denoteanysolution of our system of in-equations. We claim
thatyq ⊒ [[q]](s) for everyq ∈ Q and every inputs ∈ DOM(q). From this claim, we
deduce that

yq ⊒
⊔
{[[q]](s) | s ∈ DOM(q)} = pref(q).

Thus, the patternspref(q), q ∈ QP , constitute not just some solution of the system
of in-equations, but the least solution.

We prove the claim by structural induction ons. Assume thats = a(s1, . . . , sk) ∈
DOM(q) andδ(q, a) = p[q1(xi1), . . . , qr(xir)] is a transition ofT . Sinceyq, q ∈
QP , is a solution of the system of in-equations, we have:yq ⊒ p[yq1, . . . , yqr

]. By
induction hypothesis for thesi, yqj

⊒ [[qj]](sij), and therefore by monotonicity,

yq ⊒ p[yq1, . . . , yqr
] ⊒ p[[[q1]](si1), . . . , [[qr]](sir)] = [[q]](s).

This completes the proof of the claim.

16

In order to compute the least solution of our system of in-equations, we first com-
pute for every processing stateq an output treetq = [[q]](s) for some trees ∈
Sρ(q). As mentioned before this theorem, such treestq can be computed in time
O(|T | · η(T)). For eachq, the treetq is a lower bound for the patternpref(q), i.e.,
pref(q) ⊒ tq. Since size(tq) ≤ η(T), the size ofpref(q) is at mostη(T). Taking
tq as the initial value of the variableYq, subsequent fixpoint iteration will compute
the least solution, only replacing subtrees oftq with ⊤. Therefore, the number of
updates to the variableYq is bounded by size(tq) ≤ η(T), and the least solution can
be computed in time quadratic in|T | · η(T).

In the remainder of this proof we describe an algorithm that computes the least
solution in time linear in|T | · η(T). Construct a directed graphG = (V, E) and a
subsetS of V , as follows. The setV of nodes consists of all pairs〈q, v〉 with v a
node oftq. The setS ⊆ V consists of all〈q, v〉 such thatv has an ancestorw with
the following property: there is an in-equationYq ⊒ p[Yq1, . . . , Yqr

] such thatw is a
node ofp[tq1, . . . , tqr

], with a label different from its label intq. Note that if〈q, v〉 /∈
S, thenv is a node ofp[tq1, . . . , tqr

] for every in-equationYq ⊒ p[Yq1, . . . , Yqr
].

Finally, the set of edgesE consists all pairs(〈q′, v′〉, 〈q, v〉) such that〈q, v〉 /∈ S
and there are an in-equationYq ⊒ p[Yq1, . . . , Yqr

] and aj ∈ {1, . . . , r} such that
q′ = qj andv = uj.v

′, whereuj is thej-th node ofp labeled with⊤ (i.e., v is a
node ofp[tq1 , . . . , tqr

] that “corresponds to” nodev′ of tqj
). Intuitively, if 〈q, v〉 ∈ S

then in the first round of fixpoint iteration (withtq as initial value ofYq), nodev is
removed fromtq (or replaced by⊤); and an edge(〈q′, v′〉, 〈q, v〉) means that ifv′ is
removed fromtq′ , then in the next roundv is removed fromtq.

The setS can be computed by a depth-first left-to-right traversal oftq for each in-
equationYq ⊒ p[Yq1, . . . , Yqr

], simultaneously traversingp[tq1, . . . , tqr
]. Since each

such traversal takes time size(tq), the total time is linear in|T | · η(T). Then the set
E can be computed in a similar way. Thus,G has sizeO(|T | · η(T)).

Now definepq to be the pattern such thatpq ⊒ tq, andv ∈ V (tq) is a non-⊤ node of
pq iff 〈q, v〉 is not reachable fromS in G. Thatpq is indeed a pattern, can easily be
proved: if〈q, w〉 is reachable fromS andw is an ancestor ofv in tq, then〈q, v〉 is
reachable fromS. We now claim that the patternspq, q ∈ QP , are the least solution
of the in-equations. We leave the straightforward proof to the reader: first show that
pq, q ∈ QP , is a solution, and then show that ifyq, q ∈ QP , is any solution with
yq ⊒ tq for all q, thenyq ⊒ pq for all q. The nodes〈q, v〉 that are reachable fromS
can be determined by depth-first search ofG, in time linear in its size. Hence, the
patternspq can be determined in timeO(|T | · η(T)). 2

Consider a total transducerT . For every processing stateq and every symbole of
rank 0, T has a transitionq(e) → t for some treet ∈ T∆. A rough upper bound
to the sizes of such trees is given by the size ofT itself, and soη(T) ≤ |T |.
Hence, according to Theorem 8, the common prefixes for all processing states can

17

be computed for total transducers inquadratictime, i.e., in timeO(|T |2).

