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Abstract. We revisit Schneider’s work on policy enforcement by ex-
ecution monitoring. We overcome limitations of Schneider’s setting by
distinguishing between system actions that are controllable by an en-
forcement mechanism and those actions that are only observable, that
is, the enforcement mechanism cannot prevent their execution. For this
refined setting, we give necessary and sufficient conditions on when a se-
curity policy is enforceable. To state these conditions, we generalize the
standard notion of safety properties. Our classification of system actions
also allows one, for example, to reason about the enforceability of policies
that involve timing constraints. Furthermore, for different specification
languages, we investigate the decision problem of whether a given policy
is enforceable. We provide complexity results and show how to synthesize
an enforcement mechanism from an enforceable policy.

1 Introduction

Security policies come in all shapes and sizes, ranging from simple access-control
policies to complex data-usage policies governed by laws and business regula-
tions. Given their diversity and their omnipresence in regulating processes and
data usage in modern IT systems, it has become increasingly important to have a
firm understanding of what kinds of policies can be enforced and to have general
tools for their enforcement.

Most conventional enforcement mechanisms are based on some form of execu-
tion monitoring. Schneider [28] began the investigation of which kinds of security
policies can be enforced by execution monitoring. In Schneider’s setting, a mon-
itor runs in parallel with the target system and observes the system’s actions
just before they are carried out. In case an action leads to a policy violation, the
enforcement mechanism terminates the system. Schneider’s results on the en-
forceability of security policies has spurred various research, both practical and
theoretical, on developing and analyzing runtime enforcement mechanisms. For
instance, Erlingsson and Schneider [11,12] implement and evaluate enforcement
mechanisms based on monitoring. Ligatti and others [23–25] propose more pow-
erful models for enforcement, which can not only terminate a system but also
insert and suppress system actions, and they analyze the classes of properties
that can be described by such models.
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In this paper, we refine Schneider’s setting, thereby overcoming several lim-
itations. To explain the limitations, we first summarize Schneider’s findings.
Schneider [28] shows that only those security policies that can be described by
a safety property [1, 22, 26] on traces are enforceable by execution monitoring.
Roughly speaking, (1) inspecting the sequence of system actions is sufficient to
determine whether it is policy compliant and (2) nothing bad ever happens on a
prefix of a satisfying trace.1 History-based access-control policies, for example,
fall into this class of properties. Furthermore, Schneider defines so-called secu-
rity automata that recognize the class of safety properties and that “can serve
as the basis for an enforcement mechanism” [28, Page 40]. However, Schnei-
der’s conditions for enforceability are necessary but not sufficient. In fact, there
are safety properties that are not enforceable. This is already pointed out by
Schneider [28, Page 41].

We provide a formalization of enforceability for mechanisms similar to Schnei-
der’s [28], i.e., monitors that observe system actions and that terminate systems
in case of policy violation. A key aspect of our formalization is that we distinguish
between actions that are only observable and ones that are also controllable: An
enforcement mechanism cannot terminate the system when observing an only-
observable action. In contrast, it can prevent the execution of a controllable
action by terminating the system. An example of an observable but not control-
lable action is a clock tick, since one cannot prevent the progression of time. With
this classification of system actions, we can derive that, e.g., availability policies
with hard deadlines, which require that requests are processed within a given
time limit, are not enforceable although they are safety properties. Another ex-
ample is administrative actions like assigning roles or permissions to users. Such
actions change the system state and can be observed but not controlled by most
(sub)systems and enforcement mechanisms. However, a subsystem might permit
or deny other actions, which are controllable by it, based on the system’s current
state. Therefore the enforceability of a policy for the subsystem usually depends
on this distinction.

In contrast to Schneider, we give also sufficient conditions for the existence of
an enforcement mechanism in our setting with respect to a given trace property.
This requires that we first generalize the standard notion of safety [1] to account
for the distinction between observable and controllable actions. Our necessary
and sufficient conditions provide a precise characterization of enforceability that
we use for exploring the realizability of enforcement mechanisms for security poli-
cies. For different specification languages, we present decidability results for the
decision problem that asks whether a given security policy is enforceable. In case
of decidability, we also show how to synthesize an enforcement mechanism for
the given policy. In particular, we prove that the decision problem is undecidable
for context-free languages and PSPACE-complete for regular languages. More-
over, we extend our decidability result by giving a solution to the realizability
problem where policies are specified in a temporal logic with metric constraints.

1 Note that a trace property must also be a decidable set to be enforceable, as remarked
later by Viswanathan [31] and Hamlen et al. [17].
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Summarizing, we see our contributions as follows. We overcome limitations
of Schneider’s setting on policy enforcement based on execution monitoring [28].
First, we distinguish between controllable and observable system actions when
monitoring executions. Second, we give conditions for policy enforcement based
on execution monitoring that are necessary and also sufficient. These two refine-
ments of Schneider’s work allow us to reason about the enforceability of policies
that, for instance, involve timing constraints. We also provide results on the de-
cidability of the decision problem of whether a policy is enforceable with respect
to different specification languages.

We proceed as follows. In Section 2, we define our notion of enforceability. In
Section 3, we relate it to a generalized notion of safety. In Section 4, we analyze
the realizability problem for different specification languages. In Sections 5 and 6,
we discuss related work and draw conclusions.

2 Enforceability

In this section, we first describe abstractly how enforcement mechanisms mon-
itor systems and prevent policy violations. Afterwards, we define our notion of
enforceability.

2.1 Policy Enforcement Based on Execution Monitoring

We take an abstract view of systems and their behaviors similar to Schnei-
der [28] and others [23–25], where executions are finite or infinite sequences over
an alphabet Σ. We assume that a system execution generates such a sequence
incrementally, starting from the empty sequence ε. In the following, we also call
these sequences traces. Possible interpretations of the elements in Σ are system
actions, system states, or state-action pairs. Their actual meaning is irrelevant
for us. However, what is important is that each of these elements is finitely
represented and visible to a system observer, and that policies are described in
terms of these elements. For convenience, we call the elements in Σ actions. Fur-
thermore, we assume that the actions are classified as being either controllable
actions C ⊆ Σ or only observable actions O ⊆ Σ, with O = Σ \ C.

Our abstract system architecture for equipping a system S with an enforce-
ment mechanism E is as follows. Before S executes an action a ∈ Σ, E intercepts
it and checks whether a’s execution violates the given policy P . If the execution
of a leads to a policy violation and a is controllable, E terminates S. Otherwise,
E does not intervene and S successfully executes a. Note that if the execution of
a leads to a policy violation but a is only observable, E detects the violation but
cannot prevent it. Hence, in this interaction between S and E, we extend Schnei-
der’s setting [28] by distinguishing between controllable and observable actions.

We conclude the description of this system architecture with the following
remarks. First, in process algebras like CSP and CCS, S and E are modeled by
processes over the action set Σ, and their interaction is the synchronous compo-
sition of processes. See, for example, [5], where it is assumed that all actions are
controllable. The composed system deadlocks in case of policy violation. Since we
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distinguish between controllable and observable actions, the process modeling E
must always be able to engage in actions in O. Second, instead of assuming that
system actions are solely generated by the system S, the enforcement mecha-
nism E can generate observable actions, which are internal and invisible to S. For
instance, the enforcement mechanism can have its own internal clock, which gen-
erates clock ticks. Third, instead of action interception and system termination,
we could require that S sends a query to E whether executing an action a ∈ C
is authorized. E sends then a permit-or-deny message back to S who proceeds
according to E’s answer: in case of permit, S executes the action and in case of
deny, S continues with an alternative action for which S might need to send a
request to E prior to executing it. When executing an action in O, S notifies E
of its execution. With this kind of interaction, E’s function is similar to a policy
decision point (PDP) in standard access-control architectures like XACML.

