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Abstract. When monitoring system behavior to check compliance
against a given policy, one is sometimes confronted with incomplete
knowledge about system events. In IT systems, such incompleteness may
arise from logging infrastructure failures and corrupted log files, or when
the logs produced by different system components disagree on whether
actions took place. In this paper, we present a policy language with a
three-valued semantics that allows one to explicitly reason about incom-
plete knowledge and handle disagreements. Furthermore, we present a
monitoring algorithm for an expressive fragment of our policy language.
We illustrate through examples how our approach extends compliance
monitoring to systems with logging failures and disagreements.

1 Introduction

Laws, inter-business contracts, security policies, and similar normative regula-
tions define compliance requirements that IT systems need to enforce. For exam-
ple, IT systems in US hospitals must enforce HIPAA [1], which regulates the dis-
semination of medical records and the subsequent obligations that medical staff
are expected to fulfill. For banks, separation-of-duty constraints should reduce
the risk of fraud [2]. Data-usage contracts between different businesses regulate
how sensitive documents are exchanged and subsequently disposed. Checking
whether implemented IT systems comply with a body of regulations or policies
is a problem of growing importance, since non-compliant behavior can lead to
serious security breaches, monetary penalties, and the erosion of stakeholder’s
internal standards and commitments.

Runtime-verification techniques [4,5,19,22–24] offer a promising approach for
automated compliance checking of IT systems. These techniques require logging
mechanisms for recording policy-relevant system actions (represented as events),
a suitable language for expressing policies and unambiguously defining permissi-
ble and prohibited system behavior, and a monitoring algorithm for determining
and reporting policy violations.

In complex IT systems, which are usually composed of numerous interact-
ing subsystems, the problem of incomplete knowledge about performed actions
arises. In particular, logs may contain gaps due to corrupted files, logging-
mechanism crashes, network failures, and so forth. Furthermore, when multiple
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logs are required to verify compliant behavior, they may disagree whether cer-
tain actions took place. For example, sharing a sensitive document between two
parties may require the recipient to fulfill certain obligations. Thus, when ana-
lyzing the recipient’s and the sender’s logs against this policy, we need to treat
all disagreements over the transfer of the document as incomplete knowledge,
since favoring one log over the other may result in missed violations or false
positives. Most runtime monitors, however, do not distinguish between a gap
and a non-occurrence of an event. Thus applying them to incomplete logs can
yield wrong results. For example, consider a policy like a subject can access a
document if the subject is not blacklisted. If it is unknown whether a subject is
blacklisted, then the subject is incorrectly reported as compliant.

In this paper, we present a policy language and an accompanying monitoring
algorithm that accounts for possibly incomplete and disagreeing logs. At the core
of our approach is a three-valued truth space [25]. In addition to the classical
Boolean values t (true) and f (false), which respectively represent the occurrence
and non-occurrence of an event, we represent a knowledge gap about an event’s
occurrence by the third truth value ⊥. Furthermore, when evaluating policies,
their interpretation is as follows: the Boolean values t and f correspond to policy
compliance and policy violation and ⊥ represents an inconclusive answer, which
can be due to knowledge gaps of event occurrences or disagreeing events.

Our policy language is a variant of a first-order temporal logic [7, 17]. First-
order temporal logics have been a good fit in various case studies for formally
expressing and monitoring compliance policies, see, e.g., [5,23]. Special care must
be taken when defining the semantics of a logic with additional truth values be-
sides the classical Boolean values. In particular, a vital requirement for monitor-
ing incomplete and disagreeing logs is to ensure that reported violations cannot
be retracted if or when the log is eventually completed, for example, by recover-
ing lost files. Otherwise, these results are of no value. More precisely, formalized
policies must be monotonic with respect to the underlying partial ordering on
knowledge, i.e., ⊥ is less than f and t, and f and t are incomparable [9, 10, 20].
Our policy language guarantees this monotonicity requirement. Furthermore,
the third truth value ⊥ is a first-class citizen at the object-level of our policy
language: the classical logical connectives are extended to the three-valued truth
space and there are specific connectives that guarantee expressive-completeness
with respect to the set of knowledge-monotonic operators. Such monotonic oper-
ators are needed in our application context to express at the logic’s object-level
how disagreements between logged events should be resolved.

The monitoring algorithm presented in this paper for this three-valued set-
ting is inspired by the one from [6, 7] for the standard Boolean setting. It iter-
atively scans the logged actions and soundly reports violations, i.e., whenever
a violation is reported, it indeed is a policy violation. It also soundly reports
potential violations, i.e., depending on how the knowledge gaps are filled, these
might turn out to be real policy violations. However, our monitoring algorithm
is not complete in the sense that some policy violations might not be reported.
This limitation stems from the expressivity of our policy language over infinite
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domains. Importantly, however, for an expressive fragment, which retains all the
language’s connectives but limits the usage of free variables within a formula,
we show that our monitoring algorithm guarantees completeness.

In summary, our main contribution is a solution to the problem of checking
policy compliance in the presence of logging failures and disagreements between
logged events. Our solution comprises a policy language and a monitoring al-
gorithm. The policy language supports reasoning with incomplete knowledge.
The monitoring algorithm may be used either off-line (for audit) or on-line (at
runtime), and reports all policy violations and potential policy violations for
an expressive fragment of our language. Although several features of our solu-
tion are present in related work—see Section 6 for a comparison—combining
them to solve the stated problem is novel. In particular, our language is the
first compliance language to consider three truth values at the object level, and
our monitoring algorithm is the first algorithm to guarantee both soundness and
completeness in a three-valued first-order setting.

The remainder of the paper is structured as follows. In Section 2, we describe
our abstract logging setting. In Section 3, we introduce our policy language. In
Section 4, we analyze our policy language with respect to monotonicity and
expressiveness. In Section 5, we present our monitoring algorithm. Finally, in
Sections 6 and 7, we discuss related work and draw conclusions. Additional
technical details are given in the appendix.

2 Logging Knowledge Base

We abstract from a particular physical log file structure, and view a logging
infrastructure as producing a single logging knowledge base, which is evaluated
against a compliance policy. A logging knowledge base uses the three-valued
truth space 3 := {t, f,⊥} to explicitly distinguish between what is known and
unknown regarding event occurrences.

To formally define a logging knowledge base over 3, we introduce a logging
signature S, which is a tuple (C,R, ι), where C is a finite set of constant symbols,
R is a finite set of predicates disjoint from C, and the function ι : R→ N assigns
each predicate r ∈ R an arity ι(r). Each predicate r denotes an action, and its
arguments ā denote the action’s parameters, r(ā) denoting an event. A logging
structure D over the signature S consists of a domain |D| 6= ∅ and interpretations
cD ∈ |D|, and rDt ⊆ |D|ι(r) and rDf ⊆ |D|ι(r), for each c ∈ C and r ∈ R, such
that rDt and rDf are disjoint. We let rD⊥ := |D|ι(r) \(rDt ∪rDf ). We define a logging
knowledge base over the signature S as a sequence D̄ = (D0,D1, . . . ) of logging
structures over S, with the following properties:

1. D̄ has constant domains, that is, |Di| = |Di+1|, for all i ≥ 0. We denote the
domain by |D̄|.

2. Each constant symbol c ∈ C has a rigid interpretation, that is, cDi = cDi+1 ,
for all i ≥ 0. We denote c’s interpretation by cD̄.

We call the indices of the elements in the sequence D̄ time points and denote
them with the Greek letter τ . We interpret a logging knowledge base D̄ as follows:



4 D. Basin et al.

– If ā ∈ rDτ
t , then the event r(ā) happened at the time point τ .

– If ā ∈ rDτ

f , then the event r(ā) did not happen at the time point τ .

– If ā ∈ rDτ

⊥ , then D̄ contains a knowledge gap at the time point τ with regard
to whether the event r(ā) happened at τ . In practice, a gap is determined
by additional information about logging failures.

Thus a logging knowledge base states explicitly whether logging information is
complete at a time point τ . In case of incomplete knowledge, we have rDτ

⊥ 6= ∅.
We extend the classical logging assumption, whereby there are only finitely

many events happening at each time point, to a three-valued setting.

Assumption 1. Let D̄ be a logging knowledge base over the signature (C,R, ι).
For each r ∈ R and τ ∈ N, either rDτ

t is finite and rDτ

⊥ = ∅, or rDτ

⊥ = |D̄|ι(r).

This assumption formalizes that as long as a particular logging process is run-
ning, it correctly records all events. If the process crashes, then nothing is
recorded until the process is restarted. In line with our model of a logging knowl-
edge base, this means that at each time point τ and for each relation r either
rDτ

⊥ = ∅ or rDτ

⊥ = |D̄|ι(r).
Note that a logging knowledge base does not differentiate between multiple

instances of the same event happening at the same time point. To do so, one
would have to ensure that either the time points’ granularity is sufficient to
render this scenario impossible, or to add unique artificial parameters (such as
counters) for each such event instance.

