
Monitoring of Temporal First-order Properties
with Aggregations

David Basin, Felix Klaedtke, Srdjan Marinovic, and Eugen Zălinescu

Institute of Information Security, ETH Zurich, Switzerland

Abstract. Compliance policies often stipulate conditions on aggregated
data. Current policy monitoring approaches are limited in the kind of
aggregations that they can handle. We rectify this as follows. First, we
extend metric first-order temporal logic with aggregation operators. This
extension is inspired by the aggregation operators common in database
query languages like SQL. Second, we provide a monitoring algorithm
for this enriched policy specification language. Finally, we experimentally
evaluate our monitor’s performance.

1 Introduction

Motivation. Compliance policies represent normative regulations, which specify
permissive and obligatory actions for agents. Both public and private companies
are increasingly required to monitor whether agents using their IT systems, i.e.,
users and their processes, comply with such policies. For example, US hospitals
must follow the US Health Insurance Portability and Accountability Act (HIPAA)
and financial services must conform to the Sarbanes-Oxley Act (SOX). First-order
temporal logics are not only well-suited for formalizing such regulations, they
also admit efficient monitoring. When used online, these monitors observe the
agents’ actions as they are made and promptly report violations. Alternatively,
the actions are logged and the monitor checks them later, such as during an
audit. See, for example, [6, 18].

Current logic-based monitoring approaches are limited in their support for
expressing and monitoring aggregation conditions. Such conditions are often
needed for compliance policies, such as the following simple example from fraud
prevention: A user must not withdraw more than $10,000 within a 30 day period
from his credit card account. To formalize this policy, we need an operator to
express the aggregation of the withdrawal amounts over the specified time window,
grouped by the users. In this paper, we address the problem of expressing and
monitoring first-order temporal properties built from such aggregation operators.

Solution. First, we extend metric first-order temporal logic (MFOTL) with
aggregation operators and with functions. This follows Hella et al.’s [19] extension
of first-order logic with aggregations. We also ensure that the semantics of
aggregations and grouping operations in our language mimics that of SQL. As
illustration, a formalization in our language of the above fraud-detection policy is

� ∀u.∀s. [SUMa a. �[0,31) withdraw(u, a)](s;u)→ s � 10000 . (P0)

2 D. Basin, F. Klaedtke, S. Marinovic, and E. Zălinescu

The SUM operator, at the current time point, groups all withdrawals, in the past
30 days, for a user u and then sums up their amounts a. The aggregation formula
defines a binary relation where the first coordinate is the SUM’s result s and the
second coordinate is the user u for whom the result is calculated. If the user’s
sum is greater than 10000, then the policy is violated at the current time point.
Finally, the formula states that the aggregation condition must hold for each
user and every time point.

A corresponding SQL query for determining the violations with respect to
the above policy at a specific time is

SELECT SUM(a) AS s, u FROM W GROUP BY u HAVING SUM(a) > 10000 ,

where W is the dynamically created view consisting of the withdrawals of all
users within the 30 day time window relative to the given time. Note that the
subscript a of the formula’s aggregation operator in (P0) corresponds to the a in
the SQL query and the third appearance of a in (P0) is implicit in the query,
as it is fixed by the view’s definition. The second a in (P0) is redundant and
emphasizes that the variable a is quantified, i.e., it does not correspond to a
coordinate in the resulting relation.

Not all formulas in our language are monitorable. Unrestricted use of logic
operators may require infinite relations to be built and manipulated. The second
part of our solution, therefore, is a monitorable fragment of our language. It can
express all our examples, which represent typical policy patterns, and it allows
the liberal use of aggregations and functions. We extend our monitoring algorithm
for MFOTL [7] to this fragment. In more detail, the algorithm processes log files
sequentially and handles aggregation formulas by translating them into extended
relational algebra. Functions are handled similarly to Prolog, where variables are
instantiated before functions are evaluated.

We have implemented and evaluated our monitoring solution. For the evalua-
tion, we use fraud-detection policy examples and synthetically generated log files.
We first compare the performance of our prototype implementation with the
performance of the relational database management system PostgreSQL [22]. Our
language is better suited for expressing the policy examples and our prototype’s
performance is superior to PostgreSQL’s performance. This is not surprising
since the temporal reasoning must be explicitly encoded in SQL queries and
PostgreSQL does not process logged data in the time sequential manner. We
also compare our prototype implementation with the stream-processing tool
STREAM [2]. Its performance is better than our tool’s performance because, in
contrast to our tool, STREAM is limited to a restricted temporal pattern for
which it is optimized. Although we have not explored performance optimizations
for our tool, it is, nevertheless, already efficient enough for practical use.

Contributions. Although aggregations have appeared previously in monitoring, to
our knowledge, our language is the first to add expressive SQL-like aggregation
operators to a first-order temporal setting. This enables us to express complex
compliance policies with aggregations. Our prototype implementation of the
presented monitoring algorithm is therefore the first tool to handle such policies,
and it does so with acceptable performance.

Monitoring with Aggregations 3

Related Work. Our MFOTL extension is inspired by the aggregation operators in
database query languages like SQL and by Hella et al.’s extension of first-order
logic with aggregation operators [19]. Hella et al.’s work is theoretically motivated:
they investigate the expressiveness of such an extension in a non-temporal setting.
A minor difference between their aggregation operators and ours is that their
operators yield terms rather than formulas as in our extension.

Monitoring algorithms for different variants of first-order temporal logics
have been proposed by Hallé and Villemaire [18], Bauer at al. [9], and Basin et
al. [7]. Except for the counting quantifier [9], none of them support aggregations.
Bianculli et al. [10] present a policy language based on a first-order temporal
logic with a restricted set of aggregation operators that can only be applied to
atomic formulas. For monitoring, they require a fixed finite domain and provide
a translation to a propositional temporal logic. Such a translation is not possible
in our setting since variables range over an infinite domain. In the context of
database triggers and integrity constraints, Sistla and Wolfson [23] describe
an integration of aggregation operators into their monitoring algorithm for a
first-order temporal logic. Their aggregation operators are different from those
presented here in that they involve two formulas that select the time points to
be considered for aggregation and they use a database query to select the values
to be aggregated from the selected time points.

Other monitoring approaches that support different kinds of aggregations
are LarvaStat [13], LOLA [15], EAGLE [4], and an approach based on algebraic
alternating automata [16]. These approaches allow one to aggregate over the
events in system traces, where events are either propositions or parametrized
propositions. They do not support grouping, which is needed to obtain statistics
per group of events, e.g., the events generated by the same agent. Moreover,
quantification over data elements and correlating data elements is more restrictive
in these approaches than in a first-order setting.

Most data stream management systems like STREAM [2] and Gigascope [14]
handle SQL-like aggregation operators. For example, in STREAM’s query lan-
guage CQL [3] one selects events in a specified time range, relative to the current
position in the stream, into a table on which one performs aggregations. The tem-
poral expressiveness of such languages is weaker than our language, in particular,
linear-time temporal operators are not supported.

Organization. In Section 2, we extend MFOTL with aggregation operators. In
Section 3, we present our monitoring algorithm, which we evaluate in Section 4.
In Section 5, we draw conclusions. Additional details are given in the appendix.

2 MFOTL with Aggregation Operators

2.1 Preliminaries

We use standard notation for sets and set operations. We also use set notation
with sequences. For instance, for a set A and a sequence s̄ = (s1, . . . , sn), we
write A ∪ s̄ for the union A ∪ {si | 1 ≤ i ≤ n} and we denote the length of s̄

4 D. Basin, F. Klaedtke, S. Marinovic, and E. Zălinescu

by |s̄|. Let I be the set of nonempty intervals over N. We often write an interval
in I as [b, b′) := {a ∈ N | b ≤ a < b′}, where b ∈ N, b′ ∈ N ∪ {∞}, and b < b′.

A multi-set M with domain D is a function M : D → N ∪ {∞}. This
definition extends the standard one to multi-sets where elements can have an
infinite multiplicity. A multi-set is finite if M(a) ∈ N for any a ∈ D and the set
{a ∈ D |M(a) > 0} is finite. We use the brackets {| and |} to specify multi-sets.
For instance, {|2 · bn/2c | n ∈ N|} denotes the multi-set M : N→ N ∪ {∞} with
M(n) = 2 if n is even and M(n) = 0 otherwise.