As pointed out by Schneider [28], a necessary condition for enforcing a policy
by execution monitoring is that policy compliance is determined by the observed
trace. We therefore require that a policy P is a property of traces, i.e., P ⊆
Σ∗ ∪ Σω, where Σ∗ is the set of finite sequences over Σ and Σω is the set of
infinite sequences over Σ. We also write Σ∞ for Σ∗∪Σω. Since systems might not
terminate—in fact, they often should not terminate—we also consider infinite
traces, which describe system behaviors in the limit.

Another necessary condition for enforceability is that the decision of whether
the enforcement mechanism E terminates the system S cannot depend on possi-
ble future actions [28]. This point is reflected in how and when E checks policy
compliance in its interaction with S: E’s decision depends on whether τa is in
P , where a is the intercepted action and τ is the trace of the previously executed
actions.

Additionally, although implicit in Schneider’s work [28], there are soundness
and transparency requirements for an enforcement mechanism [10, 17, 23, 24].
Soundness means that the enforcement mechanism must prevent system execu-
tions that are not policy compliant. Transparency means that the enforcement
mechanism must not terminate system executions that are policy compliant.
These requirements clearly restrict the class of trace properties that can be en-
forced by the interaction described above between S and E.

2.2 Formalization

Checking whether the execution of an action is policy compliant is at the core
of any enforcement mechanism. The maximal available information to perform
such a check is the already executed trace τ and the intercepted action a. Our
formalization of enforceability requires the existence of a Turing machine that
carries out these checks. In particular, for every check, the Turing machine must
terminate, either accepting or rejecting the input τa. Accepting the input means
that executing a is policy compliant whereas rejecting τa means that a’s execu-
tion leads to a policy violation. We do not formalize the interaction between the
enforcement mechanism and the system and how actions are intercepted.

Prior to formalizing enforceability, we first introduce the following definitions.
For a sequence σ ∈ Σ∞, we denote the set of its prefixes by pre(σ) and the set



Enforceable Security Policies Revisited 5

of its finite prefixes by pre∗(σ), i.e., pre∗(σ) := pre(σ) ∩ Σ∗. The truncation
of L ⊆ Σ∗ is trunc(L) := {σ ∈ Σ∗ | pre(σ) ⊆ L} and its limit closure is
cl(L) := L ∪ {σ ∈ Σω | pre∗(σ) ⊆ L}. Note that trunc(L) is the largest subset
of L that is prefix-closed and cl(L) contains, in addition to the sequences in L,
the infinite sequences whose finite prefixes are all elements of L. Furthermore,
for L ⊆ Σ∗ and K ⊆ Σ∞, we define L ·K := {στ ∈ Σ∞ | σ ∈ L and τ ∈ K}.
For generality, we formalize enforceability relative to a trace universe U , which
is a nonempty prefix-closed subset of Σ∞.

Definition 1. Let Σ be a set of actions. The property of traces P ⊆ Σ∞ is
enforceable in the trace universe U ⊆ Σ∞ with the observable actions in O ⊆ Σ,
(U,O)-enforceable for short, if there is a deterministic Turing machine M with
the following properties, where A ⊆ Σ∗ is the set of inputs accepted by M:

(i) M halts on the inputs in (trunc(A) ·Σ) ∩ U .
(ii) M accepts the inputs in (trunc(A) ·O) ∩ U .

(iii) cl(trunc(A)) ∩ U = P ∩ U .
(iv) ε ∈ A.

Intuitively, with property (i) we ensure that whenever the enforcement mecha-
nism E checks whether τa is policy compliant by using the Turing machine M

(when intercepting the action a ∈ Σ), then E obtains an answer from M. Note
that we require that the trace τ produced so far by the system S is in trunc(A)
and not in A, since if there is a prefix of τ that is not accepted by M, then E
would have terminated S earlier. Furthermore, we are only interested in traces
in the universe U . Property (ii) states that A ⊇ (trunc(A) ·O)∩U and we guar-
antee with it that a finite trace τa with a ∈ O is policy compliant provided that
τa ∈ U and τ is policy compliant. Property (iii) relates the policy P with the
inputs accepted by M. Note that cl(trunc(A))∩U ⊆ P ∩U formalizes the sound-
ness requirement for an enforcement mechanism and cl(trunc(A)) ∩ U ⊇ P ∩ U
formalizes the transparency requirement. With property (iv) we ensure that the
system S is initially policy compliant.

We illustrate Definition 1 by determining whether the following two policies
are enforceable.

Example 2. The policy P1 requires that whenever there is a fail action then
there must not be a login action for at least 3 time units. The policy P2 requires
that every occurrence of a request action must be followed by a deliver action
within 3 time units provided the system does not stop in the meanwhile. We
give their trace sets below. We assume, for the ease of exposition, that actions
do not happen simultaneously and whenever time progresses by one time unit,
the system sends a tick action to the enforcement mechanism. However, more
than one action can be executed in a single time unit.

Let Σ be the action set {tick , fail , login, request , deliver}. The trace universe
U ⊆ Σ∞ consists of all infinite traces containing infinitely many tick actions
and their finite prefixes. This models that time does not stop. We define P1 as
the complement with respect to U of the limit closure of{
a1 . . . an ∈ Σ∗

∣∣ there are i, j∈{1, . . . , n} with i<j such that ai= fail ,
aj= login, and ai+1 . . . aj−1 contains 3 or fewer tick actions

}
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and P2 as the complement with respect to U of the limit closure of{
a1 . . . an ∈ Σ∗

∣∣ there are i, j∈{1, . . . , n} with i<j such that ai=request and
ai+1 . . . aj contains no deliver action and more than 3 ticks

}
.

A tick action is only observable by an enforcement mechanism since the
enforcement mechanism cannot prevent the progression of time. It is also rea-
sonable to assume that fail actions are only observable since otherwise an en-
forcement mechanism could prevent the failure from happening in the first place.
Hence we define O := {tick , fail}.

It is straightforward to define a Turing machine M as required in Defini-
tion 1, showing that P1 is (U,O)-enforceable. Intuitively, whenever the enforce-
ment mechanism observes a fail action, it prevents all login actions until it
has observed sufficiently many tick actions. This requires that login actions are
controllable, whereas the actions tick and fail need only be observed by the
enforcement mechanism.

The set of traces P2 is not (U,O)-enforceable. The reason is that when-
ever an enforcement mechanism observes a request action, it cannot terminate
the system in time to prevent a policy violation when no deliver action oc-
curs within the given time bound. This is because the enforcement mechanism
cannot prevent the progression of time. More precisely, assume that there ex-
ists a Turing machine M required in Definition 1, which must accept the trace
request tick3 ∈ P2 ∩ U . But then, by condition (ii) of Definition 1, it also must
accept the trace request tick4 6∈ P2 ∩ U .