3 Compliance Policy Language

In this section, we define our policy language L3 and illustrate with examples how
policies are formalized and evaluated in the presence of incomplete knowledge.
We also show how disagreements can be handled with L3’s operators.

Syntax and semantics. In the following, let S = (C,R, ι) be a signature and
let V be a countably infinite set of variables, where V ∩ (C ∪ R) = ∅. Also, let
I be the set of nonempty intervals over N. We often write an interval in I as
[b, b′) := {a ∈ N | b ≤ a < b′}, where b ∈ N, b′ ∈ N ∪ {∞}, and b < b′.

Definition 2. The L3 formulas over the signature S are given by the grammar

ϕ ::= f | r(t1, . . . , tι(r)) | ¬ϕ | ϕ ∧ ϕ | ϕ⊗ ϕ | ∀x. ϕ | ϕ SI ϕ | ϕ UI ϕ ,

where r ranges over the elements in R, the tis over the elements in C ∪ V , x
over the elements in V , and I over the elements in I.

Before formally defining the evaluation semantics, Figure 1(a) shows L3’s in-
terpretation of the logical connectives over 3. We mildly abuse notation and
use same symbols to denote logical connectives and their corresponding three-
valued operators. The classical connectives ¬ and ∧ retain their interpretation
when restricted to the Boolean values t and f. The ⊗ connective does not have
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¬
t f
f t
⊥ ⊥

∧ t f ⊥
t t f ⊥
f f f f
⊥ ⊥ f ⊥

⊗ t f ⊥
t t ⊥ ⊥
f ⊥ f ⊥
⊥ ⊥ ⊥ ⊥

(a) primitive operators

∨ t f ⊥
t t t t
f t f ⊥
⊥ t ⊥ ⊥

→ t f ⊥
t t f ⊥
f t t t
⊥ t ⊥ ⊥

(b) derived operators

Fig. 1. Truth tables for three-valued operators (strong Kleene logic [25]).

a classical counterpart. Intuitively, it represents a consensus on how much truth
can be agreed upon and is useful for combining different sources of knowledge
when neither t nor f should be preferred over the other.

In the following, a valuation is a mapping θ : V → |D̄|. For a valuation θ,
the variable vector x̄ = (x1, . . . , xn), and d̄ = (d1, . . . , dn) ∈ |D̄|n, θ[x̄ 7→ d̄]
is the valuation mapping xi to di, for i ∈ {1, . . . , n}, and the other variables’
valuation is unaltered. We abuse notation by applying a valuation θ also to
constant symbols c ∈ C, with θ(c) := cD̄.

Definition 3. Let D̄ = (D0,D1, . . . ) be a temporal structure over the signa-
ture S, θ a valuation, and τ ∈ N a time stamp. We inductively define the map-
ping J·KD̄,θ,τ from formulas over S to values in 3 as follows:

JfKD̄,θ,τ := f

Jr(t1, . . . , tι(r))KD̄,θ,τ := v if
(
θ(t1), . . . , θ(tι(r))

)
∈ rDτ

v , where v ∈ 3

J¬ϕKD̄,θ,τ := ¬JϕKD̄,θ,τ

Jϕ1 ∧ ϕ2KD̄,θ,τ := Jϕ1KD̄,θ,τ ∧ Jϕ2KD̄,θ,τ

Jϕ1 ⊗ ϕ2KD̄,θ,τ := Jϕ1KD̄,θ,τ ⊗ Jϕ2KD̄,θ,τ

J∀x. ϕKD̄,θ,τ :=
∧
d∈|D̄|JϕKD̄,θ[x 7→d],τ

Jϕ1 SI ϕ2KD̄,θ,τ :=
∨
τ−τ ′∈I

(
Jϕ2KD̄,θ,τ

′ ∧
∧
τ ′′∈(τ ′,τ ]Jϕ1KD̄,θ,τ

′′)
Jϕ1 UI ϕ2KD̄,θ,τ :=

∨
τ ′−τ∈I

(
Jϕ2KD̄,θ,τ

′ ∧
∧
τ ′′∈[τ,τ ′)Jϕ1KD̄,θ,τ

′′)
In this definition,

∧
and

∨
are respectively the (possibly infinitary) meet and

join over the ordering f ≤ ⊥ ≤ t. Note that they match the corresponding
operators in Figure 1. The temporal connectives are accompanied by intervals
and a formula of the form ϕ SI ψ or ϕ UI ψ is only satisfied in D̄ at the time
point τ if it is satisfied within the bounds given by the interval I of the respective
temporal operator. We may omit the interval I if it is [0,∞).

We introduce the following additional syntactic sugar. We write t for ¬f,
ϕ∨ψ for ¬(¬ϕ∧¬ψ), ϕ→ ψ for ¬ϕ∨ψ, and ∃x. ϕ for ¬∀x.¬ϕ. For a vector of
variables x̄ = (x1, x2, . . . , xn), with n ≥ 0, we write ∀x̄. ϕ for ∀x1.∀x2 . . . ∀xn. ϕ.
Moreover, we define the temporal connectives �I ψ and �I ψ as tSIψ and tUIψ,
respectively. Intuitively, �[b,b′) ψ is t at τ , if ψ is t at least at one past time point
in the time interval [max(0, τ − b′ − 1), τ − b]. If ψ is f at all these time points,
then �[b,b′) ψ is f at τ . The presence of at least one ⊥ and no t results in the
truth value ⊥ for �[b,b′) ψ at τ , since depending on how the incompleteness is
resolved either outcome (t or f) is possible. The interpretation of �[b,b′) ψ is sim-
ilar for future time points. The dual temporal connectives are �I ψ := ¬ �I ¬ψ
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and �I ψ := ¬ �I ¬ψ. We use standard conventions concerning the binding
strength of connectives to omit parentheses. For instance, temporal connectives
bind weaker than the other connectives. Furthermore, → binds weaker than ∨,
which in turn binds weaker than ∧ and ⊗.

Finally, we introduce some additional notation. Given a formula ϕ, we denote
by fv(ϕ) and f̄v(ϕ) the set and respectively the vector of free variables of ϕ.
We call a formula ϕ closed if fv(ϕ) = ∅. For a formula ϕ with f̄v(ϕ) = x̄ =
(x1, . . . , xn), we define the set of elements of |D̄|n for which ϕ evaluates to v ∈ 3
at a time point τ ∈ N as

JϕKD̄,τv :=
{
d̄ ∈ |D̄|n

∣∣ JϕKD̄,θ[x̄ 7→d̄],τ = v, for some valuation θ
}
.

Compliance policies. Regardless of the policy language, compliance policies
are usually given as a set of regulative normative statements (norms), which
expess what an agent is obliged to do given some actions it has performed, or
which conditions need to hold (or to have held) for an agent to be permitted
to execute some actions. Norms are meant to be applied at all times within
a system, and it has also been argued [11, 12] that deadlines are of essential
importance in regulating temporal norms. Following these notions, compliance
policies in L3 are formalized as follows:

Definition 4. A compliance policy represented in L3 is a closed formula of the
form �∀x̄. ψ, where each future temporal connective in ψ is bounded.

The outermost unbounded � connective specifies that a policy must be fulfilled
at each time point. Bounded inner future temporal connectives guarantee that
each obligation has a deadline.

We map the truth values onto policy evaluations as follows: t/f denotes that
a policy is satisfied/violated, and ⊥ denotes that it is unknown whether a policy
is satisfied or violated. Furthermore, for a compliance policy �∀x̄. ψ, it is often
useful to report additional information regarding its violations, which is given

by the aforementioned sets JψKD̄,τf , JψKD̄,τ⊥ , and JψKD̄,τt , for a time point τ . Their
interpretation is as follows:

– The elements in JψKD̄,τf witness a policy violation at time point τ .

– For elements in JψKD̄,τ⊥ , it is unknown whether they violate the policy at
time point τ . They are potential violations.

– The elements in JψKD̄,τt satisfy the policy at time point τ .

In Section 4, we show that all reported violations and satisfactions at τ persist
regardless of how incompleteness is resolved.