In the case of non-total uniform transducers, we do not have at hand the small trees
δ(q, e) as for total transducers. Instead, however, we can rely for aprocessing state
q, on someoutput treet returned by[[q]] on a relevant input trees ∈ DOM(ρ(q))
of minimal depth. Obviously, the depth of such a trees is at most the number of
inspecting states ofT , which is at most|T |. Accordingly, the size of the output tree
t = [[q]](s) is at most exponential in|T |. Hence, the valueη(T) of Theorem 8 can
be at most exponential in the size ofT , and so the common prefixes of a uniform
i-transducer can be computed inexponentialtime.

Example 9 Consider the total transducerT1 of Example 3 with the transitions
δ(q, a) = d(q(x1), d(q(x1), e)) andδ(q, e) = d(d(e, e), d(e, e)). The correspond-
ing system of in-equations is

Yq ⊒ d(Yq, d(Yq, e))

Yq ⊒ d(d(e, e), d(e, e)).

Fixpoint iteration (starting withy(0) = ⊥) terminates after only three rounds:

y(1) = d(d(e, e), d(e, e))

y(2) = d(d(⊤,⊤), d(⊤, e)) = y(3)

wherey(i) denotes thei-th Kleene approximation of the least solution for the vari-
ableYq.

Clearly,sρ(q) = e andtq = [[q]](e) = d(d(e, e), d(e, e)). Thus, initializingYq with
tq gives the same iteration as above. For the graphG = (V, E), V = {〈q, v〉 | v ∈
V (tq)}. The setsS andE are obtained by comparingtq with p[tq, tq], wherep =
d(⊤, d(⊤, e)) is the pattern ofδ(q, a). This givesS = {〈q, 1.1〉, 〈q, 1.2〉, 〈q, 2.1〉}
andE = {(〈q, ε〉, 〈q, 1〉)}. Hence the only reachable nodes ofG are those inS,
and sopq is obtained fromtq by replacing nodes1.1, 1.2, and2.1 by ⊤, i.e.,pq =
d(d(⊤,⊤), d(⊤, e)). 2

5 Earliest Transducers

A uniform i-transducerT is calledearliestif for every processing stateq of T there
exist input treess1 ands2 such that the roots of[[q]](s1) and[[q]](s2) have different
labels. In other words,pref(q) = ⊤ for all processing statesq. In particular, by the
second statement of Theorem 8, this implies that the patternp of the axiom ofT

18

equals the least upper bound of all outputs produced byT , i.e.,

p =
⊔
{[[T]](s) | s ∈ DOM(T)}.

Example 10 The uniform i-transducerT ′
X = (P ′, I) of Example 7 is not earliest,

because the roots of all outputs ofq0, ide, andn are labeled doc, title, and nil, re-
spectively. However,T ′

X can easily be turned into an equivalent earliest transducer
T ′′

X = (P ′′, I), as follows.

Replace stateq0 by two states,q1
0 and q2

0, and similarly for stateide. Further-
more, remove staten and remove the transitions forq0, ide, andn. Replace the
axiom by doc(toc(q1

0(x0), q
2
0(x0)), nil), change the transition foridt and sec into

idt(sec(x1, x2)) → sec(title(id1
e(x1), id

2
e(x1)), idt(x2)), and add the following tran-

sitions for the new states:

q1
0(doc(x1, x2)) → t(x1)

q2
0(doc(x1, x2)) → idt(x1)

id1
e(title(x1, x2)) → id(x1)

id2
e(title(x1, x2)) → id(x2).

Note thatP ′′ does not process the second input subtree of doc any more, butthat
I still inspects that tree to check that it is nil. This is the reason that we had to add
the inspection facility to the top-down tree transducer in order to obtain our normal
form result. 2

We now prove the normal form result mentioned in the Abstractand discussed in
the Introduction.

Theorem 11 Every i-transducerT with DOM(T) 6= ∅ is effectively equivalent to
an earliest i-transducerT ′.

If T is uniform, thenT ′ can be constructed in timeO(|T | · η(T)).

If T is total, thenT ′ can be constructed in timeO(|T |2).

PROOF. By Lemma 6, we can construct for every transducer with nonempty do-
main an equivalent uniform transducer. Therefore, assume that the i-transducer
T = (P, I) is uniform. By Theorem 8, we can compute for every processingstate
q of T , the patternpref(q) which is common to all outputs produced byq. The idea
then is to produce this common prefix as early as possible. Together with the state
q, we additionally record the nodev in the patternpref(q) which is to be expanded
next. This means that the processing states of the new i-transducerT ′ = (P ′, I) are
of the form〈q, v〉 whereq ∈ QP , andv is one of the nodes ofpref(q) labeled with

19

⊤. Note that the inspecting dtta ofT ′ is the same as the one ofT . To ensure that all
states ofP ′ are reachable, we will define the states and transitions ofP ′ inductively.