Natural questions that arise from Definition 1 are (1) for which class of
trace properties does such a Turing machine M exist, (2) for which specification
languages can we decide whether such a Turing machine M exists, and (3) when a
policy is enforceable, can we synthesize from its given description an enforcement
mechanism? We investigate these questions in the next two sections.

3 Relation between Enforceability and Safety

In this section, we characterize the class of trace properties that are enforceable
with respect to Definition 1. To provide this characterization, we first generalize
the standard notions of safety properties [1, 18].

3.1 Generalizing Safety

According to Lamport [22], a safety property intuitively states that nothing bad
ever happens. A widely accepted formalization of this intuition, from Alpern and
Schneider [1], is as follows: the set P ⊆ Σω is ω-safety if

∀σ ∈ Σω. σ 6∈ P → ∃i ∈ N. ∀τ ∈ Σω. σ<iτ 6∈ P ,

where σ<i denotes the prefix of σ of length i. In particular, σ<0 is the empty
sequence ε. Alpern and Schneider’s definition takes only infinite sequences into
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account. Their definition, however, straightforwardly generalizes to finite and
infinite sequences: the set P ⊆ Σ∞ is ∞-safety if

∀σ ∈ Σ∞. σ 6∈ P → ∃i ∈ N. ∀τ ∈ Σ∞. σ<iτ 6∈ P ,

where σ<i = σ if σ is finite and i ∈ N is greater than or equal to σ’s length.
Note that ω-safety is not directly related to enforceability, since an enforce-

ment mechanism monitors finite traces and ω-safety restricts the infinite traces
in a set of traces. Moreover, note that ω-safety and ∞-safety differ even on sub-
sets of infinite sequences. For instance, the set {a}·Σω is ω-safety, since for every
infinite sequence σ that does not start with a, no extension of σ<1 is in {a} ·Σω.
However, {a} · Σω is not ∞-safety, since we can extend the empty sequence,
which is not in {a} ·Σω, by an infinite sequence τ that starts with the letter a.
In general, whenever a policy P ⊆ Σ∞ is ∞-safety, the set P ∩Σω of its infinite
traces is ω-safety, whereas the converse is invalid.

In Definition 3 below, we give our generalized notion of safety, which is para-
metric in the universe U . The sets Σω and Σ∞ used in the definitions for ω-
safety and ∞-safety are just two instances for U . This generalization is similar
to Henzinger’s [18] definitions of safety and liveness, which extends the classical
safety-liveness classification for properties of untimed systems [1] to real-time
settings. Furthermore, our definition is parametric in the set O ⊆ Σ. Intuitively,
if a trace σ ∈ U violates P , then this violation must be caused by a finite prefix
of σ not ending with an element in O.

Definition 3. Let U ⊆ Σ∞ and O ⊆ Σ. The set P ⊆ Σ∞ is (U,O)-safety if

∀σ ∈ U. σ 6∈ P → ∃i ∈ N. σ<i 6∈ Σ∗ ·O ∧ ∀τ ∈ Σ∞. σ<iτ 6∈ P ∩ U .

In the following examples, we illustrate this generalized notion of safety.

Example 4. Both the policies P1 and P2 from Example 2 are∞-safety. If a trace
τ violates P1 then the violation can be pinpointed to a position at which a
login action is executed, i.e., there is some i ≥ 1 with τ<i−1 ∈ P1, τ<i 6∈ P1,
and τ<i ends with a login action. No matter how we extend τ<i, the extension
still violates P1. Analogously for P2, policy violations are caused by tick actions
instead of login actions.

However, P1 is (U,O)-safety and P2 is not (U,O)-safety, where U and O are as
in Example 2. A violation of P1 is caused by executing a login action, i.e., τ ∈ P1

and τ login 6∈ P1. We cannot extend such an execution so that the resulting
extended trace is policy compliant. For P2, a violation is caused by a tick . Here,
the prefix excluding this tick action can be extended to a trace that is in P2.
Namely, we discharge the request action in the prefix by adding a deliver action.

Example 5. Recall the trace universe U ⊆ Σ∞ from Example 2, where Σ =
{tick , fail , login, request , deliver}. It consists of the infinite traces with infinitely
many tick actions and their finite prefixes. The trace property “always eventually
a tick action,” i.e.,

P := {ε} ∪ {a0 . . . an ∈ Σ∗ | n ∈ N and an = tick}∪
{a0a1 · · · ∈Σω | for all i∈N, there is some j∈N with j≥ i and aj= tick}
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is not ∞-safety. When considering only the infinite traces, the trace property
P ∩Σω is not ω-safety. In fact, according to Alpern and Schneider [1], P ∩Σω

is a liveness property.
P is also not (U, ∅)-safety since any nonempty trace a0 . . . an with an 6= tick

is in U \ P and can be extended to the trace a0 . . . an tick , which is in P ∩ U .
However, when we exclude finite traces in U , then P is (U ∩Σω, ∅)-safety, since
P ∩Σω = U ∩Σω.

Lemma 6 below characterizes (U,O)-safety in terms of prefix sets and limit
closures. For a set of sequences L ⊆ Σ∞, we abbreviate

⋃
σ∈L pre(σ) by pre(L)

and
⋃
σ∈L pre∗(σ) by pre∗(L).

Lemma 6. Let U ⊆ Σ∞ be a trace universe and O ⊆ Σ. The set P ⊆ Σ∞ is
(U,O)-safety iff cl(pre∗(P ∩ U) ·O∗) ∩ U ⊆ P .

Proof. We rephrase Definition 3 in terms of set containment, from which we
conclude the stated equivalence.

We first show that the set P ⊆ Σ∞ is (U,O)-safety iff ∀σ ∈ U. σ /∈ P →
pre∗(σ) 6⊆ pre∗(P ∩U) ·O∗. We start with the left to right implication. Suppose
that P is (U,O)-safety and let σ ∈ U . Assume that σ /∈ P . We know that
there is an index i ∈ N such that (1) σ<i /∈ Σ∗ · O and (2) σ<iτ /∈ P ∩ U ,
for all τ ∈ Σ∞. (2) establishes that σ<i /∈ pre∗(P ∩ U) and, together with (1),
that σ<i /∈ pre∗(P ∩ U) · O∗. As σ<i ∈ pre∗(σ), we obtain that pre∗(σ) 6⊆
pre∗(P ∩ U) · O∗. We now prove the right to left implication. Let σ ∈ U \ P .
Then pre∗(σ) 6⊆ pre∗(P ∩ U) · O∗, and thus there is an index i ∈ N such that
σ<i /∈ pre∗(P ∩ U) ·O∗. Let σ1, σ2 ∈ Σ∗ be such that σ<i = σ1σ2, σ1 /∈ Σ∗ ·O,
and σ2 ∈ O∗. Hence σ1 /∈ pre∗(P ∩ U), that is σ1τ /∈ P ∩ U , for all τ ∈ Σ∞. It
follows that P is (U,O)-safety.