Examples. We begin with the following security policy requiring that if a
request is serviced at a web-server then it must not have been denied by a firewall.
In practice, this policy would be a part of a larger specification. However, this
excerpt is enough to illustrate how L3’s semantics deal with logging failures. We
formalize this policy as �∀r. ψ1, where

ψ1 := service(r)→ ¬ �[0,4) deny(r) .
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When there are no failures, then any serviced request that has previously been

denied violates the policy, and is contained in Jψ1K
D̄,τ
f . If the web-server’s logger

crashes at a time point τ , i.e. serviceDτ

⊥ = |D̄|, then all requests that had been
denied at the previous four time points by the firewall potentially violate the

policy, i.e. Jψ1K
D̄,τ
⊥ =

⋃
τ ′ deny

Dτ′
t , where τ − 4 < τ ′ ≤ τ . If, however, there are

no denied requests in the designated interval, the set Jψ1K
D̄,τ
⊥ is empty and the

policy is therefore satisfied. This shows that not all logging failures must result
in potential violations. We note that if all unknown events are treated as not to
have happened, then the policy would be wrongly reported as satisfied.

For our second example, we focus on formalizing inter-business contracts.
These contracts often specify obligations that the signing parties must enforce
regarding the treatment of sensitive documents used during the collaborations.
To ensure that each party complies with its obligations, a policy must specify how
events are combined from different logs belonging to different stakeholders. For
example, when two companies exchange sensitive information, the contract might
say that all received documents must be paid for within 5 days. A straightforward,
but naive, formalization of this policy is �∀d. ψ2, where

ψ2 := receive(d)→ �[0,6) pay(d) .

The receive event is taken from the receiving stakeholder’s log. This specification
assumes that the receiving stakeholder is honest, since if its IT system does
not log a received document, the stakeholder’s behavior is trivially compliant
according to the given specification. We can attempt to expand the formalization
to include the sender’s send event (from the sender’s log) as follows

ψ′2 := send(d) ∨ receive(d)→ �[0,6) pay(d) .

In this case, the receiver is obliged to pay if either it receives a document, or the
sender says that it has sent the document. However, this is also unsatisfactory, as
the sender can cheat and insert fictitious send events causing policy violations.
In L3 we can combine the logs with the ⊗ operator and obtain1

ψ′′2 := send(d)⊗ receive(d)→ �[0,6) pay(d) .

In this case, all disagreements at some τ about payments are in Jψ′′2 KD̄,τ⊥ , since
⊥ → f is ⊥. The specification no longer favors one stakeholder over the other.
This has the benefit of not requiring additional pre-processing of logs, which
would need its own language and semantics. We remark that the given spec-
ification cannot be directly expressed in existing compliance policy languages
because ⊥ does not exist at the object level in those languages.

1 We assume that the time granularity is coarse enough to allow receive and send
happen at the same time point. If a receive can happen with a delay of, e.g., at most
one time unit after a send , a more elaborate formalization is required:

�∀d.
(
send(d) ∧ (send(d)⊗ �[0,2) receive(d))→ �[0,6) pay(d)

)
∧(

receive(d) ∧ (receive(d)⊗ �[0,2) send(d))→ �[0,5) pay(d)
)
.
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For our third example, we consider a form of separation-of-duty constraint [2]:
a subject s may access an object o if it has not previously accessed some object
o′, where o′’s dataset conflicts with o’s. One possible formalization of this re-
quirement is

�∀s.∀o.∀d. ∀o′.∀d′. access(s, o, d) ∧ ( � access(s, o′, d′))→ ¬conflict(d, d′) .

In this example, access(s, o, d) records that s accessed o in a dataset d. The pred-
icate conflict does not correspond to an event; it describes a property of a system
state. When having the events conflicts and conflictf at hand, which mark the
start point and the end point of two datasets being conflicting, the formula
¬conflictf (d, d′) S conflicts(d, d

′) can be used to describe this state property. For
the sake of brevity, we assume that an object belongs to at most one dataset. In
case s accessed an o, and it is unknown whether s had any other accesses, then
if there exists d′ in conflict with d, such an access is a potential violation.

Notice that the above formalization only considers whether the data items
are in conflict at the time point when o is accessed. This means that even if the
datasets are in conflict just before the access, the policy is not violated. With
respect to the separation-of-duty requirement, one may say that this behavior is
in a compliance gray area. In L3, we define the following temporal connective CI
that treats such gray areas as ⊥, signaling that it is unclear whether the policy
is satisfied or violated:

CIψ := ( �I ψ)⊗ (�I ψ) .

Intuitively, CIψ insists that the truth value of ψ does not change in the given
past interval I. Any change results in ⊥, and otherwise the truth value is not
changed. We can define a similar temporal connective using � and � to mark a
future gray zone. We make use of CI by changing the original formalization to

�∀s.∀o.∀d.∀o′.∀d′. access(s, o, d) ∧ ( � access(s, o′, d′))→ C[0,2)¬conflict(d, d′) ,

where [0, 2) is a two-day gray zone interval.

4 Monotonicity and Compositional Expressiveness

A logging knowledge base may grow in knowledge by resolving missing informa-
tion about the occurrences and non-occurrences of events, i.e., moving elements
from rDτ

⊥ to the relations rDτ
t or rDτ

f .

Definition 5. An extension of a logging knowledge base D̄ = (D0,D1, . . . ) over
S = (C,R, ι) is a logging knowledge base D̄? = (D?

0,D
?
1, . . . ) over S with |D̄?| =

|D̄|, cD̄ = cD̄
?

for all c ∈ C, and rDτ

b ⊆ rD
?
τ

b for all b ∈ {t, f}, τ ∈ N, and r ∈ R.

Under Assumption 1, an extension either does not alter a relation rDτ

⊥ or empties

rDτ

⊥ by moving finitely many elements to rDτ
t and the remaining elements to rDτ

f .
We say that a policy specification is monotonic if the t and f evaluations,

over a given logging knowledge base, can never be retracted for any of its ex-
tensions. In other words, regardless of how the logging base’s incompleteness is
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resolved, the policy violations and satisfactions persist. Monotonicity is a vital
requirement for a compliance policy, because monotonic specifications prevent a
non-compliant behavior from being turned into a compliant behavior by holding
back information. In the following, we establish that for L3 all policy specifica-
tions are monotonic by construction. To formalize monotonicity, we first order
the truth values with a partial ordering ≤k as follows: ⊥ ≤k f, ⊥ ≤k t, and f
and t are incomparable. In short, f and t contain more knowledge than ⊥. The
following theorem states that the evaluations of L3’s formulas do not reduce the
amount of knowledge, when incompleteness is resolved in a logging knowledge
base’s extension.

Theorem 6. Given an L3 formula ψ, a valuation θ, and a logging knowledge
base D̄, then JψKD̄,θ,τ ≤k JψKD̄

?,θ,τ , for all extensions D̄? of D̄ and all τ ∈ N.

Proof. From the definition of a logging knowledge base’s extension, and by struc-
tural induction using the fact that all of L3 connectives’ corresponding operators
are ≤k-monotonic, including the infinitary operators for temporal connectives.

As a corollary, given a compliance policy �∀x̄. ψ, a logging knowledge base D̄,
a valuation θ, and a time point τ , if JψKD̄,θ,τ is t or f, then this evaluation

persists at τ , for all extensions D̄?. Moreover, we have JψKD̄
?,τ

f ⊇ JψKD̄,τf and

JψKD̄
?,τ

t ⊇ JψKD̄,τt , for all extensions D̄? and τ ∈ N. Therefore, even with incom-

plete knowledge it is sound to report the elements in JψKD̄,τf as policy violations
when monitoring D̄.

Given that all L3 policies are monotonic, an important question is: Can all
monotonic compositional operators for combining events from different logs be
defined as syntactic sugar in L3? If the answer is positive, then L3 does not
need to be further extended. An n-ary three-valued operator O : 3n → 3 is
representable using a set C of operators if O can be written as the functional
composition of operators in C. We utilize the following theorem to show that any
monotonic operator can be expressed in L3.

Theorem 7 (Blamey [10]). For any n ∈ N, every ≤k-monotonic n-ary opera-
tor over the 3 truth space is representable using the set {f,¬,∧,⊗} of operators.

Blamey’s proof is constructive and yields a function that given a monotonic
operator produces an expression showing how to compose the operators f, ¬, ∧,
and ⊗. As L3 has all the corresponding connectives, such an expression can
be seen as a formula in L3. Hence L3 can express any n-ary three-valued ≤k-
monotonic operator, including those for combining different logs.

5 Monitoring Algorithm

The input of our algorithm consists of a compliance policy �∀x̄. ϕ and a logging
knowledge base D̄ over a signature S = (C,R, ι). The algorithm iteratively pro-
cesses the logging structures Dτ , for each τ ∈ N. To process a structure Dτ for
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formulas with bounded future operators, the algorithm might need to process
structures Dτ ′ with τ ′ > τ as well. When run in the on-line mode, the algo-
rithm waits until such structures become available. For the rest of this section,
we fix the signature S, the logging knowledge base D̄, and the policy � ∀x̄.ϕ.
Furthermore, we assume that the domain |D̄| is infinite.

