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events against a specification formalizing which event sequences are allowed. We present a runtime moni-
toring algorithm for a safety fragment of metric first-order temporal logic that overcomes the limitations of
prior monitoring algorithms with respect to the expressiveness of their property specification languages. Our
approach, based on automatic structures, allows the unrestricted use of negation, universal and existential
quantification over infinite domains, and the arbitrary nesting of both past and bounded future operators.
Furthermore, we show how to use and optimize our approach for the common case where structures consist of
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1. INTRODUCTION
Runtime monitoring is an approach to verifying system properties at execution time.
The system’s behavior is abstracted to a trace consisting of a sequence of states or
events at some level of abstraction and an online algorithm is used to check whether
the trace satisfies a given property. Runtime monitoring has numerous applications
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such as monitoring properties of safety-critical programs or tracking system events to
verify compliance with security policies.

The properties that are verified by runtime monitors are typically requirements
on the occurrences and ordering of system actions, possibly with quantitative timing
restrictions. For example, every request must, within some given time bound, eventu-
ally be followed by an acknowledgment. Such requirements are naturally expressed in
temporal logics and algorithms have been developed for monitoring system behavior
with respect to properties specified in different temporal logics. See for example [Bar-
ringer et al. 2004; Barringer et al. 2010b; Bauer et al. 2011; Chomicki 1995; Roger and
Goubault-Larrecq 2001; Roşu and Havelund 2005; Sistla and Wolfson 1995]. Algorith-
mically, monitors are realized from specifications as some kind of automaton, which
reads events, updates state information, and reports violations upon their detection.

Existing monitoring algorithms are often quite restrictive in the properties they can
handle. Typically, either the temporal dimension or the data dimension of the property
specification language is restricted in some way. For instance, only temporal operators
that refer to the past are handled, the range of data items is restricted to finite domains,
or universal and existential quantification over data is not supported. Such restrictions
limit the scope of runtime monitoring techniques. For example, in application areas like
the automated compliance checking of IT systems and business processes with respect
to security policies, monitoring techniques should account for a potentially unbounded
number of agents and data items.

In this article, we present a runtime monitoring approach for an expressive safety
fragment of metric first-order temporal logic (MFOTL) that overcomes most of the
limitations of previously presented runtime monitoring approaches with respect to
their expressive power. The fragment consists of formulas of the form �Φ, where
Φ is bounded, that is, its temporal operators refer only finitely into the future. The
standard temporal operator � (“generally”) requires that Φ must hold at every time
point. Temporal past and bounded future operators can be arbitrary nested in Φ. There
are also no restrictions on the quantification of variables, which range over an infinite
domain, or on the use of negation in Φ. We rely here on finite-state automata as
data structures to represent and manipulate infinite but regular sets, for instance, as
in [Henriksen et al. 1995] and [Kesten et al. 2001].

In a nutshell, our monitoring algorithm works as follows. Given an MFOTL formula
�Φ over a signature S, where Φ is bounded, we first transform Φ into a first-order
formula Φ̂ over an extended signature Ŝ, obtained by augmenting S with auxiliary
predicates for each temporal subformula in Φ. The monitoring algorithm then incremen-
tally processes a temporal structure (D̄, τ̄) over S, which is a sequence D̄ of automatic
structures [Khoussainov and Nerode 1995; Blumensath and Grädel 2004], that is, first-
order structures with regular relations and their associated time stamps τ̄ . For each
time point i, it determines those elements in (D̄, τ̄) that violate Φ. This is achieved by
incrementally constructing a collection of automata that finitely represent the possibly
infinite but regular interpretations of the auxiliary predicates at the time point i and
by evaluating the transformed first-order formula ¬Φ̂ over an extended structure over
the signature Ŝ at i. In doing so, the monitoring algorithm discards information not
required for evaluating ¬Φ̂ at the current and future time points.

This algorithm can be seen as an extension of Chomicki’s [1995] algorithm, developed
for checking temporal integrity constraints of databases. The extensions are with respect
to the monitorable fragment of MFOTL. The use of automatic structures allows the
unrestricted use of negation and quantification. The presented monitoring algorithm
also handles additional temporal operators, namely, bounded future operators, which

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.



Monitoring Metric First-order Temporal Properties A:3

can be used to formulate requirements that events do or must not occur within some
finite time bound.

We also show how to adapt our monitoring algorithm to the common case where
the relations that change over time are finite. In this case, finite tables, as in rela-
tional databases, provide an alternative to automata to store the interpretations of
the predicates at each time point. However, to effectively evaluate the transformed
first-order formula ¬Φ̂ at a time point, additional assumptions, which restrict the use
of negation and quantification, are needed to guarantee the finiteness of the relations
calculated during its evaluation. The restrictions are similar to those used for database
query evaluation, see [Abiteboul et al. 1995]. Furthermore, we show that under the
additional, realistic restriction that time increases after at most a fixed number of time
points, our incremental construction ensures that the monitoring algorithm requires
only polynomial space in the cardinality of the data appearing in the processed prefix of
the monitored temporal structure.

We implemented our monitoring algorithm for the two settings just described, regular
relations and finite relations, each in a prototype tool, MonPoly-Reg and MonPoly-Fin,
respectively. We evaluate both implementations on a number of realistic security policies,
evaluating both their ability to monitor the policies and their runtime performance. Our
experiments show that regular monitoring with MonPoly-Reg has the advantage that
it can handle all formulas in our monitorable safety fragment of MFOTL directly, since
there are no restrictions on the use of negation and quantification. In contrast, not every
formula in this fragment can be handled by MonPoly-Fin and rewriting formulas, either
by hand or by applying heuristics, is sometimes necessary. However, both tools are
capable of handling a wide range of realistic policies. Our performance evaluation shows
that for monitoring systems that produce large quantities of events, it is advantageous
to use MonPoly-Fin. By using more efficient data structures for finite sets, monitoring
using finite relations is several orders of magnitude more efficient than working with
regular relations. Indeed, MonPoly-Fin’s performance provides evidence that monitoring
system behavior with respect to complex properties formalized in MFOTL is feasible in
practice. Further validation of this hypothesis, where MonPoly-Fin has been applied to
industrial case studies with non-synthetic data, is reported in [Basin et al. 2013].

Overall, we see our contributions as follows. First, our monitoring algorithm handles
a more expressive temporal logic than previous algorithms. Second, for the restricted
setting where relations are finite, we show how to efficiently implement the monitoring
algorithm by using techniques from relational databases. We also provide upper bounds
on the time and space consumed by our monitoring algorithm with respect to the
cardinality of the data appearing in the processed prefix of a monitored temporal
structure. Finally, our work shows how to effectively combine ideas from different, but
related areas, including database theory, model checking, and model theory, and to
apply them to relevant practical problems in runtime verification.

Parts of the work described here have been previously published in conference pro-
ceedings. A simplified account of the monitoring algorithm was first described in [Basin
et al. 2008] and the MonPoly-Fin tool was presented in [Basin et al. 2012a]. The current
article provides full details of the algorithm and proofs, as well as a simpler and more
general treatment of the finite relations case. The suitability of MFOTL for formalizing
security policies and for monitoring IT systems was demonstrated in [Basin et al. 2010a;
2010b] along with an initial performance analysis. The performance analysis presented
here is extended and uses a substantially improved implementation of our monitoring
algorithm for the finite relations case and a new implementation with finite-state
automata for regular relations.
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The remainder of this article is structured as follows. In Section 2, we define MFOTL
and fix notation and terminology. In Section 3, we present our monitoring algorithm
based on automatic structures and afterwards, in Section 4, we address the important
case where relations are finite. In Section 5, we analyze and optimize the space and
time requirements of our monitoring algorithm. In Section 6, we report on case studies.
In Section 7, we discuss related work and, finally, in Section 8, we draw conclusions.

2. METRIC FIRST-ORDER TEMPORAL LOGIC
In this section, we introduce metric first-order temporal logic (MFOTL), which extends
propositional metric temporal logic [Koymans 1990; Alur and Henzinger 1992] in
a standard way. In the forthcoming sections, we present and evaluate methods for
monitoring system requirements formalized in MFOTL.

2.1. Syntax and Semantics
Let I be the set of nonempty intervals over N. We often write an interval in I as
[b, b′) := {a ∈ N | b ≤ a < b′}, where b ∈ N, b′ ∈ N ∪ {∞}, and b < b′. A signature S is a
tuple (C,R, ι), where C is a finite set of constant symbols, R is a finite set of predicates
disjoint from C, and the function ι : R→ N assigns each predicate r ∈ R an arity ι(r).
Note that to simplify our account, signatures do not contain function symbols. This is
without loss of generality, since for a function of arity n ≥ 1, we can use an n+ 1-ary
predicate to represent its graph. In the following, let S = (C,R, ι) be a signature and V
a countably infinite set of variables, assuming V ∩ (C ∪R) = ∅.

Definition 2.1. The (MFOTL) formulas over the signature S are inductively defined
as follows.

(i) For t, t′ ∈ V ∪ C, t ≈ t′ is a formula.
(ii) For r ∈ R and t1, . . . , tι(r) ∈ V ∪ C, r(t1, . . . , tι(r)) is a formula.

(iii) For x ∈ V , if φ and ψ are formulas then (¬φ), (φ ∨ ψ), and (∃x. φ) are formulas.
(iv) For I ∈ I, if φ and ψ are formulas then ( I φ), (#I φ), (φ SI ψ), and (φ UI ψ) are

formulas.

The temporal operators  I (“previous”), #I (“next”), SI (“since”), and UI (“until”)
require the satisfaction of a formula within a particular time interval in the past or
future. The subscript I of the operators specifies this time interval. To define their
meaning and the semantics of the other connectives we need the following notions.

A structure D over the signature S consists of a domain |D| 6= ∅ and interpretations
cD ∈ |D| and rD ⊆ |D|ι(r), for each c ∈ C and r ∈ R. A temporal structure over
the signature S is a pair (D̄, τ̄), where D̄ = (D0,D1, . . . ) is a sequence of structures
over S and τ̄ = (τ0, τ1, . . . ) is a sequence of non-negative numbers, with the following
properties.

1. The sequence τ̄ is monotonically increasing, that is, τi ≤ τi+1, for all i ≥ 0. Moreover,
τ̄ makes progress, that is, for every τ ∈ N, there is some index i ≥ 0 such that τi > τ .

2. D̄ has constant domains, that is, |Di| = |Di+1|, for all i ≥ 0.
3. Each constant symbol c ∈ C has a rigid interpretation, that is, cDi = cDi+1 , for all

i ≥ 0.

We also call the elements in the sequence τ̄ time stamps and the indices of the elements
in the sequences D̄ and τ̄ time points. Note that successive time points can have
identical time stamps. However, by property (1), time cannot decrease and always
eventually progresses. Furthermore, the relations rD0 , rD1 , . . . in a temporal structure
(D̄, τ̄) corresponding to a predicate symbol r ∈ R may change over time. In contrast,
by properties (2) and (3), the interpretation of the constant symbols c ∈ C and the
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domain of the Dis do not change. We denote them by cD̄ and |D̄|, respectively. Temporal
structures have a role for MFOTL similar to the role timed words have for propositional
real-time logics like MTL and TPTL [Alur and Henzinger 1992; 1994]. However, instead
of having at each time point a set of propositions, we have a structure interpreting the
symbols given by the signature.

A valuation is a mapping v : V → |D̄|. For a valuation v, the variable vector x̄ =
(x1, . . . , xn), and d̄ = (d1, . . . , dn) ∈ |D̄|n, we write v[x̄ 7→ d̄] for the valuation that maps
xi to di, for 1 ≤ i ≤ n, and the other variables’ valuation is unaltered. We abuse notation
by applying a valuation v also to constant symbols c ∈ C, with v(c) = cD̄.