The statement ∀σ ∈ U. σ /∈ P → pre∗(σ) 6⊆ pre∗(P ∩ U) · O∗ is equivalent
to ∀σ ∈ U. σ ∈ P ← pre∗(σ) ⊆ pre∗(P ∩ U) · O∗. Since pre∗(P ∩ U) · O∗ is
prefix-closed, it is also equivalent to ∀σ ∈ U. σ ∈ P ← σ ∈ cl(pre∗(P ∩ U) ·O∗),
i.e., cl(pre∗(P ∩ U) ·O∗) ∩ U ⊆ P . ut

Note that P ∩ U ⊆ cl(pre∗(P ∩ U) · O∗) ∩ U , for any sets P,U ⊆ Σ∞ and
O ⊆ Σ. Therefore, P ⊆ Σ∞ is (U,O)-safety iff cl(pre∗(P ∩U) ·O∗)∩U = P ∩U .

3.2 Characterizing Enforceability

In the following, we generalize Schneider’s [28] statement that∞-safety is a nec-
essary condition for a security policy to be enforceable by execution monitoring.
First, we distinguish between controllable actions C and observable actions O.
Second, we take a trace universe U into account. In Schneider’s setting, U = Σ∞

and O = ∅. Third, we show that a policy P ⊆ Σ∞ must satisfy additional con-
ditions to be enforceable. Finally, we show that our conditions are not only
necessary, but also sufficient.

Theorem 7. Let U ⊆ Σ∞ be a trace universe such that U∩Σ∗ is a decidable set
and let O ⊆ Σ. The set P ⊆ Σ∞ is (U,O)-enforceable iff the following conditions
are satisfied:
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(1) P is (U,O)-safety,
(2) pre∗(P ∩ U) is a decidable set, and
(3) ε ∈ P .

Proof. We start with the implication from left to right. Assume that P ⊆ Σ∞

is (U,O)-enforceable. Let A ⊆ Σ∗ be the set of inputs accepted by a Turing ma-
chine M determined by Definition 1. The set A satisfies the following properties:
(a) (trunc(A) ·O) ∩ U ⊆ A, (b) cl(trunc(A)) ∩ U = P ∩ U , and (c) ε ∈ A.

First, we prove that P is (U,O)-safety. Let σ ∈ U be a trace such that σ 6∈ P .
Then, from (b), we have that σ 6∈ cl(trunc(A)). Hence there is an index i ∈ N
such that σ<i 6∈ A. Let i be the minimal index with this property. Then i > 0
and all proper prefixes of σ<i are in A, and hence σ<i−1 is in trunc(A). Let
a ∈ Σ be such that σ<i = σ<i−1a. We have that a 6∈ O, as otherwise, from (a),
σ<i ∈ A, which is a contradiction. Hence σ<i 6∈ Σ∗ · O. Moreover, as σ<i 6∈ A,
for any trace τ ∈ Σ∞, we have that σ<iτ 6∈ cl(trunc(A)), that is, σ<iτ 6∈ P .
This shows that σ satisfies the right hand side of the implication in Definition 3.
Hence P is (U,O)-safety.

Second, note that A is not necessarily decidable, as M does not need to halt
on all inputs in Σ∗. Since U ∩Σ∗ is decidable by assumption, there is a Turing
machine MU that terminates on Σ∗ and that accepts U ∩Σ∗. Let Mtrunc be the
following Turing machine. For an input σ ∈ Σ∗, Mtrunc executes steps 1 to 5
until it either accepts or rejects σ:

1. if MU rejects σ, then Mtrunc rejects σ;
2. if σ = ε, then Mtrunc accepts σ;
3. if n is the length of σ and Mtrunc rejects σ<n−1, then Mtrunc rejects σ;
4. if M accepts σ, then Mtrunc accepts σ;
5. otherwise, Mtrunc rejects σ.

One proves by induction over the length of σ that Mtrunc halts on σ and that
Mtrunc accepts σ iff σ ∈ trunc(A)∩U . Therefore, trunc(A)∩U is decidable. We
have pre∗(P ∩ U) = pre∗(cl(trunc(A)) ∩ U) = trunc(A) ∩ U ∩Σ∗. Because both
trunc(A) ∩ U and U ∩Σ∗ are decidable, so is pre∗(P ∩ U).

Third, as ε ∈ A and ε ∈ U , we have ε ∈ cl(trunc(A)) ∩ U = P ∩ U ⊆ P .

We now prove the implication from right to left. Assume that P is (U,O)-
safety, pre∗(P ∩U) is a decidable set, and ε ∈ P . We prove properties (i)–(iv) of
Definition 1. As pre∗(P ∩ U) is decidable, there is a Turing machine that halts
on all inputs in Σ∗ and accepts the set A := pre∗(P ∩ U). Property (i) follows
trivially. Property (iv) is also immediate as ε ∈ P ∩ U . As A = pre∗(P ∩ U)
is prefix-closed, trunc(A) = A = pre∗(P ∩ U). It remains to be shown that (ii)
(pre∗(P ∩ U) ·O) ∩ U ⊆ pre∗(P ∩ U) and (iii) cl(pre∗(P ∩ U)) ∩ U = P ∩ U . By
Lemma 6, and since P is (U,O)-safety, we have:

– (pre∗(P∩U)·O)∩U ⊆ cl(pre∗(P∩U)·O∗)∩U∩Σ∗ = P∩U∩Σ∗ ⊆ pre∗(P∩U);
– P ∩ U ⊆ cl(pre∗(P ∩ U)) ∩ U ⊆ cl(pre∗(P ∩ U) ·O∗) ∩ U = P ∩ U .

Therefore, P is (U,O)-enforceable. ut
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4 Realizability

In this section, we investigate the realizability problem for enforcement mecha-
nisms for security policies. We examine this problem for two policy specification
formalisms, based on automata and temporal logic.

4.1 Automata-based Specification Languages

Automata may be used to give direct, operational specifications of security poli-
cies [23, 24, 28]. For instance, Schneider [28] introduces security automata as a
formalism for specifying and implementing the decision making of enforcement
mechanisms. Given a deterministic security automaton A, the enforcement mech-
anism E stores A’s current state and whenever E intercepts an action, it updates
the stored state using A’s transition function. If there is no outgoing transition
and the action is controllable, then E terminates the system. Nondeterministic
security automata are handled analogously by storing and updating finite sets of
states. In this case, E terminates the system if the set of states becomes empty
during an update.

Roughly speaking, if all actions are controllable then the existence of a se-
curity automaton specifying a policy implies that the policy is enforceable. This
is because security automata characterize the class of trace properties that are
∞-safety. However, if there are actions that are only observable, the existence
of a security automaton is insufficient to conclude that the policy is enforce-
able. Additional checks are needed. We show that these checks can be carried
out algorithmically for policies described by finite-state automata. In contrast
to security automata, a finite-state automaton has a finite set of states and a
finite alphabet, and not all its states are accepting. Furthermore, we delimit
the boundary between decidability and undecidability by showing that for a
more expressive automata model, namely, pushdown automata, the realizability
problem is undecidable.

We start by defining pushdown and finite-state automata. Since trace proper-
ties are sets of finite and infinite sequences, we equip the automata with two sets
of accepting states, one for finite sequences and the other for infinite sequences.

A pushdown automaton (PDA) A is a tuple (Q,Σ, Γ, δ, qI, F,B), where (1) Q
is a finite set of states, (2) Σ is a finite nonempty alphabet, (3) Γ is a finite stack
alphabet with # ∈ Γ , (4) δ : Q × Σ × Γ → 2Q×Γ

∗
is the transition function,

where δ(q, a, b) is a finite set, for all q ∈ Q, a ∈ Σ, and b ∈ Γ , (5) qI ∈ Q is the
initial state, (6) F ⊆ Q is the set of accepting states for finite sequences, and
(7) B ⊆ Q is the set of accepting states for infinite sequences. The size of A,
denoted by ‖A‖, is the cardinality of Q.