At each iteration τ , the algorithm outputs a triple (Sτt , S
τ
f , S

τ
⊥), where for

each v ∈ 3, the element Sτv is either Fin V , CoFin, or None, where Fin, CoFin,
and None are labels standing respectively for “finite set”, “cofinite set”, and
“inconclusive”, and V is a finite set.

Our algorithm is sound, i.e. if Sτv = Fin V then V = JϕKD̄,τv , for all v ∈ 3 and
τ ∈ N. However, our algorithm is not complete, where completeness means that
the algorithm always returns a value from which one can deduce all compliant

tuples (JϕKD̄,τt ), all violations (JϕKD̄,τf ), and all potential violations (JϕKD̄,τ⊥ ).
Note that when ϕ has free variables, all these sets cannot be explicitly output, as
at least one is infinite. However, if two sets are finite, then the third one is cofinite,
and it is thus implicitly determined. Therefore our algorithm is complete when at
least two of the elements of the returned triples are of the form Fin V . When ϕ is
closed, completeness means that at each iteration a truth value is returned, as the
triples (Fin {()}, Fin ∅, Fin ∅), (Fin ∅, Fin {()}, Fin ∅), and (Fin ∅, Fin ∅, Fin {()})
correspond respectively with the truth values t, f, and ⊥.

Incompleteness of our algorithm is rooted in the standard issues that arise
when dealing with infinite domains [3], which L3 inherits from first-order queries
in the Boolean setting. Consider for instance the formula ψ = p(x)∨q(y) with x 6=
y and assume that pDτ

t and qDτ
t are finite and non-empty, and pDτ

⊥ = qDτ

⊥ = ∅,
for some τ ∈ N. Then JψKD̄,τt and JψKD̄,τf are neither finite nor cofinite, hence
our algorithm cannot deal with it: at τ , it returns (None, None, Fin ∅). Formulas
such as ψ are problematic in the Boolean setting, since their evaluation results
are domain-dependent [3]. In the three-valued setting, there are similar issues,
even for formulas that are non-problematic in the Boolean setting. Consider the
formula ψ′ = p(x)∧q(y) with pDτ

t finite and non-empty and qDτ

⊥ = |D̄|, for some

τ ∈ N. Then both Jψ′KD̄,τt and Jψ′KD̄,τ⊥ are infinite and domain-dependent.
Even though the algorithm is incomplete on L3, we obtain completeness for

a fragment of L3, presented at the end of this section.

Algorithmic overview. We briefly describe the main ideas underlying the
algorithm. Due to space constraints, a detailed presentation is deferred to Ap-
pendix A.

The algorithm’s core is the procedure eval, whose arguments are a formula ψ,
a finite set Γ = {(r, Er) | r ∈ R} representing the relations of the logging struc-
ture Dτ , and a time point τ . The values Er, i.e., the second component of
elements in Γ , as well as the return value of the eval procedure, are triples of
the form (St, Sf , S⊥), where each Sv with v ∈ 3 is either Fin V , CoFin, or None.
Such values satisfy (either by Assumption 1 or by construction) the following
invariant with regard to some formula γ and time point τ : if Sv = Fin V , then
JγKD̄,τv is a finite subset of |D̄||fv(γ)| and V = JγKD̄,τv ; if Sv = CoFin, then JγKD̄,τv
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proc init(ϕ)

for each ψ ∈ sf(ϕ) with ψ = ψ SI ψ
′ do

Lψ ← 〈〉

proc eval(ϕ, Γ , τ)
case ϕ = f

return (Fin ∅, Fin {()}, Fin ∅)

case ϕ = r(t̄)
Er ← get value(r, Γ )
return eval predicate(ϕ, Er)

case ϕ = ¬ψ
return eval neg(eval(ψ, Γ , τ))

case ϕ = ψ ∧ ψ′

Eψ ← (ψ, eval(ψ, Γ , τ))

Eψ′ ← (ψ′, eval(ψ′, Γ , τ))

return eval and(Eψ, Eψ′ )

case ϕ = ψ ⊗ ψ′

Eψ ← (ψ, eval(ψ, Γ , τ))

Eψ′ ← (ψ′, eval(ψ′, Γ , τ))

return eval times(Eψ, Eψ′ )

case ϕ = ∀x̄.ψ
Eψ ← eval(ψ, Γ , τ)
return eval forall(x̄, ψ, Eψ)

case ϕ = ψ SI ψ
′

Eψ ← eval(ψ, Γ , τ)

Eψ′ ← eval(ψ′, Γ , τ)

return eval since(ϕ, τ , Eψ, Eψ′ )

Fig. 2. The init and eval procedures.

is a cofinite subset of |D̄||fv(γ)| and the other two elements of the triple are of
the form Sv′ = Fin V ′, for v′ ∈ 3\{v}. This invariant is denoted as Inv(γ, τ, E),
where E = (St, Sf , S⊥). By Assumption 1, the values Er from the set Γ sat-
isfy the invariant Inv(r(x̄), τ, Er), where x̄ is a sequence of distinct variables of
length ι(r). We prove in Theorem 9 that the return value E of eval(ϕ, Γ , τ) satis-
fies the invariant Inv(ϕ, τ, E), thus establishing the correctness of our algorithm.

The eval procedure, given in Figure 2, is called recursively over ψ’s sub-
formulas. The procedure performs a case distinction on all possible top-level
connectives. Some of the sub-procedures used by eval are in Figure 3, while the
remaining the pseudo-code is given in the Appendix.

Next, we sketch each case of the eval procedure. The simplest case is when ψ is
the truth value f. In this case we simply return the triple (Fin ∅, Fin {()}, Fin ∅).
When ψ is of the form r(t̄) for some predicate r, we first retrieve the value Er
associated with r from the set Γ of pairs. We then retrieve the sets Jr(t̄)KD̄,τv

from rDτ
v , for each v ∈ 3, by filtering the relations rDτ

v according to the implicit
constraints present in the sequence t̄ of constants and variables.

To evaluate formulas ψ whose top-most connective is a non-temporal connec-
tive, we first evaluate the direct sub-formulas of ψ and then compute, whenever
possible, the sets JψKD̄,τv for v ∈ 3, using the equalities given in Lemma 8 be-
low. These equalities extend the standard equalities that express the relationship
between first-order logic and relational algebra, from the Boolean to the three-
valued setting. They use the relational algebra operators projection and join [3].
We refer to the Appendix A for their formal definitions, and here we proceed
with their intuitive description. As the temporal aspect is not relevant in this
case of eval, we also fix the time point τ and drop the superscript in JψKD̄,τv , i.e.,
we just write JψKv, for v ∈ 3 and a formula ψ.

Given a formula ψ and a truth value v ∈ 3, we can see the set JψKv as a
named relation, where columns in JψKv are named by the free variables in f̄v(ψ).
Given a free variable x of ψ, the projection of the tuples in the relation JψKv
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proc eval and(Hψ , Hψ′ )

Rt ← join(Hψ , Hψ′ , t, t)

Rf ← union(Hψ , Hψ′ , f, f)

R⊥ ← eval and⊥(Hψ, Hψ′ )

return update cofin(ψ ∧ ψ′, Rt, Rf , R⊥)

proc eval and⊥(Hψ, Hψ′ )

R1 ← join(Hψ , Hψ′ , t, ⊥)

R2 ← join(Hψ , Hψ′ , ⊥, t)

R3 ← join(Hψ , Hψ′ , ⊥, ⊥)

case R1, R2, R3 = Fin V1, Fin V2, Fin V3

return Fin (V1 ∪ V2 ∪ V3)
otherwise

return None

proc eval neg(St, Sf , S⊥)
return (Sf , St, S⊥)

proc eval forall(x̄, ψ, (St, Sf , S⊥))
(Rt, Rf , R⊥) ← (None, None, None)
case St = Fin T
Rt ← Fin ∅
case S⊥ = Fin U
R⊥ ← Fin ∅

case Sf = Fin F
s̄← get positions(x̄, ψ)
Rf ← Fin (πs̄(F ))
case S⊥ = Fin U
R⊥ ← Fin (πs̄(U) \ πs̄(F ))

return update cofin(∀x̄.ψ, Rt, Rf , R⊥)

proc eval times(Hψ, Hψ′ )

Rt ← join(Hψ, Hψ′ , t, t)

Rf ← join(Hψ, Hψ′ , f, f)

R⊥ ← eval times⊥(Hψ, Hψ′ )

return update cofin(ψ ⊗ ψ′, Rt, Rf , R⊥)

proc eval times⊥(Hψ, Hψ′ )