If A = p[q1(x0), . . . , qr(x0)] is the axiom ofT , then the axiomA′ of T ′ is given by:

A′ = p[p1[〈q1, v1,1〉(x0), . . . , 〈q1, v1,l1〉(x0)], . . . ,

pr[〈qr, vr,1〉(x0), . . . , 〈qr, vr,lr〉(x0)]]

wherevj,1, . . . , vj,lj is the left-to-right sequence of nodes inpj = pref(qj) labeled
with ⊤. All pairs 〈q, v〉 in A′ are new states inP ′.

For a new state〈q, v〉 of P ′ and an input symbola, assume that

δ(q, a) = p[q1(xi1), . . . , qr(xir)]

in P . Let pj = pref(qj) for j = 1, . . . , r. From the proof of Theorem 8 we know
thatpref(q) ⊒ p[p1, . . . , pr]. Hence,v is a node ofp[p1, . . . , pr]. Then we define

δ′(〈q, v〉, a) = the subtree at nodev of the tree

p[p1[〈q1, v1,1〉(xi1), . . . , 〈q1, v1,l1〉(xi1)], . . . ,

pr[〈qr, vr,1〉(xir), . . . , 〈qr, vr,lr〉(xir)]]

in P ′, wherevj,1, . . . , vj,lj is the left-to-right sequence of nodes inpj labeled with
⊤. All pairs 〈q′, v′〉 in δ′(〈q, v〉, a) are further states ofP ′.

SinceDOM(I) = DOM(T) by (2) of Lemma 4, the following claim suffices to prove
thatT ′ andT are equivalent. It can easily be shown by structural induction on input
trees.

Claim: For every processing state〈q, v〉 of T ′ and every input trees ∈ DOM(q),
[[〈q, v〉]](s) is defined and equals the subtree of[[q]](s) at nodev.

It should be clear thatT ′ is uniform with relevance mapρ′ defined byρ′(〈q, v〉) =
ρ(q), whereρ is the relevance map ofT . The transducerT ′ is also earliest: For
every processing state〈q, v〉 of T ′, nodev in pref(q) is labeled⊤. By the definition
of pref, this means that there are input treess1 ands2 such that the label ofv in
[[q]](s1) is different from the label ofv in [[q]](s2); hence, by the claim above, the
roots of[[〈q, v〉]](s1) and[[〈q, v〉]](s2) have different labels.

It remains to consider the complexity bounds stated in the theorem. According
to Theorem 8, the given bounds are sufficient to compute the common prefixes
pref(q), which are of size at mostη(T). Every transition ofT for a processing state
q gives rise to at mostη(T) transitions ofT ′ for processing states〈q, v〉 where the
sum of the sizes of all right-hand sides is bounded by the original size timesη(T).

20

Moreover, each new right-hand side can be produced in time linear in its size. A
similar statement holds for the axioms. Hence, the construction of T ′ from T takes
timeO(|T | · η(T)). 2

Example 12 Consider again the total transducerT1 of Example 3, with axiomA =
q(x0) and transitions

q(a(x1, x2)) → d(q(x1), d(q(x1), e))

q(e) → d(d(e, e), d(e, e)).

We have seen in Example 9 thatpref(q) = d(d(⊤,⊤), d(⊤, e)). Thus, the states of
the new transducerT ′

1 are〈q, 1.1〉, 〈q, 1.2〉, and〈q, 2.1〉, which we will denote by
1, 2, and 3, respectively. The axiom of the new transducerT ′ is

A′ = d(d(1(x0), 2(x0)), d(3(x0), e)).

Let us now construct the transitions ofT ′
1 corresponding to the first transition of

T1. Note thatδ(q, a) = p[q(x1), q(x1)] for the patternp = d(⊤, d(⊤, e)). Let t =
pref(q)[1(x1), 2(x1), 3(x1)] = d(d(1(x1), 2(x1)), d(3(x1), e)). Thenδ′(〈q, v〉, a) is
the subtree at nodev of the treep[t, t] = d(t, d(t, e)). For v = 1.1, 1.2, 2.1 these
subtrees are: the first subtree oft, the second subtree oft, andt itself, respectively.
Thus, the new transitions are

1(a(x1, x2)) → d(1(x1), 2(x1))

2(a(x1, x2)) → d(3(x1), e)

3(a(x1, x2)) → d(d(1(x1), 2(x1)), d(3(x1), e)).

Sinceδ′(〈q, v〉, e) is the subtree at nodev of δ(q, e), the transitions ofT ′
1 corre-

sponding to the second transition ofT1 arei(e) → e for i = 1, 2, 3. 2

6 Minimizing Earliest Transducers

The key property of earliest transducers is that they produce the respective output
trees in a canonical fashion. This means that for two processing statesq andq′ of an
earliest i-transducer, withρ(q) = ρ(q′), the (partial) functions[[q]] and[[q′]] are equal
if and only if the patterns on the right-hand sides of all corresponding transitions
are equal and the corresponding recursive calls in the right-hand sides agree.