A configuration of A is a pair (q, u) with q ∈ Q and u ∈ Γ ∗. A run
of A on the finite sequence a0 . . . an−1 ∈ Σ∗ is a sequence of configurations
(q0, u0)(q1, u1) . . . (qn, un) with (q0, u0) = (qI,#) and for all i ∈ N with i < n, it
holds that ui = vb, (qi+1, w) ∈ δ(qi, ai, b), and ui+1 = vw, for some v, w ∈ Γ ∗
and b ∈ Γ . The run is accepting if qn ∈ F . Runs over infinite sequences are
defined analogously. The infinite sequence (q0, u0)(q1, u1) · · · ∈ (Q × Γ ∗)ω is a
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c / push c

fail

top=# ∧ c / push c

top=c ∧ c−1 / pop c

top=# ∧ fail

Fig. 1: Pushdown automaton, where c ranges over the elements in C.

run on the infinite sequence a0a1 · · · ∈ Σω if (q0, u0) = (qI,#) and for all i ∈ N,
it holds that ui = vb, (qi+1, w) ∈ δ(qi, ai, b), and ui+1 = vw, for some v, w ∈ Γ ∗
and b ∈ Γ . The run is accepting if it fulfills the Büchi acceptance condition, i.e.,
for every i ∈ N, there is some j ∈ N with j ≥ i and qj ∈ B. In other words, the
run visits a state in B infinitely often. We define L(A) := L∗(A)∪Lω(A), where

L◦(A) := {σ ∈ Σ◦ | there is an accepting run of A on σ} ,

for ◦ ∈ {∗, ω}.
We say that A is a finite-state automaton (FSA) if its transitions do not

depend on the stack content, i.e., δ(q, a, b) = δ(q, a, b′), for all q ∈ Q, a ∈ Σ, and
b, b′ ∈ Γ . In this case, we may omit the stack alphabet Γ and assume that δ is
of type Q × Σ → 2Q. Runs over finite and infinite sequences simplify then to
sequences in Q∗ and Qω, respectively.

PDAs are more expressive than FSAs, as witnessed by the following example.

Example 8. Let C and C−1 be finite nonempty sets of actions with C−1 =
{c−1 | c ∈ C}. That is, every action c ∈ C has a corresponding “undo” action
c−1 ∈ C−1. Consider the policy stating that whenever a fail action is executed
the system must backtrack before continuing. That is, consider the language
L := pre(F ∗ · Cω) ∪ Fω over the alphabet Σ := C ∪ C−1 ∪ {fail}, with F :=
{c1 . . . cn fail c−1n . . . c−11 | n ∈ N and c1, . . . , cn ∈ C}, where the superscripts ∗
and ω denote here the finite and infinite concatenation of languages, respectively.
The PDA in Figure 1, where both states are accepting for both finite and infinite
sequences, recognizes this language. However, no FSA accepts this language.

Observe that this policy is (Σ∞, ∅)-enforceable. Indeed, the conditions in
Theorem 7 are satisfied: (1) L contains the empty sequence, (2) pre∗(L) = F ∗ ·
(C∗ ∪ C∗ ·F ) is decidable, and (3) cl(pre∗(L)) = Fω ∪ F ∗ · (C∞ ∪ C∗ ·F ) = L is
(Σ∞, ∅)-safety. The policy is not (Σ∞, {fail})-enforceable, since an enforcement
mechanism must terminate the system when intercepting the second fail action
in the trace c1c2 fail c−12 fail c−11 .

We now turn to the decision problem of checking whether a policy given as
a PDA or FSA is enforceable. In each case, we first discuss the related decision
problem of checking whether a policy is a safety property.

Theorem 9. Let Σ be the alphabet {0, 1}. It is undecidable to determine for a
PDA A with alphabet Σ whether L(A) is (Σ∞, ∅)-safety.

Proof. Recall that the universality problem for context-free grammars is unde-
cidable [19]. That means, we cannot decide if L∗(A) = Σ∗, for a given PDA A.
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¬request
¬deliver∧
¬tick

¬deliver∧
¬tick

¬deliver∧
¬tick

¬deliver∧
¬tick

request tick tick tick

deliver deliver deliver deliver

Fig. 2: Finite-state automaton.

Given a PDA A, we build a PDA A′ with L(A′) = L(A)∪Σω. Thus we have
that L(A′) = L∗(A) ∪ Σω and cl(pre∗(L(A′))) = Σ∞. Then, from Lemma 6,
L(A′) is (Σ∞, ∅)-safety iff L∗(A) = Σ∗. ut

Theorem 10. Let Σ be the alphabet {0, 1}. It is undecidable to determine for
a PDA A with alphabet Σ whether L(A) is (Σ∞, ∅)-enforceable.

Proof. From A we build a PDA A′ with L(A′) = L(A) ∪ Σω ∪ {ε}. Note that
pre∗(L(A′)) = Σ∗ is decidable and that ε ∈ L(A). Moreover, one can decide
whether ε ∈ L∗(A) but not whether L∗(A) = Σ∗, which proves that one cannot
decide whether Σ∗ = L∗(A)∪{ε}. By Theorem 7, the language L(A′) is (Σ∞, ∅)-
enforceable iff L(A′) is (Σ∞, ∅)-safety iff Σ∗ = L∗(A) ∪ {ε}. ut

It is straightforward to define FSAs that recognize the languages P1 and
P2 from Example 2. For instance, the FSA depicted in Figure 2 recognizes P2.
Since this FSA is deterministic, it is easy to check that the recognized language
is not (U,O)-safety and therefore also not (U,O)-enforceable, where U and O
are as in Example 2. There is a state from which the observable tick action leads
to nonacceptance of the input sequence. In general, the problem is PSPACE-
complete as shown in Corollary 12 below.

Theorem 11. Let U be an FSA over the alphabet Σ such that L(U) is a trace
universe and let O ⊆ Σ. The decision problem of determining, for an FSA A

over Σ, whether L(A) is (L(U), O)-safety, is PSPACE-complete.

Proof. Recall that the universality problem for FSAs, that is, deciding whether
L∗(A) = Σ∗ for a given FSA A, is PSPACE-complete [19].

Given an FSA A, we build an FSA A′ with L(A′) = L(A) ∪ Σω. As in the
proof of Theorem 9, L(A′) is (Σ∞, ∅)-safety iff L∗(A) = Σ∗. This proves that
checking whether L(A′) is (L(U), O)-safety is PSPACE-hard.

To prove membership in PSPACE, we first show how to build, for a given
FSA X = (Q,Σ, δ, qI, F,B), two FSAs Y and Z such that L(Y) = pre∗(L(X))
and, if L(X) ∩Σ∗ = pre∗(L(X)) then L(Z) = cl(L(X) ∩Σ∗):
– Let B′ be the set of states q ∈ B that are on a cycle in X. Let FY be the

set of states q ∈ Q for which there is a path in X starting in q and ending
in a state of F ∪ B′. The FSA Y := (Q,Σ, δ, qI, FY, ∅) accepts the language
L(Y) = pre∗(L(X)).