An aggregation operator is a function from multi-sets to Q∪{⊥} such that finite
multi-sets are mapped to elements of Q and infinite multi-sets are mapped to ⊥.
Common examples are CNT(M) :=

∑
a∈DM(a), SUM(M) :=

∑
a∈DM(a) · a,

MIN(M) := min{a ∈ D |M(a) > 0}, MAX(M) := max{a ∈ D |M(a) > 0}, and
AVG(M) := SUM(M)/CNT(M) if CNT(M) 6= 0 and AVG(M) := 0 otherwise,
where M : D → N ∪ {∞} is a finite multi-set. We assume that the given
aggregation operators are only applied over the multisets with the domain Q.

2.2 Syntax

A signature S is a tuple (F,R, ι), where F is a finite set of function symbols, R is
a finite set of predicate symbols disjoint from F, and the function ι : F ∪ R→ N
assigns to each symbol s ∈ F ∪ R an arity ι(s). In the following, let S = (F,R, ι)
be a signature and V a countably infinite set of variables, where V ∩ (F ∪ R) = ∅.

Function symbols of arity 0 are called constants. Let C ⊆ F be the set of
constants of S. Terms over S are defined inductively: Constants and variables
are terms, and f(t1, . . . , tn) is a term if t1, . . . , tn are terms and f is a function
symbol of arity n > 0. We denote by fv(t) the set of the variables that occur
in the term t. We denote by T the set of all terms over S, and by T∅ the set of
ground terms. A substitution θ is a function from variables to terms. We use the
same symbol θ to denote its homomorphic extension to terms.

Given a finite set Ω of aggregation operators, the MFOTLΩ formulas over
the signature S are given by the grammar

ϕ ::= r(t1, . . . , tι(r)) | (¬ϕ) | (ϕ ∨ ϕ) | (∃x. ϕ) | (I ϕ) | (ϕ SI ψ) | [ωt z̄. ϕ](y; ḡ) ,

where r, t and the tis, I, and ω range over the elements in R, T, I, and Ω,
respectively, x and y range over elements in V, and z̄ and ḡ range over sequences
of elements in V. Note that we overload notation: ω denotes both an aggregation
operator and its corresponding symbol. This grammar extends MFOTL’s [20] in
two ways. First, it introduces aggregation operators. Second, terms may also be
built from function symbols and not just from variables and constants. For ease
of exposition, we do not consider future-time temporal operators.

We call [ωt z̄. ψ](y; ḡ) an aggregation formula. It is inspired by the homony-
mous relational algebra operator. Intuitively, by viewing variables as (relation)
attributes, ḡ are the attributes on which grouping is performed, t is the term on
which the aggregation operator ω is applied, and y is the attribute that stores the
result. The variables in z̄ are ψ’s attributes that do not appear in the described
relation. We define the semantics in Section 2.3, where we also provide examples.

Monitoring with Aggregations 5

The set of free variables of a formula ϕ, denoted fv(ϕ), is defined as expected
for the standard logic connectives. For an aggregation formula, it is defined as
fv
(
[ωt z̄. ϕ](y; ḡ)

)
:= {y} ∪ ḡ. A variable is bound if it is not free. We denote

by f̄v(ϕ) the sequence of free variables of a formula ϕ that is obtained by ordering
the free variables of ϕ by their occurrence when reading the formula from left
to right. A formula is well-formed if for each of its subformulas [ωt z̄. ψ](y; ḡ), it
holds that (a) y 6∈ ḡ, (b) fv(t) ⊆ fv(ψ), (c) the elements of z̄ and ḡ are pairwise
distinct, and (d) z̄ = fv(ψ) \ ḡ. Note that, given condition (d), the use of one of
the sequences z̄ and ḡ is redundant. However, we use this syntax to make explicit
the free and bound variables in aggregation formulas. Throughout the paper, we
consider only well-formed formulas.

To omit parenthesis, we assume that Boolean connectives bind stronger than
temporal connectives, and unary connectives bind stronger than binary ones,
except for the quantifiers, which bind weaker than Boolean ones. As syntactic
sugar, we use standard Boolean connectives such as ϕ ∧ ψ := ¬(¬ϕ ∨ ¬ψ),
the universal quantifier ∀x. ϕ := ¬∃x.¬ϕ, and the temporal operators �I ϕ :=
(p ∨ ¬p) SI ϕ, �I ϕ := ¬ �I ¬ϕ, where I ∈ I and p is some predicate symbol of
arity 0, assuming without loss of generality that R contains such a symbol. Non-
metric variants of the temporal operators are easily defined, e.g., �ϕ := �[0,∞) ϕ.

2.3 Semantics

We distinguish between predicate symbols whose corresponding relations are rigid
over time and those that are flexible, i.e., their interpretations can change over
time. We denote by Rr and Rf the sets of rigid and flexible predicate symbols,
where R = Rr ∪Rf with Rr ∩Rf = ∅. We assume Rr contains the binary predicate
symbols ≈ and ≺, which have their expected interpretation, namely, equality
and ordering.

A structure D over the signature S consists of a domain D 6= ∅ and interpre-
tations fD ∈ Dι(f) → D and rD ⊆ Dι(r), for each f ∈ F and r ∈ R. A temporal
structure over the signature S is a pair (D̄, τ̄), where D̄ = (D0,D1, . . .) is a
sequence of structures over S and τ̄ = (τ0, τ1, . . .) is a sequence of non-negative
integers, with the following properties.

1. The sequence τ̄ is monotonically increasing, that is, τi ≤ τi+1, for all i ≥ 0.
Moreover, τ̄ makes progress, that is, for every τ ∈ N, there is some index i ≥ 0
such that τi > τ .

2. All structures Di, with i ≥ 0, have the same domain, denoted D.
3. Function symbols and rigid predicate symbols have rigid interpretations, that

is, fDi = fDi+1 and pDi = pDi+1 , for all f ∈ F, p ∈ Rr, and i ≥ 0. We also
write fD and pD for fDi and pDi , respectively.

We call the elements in the sequence τ̄ timestamps and the indices of the elements
in the sequences D̄ and τ̄ time points.

A valuation is a mapping v : V→ D. For a valuation v, the variable sequence
x̄ = (x1, . . . , xn), and d̄ = (d1, . . . , dn) ∈ Dn, we write v[x̄ 7→ d̄] for the valuation
that maps xi to di, for 1 ≤ i ≤ n, and the other variables’ valuation is unaltered.

6 D. Basin, F. Klaedtke, S. Marinovic, and E. Zălinescu

We abuse notation by also applying a valuation v to terms. That is, given a
structure D, we extend v homomorphically to terms.

For the remainder of the paper, we fix a countable domain D with Q∪{⊥} ⊆ D.
We only consider a single-sorted logic. One could alternatively have sorts for the
different types of elements like data elements and the aggregations. Furthermore,
note that function symbols are always interpreted by total functions. Partial
functions like division over scalar domains can be extended to total functions, e.g.,
by mapping elements outside the function’s domain to ⊥. Since the treatment of
partial functions is not essential to our work, we treat ⊥ as any other element
of D. Alternative treatments are, e.g., based on multi-valued logics [21].

Definition 1. Let (D̄, τ̄) be a temporal structure over the signature S, with
D̄ = (D0,D1, . . .) and τ̄ = (τ0, τ1, . . .), ϕ a formula over S, v a valuation, and
i ∈ N. We define the relation (D̄, τ̄ , v, i) |= ϕ inductively as follows:

(D̄, τ̄ , v, i) |= p(t1, . . . , tι(r)) iff
(
v(t1), . . . , v(tι(r))

)
∈ pDi

(D̄, τ̄ , v, i) |= ¬ψ iff (D̄, τ̄ , v, i) 6|= ψ
(D̄, τ̄ , v, i) |= ψ ∨ ψ′ iff (D̄, τ̄ , v, i) |= ψ or (D̄, τ̄ , v, i) |= ψ′

(D̄, τ̄ , v, i) |= ∃x. ψ iff (D̄, τ̄ , v[x 7→ d], i) |= ψ, for some d ∈ D
(D̄, τ̄ , v, i) |= I ψ iff i > 0, τi − τi−1 ∈ I, and (D̄, τ̄ , v, i− 1) |= ψ
(D̄, τ̄ , v, i) |= ψ SI ψ

′ iff for some j ≤ i, τi − τj ∈ I, (D̄, τ̄ , v, j) |= ψ′,
and (D̄, τ̄ , v, k) |= ψ, for all k with j < k ≤ i

(D̄, τ̄ , v, i) |= [ωt z̄. ψ](y; ḡ) iff v(y) = ω(M),

where M : D→ N ∪ {∞} is the multi-set{∣∣v[z̄ 7→ d̄](t)
∣∣ (D̄, τ̄ , v[z̄ 7→ d̄], i) |= ψ, for some d̄ ∈ D|z̄|

∣∣}.
Note that the semantics for the aggregation formula is independent of the order
of the variables in the sequence z̄.