Definition 2.2. Let (D̄, τ̄) be a temporal structure over the signature S, with D̄ =
(D0,D1, . . . ) and τ̄ = (τ0, τ1, . . . ), φ a formula over S, v a valuation, and i ∈ N. We define
the relation (D̄, τ̄ , v, i) |= φ inductively as follows.

(D̄, τ̄ , v, i) |= t ≈ t′ iff v(t) = v(t′)
(D̄, τ̄ , v, i) |= r(t1, . . . , tι(r)) iff

(
v(t1), . . . , v(tι(r))

)
∈ rDi

(D̄, τ̄ , v, i) |= (¬ψ) iff (D̄, τ̄ , v, i) 6|= ψ
(D̄, τ̄ , v, i) |= (ψ ∨ ψ′) iff (D̄, τ̄ , v, i) |= ψ or (D̄, τ̄ , v, i) |= ψ′

(D̄, τ̄ , v, i) |= (∃x. ψ) iff (D̄, τ̄ , v[x 7→ d], i) |= ψ, for some d ∈ |D̄|
(D̄, τ̄ , v, i) |= ( I ψ) iff i > 0, τi − τi−1 ∈ I, and (D̄, τ̄ , v, i− 1) |= ψ
(D̄, τ̄ , v, i) |= (#I ψ) iff τi+1 − τi ∈ I and (D̄, τ̄ , v, i+ 1) |= ψ
(D̄, τ̄ , v, i) |= (ψ SI ψ

′) iff for some j ≤ i, τi − τj ∈ I, (D̄, τ̄ , v, j) |= ψ′,
and (D̄, τ̄ , v, k) |= ψ, for all k ∈ N with j < k ≤ i

(D̄, τ̄ , v, i) |= (ψ UI ψ
′) iff for some j ≥ i, τj − τi ∈ I, (D̄, τ̄ , v, j) |= ψ′,

and (D̄, τ̄ , v, k) |= ψ, for all k ∈ N with i ≤ k < j

Note that the temporal operators are augmented with intervals and a formula of the
form ( I φ), (#I φ), (φ SI ψ), or (φ UI ψ) is only satisfied in (D̄, τ̄) at the time point i
if it is satisfied within the bounds given by the interval I of the respective temporal
operator, which are relative to the current time stamp τi. For instance, the formula #I φ
is satisfied in a temporal structure (D̄, τ̄) under valuation v at time point i if the elapsed
time to the next time stamp in τ̄ is within the time interval I, that is, τi+1 − τi ∈ I, and
φ is satisfied at time point i+ 1 in (D̄, τ̄) under v.

2.2. Terminology and Notation
We will make use of the following terminology and notation, most of which is standard;
see, for example, the introductory textbook by Enderton [1972].

We denote the set of free variables in a formula φ by free(φ). To fix the ordering of the
free variables in φ, we also say that φ has the vector of free variables x̄ = (x1, . . . , xn),
where free(φ) = {x1, . . . , xn}. We call formulas of the form t ≈ t′ and r(t1, . . . , tι(r))
atomic, and formulas with no temporal operators first-order. A formula φ is bounded if
the interval I of every temporal operator UI occurring in φ is finite. Likewise, we call
the temporal operator UI bounded if I is finite. The main connective of a non-atomic
formula is the operator (that is, Boolean operator, quantifier, or temporal operator) at
the root of the formula’s syntax tree. A formula that has a temporal operator as its
main connective is a temporal formula. For a formula φ, we define the set of φ’s top-level
temporal subformulas as

tsub(φ) :=


tsub(ψ) if φ = (¬ψ) or φ = (∃x. ψ),
tsub(ψ) ∪ tsub(ψ′) if φ = (ψ ∨ ψ′),
{φ} if φ is a temporal formula,
∅ otherwise.
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For example, for φ := ( [0,∞) α)∨((#β)S[1,9)γ), we have tsub(φ) = {( [0,∞) α), ((#β)S[1,9)

γ)}. The set of direct subformulas of φ is defined as

dsub(φ) :=


{ψ} if φ = (¬ψ), φ = (∃x. ψ), φ = ( I ψ), or φ = (#I ψ),
{ψ,ψ′} if φ = (ψ ∨ ψ′), φ = (ψ SI ψ

′), or φ = (ψ UI ψ
′),

∅ otherwise.

For a formula φ with the vector of free variables x̄ = (x1, . . . , xn), we define the set of
satisfying elements at time point i ∈ N in the temporal structure (D̄, τ̄) as

φ(D̄,τ̄ ,i) :=
{
d̄ ∈ |D̄|n

∣∣ (D̄, τ̄ , v[x̄ 7→ d̄], i) |= φ, for some valuation v
}
.

If φ is first-order, then φ(D̄,τ̄ ,i) only depends on the structure Di and we just write
φDi in this case. Similarly, we just write (Di, v) |= φ, for first-order formulas φ, since
(D̄, τ̄ , v, i) |= φ only depends on the structure Di and the valuation v.

As syntactic sugar, we use standard Boolean connectives like (φ∧ψ) := (¬((¬φ)∨(¬ψ)))
and (φ → ψ) := ((¬φ) ∨ ψ), the universal quantifier (∀x. φ) := (¬(∃x.¬φ)), and the
temporal operators “once” ( �I φ) := (true SI φ), “historically” (�I φ) := (¬( �I(¬φ))),
“sometimes” ( �I φ) := (true UI φ), and “always” (�I φ) := (¬( �I(¬φ))), where I ∈ I and
true is some valid formula with no free variables, for instance, ∃x. x ≈ x. Non-metric
variants of the temporal operators are easily defined, for example, ( φ) := ( [0,∞) φ)
and (�φ) := (�[0,∞) φ). We use standard conventions concerning operators’ binding
strength to omit parentheses. For example, ¬ binds stronger than ∧, which binds
stronger than ∨, which in turn binds stronger than ∃. Moreover, Boolean operators bind
stronger than temporal ones.

2.3. Examples
Before presenting our monitoring algorithm, we give several examples of using MFOTL
for formalizing system requirements.

Example 2.3. Consider an approval policy for publishing business reports within a
company, namely, any report must be approved prior to its publication. For the ease
of exposition, we restrict ourselves here to this very simple policy. In Section 6, we
consider more realistic security policies and their formalization in MFOTL.

We assume that the events for publishing and approving reports are logged in
relations, which are, for instance, obtained from a log stream that records publish
and approval events in an IT system. Specifically, for each time point i ∈ N, we have
the unary relations PUBLISH i and APPROVE i such that (i) f ∈ PUBLISH i iff report
f is published at time i and (ii) f ∈ APPROVE i iff report f is approved at time i.
Observe that there can be multiple approvals at the same time point for different
reports. Furthermore, every time point i has a time stamp τi ∈ N.

The corresponding temporal structure (D̄, τ̄) with D̄ = (D0,D1, . . . ), a sequence of
logged publishing and approval events, and τ̄ = (τ0, τ1, . . . ), a sequence of time stamps,
is as follows. The predicates in D̄’s signature are publish and approve, both of arity 1.
The domain of D̄ consists of all possible report names. For example, if a report can be
uniquely identified by a non-negative number, then we can assume that |D| equals N.
The ith structure in D̄ is time-stamped with τi and contains the relations PUBLISH i

and APPROVE i.
We express the policy by the MFOTL formula

�∀f. publish(f)→ � approve(f) .
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The following formula formalizes an additional constraint. Namely, an approval is only
valid for at most 10 time units:

� ∀f. publish(f)→ �[0,11) approve(f) .

Note that in this last formula we speak of time units when measuring the time
difference τj − τi between the time stamps τi and τj of two time points i and j, with
i ≤ j. The interpretation of a time unit within a system depends on the granularity
with which time is tracked. For instance, if the system time-stamps each time point
with the current date, that is, year, month, and day, then the smallest possible time
unit is a day. If time stamps additionally contain the time of the day, then we could
choose hours, minutes, or seconds as time units. In subsequent examples, the meaning
of time units is either clear from the context or irrelevant.

Example 2.4. The following two examples illustrate simple but typical properties
arising in system verification. The property “whenever the set variable in stores an
element x, then within 5 time units x must be contained in the set variable out” can
be formalized by �∀x. in(x) → �[0,6) out(x). The property “the value of the integer
variable v increases by 1 in each step from an initial value 0 until it becomes 5, and
then it stays constant” can be formalized as �(¬( true) → v(0)) ∧ (∃i. v(i) ∧ i ≺ 5 →
# v(i + 1)) ∧ (v(5) → # v(5)). We assume that the relations for the predicate v are
singletons so that they model the values of an integer variable during the execution of a
program, and that ≺ is a binary predicate represented in infix notation and interpreted
as expected.

3. MONITORING
To effectively monitor system requirements given as MFOTL formulas, we restrict
both the formulas and the temporal structures under consideration. We discuss these
restrictions in Section 3.1 and describe monitoring in Sections 3.2 to 3.6.

3.1. Restrictions
Let (D̄, τ̄) be a temporal structure over the signature S = (C,R, ι) and let Ψ be the
formula expressing the property to be monitored. We make the following restrictions.

First, we require Ψ to be of the form �Φ, where Φ is bounded. It follows that Ψ
describes a safety property [Alpern and Schneider 1985; Henzinger 1992]. Note, however,
there are safety properties expressible in MFOTL that do not have this syntactic
form [Chomicki and Niwiński 1995]. This is in contrast to propositional linear-time
temporal logic, where every ω-regular safety property can be expressed as a formula
�β, where β contains only past operators [Lichtenstein et al. 1985]. This restricted
form allows us to check iteratively, at each time point, whether the specified property Φ
is violated or satisfied. Furthermore, only finitely many time points must be considered
when making each of these checks. Without this syntactic restriction, it is undecidable
whether an MFOTL formula is violated at a time point, even when assuming that the
formula describes a safety property [Chomicki and Niwiński 1995].

Second, we require that each structure in D̄ is automatic [Khoussainov and Nerode
1995] and each time stamp in τ̄ is a non-negative integer. This allows us to represent
each structure by a finite collection of finite-state automata over finite words and each
time stamp by a finite word. Note that the time stamps originate from a physical clock,
which has limited precision. Using a dense time domain like the non-negative rationals
would be unrealistic for monitoring.

Due to the closure properties of regular languages and Φ’s boundedness restriction,
we can compute finite-state automata representing the sets of satisfying valuations
of Φ’s subformulas at a time point, given additional restrictions concerning the repre-
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sentations of the structures’ domains and the interpretations of the constants. Before
introducing these additional restrictions, we briefly recall some background on auto-
matic structures [Khoussainov and Nerode 1995; Blumensath and Grädel 2004], where
we assume familiarity with basic automata theory.

Let Σ be a finite alphabet and # a symbol not in Σ. The convolution of the words
w1, . . . , wk ∈ Σ∗, where wi = wi1 · · ·wi`i for each i with 1 ≤ i ≤ k, is the word

w1 ⊗ · · · ⊗ wk :=

 w′11...
w′k1

 · · ·
 w′1`...
w′k`

 ∈ ((Σ ∪ {#})k)∗ ,
where ` = max{`1, . . . , `k} and w′ij = wij , for j ≤ `i and w′ij = # otherwise. The padding
symbol # is used to ensure that the words have the same length. We use convolutions
of words to encode tuples of domain elements, where each of the given words represents
a domain element.

Definition 3.1. Let A be a structure over the signature S = (C,R, ι).