– If pre∗(L(X)) = L(X) ∩ Σ∗, the FSA Z := (Q,Σ, δ, qI, F, F ) accepts the
language L(Z) = cl(L(X) ∩Σ∗).
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Consider an FSA A. Using the two previous constructions, we build an
FSA A′ whose size is polynomial in ‖A‖, such that L(A′) = cl(pre∗(L(A) ∩
L(U)) · O∗) ∩ L(U). Note that ‖U‖ is a constant, as U is fixed. By Lemma 6
L(A) is (L(U), O)-safety iff L(A′) ⊆ L(A). Hence, since the inclusion problem
for FSAs is in PSPACE [15], our problem is also in PSPACE. ut

Corollary 12. Let U be an FSA over the alphabet Σ such that L(U) is a trace
universe and let O ⊆ Σ. The decision problem of determining, for an FSA A

over Σ, whether L(A) is (L(U), O)-enforceable, is PSPACE-complete.

Proof. The proof is similar to that of Theorem 10, the statement being an easy
consequence of Theorems 7 and 11. ut

4.2 Logic-based Specification Languages

Temporal logics are prominent specification languages for expressing properties
on traces [27]. In the following, we consider a linear-time temporal logic with
future and past operators, and metric constraints [2, 21].

We fix a finite set P of propositions, where we assume that they are classified
into observable propositions O ⊆ P and controllable propositions P \ O. The
syntax of the metric linear-time temporal logic MLTL is given by the grammar

ϕ ::= true | p | ¬ϕ |ϕ ∨ ϕ |  I ϕ | #I ϕ |ϕ SI ϕ |ϕ UI ϕ ,

where p ranges over the propositions in P and I ranges over the nonempty
intervals over N, i.e., subsets of the form {n, n + 1, . . . ,m} and {n, n + 1, . . . }
with n,m ∈ N and n ≤ m. The size of a formula ϕ, denoted by ‖ϕ‖, is the
number of ϕ’s subformulas plus the sum of the representation sizes of the interval
bounds occurring in ϕ, which are dlog(1 + max I)e for a finite interval I, and
dlog(1 + min I)e for an infinite interval I.

We use standard syntactic sugar. For instance, ϕ∧ψ abbreviates ¬(¬ϕ∨¬ψ),

�I ϕ abbreviates trueUIϕ, and �I ϕ abbreviates ¬ �I(¬ϕ). We drop the interval
attached to a temporal operator if it is N and we use constraints like ≤ n and ≥ n
to describe intervals of the form {0, 1, . . . , n} and {n, n + 1, . . . }, respectively.
Furthermore, we use standard conventions concerning the binding strength of
operators to omit parentheses. For instance, ¬ binds stronger than ∧, which in
turn binds stronger than ∨. Boolean operators bind stronger than temporal ones.

The truth value of a formula ϕ is defined over timestamped sequences, where
time is monotonically increasing and progressing. We introduce the following
notation. We denote the length of a sequence σ by |σ| and the letter at the
(i + 1)st position in σ by σi, where i ∈ N with i < |σ|. We define T as the set
that consists of the sequences t ∈ N∞ with the following properties:

(i) For each i, j ∈ N with i ≤ j < |t|, ti ≤ tj .
(ii) If t is infinite then for each k ∈ N, there is an integer i ∈ N with ti ≥ k.

Furthermore, for sequences σ ∈ (2P)∞ and t ∈ T with |σ| = |t|, we define σ ⊗ t
as the sequence of length |σ| with (σ ⊗ t)i := (σi, ti), for i ∈ N with i < |σ|. For
L ⊆ (2P)∞, we define L⊗ T := {σ ⊗ t | σ ∈ L, t ∈ T , and |σ| = |t|}.
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For σ ∈ (2P)∞, t ∈ T , and i ∈ N with |σ| = |t| and i < |σ|, we define the
relation |= inductively over the formula structure:

σ, t, i |= true
σ, t, i |= p iff p ∈ σi

σ, t, i |= ¬ϕ iff σ, t, i 6|= ϕ
σ, t, i |= ϕ ∨ ψ iff σ, t, i |= ϕ or σ, t, i |= ψ
σ, t, i |=  I ϕ iff i > 0 and ti − ti−1 ∈ I and σ, t, i− 1 |= ϕ
σ, t, i |= #I ϕ iff i < |σ| − 1 and ti+1 − ti ∈ I and σ, t, i+ 1 |= ϕ

σ, t, i |= ϕ SI ψ iff there is an integer j ∈ N with j ≤ i such that
ti − tj ∈ I and σ, t, j |= ψ and
σ, t, k |= ϕ, for all k ∈ N with j < k ≤ i

σ, t, i |= ϕ UI ψ iff there is an integer j ∈ N with i ≤ j < |σ| such that
tj − ti ∈ I and σ, t, j |= ψ and
σ, t, k |= ϕ, for all k ∈ N with i ≤ k < j

Finally, for a formula ϕ, we define L(ϕ) := {ε}∪{σ⊗t ∈ (2P)∞⊗T | σ, t, 0 |= ϕ}.
We also define Lω(ϕ) and L∗(ϕ) that consist of the infinite and finite sequences
in L(ϕ), respectively. Note that different semantics exist for linear-time temporal
logics over finite traces [9], each with their own artifacts. Since our semantics is
not defined for the empty sequence, we include it in L(ϕ).

The time model over which MLTL’s semantics is defined is discrete and point-
based. See Alur and Henzinger’s [2] survey for an overview of alternative time
models and their relationships. We briefly justify our chosen time model. The
use of the discrete time domain N instead of a dense time domain like Q≥0 or
even R≥0 is justified by the fact that clocks with arbitrarily fine precision do
not exist in practice. The choice of a point-based time model is justified by our
action-based view on system executions, where an action happens at some point
in time. Furthermore, an enforcement mechanism does not continuously monitor
the system but only at specific points in time.

Example 13. We return to the policies from Example 2. Let P be the proposition
set {fail , login, request , deliver}. The formula

ϕ1 := � fail → �≤3 ¬login

formalizes the first policy and the second policy is formalized by the formula

ϕ2 := � request → �≤3(deliver ∨ ¬# true) .

The trace properties described by ϕ1 and ϕ2 differ from the trace properties
P1 and P2 from Example 2 in the following respects. First, the progression of
time in P1 and P2 is explicitly modeled by tick actions. In L(ϕ1) and L(ϕ2)
time is modeled by timestamping the letters in the sequences in (2P)∞. We only
consider timestamped sequences that adequately model time, i.e., the sequences
in the trace universe (2P)∞ ⊗ T , which is a subset of (2P × N)∞. Second, the
traces in Example 2 contain only one system action at a time. Here, we consider
traces in which multiple system actions can happen at the same point in time.
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Instead of using the trace universe (2P)∞⊗T , we can alternatively use the trace
universe P∞ ⊗ T by filtering out the traces where a letter (a, t) ∈ 2P ×N occurs
and a is not a singleton. However, the trace universe P∞⊗T is more restrictive.