For a temporal structure (D̄, τ̄), a time point i ∈ N, a formula ϕ, a valuation v,
and a sequence z̄ of variables with z̄ ⊆ fv(ϕ), we define the set

JϕK(D̄,τ̄ ,i)
z̄,v := {d̄ ∈ D|z̄| | (D̄, τ̄ , v[z̄ 7→ d̄], i) |= ϕ} .

We drop the superscript when it is clear from the context. We drop the subscript
when z̄ = f̄v(ϕ). Note that in this case the valuation v is irrelevant and JϕK(D̄,τ̄ ,i)

denotes the set of satisfying elements of ϕ at time point i in (D̄, τ̄).
With this notation, we illustrate the semantics for aggregation formulas in

the case where we aggregate over a variable. We use the same notation as in
Definition 1. In particular, consider a formula ϕ = [ωx z̄. ψ](y; ḡ), with x ∈ V,
and a valuation v. Note that v (and thus also v[z̄ 7→ d̄]) fixes the values of the
variables in ḡ because these are free in ϕ. The multi-set M is as follows. If x 6∈ ḡ,
then M(a) = |{d̄ ∈ JϕKz̄,v | dj = a}|, for any a ∈ D, where j is the index of x
in z̄. If x ∈ ḡ, then M(v(x)) = |JϕKz̄,v| and M(a) = 0, for any a ∈ D \ {v(x)}.

Example 2. Let (D̄, τ̄) be a temporal structure over a signature with a ternary
predicate symbol p with pD0 = {(1, b, a), (2, b, a), (1, c, a), (4, c, b)}. Moreover,
let ϕ be the formula [SUMx x, y. p(x, y, g)](s; g) and z̄ = (x, y). At time point 0,

Monitoring with Aggregations 7

x y g

1 b a
2 b a
1 c a
4 c b

x y g

1
2
1

b
b
c

a

4 c b

Fig. 1. Relation pD0 from Example 2. The two boxes represent the multi-set M for the
two valuations v1 and v2, respectively.

for a valuation v1 with v1(g) = a, we have Jp(x, y, g)Kz̄,v1= {(1, b), (2, b), (1, c)}
and M = {|1, 2, 1|}. For a valuation v2 with v2(g) = b, we have Jp(x, y, g)Kz̄,v2

=
{(4, c)} and M = {|4|}. Finally, for a valuation v3 with v3(g) /∈ {a, b}, we have
that Jp(x, y, g)Kz̄,v3

and M are empty. So the formula ϕ is only satisfied under
a valuation v with v(s) = 4 and either v(g) = a or v(g) = b. Indeed, we have
JϕK = {(4, a), (4, b)}. The tables in Figure 1 illustrate this example. We obtain
J[SUMx y, g. p(x, y, g)](s;x)K = {(2, 1), (2, 2), (4, 4)}, if we group on the variable x
instead of g and J[SUMx x, y, g. p(x, y, g)](s)K = {(8)}, if we do not group.

Example 3. Consider the formula ϕ = [SUMa a. ψ](s;u), where ψ is the for-
mula �[0,31) withdraw(u, a). Let (D̄, τ̄) be a temporal structure with the rela-

tions withdrawD0 = {(Alice, 9), (Alice, 3)} and withdrawD1 = {(Alice, 3)}, and

the timestamps τ0 = 5 and τ1 = 8. We have that JψK(D̄,τ̄ ,0) = JψK(D̄,τ̄ ,1) =

{(Alice, 9), (Alice, 3)} and therefore JϕK(D̄,τ̄ ,0) =JϕK(D̄,τ̄ ,1) ={(12,Alice)}. Our se-
mantics ignores the fact that the tuple (Alice, 3) occurs at both time points 0 and 1.
Note that the withdraw events do not have unique identifiers in this example.

To account for multiple occurrences of an event, we can attach to each
event additional information to make it unique. For example, assume we
have a predicate symbol ts at hand that records the timestamp at each time
point, i.e., tsDi = {τi}, for i ∈ N. For the formula ϕ′ = [SUMa a. ψ

′](s;u)

with ψ′= �[0,31) withdraw(u, a) ∧ ts(t), we have that Jϕ′K(D̄,τ̄ ,0) = {(12,Alice)}
and Jϕ′K(D̄,τ̄ ,1) = {(15,Alice)} because Jψ′K(D̄,τ̄ ,0) = {(Alice, 9, 5), (Alice, 3, 5)}
while Jψ′K(D̄,τ̄ ,1) ={(Alice, 9, 5), (Alice, 3, 5), (Alice, 3, 8)}. To further distinguish
between withdraw events at time points with equal timestamps, we would need ad-
ditional information about the occurrence of an event, e.g., information obtained
from a predicate symbol tpts that is interpreted as tptsDi = {(i, τi)}, for i ∈ N.

The multiplicity issue illustrated by Example 3 also appears in databases. SQL is
based on a multi-set semantics and one uses the DISTINCT keyword to switch to
a set-based semantics. However, it is problematic to define a multi-set semantics
for first-order logic, i.e., one that attaches a multiplicity to a tuple d̄ ∈ D|fv(ϕ)| for
how often it satisfies the formula ϕ instead of a Boolean value. For instance, there
are several ways to define a multi-set semantics for disjunction: the multiplicity
of d̄ for ψ ∨ ψ′ can be either the maximum or the sum of the multiplicities of d̄
for ψ and ψ′. Depending on the choice, standard logical laws become invalid,
namely, distributivity of existential quantification or conjunction over disjunction.
Defining a multi-set semantics for negation is even more problematic.

8 D. Basin, F. Klaedtke, S. Marinovic, and E. Zălinescu

p ∈ Rf x1, . . . , xι(p) ∈ V are pairwise distinct

p(x1, . . . , xι(p)) ∈ F
FLX

ϕ ∈ F p ∈ Rr
⋃ι(p)
i=1 fv(ti) ⊆ fv(ϕ)

ϕ ∧ p(t1, . . . , tι(p)) ∈ F
RIG∧

ϕ ∈ F p ∈ Rr
⋃ι(p)
i=1 fv(ti) ⊆ fv(ϕ)

ϕ ∧ ¬p(t1, . . . , tι(p)) ∈ F
RIG∧¬

ϕ ∈ F p ∈ Rr
⋃ι(p)
i=1,i 6=j fv(ti) ⊆ fv(ϕ) tj ∈ V j ∈ Hp

ϕ ∧ p(t1, . . . , tι(p)) ∈ F
RIG′

∧

ϕ,ψ ∈ F
ϕ ∧ ψ ∈ F GEN∧

ϕ,ψ ∈ F fv(ψ) ⊆ fv(ϕ)

ϕ ∧ ¬ψ ∈ F GEN∧¬
ϕ,ψ ∈ F fv(ψ) = fv(ϕ)

ϕ ∨ ψ ∈ F GEN∨

ϕ ∈ F
∃x. ϕ ∈ F GEN∃

ϕ ∈ F
 I ϕ ∈ F

GEN
ϕ ∈ F

[ωt z̄. ϕ](y; ḡ) ∈ F GENω

ϕ,ψ ∈ F fv(ϕ) ⊆ fv(ψ)

ϕ SI ψ ∈ F
GENS

ϕ,ψ ∈ F fv(ϕ) ⊆ fv(ψ)

¬ϕ SI ψ ∈ F
GEN¬S

Fig. 2. The derivation rules defining the fragment F of monitorable formulas.