(i) The structure A is automatic if there is a regular language L|A| ⊆ Σ∗ and a
surjective function ν : L|A| → |A| such that the language L≈ := {u ⊗ v | u, v ∈
L|A| with ν(u) = ν(v)} is regular and, for each relation rA ⊆ |A|ι(r) with r ∈ R, the
language Lr := {w1⊗· · ·⊗wι(r) |w1, . . . , wι(r) ∈ L|A| with (ν(w1), . . . , ν(wι(r))) ∈ rA}
is regular.

(ii) An automatic representation of the automatic structure A consists of (1) the
function ν : L|A| → |A|, (2) a family of words (wc)c∈C with wc ∈ L|A| and ν(wc) = cA,
for all c ∈ C, and (3) automata A|A|, A≈, and Ar, for r ∈ R, that recognize the
languages L|A|, L≈, and Lr, for r ∈ R, respectively.

(iii) Given an automatic representation of A, a relation A ⊆ |A|k is regular if the
language {u1 ⊗ · · · ⊗ uk | u1, . . . , uk ∈ L|A| with (ν(u1), . . . , ν(uk)) ∈ A} is regular.

Note that in the above Definition 3.1(ii), the automata A≈ and Ar, for r ∈ R, read
the components of the convolution of a representative of an element ā ∈ |A|k syn-
chronously. In the following, we assume that for an automatic structure, we always
have an automatic representation for it at hand.

In addition to requiring that each structure in D̄ is automatic, we also require that
D̄ has a constant domain representation. This means that the domain of each Di is
represented by the same regular language L|D̄| and each word in L|D̄| represents the
same element in |D̄|. In other words, each automatic representation of the Dis has the
same function ν : L|D̄| → |D̄|.

Finally, we assume that |D̄| = N and that there is a binary predicate ≺ in R that
is interpreted as the standard ordering relation < on N. This assumption is without
loss of generality whenever the function ν is injective, that is, every element in |D̄|
has only one representative in L|D̄|, see Lemma 3.2 below. Furthermore, note that
every automatic structure has an automatic representation in which the function ν is
injective [Khoussainov and Nerode 1995].

LEMMA 3.2. Let A be an automatic structure with an infinite domain that has an
automatic representation in which each element is uniquely represented. There is an
ordering <∗ on |A| such that (|A|, <∗) is isomorphic to (N, <).

PROOF. Let A be an automatic structure represented by an injective function ν :
L|A| → |A| and the respective automata for the domain, the equality, and its relations.
Without loss of generality, assume that the representation L|A| of A’s domain is over
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the alphabet Σ which is linearly ordered by ≺alph. We lift ≺alph to linearly order the
elements in Σ∗. For w,w′ ∈ Σ∗, we define w ≺∗ w′ iff |w| < |w′|, or |w| = |w′| and
w ≺lex w

′, where |u| denotes the length of a word u ∈ Σ∗ and ≺lex is the lexicographical
ordering on Σ∗ with respect to the ordering ≺alph on the alphabet Σ.

It is easy to see that ≺∗ can be recognized by an automaton by reading the letters
of words w and w′ synchronously. That is, the language L := {w ⊗ w′ | w ≺∗ w′} is
regular. We can use ≺∗ to order the elements in |A|. For a, b ∈ |A|, we define a <∗ b iff
ν−1(a) ≺∗ ν−1(b), which is equivalent to ν−1(a) ⊗ ν−1(b) ∈ L. Obviously, the ordering
<∗ is regular and (|A|, <∗) is isomorphic to (N, <).

Remark 3.3. We state some properties of automatic structures that we need later.
First, for a first-order formula φ and an automatic structure A, we can effectively
construct an automaton that represents the set φA. This follows from the closure
properties of regular languages and hence φA is regular. Second, some basic arith-
metic operations are first-order definable in the structure (N, <) and thus regular. In
particular, the successor relation succ := {(x, y) ∈ N2 | y = x + 1} is regular, since
the formula x ≺ y ∧ ¬∃z. x ≺ z ∧ z ≺ y defines it. It is also easy to see that the set
{(x, y) ∈ N2 | x+ d ≤ y} is regular, for any d ∈ N.

3.2. Overview of the Monitoring Algorithm
In the remainder of this section, let (D̄, τ̄) be a temporal structure over the signature
S = (C,R, ι) and let �Φ be an MFOTL formula with the restrictions from Section 3.1.

To monitor �Φ over (D̄, τ̄), we incrementally build a sequence of structures D̂0, D̂1, . . .

over an extended signature Ŝ. The extension depends on the temporal subformulas
of Φ. For each time point i, we determine the elements that violate Φ by evaluating a
transformed, first-order formula ¬Φ̂ over D̂i. Observe that for a temporal subformula
with a future operator as its main connective, we usually cannot yet carry out this
evaluation at time point i. The monitoring algorithm therefore maintains a queue of
unevaluated formulas and evaluates them when enough time has passed.

In the following, we first describe in Section 3.3 how we extend S and transform Φ.
Afterwards, we explain in Section 3.4 how we incrementally build the relations of
the extended structures D̂i. In Section 3.5, we give an example and in Section 3.6 we
present our monitoring algorithm and prove its correctness.

3.3. Signature Extension and Formula Transformation

In addition to the predicates in R, the extended signature Ŝ contains an auxiliary
predicate pφ for each temporal subformula φ of Φ. For subformulas of the form β SI γ
and β UI γ, we introduce additional auxiliary predicates, which store information that
allows us to incrementally update the auxiliary relations. Specifically, let Ŝ := (Ĉ, R̂, ι̂)

be the signature with Ĉ := C and

R̂ := R∪{pφ | φ is a temporal subformula of Φ}∪
{rφ | φ is a temporal subformula of Φ with main connective SI or UI}∪
{sφ | φ is a temporal subformula of Φ with main connective UI} ,

where pφ, rφ, sφ 6∈ C ∪ R ∪ V . The arities of the predicates in R̂ are as follows: For a
predicate r ∈ R, let ι̂(r) := ι(r). If φ is a temporal subformula of Φ with n free variables,
then ι̂(pφ) := n, and ι̂(rφ) := n+ 1 and ι̂(sφ) := n+ 3, if rφ and sφ exist.
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We transform the MFOTL formula Φ over the signature S into the first-order for-
mula Φ̂ over the extended signature Ŝ as follows. For a subformula φ of Φ, we define

φ̂ :=



φ if φ is an atomic formula,
¬ψ̂ if φ = ¬ψ,
ψ̂ ∨ ψ̂′ if φ = ψ ∨ ψ′,
∃y. ψ̂ if φ = ∃y. ψ,
pφ(x̄) if φ is a temporal formula with the vector x̄ = (x1, . . . , xn)

of free variables.

This formula transformation has the following properties, which are easily shown by
induction over the formula structure.

LEMMA 3.4. Let D̂0, D̂1, . . . be structures over the signature Ŝ that extend the Dis,
that is, |D̂i| = |Di|, cD̂i = cDi , and rD̂i = rDi , for all c ∈ C and r ∈ R. For every
subformula φ of Φ and for all i ∈ N, the following properties hold:

(i) If pD̂i

ψ = ψ(D̄,τ̄ ,i) for all ψ ∈ tsub(φ), then φ̂D̂i = φ(D̄,τ̄ ,i).

(ii) If pD̂i

ψ is regular for all ψ ∈ tsub(φ), then φ̂D̂i is regular.

3.4. Incremental Extended Structure Construction
We now show how to construct the extended structures D̂i incrementally, in particular,
the relations for the auxiliary predicates. Their instantiations are computed recursively
both over time and over the formula structure, where evaluations of subformulas may
also be needed from future time points. We later show that this is well defined and can
be evaluated incrementally.

For i ∈ N, c ∈ C, and r ∈ R, we define cD̂i := cDi and rD̂i := rDi . We present
the auxiliary relations for each type of temporal operator separately. Throughout this
subsection, let i ∈ N and let α be a temporal subformula of Φ. Furthermore, for ease of
exposition and without loss of generality, we assume that the direct subformulas of α
have the vector x̄ = (x1, . . . , xn) of free variables.

3.4.1. Previous Operator. If the formula α is of the form  I β with I ∈ I, we define

pD̂i
α :=

{
β̂D̂i−1 if i > 0 and τi − τi−1 ∈ I,
∅ otherwise.

Intuitively, a tuple ā is in pD̂i
α if ā satisfies β at the previous time point i − 1 and the

difference of the two successive time stamps is in the interval I given by the metric
temporal operator  I .

LEMMA 3.5. Let α =  I β. The relation pD̂0
α is regular and pD̂0

α = α(D̄,τ̄ ,0) = ∅. For
i > 0, if the relations pD̂i−1

φ are regular and p
D̂i−1

φ = φ(D̄,τ̄ ,i−1) for all φ ∈ tsub(β), then
the relation pD̂i

α is regular and pD̂i
α = α(D̄,τ̄ ,i).

PROOF. For i = 0, the lemma obviously holds. For i > 0, the regularity of pD̂i
α follows

from the assumption that the relations p
D̂i−1

φ are regular and Lemma 3.4(ii). The
equality of the two sets follows from Lemma 3.4(i) and the semantics of the temporal
operator  I .
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3.4.2. Next Operator. If the formula α is of the form #I β with I ∈ I, we define

pD̂i
α :=

{
β̂D̂i+1 if τi+1 − τi ∈ I,
∅ otherwise.

The following lemma is proved similarly to Lemma 3.5.

LEMMA 3.6. Let α = #I β. If the relations pD̂i+1

φ are regular and p
D̂i+1

φ = φ(D̄,τ̄ ,i+1)

for all φ ∈ tsub(β), then the relation pD̂i
α is regular and pD̂i

α = α(D̄,τ̄ ,i).

3.4.3. Since Operator. Before we give the construction details for the metric since
operator, we first consider its non-metric variant. Let α be a formula of the form β S γ.
Note that we could directly define the relation pD̂i

α as⋃
j≤i

(
γ̂D̂j ∩

⋂
j<k≤i

β̂D̂i−k
)
.

However, this construction has the drawback that at each time point i, we recompute
the unions of intersections for j ≤ i. Instead, we use the following construction, which
reflects that β S γ is logically equivalent to γ ∨ β ∧ (β S γ): For i ≥ 0, we define

pD̂i
α := γ̂D̂i ∪

{
∅ if i = 0,
β̂D̂i ∩ pD̂i−1

α if i > 0.

This construction is incremental in the sense that it only depends on the relations in D̂i

for which the corresponding predicates occur in the subformulas β̂ or γ̂, and on the
auxiliary relation pD̂i−1

α , when i > 0. In particular, it does not depend on relations in D̂j

for j < i− 1.
Now assume that the formula α is of the form β SI γ with I = [b, b′). To incorporate the

timing constraint given by the interval I, we first incrementally construct the auxiliary
relations for the predicate rα, similar to the above definition for the non-metric case. We
define rD̂i

α as the union of a set N containing the new elements and a set U containing
the updated tuples. That is, N contains the tuples that are obtained from data at the
time point i and U contains the updated tuples from the time points j with j < i and
τi − τj < b′. Formally, rD̂i

α := N ∪ U , where N := γ̂D̂i × {0}, U := ∅ if i = 0, and for i > 0,

U :=
{

(ā, t)
∣∣ ā ∈ β̂D̂i , t < b′, and (ā, t′) ∈ rD̂i−1

α with t′ = t− τi + τi−1

}
.

Intuitively, a pair (ā, t) is in rD̂i
α if ā satisfies α at the time point i independent of the

lower bound b, where the “age” t indicates how long ago the formula α was satisfied
by ā. If ā satisfies γ at the time point i, it is added to rD̂i

α with the age 0. For i > 0, we
also update the tuples (ā, t) ∈ rD̂i−1

α when ā satisfies β at time point i, that is, the age
is adjusted by the difference of the time stamps τi−1 and τi in case the new age is less
than b′. Otherwise it is too old to satisfy α and the updated tuple is not included in rD̂i

α .
Finally, we obtain the auxiliary relation pD̂i

α from rD̂i
α by checking whether the age of

a tuple in rD̂i
α is old enough:

pD̂i
α :=

{
ā
∣∣ (ā, t) ∈ rD̂i

α , for some t ≥ b
}
.