The trace properties described by ϕ1 and ϕ2 match the trace properties P1

and P2 from Example 2 with respect to enforceability. Here O = {fail} and a
letter (a, t) ∈ 2P × N is only observable iff a does not contain any controllable
actions, that is, iff a = ∅ or a = {fail}. To see for instance that L(ϕ2) is not
enforceable, consider the trace σ = ({request}, 0) and the letter a = (∅, 4). Then
σ ∈ L(ϕ2) and σa 6∈ L(ϕ2), while a is only observable.

In general, we assume that a ∈ 2P is observable if a ⊆ O. In other words,
a ∈ 2P is controllable if it contains at least one controllable proposition. In
particular, the empty set is not controllable. We define Ô := {a ∈ 2P | a ⊆ O}.

In the remainder of this section, we show decidability of two related realiz-
ability problems where policies are specified in MLTL. Furthermore, we analyze
their computational complexities. We start with the realizability problem for
the untimed fragment of MLTL, which we call LTL. The interval attached to a
temporal operator occurring in a formula of this fragment is N. Hence, an LTL
formula does not specify any timing constraints and, instead of (2P)∞ ⊗ T , we
consider trace universes that are subsets of (2P)∞.

Lemma 14. Let O ⊆ P and let U be an FSA such that L(U) ⊆ (2P)∞ is a trace
universe. The decision problem of checking for an LTL formula ϕ whether L(ϕ)
is (L(U), Ô)-enforceable is PSPACE-complete.

Proof. By Theorem 7 we have that L(ϕ) is (L(U), Ô)-enforceable iff L(ϕ) is
(L(U), Ô)-safety: note that ε ∈ L(ϕ) by definition and pre∗(L(ϕ) ∩ L(U)) is
regular, hence decidable. Hence it suffices to show that determining whether
L(ϕ) is (L(U), Ô)-safety is PSPACE-complete.

We first prove that the problem is PSPACE-hard. Recall that the satisfiability
problem for LTL over infinite sequences is PSPACE-complete [29]. Given an LTL
formula ϕ, we define ϕ′ := ϕ∨ �¬# true. Then L(ϕ′) = L(ϕ)∪(2P)∗. Moreover,
using Lemma 6, we have that L(ϕ′) is ((2P)∞, ∅)-safety iff Lω(ϕ) = (2P)ω iff
Lω(¬ϕ) = ∅. Hence determining if L(ϕ) is ((2P)∞, ∅)-safety is PSPACE-hard.

To show membership in PSPACE, let ϕ be an LTL formula of size n ∈ N.
There exist FSAs A and A′ with L(A) = L(ϕ), L(A′) = L(¬ϕ), and ‖A‖, ‖A′‖ ∈
2O(n). These two FSAs can be obtained by straightforwardly extending the trans-
lations of LTL over infinite sequences into nondeterministic Büchi automata [7,
30]. Using standard automata constructions and the constructions from the
proof of Theorem 11, we build an FSA B with ‖B‖ ∈ 2O(n) and L(B) =
L(A′)∩L(U)∩ cl(pre∗(L(A)∩L(U)) · Ô∗) \ {ε}. It holds that L(ϕ) is (L(U), Ô)-
safety iff cl(pre∗(L(ϕ)∩L(U)) · Ô∗)∩L(U) ⊆ L(ϕ) iff L(B) = ∅. Since the empti-
ness problem for FSAs is in NLOGSPACE [20] and since we can construct B on
the fly, our problem is in PSPACE. ut

If L(ϕ) is (L(U), Ô)-enforceable, we can use the FSA U and the FSA A

constructed in the proof of Lemma 14 to obtain an enforcement mechanism for
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L(ϕ). Namely, we construct the product automaton C of U and A that accepts
the intersection of L(U) and L(A). The enforcement mechanism E initially stores
the singleton set consisting of C’s initial state. Whenever E intercepts a system
action a ∈ 2P, it updates this set by determining the successor states of the
stored states using C’s transition function. We remove from the updated set the
states from which we do not accept any sequence. E terminates the system if
the set becomes empty provided that the intercepted action a is controllable.
Otherwise, it continues by intercepting the next system action.

Theorem 15. Let O ⊆ P and let U be an FSA such that L(U) ⊆ (2P)∞ is a
trace universe. The decision problem of checking for an MLTL formula ϕ whether
L(ϕ) is (L(U)⊗ T, Ô × N)-enforceable is EXPSPACE-complete.

Proof. Let tick 6∈ P be a new proposition modeling clock ticks. Let Σ := 2P and
Σ := 2P∪{tick}, as well as UT := L(U)⊗T and T := Σ∞⊗T . We first map each
MLTL formula ϕ to an LTL formula ϕ, each FSA A to an FSA A, and each
trace τ in T to a trace τ in Σ

ω
such that

– τ ∈ L(ϕ) iff τ ∈ L(ϕ) and
– τ ∈ L(A) iff τ ∈ L(A).

For a trace τ = σ ⊗ t in T , we define the trace τ in Σ
∞

as follows:

– if τ is infinite, then τ := {tick}t0σ0{tick}d1σ1{tick}d2σ2 . . . ,
– if τ = ε, then τ := {tick}ω, and
– if τ 6= ε is finite, then τ := {tick}t0σ0{tick}d1σ1{tick}d2σ2 . . . σ|τ |−1{tick}ω,

where di := ti − ti−1, {tick}i is the sequence {tick} . . . {tick} of length i and
{tick}ω is the infinite sequence {tick}{tick} . . . . For a set of traces L ⊆ T , we
abbreviate by L the set {τ ∈ Σ∞ | τ ∈ L}. Note that this mapping is one-to-one,
so that it induces a bijection from L to L.

For an MLTL formula ϕ, we define the formulas pϕq and ϕ as follows:

– ptrueq := true,
– ppq := p if p ∈ P,
– p¬ϕq := ¬pϕq,
– pϕ ∨ ψq := pϕq ∨ pψq,
– p#I ϕq := p#I trueq ∧ p#ϕq if I 6= N and ϕ 6= true,
– p#I trueq := #(tick ∧ p#I−1 trueq) if 0 /∈ I, where I − 1 := {t− 1 | t ∈ I},
– p#[0,a] trueq := #(¬tick ∨ p#[0,a−1] trueq) if a ≥ 1,
– p#[0,0] trueq := #¬tick ,
– p#ϕq := #(tick U (¬tick ∧ pϕq)),
– pϕ UI ψq := (¬tick ∧ pϕq) U (tick ∧#(pϕ UI−1 ψq)) if 0 /∈ I,
– pϕU[0,a]ψq := (¬tick ∧pϕq)U ((¬tick ∧pψq)∨(tick ∧#(pϕU[0,a−1]ψq))) if a≥1,
– pϕ U[0,0] ψq := (¬tick ∧ pϕq) U (¬tick ∧ pψq),
– pϕ U ψq := (tick ∨ pϕq) U (¬tick ∧ pψq),
– p I ϕq and pϕ SI ψq are defined analogously to p#I ϕq and pϕ UI ψq,
– ϕ := (� tick) ∨ (tick U (¬tick ∧ pϕq)).

For an FSA A = (Q,Σ, δ, qI, F,B), we define the FSA A := (Q,Σ, δ, qI, F ,B)
with Q := Q × {0, 1, 2}, qI := (qI, 0), F := ∅, B := (B × {0}) ∪ (F × {2}), and
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for any q ∈ Q, i ∈ {0, 1, 2}, and a ∈ Σ,

δ((q, i), a) :=


{(q′, 0) | q′ ∈ δ(q, a)} if a ∈ Σ and i ∈ {0, 1},
{(q, 1), (q, 2)} if a = {tick} and i = 0,
{(q, i)} if a = {tick} and i ∈ {1, 2},
∅ otherwise.