3 Monitoring Algorithm

We assume that policies are of the form �∀x̄. ϕ, where ϕ is an MFOTLΩ formula
and x̄ is the sequence of free variables of ϕ. The policy requires that ∀x̄. ϕ holds
at every time point in temporal structure (D̄, τ̄). In the following, we assume that
(D̄, τ̄) is a temporal database, i.e., (1) the domain D is countably infinite, (2) the
relation pDi is finite, for each p ∈ Rf and i ∈ N, (3) pD is a recursive relation,
for each p ∈ Rr, and (4) fD is computable, for each f ∈ F. We also assume that
the aggregation operators in Ω are computable functions on finite multi-sets.

The inputs of our monitoring algorithm are a formula ψ, which is logically
equivalent to ¬ϕ, and a temporal database (D̄, τ̄), which is processed iteratively.

The algorithm outputs, again iteratively, the relation JψK(D̄,τ̄ ,i), for each i ≥ 0.

As ψ and ¬ϕ are equivalent, the tuples in JψK(D̄,τ̄ ,i) are the policy violations at
time point i. Note that we drop the outermost quantifier as we are interested not
only in whether the policy is violated. An instantiation of the free variables x̄
that satisfies ψ provides additional information about the violations.

3.1 Monitorable Fragment

Not all formulas are effectively monitorable. Consider, for example, the policy
�∀x.∀y. p(x) → q(x, y) with the formula ψ = p(x) ∧ ¬q(x, y) that we use for
monitoring. There are infinitely many violations for time points i with pDi 6= ∅,
namely, any tuple (a, b) ∈ D2 \ qDi with a ∈ pDi . In such a case, JψK(D̄,τ̄ ,i) is
infinite and its elements cannot be enumerated in finite time. We define a fragment
of MFOTLΩ that guarantees finiteness. Furthermore, the set of violations at each
time point can be effectively computed bottom-up over the formula structure. In
the following, we treat the Boolean connective ∧ as a primitive.

Definition 4. The set F of monitorable formulas with respect to (Hp)p∈Rr is
defined by the rules given in Figure 2, where Hp ⊆ {1, . . . , ι(p)}, for each p ∈ Rr.

Monitoring with Aggregations 9

Let ` be a label of a rule from Figure 2. We say that a formula ϕ ∈ F is of kind `
if there is a derivation tree for ϕ having as root a rule labeled by `.

Before describing some of the rules, we first explain the meaning of the set Hp,
for p ∈ Rr with arity k. The set Hp contains the indexes j for which we can
determine the values of the variable xj that satisfy p(x1, . . . , xk), given that
the values of the variables xi with i 6= j are fixed. Formally, given a temporal
database (D̄, τ̄) and a rigid predicate symbol p of arity k > 0, we say that
an index j, with 1 ≤ j ≤ k, is effective for p if for any ā ∈ Dk−1, the set
{d ∈ D | (a1, . . . , aj−1, d, aj , . . . , ak−1) ∈ pD} is finite. For instance, for the rigid
predicate ≈, the set of effective indexes is H≈ = {1, 2}. Similarly, for the rigid
predicate ≺N, defined as a ≺N b iff a, b ∈ N and a < b, we have H≺N := {1}.

We describe the intuition behind the first four rules in Figure 2. The meaning
of the other rules should then be obvious. The first rule (FLX) requires that in
an atomic formula p(t̄) with p ∈ Rf , the terms ti are pairwise distinct variables.
This formula is monitorable since we assume that p’s interpretation is always a
finite relation. For the rules (RIG∧) and (RIG∧¬), consider formulas of the form

ϕ ∧ p(t̄) and ϕ ∧ ¬p(t̄) with p ∈ Rr and
⋃ι(p)
i=1 fv(ti) ⊆ fv(ϕ). In both cases, the

second conjunct restricts on the tuples satisfying ϕ. A simple example is the
formula p(x, y)∧x+1 ≈ y. If ϕ is monitorable, such a formula is also monitorable
as its evaluation can be performed by filtering out the tuples in JϕK that do
not satisfy the second conjunct. The rule (RIG′∧) treats the case where one of
the terms ti is a variable that does not appear in ϕ. We require here that the
index j is effective, so that the values of this variable are determined by the
values of the other variables, which themselves are given by the tuples in JϕK.
An example is the formula p(x, y) ∧ z ≈ x+ y. The required conditions on tj are
necessary. If j is not effective, then we cannot guarantee finiteness. Consider, e.g.,
the formula q(x) ∧ x 6≈ y. If tj is neither a variable nor a constant, then we must
solve equations to determine the value of the variable that does not occur in ϕ.
Consider, e.g., the formula q(x) ∧ x ≈ y · y.

The rule (FLX) may seem very restrictive. However, one can often rewrite a
formula of the form p(t1, . . . , tn) with p ∈ Rf into an equivalent formula in F .
For instance, p(x+ 1, x) can be rewritten to ∃y. p(y, x)∧ x+ 1 ≈ y. Alternatively,
one can add additional rules that handle such cases directly.

We now show that ϕ’s membership in F guarantees the finiteness of JϕK.

Lemma 5. Let (D̄, τ̄) be a temporal database, i ∈ N a time point, ϕ a formula,
and Hp the set of effective indexes for p, for each p ∈ Rr. If ϕ is a monitorable

formula with respect to (Hp)p∈Rr , then JϕK(D̄,τ̄ ,i) is finite.

There are formulas like (x ≈ y) S p(x, y) that describe finite relations but are
not in F . However, the policies considered in this paper all fall into the monitorable
fragment. They follow the common pattern �∀x̄, ȳ. ϕ(x̄, ȳ)∧c(x̄, ȳ)→ ψ(ȳ)∧c′(ȳ),
where c and c′ represent restrictions, i.e., formulas of the form r(t̄) and ¬r(t̄)
with r ∈ Rr. The formula to be monitored, i.e., ϕ(x̄, ȳ) ∧ c(x̄, ȳ) ∧ ¬(ψ(ȳ) ∧ c′(ȳ))
is in F if ϕ and ψ are in F , and c, c′ satisfy the conditions of the (RIG) rules.

Finiteness can also be guaranteed by semantic notions like domain indepen-
dence or syntactic notions like range restriction, see, e.g., [1] and also [7, 12] for

10 D. Basin, F. Klaedtke, S. Marinovic, and E. Zălinescu

a generalization of these notions to a temporal setting. If we restrict ourselves
to MFOTL without future operators, the range restricted fragment in [7] is
more general than the fragment F . This is because, in contrast to the rules in
Figure 2, range restrictions are not local conditions, that is, conditions that only
relate formulas with their direct subformulas. However, the evaluation procedures
in [1, 7, 12] also work in a bottom-up recursive manner. So one still must rewrite
the formulas to evaluate them bottom-up. No rewriting is needed for formulas
in F . Furthermore, the fragment ensures that aggregation operators are always
applied to finite multi-sets. Thus, for any ϕ ∈ F , the element ⊥ ∈ D never
appears in a tuple of JϕK, provided that pDi ⊆ Dι(p) and fD(ā) ∈ D, for every
p ∈ R, f ∈ F, i ∈ N, and ā ∈ Dι(f), where D = D \ {⊥}.

3.2 Extended Relational Algebra Operators

Our monitoring algorithm is based on a translation of MFOTLΩ formulas in
F to extended relational algebra expressions. The translation uses equalities,
which we present in Section 3.3, that extend the standard ones [1] expressing the
relationship between first-order logic (without function symbols) and relational
algebra to function symbols, temporal operators, and group-by operators. In this
section, we introduce the extended relational algebra operators.

We start by defining constraints. We assume a given infinite set of variables
Z = {z1, z2, . . . } ⊆ V, ordered by their indices. A constraint is a formula
r(t1, . . . , tn) or its negation, where r is a rigid predicate symbol of arity n and
the tis are constraint terms, i.e., terms with variables in Z. We assume that for
each domain element d ∈ D, there is a corresponding constant, denoted also
by d. A tuple (a1, . . . , ak) satisfies the constraint r(t1, . . . , tn) iff

⋃n
i=1 fv(ti) ⊆

{z1, . . . , zk} and (v(t1), . . . , v(tn)) ∈ rD, where v is a valuation with v(zi) = ai, for
all i ∈ {1, . . . , k}. Satisfaction for a constraint ¬r(t1, . . . , tn) is defined similarly.