Formally, letT be an earliest i-transducer with relevance mapρ. On the setQP of
processing states ofT we define the relation≡ to be the largest equivalence relation
∼ that satisfies the following property(∗):

21

If q ∼ q′, then

(a) ρ(q) = ρ(q′), and
(b) if δ(q, a) = p[q1(xi1), . . . , qr(xir)] andδ(q′, a) = p′[q′1(xi′1

), . . . , q′r′(xi′
r′
)],

thenp = p′, r = r′, and for allj = 1, . . . , r, ij = i′j andqj ∼ q′j .

Note that≡ is well defined. In fact, the set of equivalence relations onQP is a
complete lattice with respect to⊇ (the inverse of inclusion), with intersection as
join andQP ×QP as bottom element. For a given equivalence relation∼, let f(∼)
be the equivalence relation such thatq f(∼) q′ iff statements (a) and (b) hold. Since
f is monotone, it has a least fixpoint, which is the equivalencerelation≡. Thus,≡
equals

⋃
i≥0 f i(QP × QP) and can be computed by fixpoint iteration. Clearly, the

number of iterations is at most|QP |, and each iteration step compares at most|QP |
2

pairs of states. Hence the total number of comparisons is at most |QP |
3. However,

if one keeps track of representatives of the equivalence classes off i(QP × QP),
then it is not difficult to see that at mostO(|QP |

2) comparisons are needed. Since
each comparison takes at mostO(|T |) time,≡ can be computed in timeO(|T |3).

The equivalence relation≡ and its computation are similar to those in the mini-
mization of deterministic top-down tree automata, cf. [12,13,21] and Section 3.

Theorem 13 Let T = (Q, Σ, ∆, δ, A, c0) be an earliest i-transducer, with rele-
vance mapρ. Then the following holds:

(1) The equivalence relation≡ can be computed in timeO(|T |3).
(2) For processing statesq, q′ of T with ρ(q) = ρ(q′), the following three state-

ments are equivalent:
(a) q ≡ q′;
(b) [[q]] = [[q′]];
(c) [[q]](s) = [[q′]](s) for all s ∈ DOM(ρ(q)).

PROOF. Since assertion (1) was proved above, it remains to prove assertion (2).

(a) ⇒ (b). Assume thatq ≡ q′. It is straightforward to show by structural induction
on input treess that s ∈ DOM(q) iff s ∈ DOM(q′), and that[[q]](s) = [[q′]](s)
whenevers ∈ DOM(q). Hence[[q]] = [[q′]].

(b) ⇒ (c) is obvious, by (1) of Lemma 4.

(c) ⇒ (a). To prove this, it suffices to show that the relation∼, defined as follows,
satisfies the property(∗) above: Forq, q′ ∈ QP , q ∼ q′ iff ρ(q) = ρ(q′) and
[[q]](s) = [[q′]](s) for all s ∈ DOM(ρ(q)).

So, assume thatq ∼ q′, and letc = ρ(q) = ρ(q′). Assume further thatδ(q, a) =
p[q1(xi1), . . . , qr(xir)] andδ(q′, a) = p′[q′1(xi′1

), . . . , q′r′(xi′
r′
)] in T . Then, by uni-

22

formity property (2a),δ(c, a) is defined. Letδ(c, a) = c1 · · · ck. Now consider arbi-
trary input treessi ∈ DOM(ci), i = 1, . . . , k. Note that sinceDOM(ci) 6= ∅, there is
at least one such tree for everyi. Thens = a(s1, . . . , sk) is in DOM(c). Therefore,
sinceq ∼ q′,

p[[[q1]](si1), . . . , [[qr]](sir)] = [[q]](s) = [[q′]](s) = p′[[[q′1]](si′1
), . . . , [[q′r′]](si′

r′
)].

We must show thatp = p′, r = r′, and forj ∈ {1, . . . , r}, ij = i′j andqj ∼ q′j .
For a contradiction, assume thatp 6= p′. If at some nodev the patternsp andp′

have different labels in∆, then[[q]](s) 6= [[q′]](s). Since each symbol in the output
alphabet∆ has a unique rank, it suffices to consider the case thatp′ at some nodev
is labeled by ad ∈ ∆ andp atv is labeled⊤. Letv be thej-th occurrence of⊤ in p.
This means that[[qj]](sij) is a tree of the formd(· · ·). Since this holds for arbitrary
sij ∈ DOM(cij), we obtain from (4) of Lemma 4 (which is applicable by uniformity
property (2b)) thatpref(qj) = d(· · ·) 6= ⊤, which contradicts the earliest property
of T . Hence,p = p′ andr = r′. Next, we show that for allj, ij = i′j. This follows
by a similar argument: assume for a contradiction thatij 6= i′j. Then the output
trees produced by bothqj andq′j cannot depend on their input trees. If, however,
[[qj]](s) = t for everys ∈ DOM(cij), thent = pref(qj) contradicting the earliest
assumption onT . Consequently,ij = i′j for all j.