R1 ← union(Hψ, Hψ′ , ⊥, ⊥)

R2 ← join(Hψ , Hψ′ , t, f)

R3 ← join(Hψ , Hψ′ , f, t)

case R1, R2, R3 = Fin V1, Fin V2, Fin V3

return Fin (V1 ∪ V2 ∪ V3)
otherwise

return None

proc update cofin(ψ, Rt, Rf , R⊥)
Rt ← update(ψ, Rt, Rf , R⊥)
Rf ← update(ψ, Rf , Rt, R⊥)
R⊥ ← update(ψ, R⊥, Rt, Rf)
return (Rt, Rf , R⊥)

proc update(ψ, R1, R2, R3)
case R2 = Fin and R3 = Fin

if fv(ψ) 6= ∅ then return CoFin
else if R2 = Fin ∅ and R3 = Fin ∅ then

return Fin {()}
else

return Fin ∅
otherwise

return R1

Fig. 3. The eval neg, eval and, eval times, and eval forall procedures.

on the columns corresponding to other free variables is denoted πx(JψKv). For
instance, if Jp(x, y)Kt = {(0, 2), (1, 2), (1, 3)}, then πx(Jp(x, y)Kt) = {(2), (3)}. For
v, v′ ∈ 3, the natural join of the sets JψKv and Jψ′Kv′ , denoted JψKv ./ Jψ′Kv′ , is
the set of tuples for which the projections on the columns, corresponding to ψ’s
and ψ′’s free variables, are in JψKv and respectively in Jψ′Kv′ , and the fields of
which match on the common free variables. For instance, if Jq(y, z)Kt = {(2, 4)},
then Jp(x, y)Kt ./ Jq(y, z)Kt = {(0, 2, 4), (1, 2, 4)}. We adopt the convention that
./ binds stronger than ∪.

Lemma 8. Let D̄ be a logging knowledge base, τ be a time point, and ψ and ψ′

be L3 formulas. The following equalities hold:

J¬ψKv = JψK¬v, if v ∈ 3
Jψ ∧ ψ′Kt = JψKt ./ Jψ′Kt
Jψ ∧ ψ′Kf = JψKf ∪ Jψ′Kf , if fv(ψ) = fv(ψ′)

Jψ ∧ ψ′K⊥ = JψKt ./ Jψ′K⊥ ∪ JψK⊥ ./ Jψ′Kt ∪ JψK⊥ ./ Jψ′K⊥
Jψ ⊗ ψ′Kb = JψKb ./ Jψ′Kb, if b ∈ {t, f}
Jψ ⊗ ψ′K⊥ = JψK⊥ ./ Jψ′K⊥ ∪ JψKt ./ Jψ′Kf ∪ JψKf ./ Jψ′Kt

J∀x. ψKt = ∅, if JψKt is finite and x ∈ fv(ψ)
J∀x. ψKf = πx(JψKf), if x ∈ fv(ψ)

J∀x. ψK⊥ = πx(JψK⊥) \ πx(JψKf), if x ∈ fv(ψ)

These equalities provide a method to compute, under the stated conditions,
the relations JψKv from the corresponding relations for ψ’s direct sub-formulas.
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For instance, if ψ = ψ1 ∧ ψ2 and Jψ1Kt, Jψ2Kt are finite relations, then JψKt is a
finite relation given by the join of the other two relations. Furthermore, when
Jψ1Kt is finite, Jψ2Kt is cofinite, and fv(ψ2) ⊆ fv(ψ1), then JψKt is a finite relation
that we can compute as Jψ1Kt ./ Jψ2Kt = Jψ1Kt ./

(
|D̄||fv(ψ2)| \ (Jψ2Kf ∪ Jψ2K⊥)

)
.

Note that the condition fv(ψ2) ⊆ fv(ψ1) is essential, as otherwise Jψ1Kt ./ Jψ2Kt
may be infinite. For example, if f̄v(ψ1) = (x) and f̄v(ψ2) = (x, y) with Jψ1Kt =
{(1)}, Jψ2Kf = {(1, 2)}, and Jψ2K⊥ = {(3, 4)}, then JψKt = {1}×(|D̄|\{2, 4}). The
same method is applied to each of the other sub-cases of the binary connectives.

The described approach is implemented through the procedures eval neg,
eval and, eval times, and eval forall, given in Figure 3. Each procedure returns
a triple (Rt, Rf , R⊥), where Rv is a value computed based on the identities in
Lemma 8 using the procedures join and union, which are given in the Appendix.
The join procedure takes as arguments tuples (ψ,E) and (ψ′, E′), and truth
values v and v′. Provided that the invariants Inv(ψ, τ, E) and Inv(ψ′, τ, E′) are
satisfied, the return value is either Fin (JψKv ./ Jψ′Kv′) or None, depending on
whether a finite relation can be computed. The union procedure has similar
arguments and return values. The auxiliary procedures update cofin and update
from Figure 3 handle the following corner case: If two elements of the newly
formed triple (Rt, Rf , R⊥) are of the form Fin V and the remaining element is
None, then update cofin(ψ,Rt, Rf , R⊥) changes None to either CoFin if fv(ϕ) 6= ∅,
or otherwise (when fv(ϕ) = ∅) to Fin {()} or Fin ∅ depending on the truth value
that should be returned. This ensures that the invariant Inv is preserved by the
return value of the eval and, eval times, and eval forall procedures.

Finally, we consider the temporal operators. Let ψ = α SI β. For efficiency,
eval maintains between iterations a sequence Lψ, which is initialized by the init
procedure with the empty sequence. The sequence Lψ contains values Eτ ′ that
satisfy the invariant Inv(α S[δ,δ] β, τ, Eτ ′), where δ = τ − τ ′ and τ ′ is such that
0 ≤ τ − τ ′ < b, with I = [a, b). In this way, the sub-formulas α and β are not
re-evaluated at previous time points τ ′. Instead, the result of their evaluation is
stored in Lψ. The return value is computed by iteratively calling eval or on the
elements Eτ ′ of Lψ for which (τ − τ ′) ∈ I. This last step reflects the equivalence
between αSI β and

∨
δ∈I αS[δ,δ] β. Given two formulas ψ1 and ψ2 and two values

E1 and E2 satisfying respectively the invariants Inv(ψ1, τ, E1) and Inv(ψ2, τ, E2),
the procedure eval or returns a value E that satisfies Inv(ψ1 ∨ ψ2, τ, E).

The case for Until is analogous to Since. The only significant difference is
that the procedure must delay its answer until all relevant events have occurred.
Various optimizations, which we mention in Appendix A, can further improve
the efficiency of handling temporal operators.

The following theorem establishes termination and soundness of our algo-
rithm. To state it formally, we first explicitly define the relationship between the
arguments Γτ of the eval procedure, and the logging structures Dτ of D̄. We let

triples(Dτ ) :=
{(
r, (val(rDτ

t ), val(rDτ

f ), val(rDτ

⊥ ))
)
| r ∈ R

}
,

where val(V ) is Fin V if V is finite, and is CoFin otherwise. Thus Γτ = triples(Dτ ).

Theorem 9. Let D̄ be a logging knowledge base, ϕ a formula in L3, and τ ∈ N
a time point. The procedure eval(ϕ, Γτ , τ) returns a value E that satisfies the
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invariant Inv(ϕ, τ, E), whenever init(ϕ), eval(ϕ, Γ0, 0), . . . , eval(ϕ, Γτ−1, τ −1)
were called previously in this order, where Γτ ′ = triples(Dτ ′), for τ ′ ≤ τ .

A complete fragment. In general, our algorithm is incomplete. However, by
limiting the usage of free variables, we obtain the fragment Lc3 for which we
guarantee completeness.

Definition 10. The set Lc3 of formulas is inductively defined:

– f ∈ Lc3 and r(t1, . . . , tι(r)) ∈ Lc3,
– if ϕ ∈ Lc3, then ¬ϕ ∈ Lc3 and ∀x. ϕ ∈ Lc3,
– if ϕ,ψ ∈ Lc3 and either fv(ϕ) = fv(ψ), fv(ϕ) = ∅, or fv(ψ) = ∅, then
ϕ ∧ ψ ∈ Lc3, ϕ⊗ ψ ∈ Lc3, ϕ SI ψ ∈ Lc3, and ϕ UI ψ ∈ Lc3.

Note that Lc3 allows universal quantification and, by using ¬, also existential
quantification of free variables, and both quantifiers can be nested freely. But
if an Lc3 formula contains a sub-formula with no quantifiers and two or more
predicates, they must have the same free variables. As all of L3’s connectives are
retained and their application is not restricted, Lc3 can still express all monotonic
finitary operators. However, they cannot be used as liberally as in L3.