In the following, let C be a set of constraints, A ⊆ Dm, and B ⊆ Dn. The
selection of A with respect to C is the m-ary relation

σC(A) := {ā ∈ A | ā satisfies all constraints in C} .
The integer i is a column in A if 1 ≤ i ≤ m. Let s̄ = (s1, s2, . . . , sk) be a sequence
of k ≥ 0 columns in A. The projection of A on s̄ is the k-ary relation

πs̄(A) :=
{

(as1 , as2 , . . . , ask) ∈ Dk
∣∣ (a1, a2, . . . , am) ∈ A

}
.

Let s̄ be a sequence of columns in A×B. The join and the antijoin of A and B
with respect to s̄ and C is defined as

A ./s̄,C B := (πs̄ ◦ σC)(A×B) and A�s̄,C B := A \ (A ./s̄,C B) .

Let ω be an operator in Ω, G a set of k ≥ 0 columns in A, and t a constraint
term. The ω-aggregate of A on t with grouping by G is the (k + 1)-ary relation

ωGt (A) :=
{

(b, ā)
∣∣ ā = (ag1

, ag2
, . . . , agk) ∈ πḡ(A) and b = ω(Mā)

}
.

Here ḡ = (g1, g2, . . . , gk) is the maximal subsequence of (1, 2, . . . ,m) such that
gi ∈ G, for 1 ≤ i ≤ k, and Mā : Dm−k → N is the finite multi-set

Mā :=
{∣∣(πh̄ ◦ σ{d≈t}∪D)(A)

∣∣ d ∈ D
∣∣} ,

where h̄ is the maximal subsequence of (1, 2, . . . ,m) with no element in G and
D := {ai ≈ zgi | 1 ≤ i ≤ k}.

Monitoring with Aggregations 11

3.3 Translation to Extended Relational Algebra

Let (D̄, τ̄) be a temporal database, i ∈ N, and ϕ ∈ F . We express JϕK(D̄,τ̄ ,i) in
terms of the generalized relational algebra operators defined in Section 3.2.

Kind (FLX). This case is straightforward: for a predicate symbol p ∈ Rf of arity n
and pairwise distinct variables x1, . . . , xn ∈ V,

Jp(x1, . . . , xn)K(D̄,τ̄ ,i) = pDi .

Kind (RIG∧). Let ψ ∧ p(t1, . . . , tn) be a formula of kind (RIG∧). Then

Jψ ∧ p(t1, . . . , tn)K(D̄,τ̄ ,i) = σ{p(θ(t1),...,θ(tn))}
(
JψK(D̄,τ̄ ,i)

)
,

where the substitution θ : fv(ψ) → {z1, . . . , z|fv(ψ)|} is given by θ(x) = zj
with j the index of x in f̄v(ψ). For instance, if ϕ ∈ F is the formula ψ(x, y) ∧
(x− y) mod 2 ≈ 0 then JϕK(D̄,τ̄ ,i) = σ{(z1−z2) mod 2≈ 0}JψK(D̄,τ̄ ,i).

Kind (GENS). Let ψ SI ψ
′ be a formula of kind (GENS) with f̄v(ψ) = (y1, . . . , yn)

and f̄v(ψ′) = (y′1, . . . , y
′
`). Then

Jψ SI ψ
′K(D̄,τ̄ ,i) =

⋃
j∈{i′|i′≤i, τi−τi′∈I}

(
Jψ′K(D̄,τ̄ ,j) ./s̄,C

(⋂
k∈{j+1,...,i}

JψK(D̄,τ̄ ,k)
))
,

where (a) s̄ = (1, . . . , n, n + i1, . . . , n + i`) with ij such that (i1, . . . , i`) is the
maximal subsequence of (1, . . . , `) with y′ij /∈ fv(ψ) and (b) C = {zj ≈ zn+h |
yj = y′h, 1 ≤ j ≤ n, and 1 ≤ h ≤ `}. For instance, for f̄v(ψ) = (x, y, z) and
f̄v(ψ′) = (z, z′, x), we have s̄ = (1, 2, 3, 5) and C = {z1 ≈ z6, z3 ≈ z4}.

Kind (GENω). Let [ωt z̄
′. ψ](y; ḡ) be a formula of kind (GENω). It holds that

J[ωt z̄′. ψ](y; ḡ)K(D̄,τ̄ ,i) = ωGθ(t)
(
JψK(D̄,τ̄ ,i)

)
,

where f̄v(ψ) = (y1, . . . , yn), for some n ≥ 0, G = {i | yi ∈ ḡ}, and θ : fv(ψ) →
{z1, . . . , zn} is given by θ(x) = zj with j being the index of x in f̄v(ψ). For
instance, for [SUMx+y x, y. p(x, y, z)](s; z), we have G = {3} and θ(t) = z1 + z2.

Other kinds. The case for (RIG∧¬) is similar to the one for (RIG∧). The cases for
(GEN∧), (GEN∧¬), and (GEN¬S) are similar to the one for (GENS). The cases for
(GEN∧¬) and (GEN¬S) use the antijoin instead of the join. The cases for (GEN∨),
(GEN∃), (GEN) are obvious. Additional details are in Appendix A.1.

3.4 Algorithmic Realization

Our monitoring algorithm for MFOTLΩ is inspired by those in [7,8,11]. We only
sketch it here. Further details are given in the appendix.

For a formula ψ ∈ F , the algorithm iteratively processes the temporal
database (D̄, τ̄). At each time point i, it calls the procedure eval to com-

pute JψK(D̄,τ̄ ,i). The input of eval at time point i is the formula ψ, the time
point i with its timestamp τi, and the interpretations of the flexible predicate
symbols, i.e., rDi , for each r ∈ Rf . Note that D̄’s domain and the interpretations

12 D. Basin, F. Klaedtke, S. Marinovic, and E. Zălinescu

�∀u. ∀s. [SUMa a, i. �[0,31) ψ(u, a, i)](s;u)→ s � 10000 (P1)

�∀u. ∀s. [SUMa a, i. �[0,31) ψ(u, a, i)](s;u) ∧ (¬limit off (u) S limit on(u))→
s � 10000

(P2)

�∀u. ∀s.∀m. [AVGa a, i. �[0,91) ψ(u, a, i)](s;u)∧
[MAXa a. �[0,8) withdraw(u, a)](m;u)→ m � 2 · s (P3)

�∀s. [AVGu u, c. [CNTi a, i. �[0,31) ψ(u, a, i)](c;u)](s)→ s � 150 (P4)

�∀u. ∀c. [CNTj v, p, j. [AVGa a, i. �[0,31) ψ(u, a, i)](v;u)∧
�[0,31) ψ(u, p, j) ∧ 2 · v ≺ p](c;u)→ c � 5

(P5)

Fig. 3. Policy formalizations, where ψ(u, a, i) abbreviates withdraw(u, a) ∧ ts(i).

of the rigid predicate symbols and the function symbols, including the constants,
do not change over time. We assume that they are fixed in advance.

The computation of JψK(D̄,τ̄ ,i) is by recursion over ψ’s formula structure and
is based on the equalities in Section 3.3. Note that extended relational algebra
operators have standard, efficient implementations [17], which can be used to
evaluate the expressions on the right-hand side of the equalities from Section 3.3.

To accelerate the computation of JψK(D̄,τ̄ ,i), the monitoring algorithm main-
tains state for each temporal subformula, storing previously computed inter-
mediate results. The monitor’s state is initialized by the procedure init and
updated in each iteration by the procedure eval. For subformulas of the form
 I ψ′, we store at time point i > 0, the tuples that satisfy ψ′ at time-point i− 1,
i.e., the relation Jψ′K(D̄,τ̄ ,i−1). For formulas of the form ψ1 S[a,b) ψ2, we store

at time point i, the list of relations Jψ2K(D̄,τ̄ ,j) ./s̄,C
(⋂

j<k≤iJψ1K(D̄,τ̄ ,k)
)

with
j ≤ i such that τi − τj < b, where s̄ and C are defined as in Section 3.3. By
storing these relations, the subformulas ψ′, ψ1, and ψ2 need not be evaluated
again at time points j < i during the evaluation of ψ at time point i. Further
optimizations are possible. For instance, one can store and reuse some of the
intermediate relations used for computing the relation Jψ1 S[a,b) ψ2K(D̄,τ̄ ,i) from
the relations stored in the previously mentioned list. Also, when a = 0 and b =∞,
it is sufficient to store the resulting relation from the previous time point, as
Jψ1 S ψ2K(D̄,τ̄ ,i) = Jψ2K(D̄,τ̄ ,i) ∪

(
Jψ1 S ψ2K(D̄,τ̄ ,i−1) ./ Jψ1K(D̄,τ̄ ,i)

)
.