Finally we show that for allj, qj ∼ q′j . By uniformity property (2b),ρ(qj) =
ρ(q′j) = cij . Hence it remains to prove that[[qj]](s̄) = [[q′j]](s̄) for all s̄ ∈ DOM(cij).
As before, consider arbitrary input treessi ∈ DOM(ci), with sij = s̄. Thens =
a(s1, . . . , sk) is in DOM(c), and

p[[[q1]](si1), . . . , [[qr]](sir)] = [[q]](s) = [[q′]](s) = p[[[q′1]](si1), . . . , [[q
′
r]](sir)].

We conclude that[[qj]](sij) = [[q′j]](sij). 2

From an earliest i-transducerT and the equivalence relation≡ defined above, we
can construct, in linear time, a new i-transducerT≡ by replacing each processing
state by its equivalence class w.r.t.≡. The resulting transducer is equivalent toT
and again an earliest transducer.

In fact, suppose thatq1 ≡ q2 and replaceq1 by q2 in the axiom or in the right-
hand side of some transition ofT . By Theorem 13,[[q1]] = [[q2]]. Hence, by the
definition of the semantics of a t-transducer, this does not change[[T]] or any of
the [[q]]. Also, becauseρ(q1) = ρ(q2), the same relevance mapρ still satisfies the
uniformity properties. Since[[q]] has not changed, neither haspref(q). Hence the
transducer is still earliest. Thus, we can pick a representative of each equivalence
class of≡, iterate this replacement procedure, and finally disregardall states that
are not representatives.

We will say that an earliest i-transducerT is canonicalif for all processing states

23

q, q′ of T : if ρ(q) = ρ(q′) andq 6= q′, then[[q]] 6= [[q′]] (i.e., if every equivalence
class of≡ is a singleton). Note thatT≡ is canonical. From the above discussion and
Theorem 13 we obtain the following result.

Theorem 14 For every earliest i-transducerT a canonical i-transducerT ′ can be
constructed in timeO(|T |3) such that[[T ′]] = [[T]].

Thus, by Theorem 11, every i-transducerT with nonempty domain is equivalent
to a canonical i-transducer. In the next theorem we prove that (up to renaming of
states) that canonical transducer isunique. Thus, it is the unique minimal earliest
i-transducer realizing[[T]]. Here, minimality is meant w.r.t. to the number of pro-
cessing statesq with ρ(q) = c, for each inspecting statec.

Theorem 15 LetT1, T2 be equivalent canonical i-transducers. ThenT1 andT2 are
the same (up to renaming of states).

PROOF. SinceT1 = (P1, I1) and T2 = (P2, I2) are equivalent, their domains
are equal. Thus, by (2) of Lemma 4,I1 andI2 are equivalent minimal dtta’s, and
so, by Proposition 2, they are the same. Thus, in what followswe assume w.l.o.g.
thatT1 andT2 have the same inspecting dtta:T1 = (P1, I) andT2 = (P2, I) with
DOM(I) = DOM(T1) = DOM(T2). Assume w.l.o.g. thatQP1 ∩ QP2 = ∅. It remains
to show thatP1 andP2 are the same.

From the transducersT1, T2, we construct an i-transducerT = (P, I) where the set
of processing states ofT is given byQP = QP1 ∪ QP2 , the transition functionδP

of T is the union ofδP1 andδP2 , the relevance mapρ is the union of the relevance
maps ofT1 andT2, and the axiom ofT is given byA = ::(A1, A2) for a new output
symbol:: whereAν = pν [q

(ν)
1 (x0), . . . , q

(ν)

r(ν)(x0)] is the axiom ofTν (ν = 1, 2).

Obviously,T is uniform w.r.t.ρ. Moreover, it should be clear that for every state
q ∈ QPν

, [[q]] is the same inT andTν . So,pref(q) is also the same, and henceT is
earliest.

Let us have a look at the axioms ofT1, T2, andT . We first observe thatp1 = p2

since:

p1 =
⊔
{[[T1]](s) | s ∈ DOM(I)} =

⊔
{[[T2]](s) | s ∈ DOM(I)} = p2

which follows from the facts thatT1, T2 are earliest (cf. the beginning of Section 5)
and equivalent. Then alsor(1) = r(2) =: r.

Furthermore (for allj = 1, . . . , r andν = 1, 2), [[q
(1)
j]](s) = [[q

(2)
j]](s) for all s ∈

DOM(I). Let c0 be the initial state ofI. By uniformity property (1),ρ(q
(1)
j) =

ρ(q
(2)
j) = c0. Therefore by Theorem 13,q

(1)
j ≡ q

(2)
j for all j = 1, . . . , r, where≡ is

the equivalence relation on the states ofT as defined for Theorem 13.