The first and second policy examples in Section 3 fall within Lc3. However,
due to the free-variable restriction, the following formula is not in Lc3:

�∀s.∀r. ∀m. send(s, r,m)→ �I authorize(m) .

It says that all messages m, sent by s to r must be subsequently authorized. This
is a typical compliance policy from the HIPAA Privacy Rule [1]. By pushing the
quantification of s and r inside the antecedent, we obtain a formula in Lc3:

�∀m.
(
∃s.∃r. send(s, r,m)

)
→ �I authorize(m) .

One can check that evaluating ∀x. ϕ→ ψ and (∃x. ϕ)→ ψ, as well as ∃x. ϕ ∧ ψ
and (∃x. ϕ)∧ ψ, where x 6∈ fv(ψ), over an arbitrary logging knowledge base and
an arbitrary time point yields the same truth value.

It is not always possible to rewrite a formula such that the result falls into Lc3.
Recall the third example (the separation-of-duty requirement) from Section 3.
Clearly, it does not fall within Lc3. However, if there are finitely many datasets, we
can partially ground the formula, obtaining a family of formulas ϕd,d′ , where d
and d′ range over the datasets. Each is in Lc3 after similar rewriting as above:

ϕd,d′ := �
(
∃s. (∃o. access(s, o,d)) ∧ ∃o′. � access(s, o′,d′)

)
→

C[0,2)¬conflict(d,d′) .

Syntactic rewriting and partial grounding cannot always be applied. Still, Lc3
is an expressive fragment that captures a wide-range of compliance policies.

Finally, we state our result on the algorithm’s completeness on Lc3 formu-
las. To do so, we define the stronger invariant Inv c(ϕ, τ, E) which, in addi-
tion to Inv(ϕ, τ, E), requires that there are v′, v′′ ∈ 3 with v′ 6= v′′ such that
Sv′ = Fin V ′ and Sv′′ = Fin V ′′ for some sets V ′, V ′′, where E = (St, Sf , S⊥).

Theorem 11. Let D̄ be a logging knowledge base, ϕ a formula in Lc3, and τ ∈ N
a time point. The procedure eval(ϕ, Γτ , τ) returns a value E that satisfies the
invariant Inv c(ϕ, τ, E), whenever init(ϕ), eval(ϕ, Γ0, 0), . . . , eval(ϕ, Γτ−1, τ−1)
were called previously in this order, where Γτ ′ = triples(Dτ ′), for τ ′ ≤ τ .
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6 Related Work

The only work we are aware of that addresses the problem of compliance check-
ing with incomplete knowledge is Garg et al. [21]. Their policy language is a
restricted first-order logic. It has a more liberal usage of free variables compared
to Lc3, but it does not consider ⊥ at the object-level and cannot express the
⊗ operator. They adopt a weaker logging assumption, whereby a finite or an
infinite number of event occurrences can be unknown. However, their compli-
ance algorithm is not suitable for on-line monitoring and, more importantly, it
is incomplete, even with our logging assumption. Recall our first policy example
in Section 3. If the web-server’s logger crashes and there are no denials, their al-
gorithm does not report that there are no violations. Instead, it wrongly reports
that there may be potential violations, where in fact there are none. Similarly, it
may also fail to report violations. For example, given a specification of the form

�∀x̄. c(x̄)→ ∃ȳ. c′(x̄, ȳ) ∧ ∀z̄. ϕ(x̄, ȳ, z̄) ,

then all x̄ that violate the policy by making c true and ϕ false, but for which
all c′ events are missing, are not reported. This is because their algorithm eval-
uates formulas in a top-down fashion: it first finds all x̄ that satisfy c, then it
partially grounds2 the consequent, then it finds all ȳ that satisfy c′, and then
partially grounds ϕ, and so forth. However, if there are no partial groundings,
the algorithm stops further evaluations. In contrast, since our algorithm works
in a bottom-up fashion, it does not have this problem.

The problem of incompleteness and disagreements is also present in other
fields, and some approaches there are also based on many-valued logics. Some
access-control policy languages [15, 18] use multiple truth values to represent
different access-control decisions. These languages are propositional and do not
support temporal reasoning. Several model-checking approaches [13, 14, 16] also
consider a many-valued truth space. However, their many-valued semantics do
not guarantee policy-compliance monotonicity. Furthermore, their specification
languages only have the classical Boolean and temporal connectives.

Bauer et al. [8] extend the classical LTL semantics by also assigning non-
Boolean truth values to finite and complete prefixes of infinite traces. Their
semantics differentiate whether all or some extensions of a finite trace satisfy a
property. However, the Boolean and temporal operators are not extended over
the additional truth values. Furthermore, they do not consider the ordering ≤k
of the truth values in knowledge.

Another approach to dealing with incompleteness is to make quantitative
statements, e.g., how certain it is whether a property is violated. Stoller et al. [26]
present such an approach for monitoring traces with gaps. Their solution first
assigns probabilities to whether events happened during gaps, and then com-
putes the overall probability that a temporal property is violated. This solution
is orthogonal to ours. It requires a reliable training set to derive appropriate
probability assignments for different event occurrences.

2 Their logging assumption and language restrictions guarantee that there are always
only finitely many satisfying ground instances.
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7 Conclusions

In complex IT systems, logging failures happen and knowledge about the occur-
rence of system actions is incomplete when monitoring the system. Furthermore,
system components can disagree on whether actions took place. Approaches for
checking system compliance based on the classical Boolean setting are insuffi-
cient since they may incorrectly report policy violations. A three-valued truth
space allows us to correctly distinguish between violations and potential viola-
tions. The solution presented in this paper carefully adopts a three-value truth
space so that policy evaluations are correct regardless of how knowledge gaps
are resolved. The presented monitoring algorithm shows that policy violations
and potential violations can be soundly and completely determined.

As future work we will investigate how to efficiently resolve potential vio-
lations as prior knowledge gaps are incrementally resolved. We also plan case
studies to evaluate our monitoring algorithm in real-world settings. Finally, we
would like to explore different truth spaces to distinguish between different kinds
of knowledge gaps and disagreements.

Acknowledgments. We thank Germano Caronni and Matúš Harvan for fruit-
ful discussions on this topic.

References

1. The Health Insurance Portability and Accountability Act of 1996 (HIPAA), 1996.
Public Law 104-191.

2. Gramm-Leach-Bliley Act of 1999 (GLBA), 1999. Public Law 106-102.
3. S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-Wesley

Longman Publishing Co., Inc., Boston, MA, USA, 1995.
4. H. Barringer, A. Groce, K. Havelund, and M. Smith. Formal analysis of log files.

J. Aero. Comput. Inform. Comm., 7:365–390, 2010.
5. D. Basin, M. Harvan, F. Klaedtke, and E. Zălinescu. Monitoring usage-control
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A Additional Algorithmic Details and Proof Details

The eval procedure and proof details of Theorem 9. We proceed with
a more detailed description of our monitoring algorithm. The procedure eval,
given in Figure 2, uses various sub-procedures, given in the Figures 4–6.

Preliminaries. In the pseudo-code we use the following notation.

– Case switching is expressed with the case and the (optional) otherwise con-
structions. The body of the case is executed whenever (and independently
of the other cases) the case check passes. The body of the otherwise case
is executed only if all other case checks have failed. A case check performs
pattern matching where fresh variables are bound accordingly.

– The symbol denotes an arbitrary fresh variable.
– λx̄.e denotes an unnamed procedure with the sequence x̄ of arguments and

with body e.
– ++ denotes list concatenation.
– The functions map and fold left have standard interpretation from functional

programming languages, such as ML.

For I ∈ I and τ ∈ N, we define I − τ := {τ ′ − τ | τ ′ ∈ I} ∩ N and τ − I :=
{τ−τ ′ | τ ′ ∈ I}∩N. We denote the left and right margins of an interval I by `(I)
and r(I) respectively. For instance, if I = [2, 4), then `(I) = 2 and r(I) = 3, and
if I = (0,∞), then `(I) = 1 and r(I) = ∞. We denote the logical equivalence
between the formulas ϕ and ψ by ϕ ≡ ψ. Finally, sf(ϕ) denotes the set of all
sub-formulas of ϕ.

Overview. Along with the presentation of the algorithm, we also explain how eval
preserves the invariant Inv , thus proving Theorem 9. We fix a formula ϕ ∈ L3,
a logging knowledge base D̄, and a time point τ , and we reason by induction
using the lexicographic ordering of pairs (τ, |ϕ|), where τ ∈ N and |ϕ| denotes
ϕ’s size, defined as expected.