Theorem 6. Let (D̄, τ̄) be a temporal database, i ∈ N, and ψ ∈ F . The procedure

eval(ψ, i, τi, Γi) returns the relation JψK(D̄,τ̄ ,i), whenever init(ψ), eval(ψ, 0, τ0,
Γ0), . . . , eval(ψ, i − 1, τi−1, Γi−1) were called previously in this order, where
Γj = (pDj)p∈Rf is the family of interpretations of flexible predicates at j, for
every time point j ∈ N.

4 Experimental Evaluation

We compare our prototype implementation, which extends our monitoring tool
MonPoly [5] for MFOTL, with the relational database PostgreSQL [22] and

Monitoring with Aggregations 13

Tab. 1. Running times (STREAM / MonPoly extension / PostgreSQL) in seconds.

XXXXXXXXXpolicy
time span

400 800 1200 1600 2000

(P1) 8 / 9 / 76 9 / 19 / 279 11 / 29 / 610 12 / 39 / 1065 14 / 48 / 1650

(P2) 21 / 10 / 247 23 / 20 / 1646 24 / 30 / 5233 26 / 40 / 11989 28 / 50 / 23260

(P3) † / 22 / 168 † / 44 / 604 † / 66 / 1230 † / 88 / 2251 † / 110 / 3458

(P4) 12 / 9 / 75 15 / 19 / 280 15 / 29 / 612 17 / 38 / 1068 19 / 48 / 1650

(P5) 24 / 76 / 83 33 / 157 / 337 41 / 234 / 745 49 / 313 / 1351 59 / 395 / 2099

the stream-processing tool STREAM [2]. For our evaluation, we consider the
following five policies. Figure 3 contains their MFOTLΩ formalizations.

(P1) The sum of withdrawals of each user over the last 30 days does not exceed
the limit of $10,000.

(P2) Similar to (P1), except that the withdrawals must not exceed $10,000 only
when the flag for checking the limit is set.

(P3) The maximal withdrawal of each user over the last seven days must be
at most be twice as large as the average of the user’s withdrawals over
the last 90 days.

(P4) The average of the number of withdrawals of all users over the last 30 days
should be less than a given threshold of 150.

(P5) For each user, the number of peaks over the last 30 days does not exceed a
threshold of 5, where a peak is a value at least twice the average over some
time window.

Note that in the formalization of the policy (P2), the event limit on(u) sets the
limit flag for the user u, while limit off (u) unsets it.

We use synthetically generated logs1 with different time spans (in days).
The logs contain withdraw events from 500 users, except for (P5), for which
we consider only 100 users. Each user makes on average five withdrawals per
day. Table 1 shows the running times of the three tools on a standard desktop
computer with 8 GB of RAM and an Intel Core i5 CPU with 2.67 GHz. The
SQL queries for PostgreSQL and the CQL queries for STREAM were manually
obtained from the corresponding MFOTLΩ formulas. For the considered policies
and logs, the semantic differences between the languages are not substantial. In
particular, the tools output the same violations. PostgreSQL’s running times
only account for the query evaluation, performed once per log file, and not for
populating the database. For MAX aggregations, STREAM aborts with a runtime
error, and we mark this with the symbol †.

Note that the formulas in Figure 3 vary in their complexity: e.g., they contain
different numbers of aggregations and temporal operators, with time windows
of different sizes. STREAM and our tool scale linearly on these examples with
respect to the time spans of the logs. This is not the case for PostgreSQL.
Overall, our tool’s performance is between STREAM’s and PostgreSQL’s on
these examples.

1 Our prototype, the formulas, and the input data are available as an archive at https:
//projects.developer.nokia.com/MonPoly/files/rv13-experiments.tgz.

14 D. Basin, F. Klaedtke, S. Marinovic, and E. Zălinescu

We first focus on the performance of our tool. (P2) is only slightly slower to
monitor than (P1) because the relations for the additional subformula are not
large: they contain around 50 tuples, as the limit flag is toggled for each user, on
average, every 10 days. (P3) takes longer to monitor for two reasons. First, it
contains a significantly larger time window. Second, the join of two relations is
computed, which is also the case for (P5). For (P3), the two input relations and
the output relation each have size n, where n is the number of users. For (P5), the
size of the input relations is approximately 31mn, where m is the average number
of withdrawals per day of a user, while the output relation is approximately of
size 312m2n. This explains why (P5) takes longer to monitor than (P3). Since
aggregating over a relation does not increase its size, the nesting of aggregation
operators has only a minor impact on the running times, compare (P1) and (P4).

PostgreSQL performs worst in these experiments. This is not surprising as
PostgreSQL is not designed for this application domain. In particular, PostgreSQL
has no support for temporal reasoning and we must treat time as just another
data value. In more detail, we load log files into database tables that have two
additional attributes to represent the time point and the timestamp of an event
occurrence, and we adapt the standard embedding of temporal logic into first-
order logic to represent MFOTLΩ formulas as SQL queries. Treating time as
data has the following disadvantages. First, it is not suited for online processing
of events: query evaluation does not scale, because the query must be reevaluated
on the entire database each time new events are added. Second, even for offline
processing (as done in our experiments), the query evaluation procedure does
not take advantage of the temporal ordering of events. This deficiency is most
evident when evaluating the SQL query for (P2).

In contrast to PostgreSQL, STREAM is designed for online event processing.
However, temporal reasoning in STREAM is limited. In particular, CQL’s only
temporal construct collects all event tuples within a specified time range relative
to the current time. It roughly corresponds2 to the �I operator in MFOTLΩ,
where I is of the form [0, t) with t ∈ N∪ {∞}. We cannot select only tuples from
a time window that is strictly in the past. It is therefore not clear how to handle
temporal properties of the form �I ϕ with 0 /∈ I. It is also not clear how to handle
nested temporal operators as this also requires handling time windows that do
not contain the current time point. Finally, it is also not obvious how to check
that certain event patterns happen at every time point in a given time window.
Consider, e.g., the policy stating that a user may not make large withdrawals
if he is continuously in an over-withdrawn state during the last seven days. In
MFOTLΩ , the policy is naturally expressed as

� ∀u.
(
�[0,8)(¬out-debt(u) S in-debt(u))

)
→ ¬∃a.withdraw(u, a) ∧ a � 1000 .

Note that the subformula ¬out-debt(u) S in-debt(u) can be encoded in CQL by
requiring for each user u that at the current time the total number of out-debt(u)

2 CQL’s time model differs from that of MFOTLΩ . In CQL, there is no notion of time
point and query evaluation is performed for each timestamp τ ∈ N. Furthermore,
CQL has a multi-set semantics.

Monitoring with Aggregations 15

events is smaller than the total number of in-debt(u) events. We have used such
an encoding for (P2). We remark that the addition to (P1) of the since subformula
in (P2) has a larger impact on STREAM’s performance than on our tool.

While MFOTLΩ has a richer tool set than CQL to express temporal patterns,
STREAM’s performance is consistently better than our tool’s. Nevertheless, the
differences are not as large as one might expect for a prototype implementation.
Our prototype has not yet been systematically optimized. We expect substantial
performance improvements by carefully adapting data structures and query
evaluation techniques used in databases and stream processing.

5 Conclusion

Existing logic-based policy monitoring approaches offer little support for aggrega-
tions. To rectify this shortcoming we extended metric first-order temporal logic
with expressive SQL-like aggregation operators and presented a monitoring algo-
rithm for this language. Our experimental results for a prototype implementation
of the algorithm are promising. The prototype’s performance is in the reach
of optimized stream-processing tools, despite its richer input language and its
lack of systematic optimization. As future work, we will investigate performance
optimizations for our monitor. In general, it remains to be seen how logic-based
monitoring approaches can benefit from the techniques used in stream processing.

Acknowledgements. This work was partially supported by the Zurich Information
Security and Privacy Center. It represents the views of the authors.

References

1. S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 1995.

2. A. Arasu, B. Babcock, S. Babu, M. Datar, K. Ito, R. Motwani, I. Nishizawa,
U. Srivastava, D. Thomas, R. Varma, and J. Widom. STREAM: The Stanford
stream data manager. IEEE Data Eng. Bull., 26(1):19–26, 2003.