Observe that as in the non-metric case above, the definition of the relation rD̂i
α only

depends on the relation r
D̂i−1
α when i > 0, and on the relations in D̂i for which the
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corresponding predicates occur in the subformulas β̂ or γ̂. Furthermore, the arithmetic
constraint t′ = t − τi + τi−1 used in the above definition of rD̂i

α for i > 0 is first-order
definable in D̂i as τi − τi−1 is a constant value (see Remark 3.3). From this it follows
that rD̂i

α is regular and thus also pD̂i
α . The details are given in the following lemma.

LEMMA 3.7. Let α = β S[b,b′) γ. Under the assumption that the relations pD̂j

φ are

regular and pD̂j

φ = φ(D̄,τ̄ ,j), for all j ≤ i and φ ∈ tsub(β)∪tsub(γ), the following properties
hold:

(i) The relation rD̂i
α is regular and for all ā ∈ Nn and t ∈ N,

(ā, t) ∈ rD̂i
α iff

there is a j with 0 ≤ j ≤ i such that t = τi − τj < b′ ,

ā ∈ γ(D̄,τ̄ ,j) , and ā ∈ β(D̄,τ̄ ,k), for all k with j < k ≤ i .

(ii) The relation pD̂i
α is regular and pD̂i

α = α(D̄,τ̄ ,i).

PROOF. Property (ii) follows immediately from (i) and the definition of pD̂i
α . We

prove (i) by induction over i.
Base case i = 0: The set rD̂0

α is regular, since it can be defined by the formula

ψ(x̄, y) := γ̂(x̄) ∧ ¬∃z. succ(z, y) .

Note that, by assumption, the relations for the predicates occurring in γ̂ are regular.
The equivalence for i = 0 follows from the definition of rD̂0

α , from the assumption, and
from Lemma 3.4. Note that τi − τi < b′, since in the definition of the syntax of MFOTL,
we require that I 6= ∅. Hence, b′ > 0.
Step case i > 0: We first show that rD̂i

α is regular. Similar to the base case, it follows
that the set N = γ̂D̂i × {0} is regular. The set U = {(ā, t) | ā ∈ β̂D̂i , t < b′, and (ā, t′) ∈
r
D̂i−1
α with t′ = t− τi+ τi−1} is also regular. If b′ 6=∞, it can be expressed by the formula

ψ(x̄, y) := β̂(x̄) ∧ y ≺ b′ ∧ ∃y′. ψ′(x̄, y′) ∧ y′ + (τi − τi−1) ≈ y ,

where ψ′ is the formula that defines rD̂i−1
α , which is regular by the induction hypothesis.

Note that b′ and τi − τi−1 are constant values and not variables. If b′ =∞, we omit the
conjunct y ≺ b′. Since rD̂i

α is defined as the union of N and U , we conclude that rD̂i
α is

regular.
In the following, we show the step case for the second conjunct of (i).

(⇒) If the tuple (ā, t) is in N , then the conjunct is obviously true. Assume that (ā, t) ∈ U .
By definition, there is a tuple (ā, t′) in rD̂i−1

α such that t′ = t− τi + τi−1. By the induction
hypothesis, there is an integer j with 0 ≤ j ≤ i−1 such that t′ = τi−1−τj < b′, ā ∈ γ(D̄,τ̄ ,j),
and ā ∈ β(D̄,τ̄ ,k) for all k with j < k ≤ i − 1. It follows that t = t′ + τi − τi−1 = τi − τj .
From the assumption, we conclude that ā ∈ β(D̄,τ̄ ,k) for all k with j < k ≤ i.

(⇐) If j = i, it follows that t = 0. From the assumption and the definition of rD̂i
α , it

follows that (ā, 0) ∈ rD̂i
α . Assume that j < i. By the induction hypothesis, (ā, t′) ∈ rD̂i−1

α

with t′ = t − (τi − τi−1). From the definition of rD̂i
α and the assumption, we conclude

that (ā, t) ∈ rD̂i
α .
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3.4.4. Until Operator. We now address the bounded future-time operator UI , with I =
[b, b′) ∈ I and b′ ∈ N. Assume that the formula α is of the form β UI γ. Let `i :=
max{j ∈ N | τi+j − τi < b′} be the lookahead offset at time point i. From the sequence τ̄ ,
we can determine the lookahead offset `i by successively inspecting the time stamps
τi+1, τi+2, . . . until we find a time stamp τk with τk − τi ≥ b′. The lookahead offset is
then k − 1− i. This process terminates since, by assumption, UI is bounded. Also note
that this process inspects time points that are in the future with respect to the time
point i. For convenience, we additionally define `−1 := 0.

As with the since operator, we could directly define pD̂i
α as⋃

0≤j′≤`i
with τi+j′−τi≥b

(
γ̂D̂i+j′ ∩

⋂
0≤j<j′

β̂D̂i+j
)
.

However, we instead define the relation pD̂i
α in terms of the incrementally-built auxiliary

relations rD̂i
α and sD̂i

α . We show next how to initialize and update these relations.
Intuitively, the relation rD̂i

α contains the tuple (ā, j) if ā satisfies β at each of the
time points i + j, . . . , i + `i. The relation sD̂i

α contains the tuple (ā, j, j′, t) if j ≤ j′ ≤
`i, t = τi+j′ − τi, ā satisfies γ at time point i + j′ and β at each of the time points
i + j, . . . , i + j′ − 1, and the timing constraint τi+j′ − τi ≥ b is fulfilled. Note that the
timing constraint τi+j′ − τi < b′ also holds since we only look at time points up to i+ `i.

We define rD̂i
α as the union of a set Nr for the new elements and a set Ur for the

updated tuples. That is, Nr contains the tuples that are obtained from data at the
time points i+ `i−1, . . . , i+ `i and Ur contains the updated tuples from the time points
i, . . . , i+ `i−1 − 1. Formally, these two sets are defined as follows:

Nr :=
{

(ā, j)
∣∣ `i−1 ≤ j ≤ `i and ā ∈ β̂D̂i+k , for all k with j ≤ k ≤ `i

}
and Ur := ∅ if i = 0, and

Ur :=
{

(ā, j 	 1)
∣∣ (ā, j) ∈ rD̂i−1

α and (ā, `i−1) ∈ Nr
}
,

for i > 0, where x	 y := max{0, x− y} is subtraction on the non-negative integers.
Analogously to rD̂i

α , we define the relation sD̂i
α as the union of the sets Ns, Us, and Es.

Ns contains the tuples that are new in the sense that they are obtained from data at
the time points i+ `i−1, . . . , i+ `i. Us contains the updated data from the time points
i, . . . , i+ `i−1 − 1. Es contains the data from the time points i, . . . , i+ `i−1 − 1 that can
be extended to the new time points i+ `i−1, . . . , i+ `i. Formally, we define

Ns :=
{

(ā, j, j′, t)
∣∣ `i−1 ≤ j ≤ j′ ≤ `i, ā ∈ γ̂D̂i+j′ , t = τi+j′ − τi, t ≥ b, and
ā ∈ β̂D̂i+k , for all k with j ≤ k < j′

}
and Us := Es := ∅ if i = 0. For i > 0, we define

Us :=
{

(ā, j 	 1, j′ 	 1, t)
∣∣ (a, j, j′, t′) ∈ sD̂i−1

α , t = t′ − (τi − τi−1), and t ≥ b
}

and, with the help of rD̂i−1
α and Ns, we define

Es :=
{

(ā, j 	 1, j′, t)
∣∣ (ā, j) ∈ rD̂i−1

α and (ā, `i−1, j
′, t) ∈ Ns

}
.

Finally, with the relation sD̂i
α at hand, we define

pD̂i
α :=

{
ā
∣∣ (ā, 0, j′, t) ∈ sD̂i

α , for some j′, t ≥ 0
}
.
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LEMMA 3.8. Let α = β U[b,b′) γ with b′ ∈ N. Under the assumption that the relations
pD̂k

φ are regular and pD̂k

φ = φ(D̄,τ̄ ,k), for all k ≤ i + `i and φ ∈ tsub(β) ∪ tsub(γ), the
following properties hold:

(i) The relation rD̂i
α is regular and for all ā ∈ N and j ∈ N,

(ā, j) ∈ rD̂i
α iff ā ∈ β(D̄,τ̄ ,i+k), for all k with j ≤ k ≤ `i .

(ii) The relation sD̂i
α is regular and for all ā ∈ Nn and j, j′ ∈ N,

(ā, j, j′, t) ∈ sD̂i
α iff j ≤ j′, t = τi+j′ − τi ∈ [b, b′), ā ∈ γ(D̄,τ̄ ,i+j′), and

ā ∈ β(D̄,τ̄ ,i+k), for all k with j ≤ k < j′ .

(iii) The relation pD̂i
α is regular and pD̂i

α = α(D̄,τ̄ ,i).

PROOF. Property (iii) follows immediately from (ii) and the definition of pD̂i
α . In the

following, we prove (i) by induction over i. We omit the proof of (ii), which is similar to
(i)’s proof.
Base case i = 0: Observe that rD̂0

α = Nr. For each j with 0 ≤ j ≤ `0, the set of the first
components ā of the tuples (ā, j) in Nr is the finite intersection of regular sets. It follows
that Nr is the finite union of regular sets. The second conjunct of (ii) for i = 0 follows
directly from the definition of Nr and the assumption.
Step case i > 0: To show that rD̂i

α is regular, it suffices to show that Nr and Ur are
regular. As in the base case we conclude that Nr is regular. The regularity of Ur follows
from the induction hypothesis and the regularity of Nr. The second conjunct of (ii) for
i > 0 follows straightforwardly from the induction hypothesis, the definitions of Nr
and Ur, and the assumption.

3.5. Example
Before presenting our monitoring algorithm, we illustrate the formula transformation
and the constructions of the auxiliary relations with the formula

�∀x. in(x)→ �[0,6) out(x)

from Example 2.4. To determine which elements violate the specified property at which
time points, we drop the outermost temporal operator � and make x a free variable,
that is, we use the formula Φ := in(x) → �[0,6) out(x) for monitoring. In other words,
for a given temporal structure (D̄, τ̄), the objective of the monitoring algorithm is to
successively compute and output the sets (¬Φ)(D̄,τ̄ ,0), (¬Φ)(D̄,τ̄ ,1), . . . .

Since α := �[0,6) out(x) is the only temporal subformula of Φ, the extended signature
Ŝ contains, in addition to the unary predicates in and out , the unary predicate pα, the
binary predicate rα, and the ternary predicate sα. Recall that �[0,6) out(x) is syntactic
sugar for true U[0,6) out(x). The transformed formula Φ̂ is ¬in(x) ∨ pα(x).

We illustrate the incremental constructions of the auxiliary relations for the temporal
formula α by considering the temporal structure (D̄, τ̄) in Figure 1, where a, b, c, and d
are pairwise distinct elements in |D̄| = N. Since the incremental construction for the
temporal operator U[0,6) assumes that the direct subformulas of α have the same vector
of free variables, we add the conjunct x ≈ x to the subformula true.