24

We now prove that the equivalence relation≡ constitutes a bijection between the
setsQP1 andQP2 . For that, we first observe that for everyq1 ∈ QP1 there exists
q2 ∈ QP2 such thatq1 ≡ q2, and vice versa. Since all states ofT1 and T2 are
reachable, this can easily be proved by induction on the definition of reachability.
In fact, we just proved the base case of this induction, and the induction step is
immediate from the definition of≡ (and uniformity property (2a)). Therefore, the
relation≡ is left- and right-total. Now assume thatq1 ≡ q2 and q1 ≡ q′2. Then
ρ(q1) = ρ(q2) = ρ(q′2) and, by Theorem 13,[[q1]] = [[q2]] = [[q′2]]. Henceq2 = q′2,
becauseT2 is canonical. The same argument applied with the roles ofT1 andT2

exchanged, concludes the proof that≡ is a bijection betweenQP1 andQP2 .

It should be clear thatP1 andP2 are the same up to the renaming≡ of states. We
have already seen that their axioms are the same, and their processing transitions
are the same by uniformity property (2a) and the definition of≡. 2

As a consequence of Theorems 11, 14, and 15, we obtain the mainresult of this
paper.

Theorem 16 Every i-transducerT with DOM(T) 6= ∅ is effectively equivalent to a
unique canonical i-transducerc(T). If T is uniform thenc(T) can be constructed
in timeO(|T |3 · η(T)3). If T is total thenc(T) can be constructed in timeO(|T |6).
If T is earliest, thenc(T) can be constructed in timeO(|T |3).

We observe that ifT is total then so isc(T), because the constructions in Theo-
rems 11 and 14 do not change the inspecting dtta.

Recall from the discussion following Theorem 8 that the structural parameterη(T)
is at most exponential in|T |. Thus, for arbitrary uniform transducersT , c(T) can be
constructed in exponential time. This implies, by Lemma 6, that our construction
of c(T) from T takes double exponential time in general. This is the best possible
because, as shown in the next example, the size ofc(T) can be double exponential
in the size ofT .

Example 17 For everyn ≥ 1 we will describe a t-transducerTn = (Q, Σ, ∆, δ, A)
of sizeO(n) such that the domain ofTn contains a single input trees0, of depth
exponential inn, andt0 = [[Tn]](s0) has size double exponential inn. Since[[Tn]] =
{(s0, t0)}, the canonical i-transducerc(Tn) has axiomt0 (cf. the beginning of Sec-
tion 5), and so the size ofc(Tn) is double exponential in the size ofTn.

Let Σ = {0, 1, #, e} wheree has rank 0 and the other symbols have rank 1. Thus,
the trees overΣ are monadic, and can be written (and viewed) as strings in the
usual way, e.g., the string01e denotes the tree0(1(e)). The unique input tree in the
domain ofTn is

s0 = w0#w1# · · ·#w2n−1e

25

wherewj is the reverse of the binary representation of the numberj, of lengthn.
Thus, forn = 3, s0 = 000#100#010#110#001#101#011#111e. To recognize
s0, transducerTn usesn parallel computations where thei-th computation checks
the correctness of thei-th bits of allwj .

Thus,Tn has states of the form〈p, q, r〉 with p ∈ {1, . . . , n+1}, q ∈ {#, 1, 0}, and
r ∈ {0, 1}. The first component is a counter that enablesTn to walk from onei-th
bit to the nexti-th bit. The second component indicates that, during this walk, the
symbol# has not yet been encountered (#), or that it was encountered, and after
that no0 was read (1) or at least one0 was read (0). At the end of the walk, the
third component is checked to be equal to the currenti-th bit, and, on the basis of
the second component, is changed to the expected value of thenexti-th bit.

Let ∆ = {b, a, e} with ranksn, 2, and0, respectively. The axiom ofTn is A =
b(〈n+1, 1, 0〉(x0), . . . , 〈2, 1, 0〉(x0)). Thei-th state〈n− i+2, 1, 0〉 of A is going to
check thei-th bits. In the transitions ofTn that follow, we usex to stand forx1, we
assume thatr, r′ ∈ {0, 1} andi ∈ {1, . . . , n}, and we use dots to indicate that the
second subtree ofa is identical to the first subtree. The latter means that the output
tree produced by each state is a full binary tree over{a, e} of the same depth as the
input tree, and hence of size double exponential inn.

〈n + 1, 1, 1〉(1(x)) → a(〈1, #, 0〉(x), . . .)

〈n + 1, 1, 0〉(0(x)) → a(〈1, #, 1〉(x), . . .)