To handle temporal operators efficiently, the eval procedure maintains a se-
quence Lψ for each temporal sub-formula3 ψ of ϕ. By this, we avoid re-evaluating
sub-formulas ψ at already seen time points. The procedure init initializes the se-
quences Lψ with the empty sequence. Assume that ψ = αSI β. At the end of the
iteration τ , the sequence Lψ consists of triples (γ,Eτ ′ , τ ′) ordered increasingly
by τ ′, where τ ′ appears in the sequence if and only if τ − τ ′ ≤ r(I), γ is β if
τ ′ = τ and ψ otherwise, and Eτ ′ satisfies the invariant Inv(α S[δ,δ] β, τ, Eτ ′),
where δ = τ − τ ′. We consider this property of sequences Lψ as part of the
induction invariant needed to prove Theorem 9.

The eval procedure is called recursively over the sub-formulas of ϕ. In the
following, we present the cases of the eval procedure.

Atomic formulas. The simplest case is when the sub-formula ϕ is the truth
value f. In this case we return the corresponding triple E := (Fin ∅, Fin {()}, Fin ∅).
The invariant Inv(f, τ, E) trivially holds.

3 Without loss of generality, we assume that a temporal sub-formula occurs only once
in ϕ.



Monitoring Compliance Policies over Incomplete and Disagreeing Logs 19

proc eval predicate(ψ, (St, Sf , S⊥))
case St = Fin T

(s̄, G)← get predicate constraints(ψ)
Rt ← Fin πs̄(σG(T ))
return update cofin(ψ, Rt, Sf , S⊥)

Fig. 4. The eval predicate procedure.

When ϕ is of the form r(t̄) for some predicate symbol r, we first retrieve
the value Er = (St, Sf , S⊥) associated with r from the set Γ of pairs, us-
ing the procedure get value for which we omit the pseudo-code. Then, by
calling eval predicate(ϕ, Er), given in Figure 4, we retrieve the sets Jr(t̄)KD̄,τv

from rDτ
v , for each v ∈ 3, by filtering the relations rDτ

v according to the
implicit constraints present in the sequence t̄ of constants and variables. For
instance, if ι(r) = 3, rD0

t = {(1, 1, 1), (1, 1, 2), (1, 2, 3)}, and r(t̄) = r(x, x, 2),

then Jr(t̄)KD̄,0t = {(1, 1, 2)}. Here the constraints are that the first and second
fields of triples in rDτ

t are equal, and the third field equals 2. Such constraints are
formalized next using the relational algebra operators projection and selection.

Let A ⊆ |D̄|n be an n-ary relation, with n ≥ 0. An index i ∈ N is a column
in A if 1 ≤ i ≤ n. Given a vector s̄ = (i1, i2, . . . , ik) of k columns in A, with
k ≥ 0, the projection of A on s̄ is the k-ary relation:

πs̄(A) := {(di1 , di2 , . . . , dik) ∈ |D̄|k | (d1, d2, . . . , dn) ∈ A}.
Given a set G of pairs of the form (i, j) with i and j columns in A, and of the
form (i, d) where i is a column in A and d ∈ |D̄|, then the selection on A with
respect to G is the defined as the n-ary relation:

σG(A) := {(d1, . . . , dn) ∈ A | di = dj for any (i, j) ∈ G, di = d for any (i, d) ∈ G}.
The pairs in G are called selection constraints and are denoted i = j or i = c.
For convenience, we call the pair (s̄, G) a constraint.

Given a formula ϕ = r(t̄), the projection columns s̄ and the selection
constraints G determined by the sequence t̄ are computed by the procedure
get predicate constraints(ϕ). We omit its straightforward pseudo-code descrip-
tion. Next, we filter the tuples from pDτ

t according to the constraint (s̄, G) and
store the result in Rt. Note that, by Assumption 1, we have rDτ

v = ∅ and rDτ

v′ is
infinite, for {v, v′} = {f,⊥}. Hence we have that Sv = Fin ∅ and Sv′ = CoFin.
Thus, if ϕ has free variables we simply return the triple (Rt, Sf , S⊥). However,
if ϕ is a closed formula, then we first update Sv′ . To do so, we use the proce-
dure update cofin, given in Figure 3. This procedure changes Sv′ to Fin {()} or

to Fin ∅, depending on whether Jr(t̄)KD̄,τt is empty or not. The pseudo-code of
the procedure handles a more general case, as it is also used as a sub-procedure
by other cases of eval.

The returned triple satisfies the invariant Inv , because Er satisfies

Inv(r(x̄), τ, Er) by Assumption 1, and because Jr(t̄)KD̄,τt = πs̄(σG(rDτ
t )),

where x̄ is a sequence of distinct variables of length ι(r).
Note that we have hitherto treated the two base cases our inductive proof.
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proc join((ψ, (St, Sf , S⊥)), (ψ′, (S′
t , S

′
f , S

′
⊥)), v, v′)

case Sv = Fin ∅ or S′
v′ = Fin ∅

return Fin ∅
c← get join constraints (ψ, ψ′)

case Sv = Fin V and S′
v′ = Fin V ′

return Fin (V ./c V
′)

otherwise
{a, b} ← 3 \ {v}
{a′, b′} ← 3 \ {v′}
case Sv = Fin V and S′

a′ = Fin A′ and S′
b′ = Fin B′ and fv(ψ′) ⊆ fv(ψ)

return Fin (V �c (A′ ∪ B′))

case S′
v′ = Fin V ′ and Sa = Fin A and Sb = Fin B and fv(ψ) ⊆ fv(ψ′)

return Fin (V ′ �c (A ∪ B))
otherwise

return None

proc union((ψ, (St, Sf , S⊥)), (ψ′, (S′
t , S

′
f , S

′
⊥)), v, v′)

case Sv = Fin V and S′
v′ = Fin V ′ and

((fv(ψ) = fv(ψ′) or (fv(ψ) ⊆ fv(ψ′) and V = ∅) or (fv(ψ′) ⊆ fv(ψ) and V ′ = ∅))
return Fin (V ∪ V ′)

otherwise
return None

Fig. 5. The join and union procedures.

Non-temporal connectives. As this case was explained in the body of the paper,
here we just recall the formal definition of the relation algebra operator join [3].

For this case, we simplify notation and write JϕKv instead of JϕKD̄,τv .

Given two relations A ⊆ |D̄|n and B ⊆ |D̄|k, with n, k ≥ 0, a vector of
columns s̄ in A×B, and a set G of selection constraints on A×B, we define the
join of A and B with respect to s̄, G as A ./s̄,G B := πs̄(σG(A × B)) and the
antijoin as A�s̄,GB := A \ (A ./s̄,G B). Note that tuples in A and in A ./s̄,G B
have the same arity iff |s̄| = n.

Given a formula ϕ and a truth-value v ∈ 3, we see the set JϕKv as a named
relation where columns in JϕKv are named by the free variables in f̄v(ϕ). The
natural join of JϕKv and Jϕ′Kv′ is the set JϕKv ./s̄,G Jϕ′Kv′ where the join con-
straint (s̄, G) is obtained as follows: G consists of the selection constraints i = i′

for which the variable at the position i in f̄v(ϕ) equals the variable at the posi-
tion i′ in f̄v(ϕ′) and s̄ = (1, 2, . . . , n, n+ j1, n+ j2, . . . , n+ jp) with n = |fv(ϕ)|,
p = |fv(ϕ′) \ fv(ϕ)|, and (j1, . . . , jp) is the maximal subsequence of f̄v(ϕ′) such
that each element does not appear in fv(ϕ). We drop the subscript (s̄, G) and
simply write JϕKv ./ Jϕ′Kv′ and JϕKv � Jϕ′Kv′ , because there is no risk of confu-
sion, given that we do not use constraints other than these. In our algorithm,
these constraints are determined by the procedure get join constraints(ϕ, ϕ′), for
which we omit the pseudo-code. The join and union procedures, which implement
the homonym operators, are given in Figure 5.

Temporal connectives. For brevity, we omit the case dealing with the Until oper-
ator, whose treatment is similar to the Since case. The sub-procedure handling
the Since operator is eval since, given in Figure 6. Its arguments are the tem-
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proc eval since(ϕ, τ , Eα, Eβ) // ϕ = α SI β

case Lϕ = (γ,E′, τ ′) :: L′

if (τ − τ ′) 6∈ I then Lϕ ← L′

f aux ← λ(γ,E′, τ ′). (ϕ, eval and((γ, E′), (α, Eα)), τ ′)
Lϕ ← map f aux Lϕ
Lϕ ← Lϕ ++ (β,Eβ , τ)
if 0 ∈ I and |Lϕ| = 1 then return Eβ
else Eid ← update cofin(ϕ, Fin ∅, None, Fin ∅)

return fold left(aux since, Eid , Lϕ)

proc aux since(E, (γ,E′, τ ′))

if (τ − τ ′) 6∈ I then return E

else return eval or((ϕ, E), (γ, E′))

proc eval or((ψ, E), (ψ′, E′))

return eval neg(eval and((ψ, eval neg(E)), (ψ′, eval neg(E′))))

Fig. 6. The eval since procedure.

poral formula ϕ = α SI β, the current time point τ , and the values Eα and
Eβ produced by the recursive calls to eval at τ for the sub-formulas α and re-
spectively β. Intuitively, the evaluation of ϕ reflects the logical equivalences4

α SI β ≡ (0 ∈ I → β) ∨ (α ∧  (α SI−1 β)) and α SI β ≡
∨
δ∈I α S[δ,δ] β, which

also hold in the three-valued setting.