3. A. Arasu, S. Babu, and J. Widom. The CQL continuous query language: semantic
foundations and query execution. The VLDB Journal, 15(2):121–144, 2006.

4. H. Barringer, A. Goldberg, K. Havelund, and K. Sen. Rule-based runtime verification.
In Proceedings of the 5th International Conference on Verification, Model Checking
and Abstract Interpretation (VMCAI’04), vol. 2937 of LNCS, pp. 44–57, 2004.

5. D. Basin, M. Harvan, F. Klaedtke, and E. Zălinescu. MONPOLY: Monitoring usage-
control policies. In Proceedings of the 2nd International Conference on Runtime
Verification (RV’11), vol. 7186 of LNCS, pp. 360–364, 2012.

6. D. Basin, M. Harvan, F. Klaedtke, and E. Zălinescu. Monitoring data usage in
distributed systems. IEEE Trans. Software Eng., to appear.

7. D. Basin, F. Klaedtke, S. Müller, and B. Pfitzmann. Runtime monitoring of metric
first-order temporal properties. In Proceedings of the 28th Conference on Foun-
dations of Software Technology and Theoretical Computer Science (FSTTCS’08),
vol. 2 of Leibniz International Proceedings in Informatics (LIPIcs), pp. 49–60, 2008.

16 D. Basin, F. Klaedtke, S. Marinovic, and E. Zălinescu

8. D. Basin, F. Klaedtke, and E. Zălinescu. Algorithms for monitoring real-time prop-
erties. In Proceedings of the 2nd International Conference on Runtime Verification
(RV’11), vol. 7186 of LNCS, pp. 260–275, 2012.

9. A. Bauer, R. Goré, and A. Tiu. A first-order policy language for history-based
transaction monitoring. In Proceedings of the 6th International Colloquium on
Theoretical Aspects of Computing (ICTAC’09), vol. 5684 of LNCS, pp. 96–111, 2009.

10. D. Bianculli, C. Ghezzi, and P. S. Pietro. The tale of SOLOIST: A specification
language for service compositions interactions. In Proceedings of the 9th Interna-
tional Symposium on Formal Aspects of Component Software (FACS’12), vol. 7684
of LNCS, pp. 55–72, 2013.

11. J. Chomicki. Efficient checking of temporal integrity constraints using bounded
history encoding. ACM Trans. Database Syst., 20(2):149–186, 1995.

12. J. Chomicki, D. Toman, and M. H. Böhlen. Querying ATSQL databases with
temporal logic. ACM Trans. Database Syst., 26(2):145–178, 2001.

13. C. Colombo, A. Gauci, and G. J. Pace. LarvaStat: Monitoring of statistical proper-
ties. In Proceedings of the 1st International Conference on Runtime Verification
(RV’10), vol. 6418 of LNCS, pp. 480–484, 2010.

14. C. Cranor, T. Johnson, O. Spataschek, and V. Shkapenyuk. Gigascope: A stream
database for network applications. In Proceedings of the 2003 ACM SIGMOD
International Conference on Management of Data, pp. 647–651, 2003.

15. B. D’Angelo, S. Sankaranarayanan, C. Sánchez, W. Robinson, B. Finkbeiner, H. B.
Sipma, S. Mehrotra, and Z. Manna. LOLA: Runtime monitoring of synchronous
systems. In Proceedings of the 12th International Symposium on Temporal Repre-
sentation and Reasoning (TIME’05), pp. 166–174, 2005.

16. B. Finkbeiner, S. Sankaranarayanan, and H. Sipma. Collecting statistics over
runtime executions. Form. Method. Syst. Des., 27(3):253–274, 2005.

17. H. Garcia-Molina, J. D. Ullman, and J. Widom. Database systems: The complete
book. Pearson Education, 2009.

18. S. Hallé and R. Villemaire. Runtime enforcement of web service message contracts
with data. IEEE Trans. Serv. Comput., 5(2):192–206, 2012.

19. L. Hella, L. Libkin, J. Nurmonen, and L. Wong. Logics with aggregate operators.
J. ACM, 48(4):880–907, 2001.

20. R. Koymans. Specifying real-time properties with metric temporal logic. Real-Time
Syst., 2(4):255–299, 1990.

21. O. Owe. Partial logics reconsidered: A conservative approach. Form. Asp. Comput.,
5(3):208–223, 1993.

22. PostgreSQL Global Development Group. PostgreSQL, Version 9.1.4, 2012. http:

//www.postgresql.org/.

23. A. P. Sistla and O. Wolfson. Temporal conditions and integrity constraints in
active database systems. In Proceedings of the 1995 ACM SIGMOD International
Conference on Management of Data, pp. 269–280, 1995.

A Appendix

A.1 Translation to Extended Relational Algebra

We give here the equalities for the monitorable formulas of the kinds not given
in Section 3.3. Let (D̄, τ̄) be a temporal database and i ∈ N.

Monitoring with Aggregations 17

Kind (RIG∧¬). Let ψ ∧ ¬p(t1, . . . , tn) be a formula of kind (RIG∧¬). Then

Jψ ∧ ¬p(t1, . . . , tn)K(D̄,τ̄ ,i) = σ{¬p(θ(t1),...,θ(tn))}
(
JψK(D̄,τ̄ ,i)

)
,

where the substitution θ : fv(ψ)→ {z1, . . . , z|fv(ψ)|} is given by θ(x) = zj with j
the index of x in f̄v(ψ).

Kind (RIG′∧). Let ψ ∧ p(t1, . . . , tn) be a formula of kind (RIG′∧). Then

Jψ ∧ p(t1, . . . , tn)K(D̄,τ̄ ,i) =
⋃
d̄∈JψK(D̄,τ̄,i)Jp(vd̄(t̄))K(D̄,τ̄ ,i) ,

where vd̄ is a valuation with vd̄(x) = dj such that j is the index of x in f̄v(ψ),
for each x ∈ fv(ψ). For instance, let ϕ(x, y, z) = ψ(y, z) ∧ x ≺ y + z. Assume

that JψK(D̄,τ̄ ,i) = {(2, 0), (1, 2)}. Then JϕK(D̄,τ̄ ,i) = Jx ≺ 2 + 0K ∪ Jx ≺ 1 + 2K =
{(0), (1)} ∪ {(0), (1), (2)}.

Kind (GEN∨) Let ψ ∨ ψ′ be a formula of kind (GEN∨). Then

Jψ ∨ ψ′K(D̄,τ̄ ,i) = JψK(D̄,τ̄ ,i) ∪ Jψ′K(D̄,τ̄ ,i) .

Kind (GEN∃) Let ∃x. ψ be a formula of kind (GEN∃) with f̄v(ψ) = (y1, . . . , yk).
Then

J∃x. ψK(D̄,τ̄ ,i) = π̄
(
JψK(D̄,τ̄ ,i)

)
,

where ̄ = (1, . . . , k) if x 6∈ fv(ψ) and otherwise ̄ = (1, . . . , j − 1, j + 1, . . . , k)
with j such that x = yj .

Kind (GEN) Let I ψ be a formula of kind (GEN). Then

J I ψK(D̄,τ̄ ,i) =

{
JψK(D̄,τ̄ ,i−1) if i > 0 and τi − τi−1 ∈ I
∅ otherwise.

Kinds (GEN∧), (GEN∧¬), and (GENS¬). Let ψ∧ψ′, ψ∧¬ψ′, ¬ψSI ψ
′ be formulas

of kind (GEN∧), (GEN∧¬), and (GENS¬), respectively, with f̄v(ψ) = (y1, . . . , yn)
and f̄v(ψ′) = (y′1, . . . , y

′
`). Then

Jψ ∧ ψ′K(D̄,τ̄ ,i) = JψK(D̄,τ̄ ,i) ./s̄,C Jψ′K(D̄,τ̄ ,i) ,

Jψ ∧ ¬ψ′K(D̄,τ̄ ,i) = JψK(D̄,τ̄ ,i) �s̄,C Jψ′K(D̄,τ̄ ,i) ,

and

J¬ψ SI ψ
′K(D̄,τ̄ ,i) =

⋃
j: j≤i,τi−τj∈I

(
Jψ′K(D̄,τ̄ ,j) �s̄,C

(⋂
k: j<k≤i

JψK(D̄,τ̄ ,k)
))
,

where (a) s̄ = (1, . . . , n, n + i1, . . . , n + i`) with ij such that (i1, . . . , i`) is the
maximal subsequence of (1, . . . `) with y′ij /∈ fv(ψ), and (b) C = {zj ≈ zn+h |
yj = y′h, 1 ≤ j ≤ n, and 1 ≤ h ≤ `}.