〈n + 1, 0, r〉(r(x)) → a(〈1, #, r〉(x), . . .)

〈i, #, r〉(r′(x)) → a(〈i + 1, #, r〉(x), . . .)

〈i, #, r〉(#(x)) → a(〈i + 1, 1, r〉(x), . . .)

〈i, 1, r〉(1(x)) → a(〈i + 1, 1, r〉(x), . . .)

〈i, 1, r〉(0(x)) → a(〈i + 1, 0, r〉(x), . . .)

〈i, 0, r〉(r′(x)) → a(〈i + 1, 0, r〉(x), . . .)

〈i, #, 0〉(e) → e

The last transition means that the input tree is only accepted when all bits wish to
turn into0.

We observe that since a t-transducer with monadic input trees is essentially an alter-
nating finite automaton with universal branching only (whenviewed as an acceptor
of its domain), the above construction is closely related tothe well-known fact that
such automata are exponentially more succinct than deterministic finite automata,
even for singleton languages.2

It follows from Theorem 16 that two i-transducersT1 andT2 (with nonempty do-

26

mains) are equivalent iffc(T1) and c(T2) are the same. Thus, as a corollary we
(re)obtain the decidability of equivalence.

Theorem 18 The equivalence of deterministic top-down tree transducers (with in-
spection) is decidable. If the transducers are total or earliest, then equivalence can
be decided in polynomial time.

By Theorem 16, equivalence of total transducers can be tested in timeO(n6), and
equivalence of earliest transducers in timeO(n3), wheren is the sum of the sizes
of the transducers. We also observe that for i-transducers with a monadic output
alphabet (which means that all output symbols have rank 0 or rank 1), all con-
structions in this paper can be done in polynomial time. Hence equivalence of such
transducers (of which finite-state string transducers are aspecial case) can also be
tested in polynomial time.

A useful extension of the top-down tree transducer is the top-down tree transducer
with regular look-ahead[4]. Such a transducer can test its input subtrees for mem-
bership in arbitrary regular tree languages, by means of a deterministic bottom-up
tree automaton called the “look-ahead automaton”. Clearlythis also extends the
i-transducer, which can only restrict its input subtrees todtta languages (cf. [10]
where the i-transducer is shown to be equivalent to a particular type of top-down
tree transducer with regular look-ahead, and cf. [26] for a survey on different types
of regular look-ahead).

Alternatively, one can think of a transducer with regular look-ahead as the com-
position of two translations: The first translation relabels the input tree (eacha-
labeled nodev of the input tree is relabeled by〈a, c1, . . . , ck〉 if the look-ahead
automaton arrives in stateci at thei-th subtree ofv). The second translation is
an ordinary top-down tree transducer, running on the relabeled input tree. We can
use the decision procedure for equivalence of deterministic top-down tree trans-
ducers [9] to decide equivalence of deterministic top-downtree transducersT1, T2

with regular look-ahead, but it is more convenient to use Theorem 18: Letrel be
the relabeling that adds, to each node of the input tree, the look-ahead states at
all children nodes for the look-ahead automata of both transducers. Then we con-
struct for eachTi the i-transducerT ′

i = (Pi, Ii) which realizes the transduction
{(rel(s), [[Ti]](s)) | s ∈ DOM(Ti)}. The dttaIi checks whether the input is a correct
relabelingrel(s) of an input trees of Ti, and the t-transducerPi simulatesTi on the
relabeled input tree. Clearly,T1 is equivalent toT2 iff T ′

1 is equivalent toT ′
2.

Corollary 19 The equivalence problem for deterministic top-down tree transduc-
ers with regular look-ahead is decidable.

This corollary can be used to check whether or not two transducers (possibly with
look-ahead) are equivalent on a given regular setR of input trees, i.e., on a gener-
alized DTD, by letting their look-ahead automata (additionally) check membership
of the input tree inR.

27

7 Open Problems

In the context of XML there have been attempts to generalize top-down transducers
to unranked trees, e.g., [16,25,17,22]. Such transducers cannot be simulated by or-
dinary top-down tree transducers on ranked-tree encodings, because they implicitly
support concatenation of trees. Is equivalence of such transducers decidable? Can
they be transformed into a normal form similar to the one presented here?

Another popular model of tree transducer is the macro tree transducer [8,11,22].
It can be seen as a generalization of top-down tree transducers by adding context-
parameters to states. It is a long standing open problem whether or not equivalence
for deterministic macro tree transducers is decidable. Recently it has been proved
that equivalence is decidable for deterministic macro treetransducers that are of
linear size increase [6], i.e., for which the size of every output tree is bounded
by a constant times the size of the corresponding input tree.Note that this result
is incomparable to Theorem 18: the methods from [6] do not help whenever the
transducers produce output whose size is not linearly bounded by the size of the
corresponding input. Finally, note that the restriction ofmacro tree transducers to
monadic output (all output symbols and states have rank 0 or rank 1) corresponds to
the “top-down tree-to-string transducers” [5,7] for whichit also still remains open
whether or not equivalence is decidable.