By the induction hypothesis, when we enter the procedure, the sequence Lψ
consists of triples (γ,Eτ ′ , τ ′) ordered increasingly by τ ′, where τ ′ appears in the
sequence if and only if 0 ≤ τ −1−τ ′ ≤ r(I), γ is β if τ ′ = τ −1 and ϕ otherwise,
and Eτ ′ satisfies the invariant Inv(αS[δ,δ]β, τ−1, Eτ ′), where δ = τ−1−τ ′. The
eval since procedure updates the sequence Lϕ in line with the first equivalence,
and it uses Lϕ to compute the return value in line with the second equivalence.

The eval since procedure starts by removing the first element (γ,Eτ ′ , τ ′) of Lϕ
if τ ′ fell out of the relevant time interval, i.e. τ − I. Note that if I is bounded
then there is only one such element, while if I is unbounded there is no such
element. Next, the elements of the Lϕ are updated by calling eval and on (γ,E′)
and (α,Eα), for each element (γ,E′, τ ′) of Lϕ. This operation corresponds to
the conjunction in the right-hand side of the first equivalence, while the next
one, that is, appending (β,Eβ , τ) to the end of Lϕ roughly corresponds to the
disjunction. At this point Lϕ is updated, and for each triple (γ,Eτ ′ , τ ′) in Lϕ
we have that Eτ ′ satisfies the invariant Inv(α S[δ,δ] β, τ, Eτ ′), where δ = τ − τ ′.

Finally, we iteratively call eval or on (ϕ,E) and (ϕ,E′) for each element
(E′, τ ′) of Lϕ with (τ − τ ′) ∈ I, where E is the accumulated result of previous

4 We abused notation here, as the right hand side is not a formula in L3. However, we
note that 0 ∈ I can be written as f SI t, and  denotes the previous operator, which
refers to the previous time-point (if it exists).
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calls. This last step reflects the second equivalence. Note that Eid is the identity
element with respect to the eval or operation5. This completes the proof.

We also mention two optimizations that can be applied. First, note that when
r(I) = ∞ then no elements are removed from the list Lϕ. However, instead of
storing in Lϕ all elements (γ,Eτ ′ , τ ′) with τ ′ ≤ τ , it is sufficient to store those
elements for which τ − `(I) < τ ′ ≤ τ . The length of the list is thus constant,
i.e. `(I), instead of constantly growing, i.e. τ + 1. It is straightforward to update
the constructions for this case. Second, when computing the return value at τ
by iteratively calling aux since, we could reuse some of the intermediary results
computed at the previous iteration τ − 1.

Proof details of Theorem 11. Let D̄ be a logging knowledge base, ϕ a
formula in Lc3, and τ ∈ N a time point. Let Γτ ′ = triples(Dτ ′), for τ ′ ≤ τ .
We reason again by induction on the pairs (τ, |ϕ|) ordered lexicographically. By
Theorem 9, the call to eval(ϕ, Γτ , τ) returns a value E that satisfies the invariant
Inv(ϕ, τ, E). Thus it suffices to show that there are two elements in the triple E
which represent finite relations.

– ϕ = f. The return value E clearly satisfies the invariant Inv c(ϕ, τ, E).
– ϕ = r(t̄). Then E satisfies the invariant Inv c(ϕ, τ, E) by Assumption 1.
– ϕ = ¬ψ and ψ ∈ Lc3. By the induction hypothesis, the return value E′ =

(St, Sf , S⊥) of the call to eval(ψ, Γτ , τ) satisfies the invariant Inv c(ψ, τ, E
′).

Thus two of the three elements of E′ represent finite relations. As E =
(Sf , St, S⊥), clearly the same holds for E.

– ϕ = ∀x̄.ψ and ψ ∈ Lc3. Let E′ = (St, Sf , S⊥) be the return value of the call
to eval(ψ, Γτ , τ). By the induction hypothesis, two of the three elements of
E′ represent finite relations. We easily see that the pseudo-code of eval forall
guarantees that E = (Rt, Rf , R⊥) is such that if Sv represents a finite re-
lation, then Rv is a finite relation too, for any v ∈ 3. Thus E satisfies the
invariant Inv c(ϕ, τ, E).

– ϕ = ψ1 ∧ ψ2, with fv(ψ1) = fv(ψ2) or fv(ψ1) = ∅ or fv(ψ2) = ∅.
Let Ei = (Sit , S

i
f , S

i
⊥) be value returned by the call to eval(ψi, Γτ , τ), for

i ∈ {1, 2}. By the induction hypothesis, 4 values S1
u, S1

u′ , S2
v , S2

v′ (out of 6)
represent finite relations, for some u, u′, v, v′ ∈ 3 with u 6= u′, v 6= v′. Let
E = (Rt, Rf , R⊥).
Suppose first that fv(ψ1) = fv(ψ2). We distinguish the following cases, up
to symmetry:
• {u, u′} = {t, f}, {v, v′} = {t, f}. Then Rt and Rf represent finite sets.
• {u, u′} = {t, f}, {v, v′} = {t,⊥}. Then Rt and R⊥ represent finite sets.
• {u, u′} = {t, f}, {v, v′} = {f,⊥}. Then Rt and Rf represent finite sets.
• {u, u′} = {t,⊥}, {v, v′} = {t,⊥}. Then Rt and R⊥ represent finite sets.
• {u, u′} = {t,⊥}, {v, v′} = {f,⊥}. Then Rt and R⊥ represent finite sets.

5 The special handling of the case where 0 ∈ I and |Lϕ| = 1 is necessary, because
otherwise the only call to eval or should be eval or((β, E′

id), (β, Eβ)), instead of
eval or((ϕ, Eid), (β, Eβ)), where E′

id = update cofin(β, Fin ∅, None, Fin ∅).
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• {u, u′} = {f,⊥}, {v, v′} = {f,⊥}. Then Rf and R⊥ represent finite sets.
Suppose now that fv(ψ1) = ∅ (the other case, fv(ψ2) = ∅, is symmet-
ric). Then, by the induction hypothesis, two elements of E1 are finite. As
update cofin is always called, the third element is also finite. We distinguish
the following cases:
• E1 = (Fin {()}, Fin ∅, Fin ∅). We easily verify that if Sv represents a finite

relation, then Rv also represents a finite relation.
• E1 = (Fin ∅, Fin {()}, Fin ∅). We easily verify that Rt = R⊥ = Fin ∅.
• E1 = (Fin ∅, Fin ∅, Fin {()}). We easily verify that Rt = Fin ∅ and that

if Sv represents a finite relation, then Rv also represents a finite relation,
for v ∈ {f,⊥}.

– ϕ = ψ ⊗ ψ′. This case is similar to the previous one.
– ϕ = ψ SI ψ

′. First note that, by the induction hypothesis, for elements
(γ,Eτ ′ , τ ′) of Lϕ, the values Eτ ′ satisfy the invariant Inv c(ψ

′, τ, Eτ ′). By (an
inner) induction on the length of Lϕ we can easily prove that the elements
of the updated list Lϕ obtained after calling map f aux Lϕ still satisfy the
invariant. Let K be the subsequence of Lϕ such that (τ − τ ′) ∈ I. That
is, K consists of those elements of Lϕ on which the procedure eval or is
applied. Let En be the result after n calls to aux since. We have E0 = Eid

and E = E|K|. We prove by (another inner) induction on the length of K
that the triple En is such that two of its elements represent finite relations.
The base case, when n = 0, is trivial. In the inductive case, when n > 0,
the value En+1 is obtained by calling eval or on En and Eτ ′ . As eval or only
calls eval neg and eval and, which we have already analyzed, and En and
Eτ ′ satisfy the property by the inner and respectively the outer induction
hypothesis, it follows that En+1 also satisfies the property. Hence E satisfies
the invariant Inv c(ϕ, τ, E).

– ϕ = ψ UI ψ
′. This case is similar to the previous one.