At time point 0, the lookahead `0 is 3 because τ3 − τ0 < 6 and τ4 − τ0 = 6. The relation
rD̂0
α is N×{0, 1, 2, 3} and the relation sD̂0

α consists of the pairs (a, j, j′, t) with j ≤ j′ ≤ `0,
t = τj′ − τ0, and a ∈ outDj′ , that is, sD̂0

α = {(b, 0, 2, 2), (b, 1, 2, 2), (b, 2, 2, 2), (a, 0, 3, 5),
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Fig. 1. A temporal structure.

(a, 1, 3, 5), (a, 2, 3, 5), (a, 3, 3, 5)}. The relation pD̂0
α is {a, b}. When evaluating Φ̂ at time

point 0, we obtain Φ̂D̂0 = (N \ inD0) ∪ pD̂0
α = N \ {c}. The violating elements at time

point 0 are therefore (¬Φ̂)D̂0 = {c}.
At time point 1, the lookahead `1 is 2. Since `1 = `0 − 1, we need not consider any

new time points. We obtain rD̂1
α and sD̂1

α from rD̂0
α and sD̂0

α , respectively, by updating
the relative indices and ages in the tuples contained in rD̂0

α and sD̂0
α , yielding rD̂1

α =

N×{0, 1, 2}, sD̂1
α = {(b, 0, 1, 2), (b, 1, 1, 2), (a, 0, 2, 5), (a, 1, 2, 5), (a, 2, 2, 5)}, and pD̂1

α = {a, b}.
The set of violating elements at time point 1 is (¬Φ̂)D̂1 = N \ ((N \ inD1) ∪ pD̂1

α ) = {d}.
For the time point i = 2, we must also account for the new time point 4, since `2 = 2.

We obtain the relation rD̂2
α = N × {0, 1, 2} and the relation sD̂2

α = Us ∪ Ns ∪ Es, with
Us = {(b, 0, 0, 0), (a, 0, 1, 3), (a, 1, 1, 3)} by updating the indices and ages of the tuples
in sD̂1

α , and Ns = {(d, 2, 2, 4)} and Es = {(d, 0, 2, 4), (d, 1, 2, 4)} by taking the additional
structure at time point 4 into account. Furthermore, we get pD̂2

α = {a, b, d}. The set of
violating elements at time point 2 is (¬Φ̂)D̂2 = N \ ((N \ inD2) ∪ pD̂2

α ) = ∅.
Obviously, the incremental construction for the bounded future operator �I can be

optimized. In particular, the auxiliary predicate rα and its relations are superfluous in
this case. Furthermore, the set Es in an incremental construction and the first index j
in the tuples (ā, j, j′, t) of the relations for the auxiliary predicate sα can be ignored.

3.6. Monitoring Algorithm
Figure 2 presents our monitoring algorithm MΦ. To detect violations, MΦ iteratively
builds the relations of the extended structures D̂0, D̂1, . . . using the incremental con-
structions from Section 3.4. Without loss of generality, we assume that each temporal
subformula occurs only once in Φ. In the following, we describe MΦ’s operation.
MΦ uses two counters ` and i. The counter ` is the index of the current element (D`, τ`)

in the input sequence (D0, τ0), (D1, τ1), . . . , which is processed sequentially. Initially, `
is 0 and it is incremented with each loop iteration (lines 4–13). The counter i is the
index of the next time point i (possibly in the past, from `’s point of view) for which
we evaluate Φ̂ over the extended structure D̂i. The evaluation is delayed until D̂i is
complete, that is, all the auxiliary relations are built (lines 8–11). Furthermore, MΦ

uses the list1 Q to ensure that the auxiliary relations of D̂0, D̂1, . . . are built at the
right time: if (α, j, ∅) is an element of Q at the beginning of a loop iteration, enough
time has elapsed to build the auxiliary relations for the temporal subformula α of the
structure D̂j . MΦ initializes Q in line 3. The function waitfor identifies the subformulas

1We abuse notation by using set notation for lists. Moreover, we assume that Q is ordered so that (α, j, S)
occurs before (α′, j′, S′), whenever α is a proper subformula of α′, or α = α′ and j < j′.
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1 `← 0 % current index in input sequence (D0, τ0), (D1, τ1), . . .
2 i← 0 % index of next query evaluation in input sequence (D0, τ0), (D1, τ1), . . .

3 Q←
{(
α, 0,waitfor(α)

) ∣∣ α is a temporal subformula of Φ
}

4 loop
5 Carry over constants and relations of D` to D̂`.
6 forall (α, j, ∅) ∈ Q do % respect ordering of subformulas
7 Build auxiliary relation pD̂j

α and, depending on α’s main connective,

build also the auxiliary relations rD̂j
α and sD̂j

α .
8 while D̂i is complete do % evaluate query
9 Output (¬Φ̂)D̂i and τi.

10 If i > 0, discard D̂i−1.
11 i← i+ 1

12 Q←
{(
α, `+ 1,waitfor(α)

) ∣∣ α is a temporal subformula of Φ
}
∪{(

α, j,
⋃
α′∈update(S,τ`+1−τ`) waitfor(α′)

) ∣∣ (α, j, S) ∈ Q and S 6= ∅
}

13 `← `+ 1 % process next element in input sequence

Fig. 2. The monitoring algorithm MΦ.

that delay the formula evaluation:

waitfor(α) :=


waitfor(β) if α = ¬β, α = ∃x. β, or α =  I β,
waitfor(β) ∪ waitfor(γ) if α = β ∨ γ or α = β SI γ,
{α} if α = #I β or α = β UI γ,
∅ otherwise.

The list Q is updated in line 12 before we increment ` in line 13 and start a new loop
iteration. The update adds a new tuple (α, ` + 1,waitfor(α)) to Q, for each temporal
subformula α of Φ, and it removes tuples of the form (α, j, ∅) from Q. Moreover, for
tuples (α, j, S) with S 6= ∅, the set S is updated using the functions waitfor and update,
accounting for the elapsed time to the next time point, that is, τ`+1 − τ`. For a set of
formulas U and t ∈ N, update(U, t) is the set

{β | #I β ∈ U} ∪ {β U[max{0,b−t},b′−t) γ | β U[b,b′) γ ∈ U , with b′ − t > 0}∪
{β | β U[b,b′) γ ∈ U or γ U[b,b′) β ∈ U , with b′ − t ≤ 0} .

In line 7, we build the auxiliary relations for which enough time has elapsed, that is,
the relations for α in D̂j with (α, j, ∅) ∈ Q. To build the relations, we use the incremental
constructions described earlier in this section. In lines 8–12, if all the relations of D̂i

have been built, then MΦ outputs the valuations violating Φ at time point i together
with the time stamp τi. Furthermore, after each output, the extended structure D̂i−1 is
discarded (if i > 0) and i is incremented.

Note that because MΦ does not terminate, it is not an algorithm in the strict sense.
However, it effectively determines the elements violating Φ, for every time point.

THEOREM 3.9. The monitoring algorithm MΦ has the following properties:

(i) Whenever MΦ executes line 9, then the output set is effectively computable, regular,
and equal to (¬Φ)(D̄,τ̄ ,i).

(ii) For each n ∈ N, MΦ eventually sets the counter i to n by executing line 11.

PROOF. For the proof, we index the program variable Q of the monitoring algorithm
MΦ by the loop iteration when processing the given input sequence: for an integer k ∈ N,
Qk denotes the list when we enter the (k + 1)st loop iteration. For example, Q0 is the
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initialized list from line 3 and Q1 is the list after the first update in line 12. Analogously,
we index the counters i and ` with k ∈ N: ik and `k denote the counters’ values when
entering the (k + 1)st loop iteration. Note that `k = k.

We start with some observations about the tuples stored in the list Q. Assume that α
is a formula, j ∈ N, and S a set of formulas.

(1) For all k ∈ N, we have (α, k,waitfor(α)) ∈ Qk. This follows directly from the list Q’s
initialization (line 3) and update (line 12).

(2) For all k ∈ N, if (α, j, S) ∈ Qk then (α, j, ∅) ∈ Qk′ , for some k′ ≥ k. This follows
from Q’s update (line 12), in particular from the application of the functions waitfor
and update, and because the sequence of time stamps τ0, τ1, . . . is monotonically
increasing and progressing.

(3) For all k ∈ N, if (α, j, S) ∈ Qk then j ≥ ik. To see this, we first observe that `k ≥ ik,
for all k ∈ N. It follows that the tuples that we add to the list Q in line 3 and in
line 12 before the (k + 1)st loop iteration ends by incrementing the counter ` have a
second component that is at least ik. Furthermore, we only increment the counter i
(line 11) after all relations of D̂ik have been built. Also note that, after building the
corresponding relations for a tuple in the list Q in line 7, we remove the tuple from
Q when updating it in line 12.

From (1) and (2), it follows that for every temporal subformula α of Φ and j ∈ N, we
eventually execute line 7, where we build the auxiliary relations for α of the extended
structure D̂j . Hence for every value of the counter i, the while loop’s condition (line 8)
eventually becomes true in some loop iteration and i is eventually incremented (line 11).
We conclude that the property (ii) holds.

We turn now to the property (i) of the theorem. We show that for each temporal
subformula α of Φ and all k, j ∈ N, if (α, j, ∅) ∈ Qk then line 7 of the monitoring algorithm
MΦ can be executed. That is, the relations involved in the respective incremental
construction (depending on α’s main connective and given in Section 3.4) of the auxiliary
relations for the temporal subformula α have been built earlier and have not yet been
discarded. From the respective lemma in Section 3.4, it follows that pD̂j

α = p
(D̄,τ̄ ,j)
α and

p
D̂j
α is regular and effectively computable. Hence property (i) holds.
Relations are not discarded too early. To see this, assume (α, j, ∅) ∈ Qk, for some

j, k ∈ N. The relations necessary for executing line 7 of the monitoring algorithm MΦ

are from the extended structure D̂ik−1 if ik > 0 and subsequent extended structures.
Since we have that j ≥ ik by (3), none of these structures has been discarded yet by the
execution of line 10 in some previous loop iteration.

It remains to show that the relations are not built too late. We make a case split on
α’s main temporal connective, assuming (α, j, ∅) ∈ Qk, for some j, k ∈ N.
Case α =  I β. For j = 0, there is nothing to prove since pD̂0

α = ∅. For j > 0, the
construction from Section 3.4.1 of the relation pDj

α uses at most the relations rD̂j−1 with
r ∈ R and the auxiliary relations pD̂j−1

δ with δ ∈ tsub(β). The relations for the predicates
in R have been carried over to the extended structure D̂j−1 by the execution of line 5 of
the monitoring algorithm MΦ in a previous loop iteration in which the counter ` had
the value j − 1.

Assume δ ∈ tsub(β). There is an integer k′ ∈ N with k′ ≤ k such that (δ, j − 1, ∅) ∈ Qk′ .
This follows from the observation that MΦ puts the tuple (δ, j−1,waitfor(δ)) into the list
Q in the jth loop iteration and the tuple (α, j,waitfor(α)) in the (j + 1)st loop iteration.
In each subsequent loop iteration, MΦ updates the third component of each of these
tuples until it becomes the empty set (line 12). By the functions waitfor and update, we
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have that the third component S of the tuple (α, j, S) does not become the empty set
before the third component S′ of the tuple (δ, j−1, S′). Given the order of the elements in
the list Q, it follows that monitoring algorithm MΦ builds the relation pD̂j−1

δ before pD̂j
α .

Case α = β SI γ. The construction from Section 3.4.3 of pD̂j
α is only based on the aux-

iliary relation r
D̂j
α . The given construction of rD̂j

α in turn uses at most the relations
rD̂j with r ∈ R, the auxiliary relations pD̂j

δ with δ ∈ tsub(β) ∪ tsub(γ), and the auxiliary

relation r
D̂j−1
α if j > 0. By an argument similar to the one given above for the temporal

operator  I , it follows that the monitoring algorithm MΦ builds all these relations
before building rD̂j

α .