These equalities follow directly from the semantics of MFOTLΩ formulas and
the definition of the extended relational algebra operators.

18 D. Basin, F. Klaedtke, S. Marinovic, and E. Zălinescu

proc init(ϕ)

for each ψ ∈ sf(ϕ) with ψ = ψ SI ψ
′ do

Lψ ← 〈〉
for each ψ ∈ sf(ϕ) with ψ = I ψ

′ do
Aψ ← ∅
τψ ← 0

proc eval(ϕ, i, τ , Γ)
case ϕ = p(x1, . . . , xn)

return Γp

case ϕ = ψ ∧ p(t1, . . . , tn) & kind rig(ϕ)
case ϕ = ψ ∧ ¬p(t1, . . . , tn) & kind rig(ϕ)
A ← eval(ψ, i, τ , Γ)
C ← get info rig(ϕ)
return σC(A)

case ϕ = ψ ∧ p(t1, . . . , tn) & kind rig’(ϕ)
A ← eval(ψ, i, τ , Γ)
k ← get info rig’(ϕ)
R ← ∅
for each ā ∈ A
R ← R ∪ reval(p, k, ā)

return R

case ϕ = ψ ∧ ¬ψ′

case ϕ = ψ ∧ ψ′

A ← eval(ψ, i, τ , Γ)

A′ ← eval(ψ′, i, τ , Γ)
C, s̄ ← get info and(ϕ)

if ϕ = ψ ∧ ψ′ then
return A ./C,s̄ B

else
return A�C,s̄ B

case ϕ = ψ ∨ ψ′

A ← eval(ψ, i, τ , Γ)

A′ ← eval(ψ′, i, τ , Γ)

return A ∪ A′

case ϕ = ∃x̄. ψ
A ← eval(ψ, i, τ , Γ)
s̄ ← get info exists(ϕ)
return πs̄(A)

case ϕ = [ωt z̄. ψ](y; ḡ)
A ← eval(ψ, i, τ , Γ)

H, t′ ← get info agg(ϕ)

return ωH
t′ (A)

case ϕ = I ψ
A′ ← Aϕ
Aϕ ← eval(ψ, i, τ , Γ)

τ ′ ← τϕ
τϕ ← τ

if i > 0 and (τ − τ ′) ∈ I then

return A′

else
return ∅

case ϕ = ¬ψ SI ψ
′

case ϕ = ψ SI ψ
′

A ← eval(ψ, i, τ , Γ)

A′ ← eval(ψ′, i, τ , Γ)

return eval since(ϕ, τ , A, A′)

Fig. 4. The init and eval procedures.

proc eval since(ϕ, τ , A, A′)
b ← interval right margin(ϕ)
drop old(Lϕ, b, τ)
C, s̄ ← get info and(ϕ)

case ϕ = ¬ψ SI ψ
′ then

f ← λB.B �s̄,C A
case ϕ = ψ SI ψ

′ then
f ← λB.B ./s̄,C A

g ← λ(κ,B).(κ, f(B))
Lϕ ← map(g, Lϕ)

Lϕ ← Lϕ ++ 〈(τ, A′)〉
return fold left(aux since, ∅, Lϕ)

proc drop old(L, b, τ)
case L = 〈〉

return 〈〉
case L = (κ,B) :: L′

if τ − κ ≥ b then

return drop old(L′, b, τ)
else return L

proc aux since(R, (κ,B))
if (τ − κ) ∈ I then return R ∪ B
else return R

Fig. 5. The eval since procedure.

A.2 Additional Algorithmic and Proof Details

The pseudo-code of the procedures init and eval is given in Figure 4. Our pseudo-
code is written in a functional-programming style with pattern matching. The
symbol 〈〉 denotes the empty sequence, ++ sequence concatenation, and h :: L
the sequence with head h and tail L.

We describe the eval procedure in the following in more detail. The cases
correspond to the rules defining the set of monitorable formulas. The pseudo-
code for the cases corresponding to non-temporal connectives follows closely the
equalities given in Section 3.3 and Appendix A.1. The predicates kind rig and
kind rig’ check whether the input formula ϕ is indeed of the intended kind. The
get info ∗ procedures return the parameters used by the corresponding relational

Monitoring with Aggregations 19

algebra operators. For instance, get info rig returns the singleton set consisting of
the constraint corresponding to the restrictions p(t̄) or ¬p(t̄). Similarly, get info rig’
returns the effective index corresponding to the only variable that appears
only in the right conjunct of ϕ. The procedure reval(p, k, ā) returns the set
{d ∈ D | (a1, . . . , ak−1, d, ak, . . . , an−1) ∈ pD}, for any ā ∈ Dn−1, where n is the
arity of the rigid predicate symbol p.

The case for the formulas of the form I ψ is straightforward. We recursively
evaluate the subformula ψ, we update the state, and we return the relation
resulting from the evaluation of ψ at the previous time point, provided that the
temporal constraint is satisfied. Otherwise we return the empty relation.

The case for the formulas ϕ of the form ψ SI ψ
′ or ¬ψ SI ψ

′ is more involved.
It is mainly handled by the sub-procedure eval since, given in Figure 5. The
notation λx.f(x) denotes a function f . For the clarity of the presentation, we
assume that ϕ = ψSI ψ

′, the other case being similar. The evaluation of ϕ reflects
the logical equivalence ψ SI ψ

′ ≡
∨
d∈I ψ S[d,d] ψ

′. Note that we abuse notation
here, as the right-hand side is not necessarily a formula, because I may be infinite.
The function interval right margin(ϕ) returns b, where I = [a, b) for some a ∈ N
and b ∈ N ∪ {∞}.

The state at time point i, that is, after the procedure eval(ϕ, i, τi, Γi) has
been executed, consists of the list Lϕ of tuples (τj , R

i
j) ordered with j ascending,

where j is such that j ≤ i and τi − τj < b and where

Rij := Jψ′K(D̄,τ̄ ,j) ./s̄,C
(⋂

j<k≤iJψK(D̄,τ̄ ,k)
)
,

with s̄ and C defined as in Section 3.3. We have

JϕK(D̄,τ̄ ,i) =
⋃
j≤i,τi−τj∈I R

i
j .

The computation of this union is performed in the last line of the eval since
procedure. Note that, in general, not all the relations Rij in the list Lϕ are needed

for the evaluation of ϕ at time point i. However, the relations Rij with j such
that τi − τj 6∈ I, that is τi − τj < a, are stored for the evaluation of ϕ at future
time points i′ > i.

We now explain how the state is updated at time point i from the state at time
point i− 1. We first drop from the list Lϕ the tuples that are not longer relevant.
More precisely, we drop the tuples that have as first component a timestamp τj
for which the distance to the current timestamp τi is too large with respect to
the right margin of I. This is done by the procedure drop old. Next, the state is
updated according to the logical equivalence α S β ≡ (α ∧ (α S β)) ∨ β. This is
done in two steps. First, we update each element of Lϕ so that the tuples in the
stored relations also satisfy ψ at the current time point i. This step corresponds to
the conjunction in the above equivalence and it is performed by the map function.
The update is based on the equality Rij = Ri−1

j ./s̄,C JψK(D̄,τ̄ ,i). Note that the
join distributes over the intersection. The second step, which corresponds to
the disjunction in the above equivalence, consists of appending the tuple (τi, R

i
i)

to Lϕ. Note that Rii = Jψ′K(D̄,τ̄ ,i).

Finally, we note that the proof of Theorem 6 follows the above presentation of
the algorithm, and is done by induction using the lexicographic ordering on tuples

20 D. Basin, F. Klaedtke, S. Marinovic, and E. Zălinescu

(i, |ϕ|), where i ∈ N and |ϕ| denotes ϕ’s size, defined as expected. Furthermore,
the proof of Lemma 5 is straightforward. It follows by induction on the formula
structure and from the equalities given in Section 3.3, as each relational algebra
operator produces a finite relation when applied to finite relations.