It is easy to check that τ ∈ L(A) ⊗ T iff τ ∈ L(A) ∩ T . In addition, by
induction over ϕ, one verifies that σ, t, i |= ϕ iff τ , i + ti |= pϕq for all i < |τ |,
where τ = σ ⊗ t. Therefore, τ ∈ L(ϕ) iff τ ∈ L(ϕ).

Note that T = L(θ)∩Σω
, where θ := (� � tick)∧�(tick →

∧
p∈P ¬p). Then

UT = L(U) ∩ T . Moreover, UT ∩ (Σ × N)∗ is decidable, and a finite trace τ in
UT is in pre∗(L(ϕ)) iff τ<|τ |+t|τ|−1 is in pre∗(L(ϕ)∩ T ). Since pre∗(L(ϕ)∩ T ) is
decidable, so is pre∗(L(ϕ) ∩ UT ). Thus L(ϕ) is (UT , Ô ×N)-enforceable iff L(ϕ)
is (UT , Ô × N)-safety.

Recall now that the satisfiability problem for MLTL with infinite timed words
is EXPSPACE-hard [3]. Given an MLTL formula ϕ, we define the formula ϕ′ :=
ϕ ∨ �¬# true. We have L(ϕ′) = L(ϕ) ∪ (T ∩ (Σ × N)∗). L(ϕ′) is (UT , Ô × N)-
safety iff Lω(ϕ) = T ∩ (Σ × N)ω iff Lω(¬ϕ) = ∅. This proves that checking
whether L(ϕ) is (UT , Ô × N)-safety is EXPSPACE-hard.

To prove membership in EXPSPACE, consider an MLTL formula ϕ of size
n ∈ N. It is easy to see by induction over ϕ that ‖ϕ‖ ∈ 2O(n). Moreover, note that
T ∩ (Σ × N)ω = L(θ′)∩Σω

, where θ′ := θ∧(� �¬tick). For convenience, we also
let Ot := O∪{tick} and Sϕ := cl(pre∗(L(ϕ)∩UT ) · (Ô×N)∗)∩UT . We have that

Sϕ is mapped to Sϕ =
(

pre∗(L(ϕ)∩UT )·Ôt
ω
∪
(

cl(pre∗(L(ϕ)∩UT ))∩L(θ′)
))
∩UT .

Therefore, L(ϕ) is (UT , Ô × N)-enforceable iff Sϕ ⊆ L(ϕ).

As in the proof of Theorem 11, we build an FSA B of size 22
O(n)

such that
L(B) = Sϕ ∩ L(¬ϕ). Then L(ϕ) is (UT , Ô ×N)-enforceable iff L(B) = ∅. As the
emptiness problem for FSAs is in NLOGSPACE [20] and since we can build B

on the fly, checking whether L(ϕ) is (UT , Ô × N)-safety is in EXPSPACE. ut

If L(ϕ) is (L(U)⊗T, Ô×N)-enforceable, we can use—similar to the LTL case
—the FSAs U and A from the proof of Theorem 15 to obtain an enforcement
mechanism E. We construct the product automaton C accepting L(U) ∩ L(A).
The enforcement mechanism E initializes the state set to the singleton set con-
sisting of C’s initial state. Additionally, E stores the current timestamp, which
is initially 0. Whenever E intercepts a system action (a, t) ∈ 2P×N, it performs
the following updates on the state set and the current timestamp.
1. E updates the state set with respect the progression of time, i.e., E determines

the states reachable by the sequence tickd, where d is the difference of the
timestamp t and the stored timestamp.

2. E stores t as the current timestamp.
3. E updates the state set with respect to the system action a.
4. E removes the states from the state set from which C does not accept any

sequence.
E terminates the system if the state set becomes empty and the intercepted
action a is controllable. Otherwise, it continues by intercepting the next action.
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5 Related Work

Schneider [28] initiated the study of which security policies are enforceable. He
showed that every security policy enforceable by execution monitoring must be
a property of traces and an ∞-safety property. Furthermore, he introduced an
automata model, called security automata, that recognizes ∞-safety properties.
Fong [14] analyzed classes of security policies that can be recognized by shallow-
history automata, a restricted class of security automata. Hamlen et. al [17]
related the policies that can be enforced by program rewriting to those that
can be recognized by security automata. Ligatti et al. [23, 24] introduced edit
automata, which are transducers with infinitely many states. Edit automata can
recognize trace properties that are not ∞-safety. However, it remains unclear
how to use edit automata as enforcement mechanisms, in particular, how an
edit automaton and a system interact with each other in general. Ligatti and
Reddy [25] recently introduced mandatory-result automata for enforcement and
analyzed their expressive power. In contrast to edit automata, mandatory-result
automata have an interface for interacting with a system. Namely, a mandatory-
result automaton obtains requests from the system and sends outputs back to
the system. Before sending output, it can interact with the execution platform.
Falcone et al. [13] study the trace properties that can be recognized by security,
edit, and shallow-history automata in terms of the safety-progress hierarchy [6]
of regular languages and classical finite-state automata models.

All the above works assume that all system actions are controllable. In con-
trast, we distinguish between actions that are controllable and those that are
only observable by an enforcement mechanism. Furthermore, the above works
also do not consider the realizability of an enforcement mechanism from a policy
description and its computational complexity. Note that classifications of sys-
tem actions, signals, and states with a similar flavor are common in other areas
like control theory and software testing. However, we are not aware that such a
classification has been made and explored before when reasoning about policy
enforcement.

Recently, the problem of checking whether system behaviors are compliant
with security policies, regulations, and laws has attracted considerable attention.
This problem is simpler than policy enforcement, since one need only detect and
report policy violations. Monitoring approaches have proved useful here, based
either on offline [16] or online [4] algorithms.

Another generalization of the standard definition of safety [1] has been re-
cently given by Ehlers and Finkbeiner [8]. They distinguish between the in-
puts and outputs of a reactive system. The corresponding decision problems are
EXPTIME-complete and 2EXPTIME-complete when the properties are given as
automata and LTL formulas, respectively. Since enforcement mechanisms based
on execution monitoring do not produce outputs, their generalization does not
apply to our setting. However, a combination of their safety generalization and
ours seems promising when considering more powerful enforcement mechanisms
like those based on mandatory-result automata [25].
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6 Conclusion

We have refined Schneider’s setting on policy enforcement based on execution
monitoring by distinguishing between controllable and observable system ac-
tions. This allows us to accurately reason about enforceability in systems where
not all actions can be controlled, for example, the passage of time. Using our char-
acterization, we have provided, for the first time, both necessary and sufficient
conditions for enforceability. We have also examined the problem of determining
whether a specified policy is enforceable, for different specification languages,
and provided results on the complexity of this realizability decision problem.

As future work, we will investigate the realizability problem for more powerful
enforcement mechanisms and for more expressive specification languages, such as
those not limited to finite alphabets. We would also like to provide tool support
for synthesizing enforcement mechanisms from declarative policy specifications.
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