Case α = #I β. The construction from Section 3.4.2 of pD̂j
α uses at most the relations

rD̂j+1 with r ∈ R and the auxiliary relations pD̂j+1

δ with δ ∈ tsub(β). Because of the
initialization (line 3) and the updates (line 13) of the list Q, we have that (α, j, {α}) ∈ Qj
and (α, j,waitfor(β)) ∈ Qj+1. It follows that k ≥ j + 1. Thus, the monitoring algo-
rithm MΦ carries over the relations for the predicates in R to the extended struc-
ture D̂j+1 before building the auxiliary relation p

D̂j
α . For δ ∈ tsub(β), we have that

(δ, j + 1,waitfor(δ)) ∈ Qj+1 with waitfor(δ) ⊆ waitfor(β). Analogously, as in the case for

the temporal operator  I , we conclude that MΦ builds pD̂j+1

δ before pD̂j
α .

Case α = β UI γ with I = [b, b′). The monitoring algorithm MΦ postpones the construc-
tions of the auxiliary relations rD̂j

α , sD̂j
α , and pD̂j

α for at least k′ loop iterations, for some
k′ ∈ N with τj+k′ − τj ≥ b′. This follows from the definition of the functions waitfor and
update used for initializing and updating the list Q: we have that for all k′′ ∈ N with
τj+k′′ − τj < b′, there is some interval I ′ such that (α, j, {β UI′ γ}) ∈ Qj+k′′ .

It follows that τk − τj ≥ b′. Thus, the relations for the predicates in R used in the

construction given in Section 3.4.4 of rD̂j
α , sD̂j

α , and pD̂j
α have been carried over by the

monitoring algorithm MΦ to the extended structures. Assume δ ∈ tsub(β) ∪ tsub(γ).
The monitoring algorithm MΦ postpones the construction of rD̂j

α , sD̂j
α , and pD̂j

α further

until the auxiliary relations pD̂j+k′′

δ , for all k′′ ∈ N with k′′ ≤ k′ have been built. To
see this, observe that for each such k′′, we have that (δ, j + k′′,waitfor(δ)) ∈ Qj+k′′ and
(α, j,waitfor(β) ∪ waitfor(γ)) ∈ Qj+k′ and waitfor(δ) ⊆ waitfor(β) ∪ waitfor(γ).

4. MONITORING WITH FINITE RELATIONS
In this section, we shall assume that the relations that can change over time are finite.
In this case, data structures and algorithms from relational databases provide an
alternative to automata for implementing the monitoring algorithm MΦ. This alter-
native yields a more efficient implementation, as demonstrated by the experimental
evaluation in Section 6.3. Furthermore, some of the restrictions in Section 3.1 can
even be weakened. However, when representing relations as finite tables, we inherit
standard problems from database theory, which we illustrate in Section 4.1. Afterwards,
in Section 4.2, we present a restricted class of formulas that MΦ can handle.

4.1. Example Revisited
The incremental constructions from Section 3.4 fail when the auxiliary relations are
required to be finite. In particular, Lemmas 3.5–3.8 are invalid when replacing the word
“regular” by “finite.” The constructed relations are still regular, but possibly infinite.
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To illustrate some of the obstacles in monitoring with finite relations, consider again
the formula �∀x. in(x) → �[0,6) out(x) from Example 2.4. The relations for the predi-
cates in and out can change over time and now we assume that they are finite at every
time point. As in Section 3.5, for monitoring we drop the outermost temporal operator
and the quantification. We also negate the formula since we want to detect violations.
Moreover, we now push negation inwards as otherwise we could not evaluate the formula
inductively over its structure, where intermediate results are stored in finite tables.
This is because the relation interpreting in(x)→ �[0,6) out(x) is infinite. If we push the
negation all the way down to the predicates we obtain Φ := in(x)∧�[0,6) ¬out(x). Unfor-
tunately, we cannot also use Φ for monitoring, since this time the relation interpreting
¬out(x) is infinite. However, we can monitor the formula in(x) ∧ ¬ �[0,6) out(x). The
auxiliary relations for the subformula �[0,6) out(x) are always finite and, furthermore,
although ¬ �[0,6) out(x) describes an infinite set, its conjunction with in(x) guarantees
the finiteness of the result. In particular, if I and O are the finite sets of elements that
satisfy in(x) and �[0,6) out(x) at a time point i ∈ N, respectively, then I \O is the set of
elements that satisfy in(x) ∧ ¬ �[0,6) out(x) at time point i.

There are often different syntactic alternatives available that yield monitorable
formulas. Returning to Φ = in(x) ∧�[0,6) ¬out(x), we can copy the conjunct in(x) into
the temporal subformula. That is, we rewrite Φ into the logically equivalent formula
Φ′ := in(x)∧�[0,6) ¬out(x)∧ �[0,6) in(x). Observe that at each time point, there are only
finitely many elements that satisfy �[0,6) in(x) and thus only finitely many that satisfy
¬out(x) ∧ �[0,6) in(x). In fact, the relations for the auxiliary predicates for the temporal
subformulas �[0,6) in(x) and �[0,6) ¬out(x) ∧ �[0,6) in(x) of Φ′ are all finite.

As a second example, consider

�∀x.∀y. in(x, y)→ �[0,6) out(x) ∧ (¬out(y) ∨ x ≈ y) ,

where in is a binary predicate. The formula states that the first component x of in must
eventually be output (within the given time bound) and the second component y must
not simultaneously be output if y is different from x. Observe that neither �[0,6) out(x)∧
(¬out(y) ∨ x ≈ y) nor its negation is guaranteed to be fulfilled by only finitely many
elements. However, by rewriting, we obtain the formula in(x, y) ∧ �[0,6)

(
¬out(x) ∨

out(y) ∧ ¬x ≈ y
)
∧ �[0,6) in(x, y), which is monitorable.

4.2. Monitorable Fragment
Throughout this section, we fix a signature S = (C,R, ι), assuming that C is nonempty
and true abbreviates a formula c ≈ c, for some c ∈ C. This technical assumption becomes
clear in the following subsections, when we introduce the class of monitorable formulas.

We distinguish in the following between predicates whose corresponding relations are
rigid over time and those that are flexible, that is, their interpretations can change over
time. Let F ⊆ R be the set of flexible predicates. Let (D̄, τ̄) be a temporal structure with
D̄ = (D0,D1, . . . ). We call (D̄, τ̄) a temporal database if (1) the domain |D̄| is countably
infinite, (2) for each r ∈ F and i ∈ N, the relation rDi is finite, and (3) for each r ∈ R \ F
and i ∈ N, the relation rDi is a decidable set and rDi = rDi+1 . We also assume in
the following that N ⊆ |D̄| and that there is a binary predicate ≺ in R \ F , which is
interpreted as the standard ordering < on N.

Note that we do not fix the domain of a temporal structure (D̄, τ̄) to N as done in
Section 3.1. The assumption that the time stamps in τ̄ are non-negative integers can
also be relaxed, for instance, by assuming that they are non-negative rationals. However,
as noted in Section 3.1, a dense time domain is unrealistic for monitoring since the time

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.



A:20 David Basin et al.

stamps originate from physical clocks with limited precision. We therefore assume as in
Section 3 that the time stamps in τ̄ are non-negative integers.

Furthermore, note that the finiteness assumption on the relations interpreting the
flexible predicates is more restrictive than the regularity assumption in Section 3.1. In
contrast, for the rigid predicates, we are less restrictive. The finiteness assumption of
the flexible predicates allows us to provide the corresponding relations at each time
point to the monitoring algorithm by enumerating the relations’ elements. Since the
relations of a rigid predicate are decidable sets that do not change over time, we assume
that the monitoring algorithm has a membership checking procedure at hand. Common
examples for the relations of rigid predicates are the graphs of arithmetic operations
like addition and subtraction and a relation ordering the domain elements.

Since the monitoring algorithm must compute and store the auxiliary relations,
as illustrated in Section 4.1, we impose next additional syntactic restrictions on the
monitored formula. These restrictions guarantee the finiteness of the auxiliary relations
and allow us to construct them inductively over the formula structure.

4.2.1. Domain Independence. In database theory, the finiteness of the output of queries
can be guaranteed by restricting the range of variables to the so-called active domain,
which is the set of domain elements that occur in a table of the database or in the
query itself. This relativization is sound with respect to the first-order semantics for
so-called domain-independent queries, see [Abiteboul et al. 1995]. The generalization to
our temporal setting is as follows.

Let (D̄, τ̄) be a temporal database, with D̄ = (D0,D1, . . . ) and τ̄ = (τ0, τ1, . . . ). We
say that ` ∈ N ∪ {∞} is a lookahead at time point i ∈ N for the formula φ and (D̄, τ̄) if
φ(D̄,τ̄ ,i) = φ(D̄′,τ̄ ′,i), for all temporal databases (D̄′, τ̄ ′), with D′k = Dk and τ ′k = τk, for
all k < `. When φ is bounded then there is always a lookahead ` ∈ N at i for φ and
(D̄, τ̄), since bounded formulas refer only to finitely many time points in the future. For
D ⊆ |D̄|, |=D denotes the relation |= defined in Definition 2.2, except that quantification
is relativized to the set D. The active domain of (D̄, τ̄) and ` ∈ N ∪ {∞} is

adom(D̄, `) := {cD̄ | c ∈ C}∪⋃
r∈F

⋃
0≤k<`

{
di ∈ |D̄|

∣∣ for some (d1, . . . , dι(r)) ∈ rDk and 1 ≤ i ≤ ι(r)
}
.

The set adom(D̄, `) is finite if ` ∈ N. Let v be some valuation. The formula φ with free
variables x̄ = (x1, . . . , xn) is domain independent if for all temporal databases (D̄, τ̄),
i ∈ N, and D,D′ ⊆ |D̄|, it holds that{

d̄ ∈ Dn
∣∣ (D̄, τ̄ , v[x̄ 7→ d̄], i) |=D φ

}
=
{
d̄ ∈ D′n

∣∣ (D̄, τ̄ , v[x̄ 7→ d̄], i) |=D′ φ
}
,

whenever adom(D̄, `) ⊆ D,D′, where ` ∈ N ∪ {∞} is a lookahead at i for φ and (D̄, τ̄).
For bounded formulas, domain independence obviously implies finiteness. However,

determining whether a formula is domain independent is undecidable. In fact, the
decision problem is already undecidable in the non-temporal setting [Di Paola 1969].
We therefore present in Section 4.2.2 a syntactically defined fragment of MFOTL
that guarantees finiteness and also domain independence when imposing additional
restrictions on the atomic formulas with rigid predicates. With additional requirements
on the temporal subformulas, which we present in Section 4.2.3, formulas can be
evaluated inductively over their structure without restricting the range of variables
explicitly to the active domain as is done by Chomicki et al. [2001]. Restricting the
range of variables explicitly to the active domain produces a significant overhead when
evaluating formulas, which grows with the size of the active domain over time.
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α : ∅ α is an atomic formula
α : L

α : L ∪ {B → h}
α is an atomic formula and
B → h is admissible for α

φ : L

φ : L[L∗]

φ : L

¬φ : ∅
φ : L ψ : L′

φ ∧ ψ : L ∪ L′
φ : L ψ : L′

φ ∨ ψ : {B ∪B′ → h | B → h ∈ L and B′ → h ∈ L′}

φ : L

∃x. φ : {B → h ∈ L | x /∈ B and x 6= h} x ∈ L∗
φ : L

 I φ : L

φ : L

#I φ : L

φ : L ψ : L′

φ SI ψ : L′
φ : L ψ : L′

φ UI ψ : L′

Fig. 3. Labeling rules.

in(x) : ∅
in(x) : {∅ → x}

c ≈ c : ∅
out(x) : ∅

out(x) : {∅ → x}
c ≈ c U[0,6) out(x) : {∅ → x}

¬
(
c ≈ c U[0,6) out(x)

)
: ∅

in(x) ∧ ¬
(
c ≈ c U[0,6) out(x)

)
: {∅ → x}

Fig. 4. Example derivation.