References

[1] A. V. Aho and J. D. Ullman. Translations on a context-freegrammar. Inform. and
Control, 19:439–475, 1971.

[2] S. Amer-Yahia, S. Cho, L. V. S. Lakshmanan, and D. Srivastava. Tree pattern query
minimization. VLDB J., 11(4):315–331, 2002.

[3] A. Bouajjani, J. Esparza, A. Finkel, O. Maler, P. Rossmanith, B. Willems, and
P. Wolper. An efficient automata approach to some problems oncontext-free
grammars.Inform. Proc. Letters, 74:221–227, 2000.

[4] J. Engelfriet. Top-down tree transducers with regular look-ahead. Math. Systems
Theory, 10:289–303, 1977.

[5] J. Engelfriet. Some open questions and recent results ontree transducers and tree
languages. In R.V. Book, editor,Formal language theory; perspectives and open
problems. Academic Press, New York, 1980.

[6] J. Engelfriet and S. Maneth. The equivalence problem fordeterministic MSO tree
transducers is decidable.Inform. Proc. Letters, 100:206–212, 2006.

[7] J. Engelfriet, G. Rozenberg, and G. Slutzki. Tree transducers, L systems, and two-way
machines.J. Comp. Syst. Sci., 20:150–202, 1980.

28

[8] J. Engelfriet and H. Vogler. Macro tree transducers.J. Comp. Syst. Sci., 31:71–146,
1985.

[9] Z. Ésik. Decidability results concerning tree transducers I.Acta Cybernetica, 5:1–20,
1980.

[10] Z. Fülöp and S. Vágvölgyi. Top-down tree transducers with deterministic top-down
look-ahead.Inform. Proc. Letters, 33:3–5, 1989/1990.

[11] Z. Fülöp and H. Vogler.Syntax-Directed Semantics – Formal Models based on Tree
Transducers. EATCS Monographs in Theoretical Computer Science (W. Brauer, G.
Rozenberg, A. Salomaa, eds.). Springer, Berlin, 1998.

[12] F. Gécseg and M. Steinby. Minimal ascending tree automata.Acta Cybernetica, 4:37–
44, 1978.

[13] F. Gécseg and M. Steinby.Tree Automata. Akadémiai Kiadó, 1984.

[14] T. V. Griffiths. The unsolvability of the equivalence problem for Λ-free
nondeterministic generalized machines.J. ACM, 15:409–413, 1968.

[15] J.E. Hopcroft, R. Motwani, and J.D. Ullman.Introduction to Automata Theory,
Languages, and Computation. Addison-Wesley, New York, second edition, 2001.

[16] S. Maneth and F. Neven. Structured Document Transformations Based on XSL. In7th
Internat. Workshop on Database Programming Languages, DBPL’99, volume 1949 of
Lecture Notes in Comput. Sci., pages 80–98. Springer, Berlin, 2000.

[17] W. Martens and F. Neven. On the complexity of typechecking top-down XML
transformations.Theor. Comput. Sci., 336:153–180, 2005.

[18] G. Miklau and D. Suciu. Containment and equivalence fora fragment of XPath.J.
ACM, 51:2–45, 2004.

[19] T. Milo and D. Suciu. Index structures for path expressions. In 7th Internat.
Conference on Database Theory, ICDT’99, volume 1540 ofLecture Notes in Comput.
Sci., pages 277–295. Springer, Berlin, 1999.

[20] M. Mohri. Minimization algorithms for sequential transducers.Theor. Comput. Sci.,
234:177–201, 2000.

[21] M. Nivat and A. Podelski. Minimal ascending and descending tree automata.SIAM J.
Comput., 26(1):39–58, 1997.

[22] T. Perst and H. Seidl. Macro forest transducers.Inf. Process. Lett., 89:141–149, 2004.

[23] W.C. Rounds. Mappings and grammars on trees.Math. Systems Theory, 4:257–287,
1970.

[24] J.W. Thatcher. Generalized2 sequential machine maps.J. Comp. Syst. Sci., 4:339–367,
1970.

[25] A. Tozawa. Towards Static Type Inference for XSLT. InACM Symp. on Document
Engineering, pages 18–27, 2001.

29

[26] S. Vágvölgyi. Top-down tree transducers with two-way tree walking look-ahead.
Theor. Comput. Sci., 3:43–74, 1992.

[27] M. Yannakakis. Algorithms for acyclic database schemes. In7th Internat. Conference
on Very Large Data Bases, VLDB, pages 82–94. IEEE Computer Society, 1981.

[28] Z. Zachar. The solvability of the equivalence problem for deterministic frontier-to-root
tree transducers.Acta Cybernetica, 4:167–177, 1978.

30