4.2.2. Range Restriction. In the following, we assume that a formula’s bound variables
are pairwise distinct and disjoint from the formula’s free variables. Furthermore, we
treat the Boolean connective ∧ as a primitive. We label the subformulas of a formula φ,
starting with the atomic formulas and propagate these labels to the root of φ’s syntax
tree. A labeling is a set of restriction facts, each of the form B → h, with B ⊆ V and
h ∈ V . Intuitively, the meaning of B → h is that if the ranges of the variables in B
are restricted, then the range of the variable h is restricted, that is, there are only
finitely many possible instantiations of h. Formally, a restriction fact {y1, . . . , yn} → x is
admissible for the formula φ if x, y1, . . . , yn ∈ free(φ) and for every structure D, all finite
sets D1, . . . , Dn ⊆ |D|, and every valuation v with v(y1) ∈ D1, . . . , v(yn) ∈ Dn, there are
only finitely many d ∈ |D| with (D, v[x 7→ d]) |= φ. We say that a variable x is range
restricted in φ if ∅ → x is an admissible restriction fact for φ.

The labeling rules are given in Figure 3, which we briefly explain in the following.
Atomic formulas are labeled by the empty set. Admissible restriction facts can always
be added to a labeling of an atomic formula. We assume that we can determine whether
a restriction fact is admissible for an atomic formula. For example, restriction facts of
the form ∅ → h are admissible for an atomic formula r(t1, . . . , tn) if r ∈ F and h = ti, for
some i ∈ N with 1 ≤ i ≤ n. The restriction fact ∅ → x is admissible for x ≈ c when c is a
constant symbol in C and {y} → x is admissible for x ≺ y, since there are only finitely
many non-negative integers that are smaller than y. A labeling L for a formula φ can be
simplified to L[L∗], where L∗ := {h | ∅ → h ∈ L} and L[X] := {B \X → h | B → h ∈ L},
where X ⊆ V . For instance, if L = {∅ → x, {x} → y}, then L[L∗] = {∅ → x, ∅ → y}.

The labeling rule for the Boolean connective ¬ removes all restriction facts from
the labeling set. For the Boolean connectives ∧ and ∨, we combine the labels of the
subformulas. The labeling rule for the existential quantifier requires that the quantified
variable x is range restricted in the subformula φ. The rule propagates all labels in L,
except those containing the quantified variable x. The labeling rules for the temporal
operators  I and #I propagate the labels from the operator’s subformula. The labeling
rules for SI and UI only propagate the second subformula’s label, as the first subformula
just restricts the satisfying valuations of the second subformula.

The derivation in Figure 4 shows that the range of the variable x is restricted in the
formula in(x) ∧ ¬ �[0,6) out(x) from Section 4.1. Recall that �I φ abbreviates true UI φ.
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Here true is syntactic sugar for c ≈ c, for some c ∈ C. We cannot use the formula
∃x. x ≈ x as abbreviation for true since x is not range restricted in x ≈ x.

A formula φ is X-range-restricted, with X ⊆ free(φ), if there is a derivation tree
for φ : L, for some labeling L with X ⊆ L∗. If X = free(φ), we just say that φ is
range-restricted. Note that the ranges of the quantified variables are restricted in ∅-
range-restricted formulas. Furthermore, the free variables of a range-restricted formula
have only finitely many satisfying instantiations.

LEMMA 4.1. Let φ be a formula, X ⊆ free(φ), (D̄, τ̄) a temporal database, and i ∈ N.
It is decidable whether φ is X-range-restricted. If φ is range-restricted and bounded then
φ(D̄,τ̄ ,i) is finite. Furthermore, φ is domain independent if φ’s range restriction can be
shown by only using the labeling ∅ for atomic subformulas with rigid predicates.

PROOF. To determine whether φ is X-range-restricted, we label the leaves of φ’s
syntax tree and propagate these to the root. It is sufficient to consider a maximal
labeling L for each atomic subformula α, that is, if B → h is admissible for atomic
formula α then there is a B′ → h ∈ L with B′ ⊆ B. Furthermore, we only propagate
a labeling L if it is simplified, that is, L = L[L∗]. These observations lead to a simple
deterministic procedure for deciding whether φ is X-range-restricted.

When φ is bounded, the finiteness of φ(D̄,τ̄ ,i) follows from the invariant that the
restriction facts in a derivation tree for a labeling of φ are admissible. This invariant is
straightforward to show by structural induction.

If atomic formulas with rigid predicates are only labeled by ∅ in a derivation tree,
then the range of all of φ’s variables must be restricted by atomic formulas with a
flexible predicate or by x ≈ c, with c ∈ C. Hence they only range over elements in the
active domain.

4.2.3. Formula Evaluation. Range-restricted first-order formulas with only flexible predi-
cates can be translated to relational algebra expressions [Abiteboul et al. 1995]. They
can therefore be efficiently evaluated. Extensions for handling more expressive first-
order fragments are, for example, presented by Van Gelder and Topor [1991], which
also distinguish between predicates for finite and infinite relations. For the sake of
readability and space, we restrict ourselves here to the simple fragment of range-
restricted first-order formulas and its extension with temporal operators. An inductive
evaluation of range-restricted first-order formulas that also include rigid predicates is
straightforward and follows the one described in [Abiteboul et al. 1995]. For illustration,
consider the formula p(y) ∧ ∃x. q(x, y) ∨ x ≺ y, which is range-restricted under the
assumption that p and q are flexible predicates. To evaluate this formula, we rewrite it
to p(y)∧∃x. q(x, y)∨ p(y)∧x ≺ y to restrict the range of y in the subformula p(y)∧x ≺ y,
and hence also in q(x, y) ∨ p(y) ∧ x ≺ y. This rewritten formula can be inductively
evaluated over its formula structure. In general, such rewriting combines formulas
with unrestricted variables (for example, the variables in an atomic formula α with a
rigid predicate or in a negated formula ¬φ) with conjuncts that restrict the range of
these variables.

In the following, we describe how and under which additional requirements the
incremental constructions from Section 3.4 for the auxiliary relations for temporal
subformulas can be carried out in a bottom-up manner, that is, inductively over the
formula structure. Let (D̄, τ̄) be a temporal database, with D̄ = (D0,D1, . . . ) and τ̄ =
(τ0, τ1, . . . ).

For the incremental construction from Section 3.4.1 for a formula α =  I β, we
require that β̂ is range-restricted. Let x̄ be the free variables of β and let I = [b, b′) with
b ∈ N and b′ ∈ N. (We omit the case where b′ = ∞ as it is an obvious adaption.) The
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construction of the auxiliary relation pD̂i
α is obvious for the time point i = 0. For i > 0,

the range-restricted first-order formula

β̂(x̄) ∧ ¬(τi − τi−1 ≺ b) ∧ τi − τi−1 ≺ b′

describes the tuples in pD̂i
α when interpreting the predicates in β̂ by the relations of

the structure at the previous time point. We assume here that the signature contains
constant symbols for b, b′, and τi − τi−1. Thus, we can obtain pD̂i

α by evaluating this
formula in a bottom-up manner over the structure at the previous time point. The
incremental construction from Section 3.4.2 for α = #I β is done analogously, where we
also assume that β̂ is range-restricted.

For a formula α = β SI γ, we require that free(β) ⊆ free(γ), β̂ is ∅-range-restricted,
and γ̂ is range-restricted. With these requirements, the incremental construction from
Section 3.4.3 of the auxiliary relation rD̂i

α is as follows. We omit the case where the time
point i is 0, since it is subsumed by the case where i > 0. Let x̄ be the free variables of γ
and I = [b, b′) with b ∈ N and b′ ∈ N. (Again, we omit the case where b′ =∞.) The tuples
in the relation rD̂i

α are described by the range-restricted first-order formula(
γ̂(x̄) ∧ y ≈ 0

)
∨
(
∃y′. β̂(x̄) ∧ rα(x̄, y′) ∧ y ≈ y′ + τi − τi−1 ∧ y ≺ b′

)
,

where the relations for the predicates in β̂ and γ̂ are taken from the structure of the
current time point i and the relation for rα(x̄, y) is taken from the previous time point
i − 1. We assume here that the signature contains constant symbols for 0, τi − τi−1,
and b′, and that there is a rigid predicate in the signature for the function graph of
addition over N. Note that the subformula β̂(x̄) ∧ rα(x̄, y′) is range-restricted, since rα
is a flexible predicate and, by assumption, β̂ is ∅-range-restricted and free(β) ⊆ free(γ).
The range-restricted first-order formula ∃y. rα(x̄, y) ∧ ¬y ≺ b describes the tuples in the
auxiliary relation pD̂i

α where the predicate rα is interpreted by the relation rD̂i
α .

For the incremental construction from Section 3.4.4 for a formula α = β UI γ, we
require that free(β) ⊆ free(γ) and that β̂ and γ̂ are range-restricted. Similar to the
above cases, although more involved, we can describe the auxiliary relations rD̂i

α , sD̂i
α ,

and pD̂i
α by range-restricted first-order formulas. We omit the details. In contrast to

the case for the temporal operator SI , we require that β̂ is range-restricted and not
just ∅-range-restricted. The reason is that the incremental construction involves the
auxiliary relations for the predicate rα, which depend on β and are not restricted by γ.
However, for the important case of �I γ, which is syntactic sugar for true UI γ, it suffices
that γ̂ is range-restricted. The incremental construction can be easily optimized for this
case so that it no longer relies on the auxiliary relations for rα. See also Section 5.3.

4.2.4. Formula Rewriting. For monitoring, we do not explicitly restrict the range of
variables to the active domain. Instead, we require a formula for the negated property
that is range-restricted and its temporal subformulas satisfy the requirements for the
incremental constructions stated in Section 4.2.3. In the following, we give heuristics
to obtain such a monitorable formula Ψ from the formula �Φ, where Ψ is logically
equivalent to ¬Φ. Our heuristics have proved to be effective in practice. We obtained
monitorable formulas for most of the formulas that we encountered in our case studies.
See Section 6.

First, we push negation in ¬Φ inwards by iteratively rewriting subformulas of the
form ¬¬ψ to ψ, ¬(ψ∨ψ′) to ¬ψ∧¬ψ′, and ¬(ψ∧ψ′) to ¬ψ∨¬ψ′. If we have not succeeded
yet, we try to rewrite the formula further by applying the rewrite rules in Figure 5.
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α ∧ I β 7−→ α ∧ I(#I α) ∧ β
α ∧#I β 7−→ α ∧#I( I α) ∧ β
α ∧ (β SI γ) 7−→ α ∧ (β SI ( �I α) ∧ γ) if I is finite
α ∧ (β UI γ) 7−→ α ∧ (β UI ( �I α) ∧ γ)
β SI γ ∧ α 7−→ ( �[0,b′) α) ∧ β SI γ ∧ α if I = [b, b′)
β UI γ ∧ α 7−→ ( �[0,b′) α) ∧ β UI β ∧ α if I = [b, b′)
α ∧ (β ∨ γ) 7−→ (α ∧ β) ∨ (α ∧ γ)
α ∧ ¬β 7−→ α ∧ ¬(α ∧ β)
α ∧ ∃x. β 7−→ ∃x. α ∧ β

Fig. 5. Rewrite rules as a heuristic to obtain monitorable formulas.

φ : L ψ : L′

φ TI ψ : L′
0 ∈ I

φ : L ψ : L′

φ RI ψ : L′
0 ∈ I

Fig. 6. Additional labeling rules.

These rules aim to push a subformula α inwards, where it is assumed that α restricts
the range of variables that are not restricted by β and γ.

Furthermore, we can try to push negation over temporal operators to obtain moni-
torable formulas. For example, given a subformula ¬#α, where α̂ is not range-restricted,
we can first rewrite it to #¬α and then push the negation into α. When treating the
dual temporal operators “trigger” TI and “release” RI for SI and UI , respectively, as
primitives, we can push negation inwards even further. Recall that β TI γ and β RI γ
are logically equivalent to ¬(¬β SI ¬γ) and ¬(¬β UI ¬γ), respectively. The incremental
constructions for these temporal operators are similar to the ones in Section 3.4. How-
ever, the corresponding labeling rules, given in Figure 6, are more restrictive than their
dual counterparts. The additional constraint 0 ∈ I of these rules stems from the fact
that the temporal operators TI and RI implicitly quantify universally over time points.
Formulas φTI ψ and φRI ψ are therefore trivially satisfied by all valuations if there are
no time points that fulfill the metric constraints specified by the interval I. In such a
degenerated case, φ TI ψ and φ RI ψ describe infinite sets. If 0 ∈ I, this degenerate case
does not occur, since the current time point fulfills the metric constraints. To remove
the constraint 0 ∈ I from the labeling rules, we must additionally require that the time
stamps in the sequence τ̄ = (τ0, τ1, . . . ) of a temporal database (D̄, τ̄) are sufficiently
dense. That is, for every time point i ∈ N, there is a time point j ∈ N such that (1) j ≤ i
and τi − τj ∈ I, if the temporal operator is TI , and (2) j ≥ i and τj − τi ∈ I, if the
temporal operator is RI .

5. SPACE AND TIME REQUIREMENTS
In this section, we analyze the resource requirements of the monitoring algorithm MΦ

and present optimizations.

5.1. Memory Usage
In the following, we assume that Ψ is the formula used by the monitoring algorithm MΦ.
When using automata to represent relations, Ψ equals ¬Φ. In the finite relations case,
we obtain the monitorable formula Ψ, for example, by rewriting ¬Φ as described in
Section 4.2.4. Note that in the latter case Ψ must fulfill additional requirements to
be monitorable. Since MΦ iteratively processes the structures and time stamps in the
temporal database (D̄, τ̄), our upper bounds are given in terms of the processed prefix of
(D̄, τ̄), with D̄ = (D0,D1, . . . ) and τ̄ = (τ0, τ1, . . . ). The largest and most relevant part of
MΦ’s memory usage is the space needed to store the relations of the extended structures
D̂0, D̂1, . . . .
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We first establish an upper bound on the number of relations kept in memory. Recall
that the values of MΦ’s counters ` and i are at most the length of the processed prefix.
Furthermore, we have that i ≤ `. We also observe that MΦ stores in each loop iteration
only the relations from the extended structures whose indices are between max{0, i− 1}
and `. Under the assumption that there are at most m consecutive equal time stamps
in τ̄ , the difference between i and ` is bounded by m · s, where s is the sum of the upper
bounds of the intervals of the future operators occurring in Ψ. Hence, the number of
relations kept in memory in an iteration by MΦ is in O(m · s · k), where k is the number
of Ψ’s connectives.

When representing relations by automata, the sizes of these automata are not pre-
dictable and we are not aware of any upper bounds on their sizes other than non-
elementary ones. Furthermore, their sizes depend on how domain elements are repre-
sented. Hence we instead focus on the case where relations are finite. A meaningful
measure for the representation size in this case is the cardinality of a relation.

We make the assumption that temporal subformulas α of Ψ are domain independent.
It is easy to see that every temporal subformula α of Ψ is range-restricted, since Ψ
satisfies the restrictions of Section 4.2.3. Thus, from Lemma 4.1, the stated assumption
is fulfilled when Ψ contains no rigid predicates. When Ψ contains rigid predicates, the
assumption is not always fulfilled. For instance, α := (x ≺ c) S r(x), with r ∈ F , is
domain independent, while β := �(x ≺ c) is not, where c is some constant with cD̄ ∈ N.
Furthermore, note that the cardinality of pD0

β is cD̄ and is independent of the cardinality
of the active domain at time point 0.

For a domain independent subformula α of Ψ, we have that every domain element
that occurs in p

D̂j
α is also in adom(D̄, `), where j ∈ N with i ≤ j ≤ `. It follows that the

cardinality of an auxiliary relation for the predicates pα is polynomially bounded by the
cardinality of the active domain at the time point when MΦ constructs it, where the
degree of the polynomial is the number of the free variables in α.

If α is of the form β UI γ, then the tuples in r
D̂j
α and s

D̂j
α are of the form (ā, j′)

and (ā, j′, j′′, t), respectively, where the elements in ā also occur in the active domain,
j′, j′′ ∈ {0, . . . , `− i} and t ∈ {0, . . . , s}. We obtain upper bounds on the cardinality of rD̂j

α

and sD̂j
α , which are larger by a factor of (m · s+ 1) and (m · s+ 1)2 · (s+ 1), respectively,

than the polynomial bounds for the auxiliary relations for the predicate pα.
If α is of the form β SI γ, with I = [b, b′), then the tuples in r

D̂j
α are of the form (ā, t),

where t is from the set N if b′ = ∞ and from the set {0, . . . , b′} if b′ ∈ N. When b′ ∈ N,
the cardinality of rD̂j

α is at most |pD̂j
α | · (b′ + 1). To obtain a polynomial upper bound for

the case where b′ =∞, we must optimize the incremental construction of the auxiliary
relations for rβ S[b,∞)γ (see Section 5.3) so that the age of an element is the minimum of
its actual age and the interval’s lower bound b. The additional factor is then (b+ 1).

5.2. Time Complexity
We complement the upper bounds on the space requirements for MΦ with upper bounds
on the run time of MΦ during one iteration. As in the previous section, and for the same
reasons, we focus on the case where relations are finite and the temporal subformulas α
of the given formula Ψ are domain independent. We also use the same notation, namely
i, `, m, s, and k are as in Section 5.1. In addition, we denote by n the maximum number
of free variables among all of Ψ’s subformulas.

We assume that the lines 7 and 9 of MΦ in Figure 2 are implemented using extended
relational algebra operations, namely, set union, set difference, Cartesian product,

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.



A:26 David Basin et al.

selection, projection, and natural join [Abiteboul et al. 1995]. More precisely, the for-
mula Ψ̂ and the formulas that define the auxiliary relations (see Section 4.2.3) are
translated into extended relational algebra expressions before monitoring, and these
expressions are evaluated during monitoring, for each time point i. Extended relational
algebra expressions cater for the arithmetic and comparisons used in those formulas.
The expression for Ψ̂ has size O(k), while the expressions for the formulas that define
the auxiliary relations have constant size.

An extended relational algebra operation runs in time polynomial in the arity and
cardinality of its input relations. This holds even for naive implementations and data
structures, such as when implementing relations as lists of tuples. The cardinality of
the output relation is at most the product of the cardinality of the input relations.

The relation symbols in the obtained expressions refer to the relations pDj with
p ∈ F and i ≤ j ≤ ` and the auxiliary relations stored at time point `. The arity of
these relations is in O(n). As explained in the previous section, their cardinality is
polynomially bounded by the cardinality of the active domain at ` and by the parameters
m and s. The degree of the polynomial is linear in n. It follows that the evaluation of
these expressions at time point ` takes polynomial time in cardinality of the active
domain at ` and in the parameters m and s, with the degree of the polynomial being
linear in n and k. Note that the update of Q at line 12 is polynomial in k.

5.3. Optimizations
In the following, we optimize the memory usage of our monitoring algorithm MΦ.

Discarding Relations. Some of the relations from the extended structures D̂0, D̂1 . . .
can be discarded earlier, that is, before executing line 10 of MΦ (Figure 2 on page 16)
with the respective value of the counter i. However, we can only discard the relations
that are not used when executing line 7 of MΦ in subsequent loop iterations. For
instance, if α in line 7 is of the form β SI γ, we can discard the auxiliary relations pD̂j

δ
with δ ∈ tsub(β) ∪ tsub(γ) directly after executing line 7. Moreover, if j > 0 we can
also discard the auxiliary relation r

D̂j−1
α . We cannot discard rD̂j

α since the incremental
construction in Section 3.4.3 uses rD̂j

α to build the relation r
D̂j+1
α . Finally, instead of

checking in line 8 whether D̂i is complete, we check if i ≤ ` and whether each relation
has been built for which the corresponding predicate occurs in Φ̂.

Improving Incremental Constructions. To minimize the size of the auxiliary relations,
we can optimize our incremental constructions by removing redundant data tuples from
these relations. For instance, we can optimize the incremental construction for a formula
α = β SI γ as follows. If (ā, t), (ā, t′) ∈ rD̂i

α with t, t′ ∈ I and t > t′, then we can remove
(ā, t) from rD̂i

α . Since t, t′ ∈ I, both tuples satisfy the condition of our construction so
that ā is put into the relation pD̂i

α . Moreover, if the updated version of (ā, t) is in r
D̂i+1
α ,

then the updated version of (ā, t′) is also in rD̂i+1
α , and t+ τi+1− τi > t′+ τi+1− τi. Again,

both updated tuples satisfy the condition such that ā is put into the relation p
D̂i+1
α .

Similar optimizations apply to formulas α = βUI γ. There the auxiliary relations for the
predicate sα may contain redundant elements. Namely, if (ā, j1, j

′
1, t1), (ā, j2, j

′
2, t2) ∈ sD̂i

α

with [j1, j
′
1) ( [j2, j

′
2) then we can remove (ā, j1, j

′
1, t1) from sD̂i

α .
Another optimization is to tune the incremental constructions for certain kinds of

formulas. For instance, if α = �I γ, which is syntactic sugar for true UI γ, then we do
not need the auxiliary relations for rα at all and instead of storing tuples of the form
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(ā, j, j′, t) in the relations for sα, it suffices to store only (ā, j′, t). Furthermore, some of
the tuples can be removed. Namely, we can remove the tuple (ā, j′, t) if there is another
tuple (ā, j′′, t′) in the relation, with j′′ > j′. This can be seen by an argument similar to
the one we gave when optimizing the relations that handle the temporal operator SI .

Simplifying Formulas. The rewriting techniques given for past-only first-order tem-
poral logic by Chomicki and Toman [1995] can be extended to MFOTL. We can thereby
reduce the number of auxiliary relations created from an input formula and also de-
crease their arity. For example, by rewriting the formula ∃x. �I β to �I ∃x. β we reduce
the arity of the predicates p �I ∃x. β and r �I ∃x. β by one. Under certain conditions, formu-
las containing nested metric operators can also be simplified. For example, if 0 ∈ I ∩ J
then �I �J β can be rewritten to ( �I β) ∨ �J β, where for the two disjuncts we share
the relations for the auxiliary predicates occurring in β̂.

6. CASE STUDIES
In this section, we demonstrate that MFOTL is well suited for formalizing a wide
variety of security policies including compliance policies and history-based access-
control policies. We also evaluate the performance of two prototype implementations of
our monitoring algorithm for the settings described in Sections 3 and 4. Our evaluation
demonstrates that monitoring IT systems with respect to such policies is feasible in
practice, especially when using the implementation based on finite relations.

6.1. Formalization of Security Policies
We outline the steps we take when using MFOTL to formalize security policies:

(1) Fix a signature that describes the objects and events that are to be monitored.
(2) Specify the assumptions, if any, on the objects and events that all “well-formed”

systems should satisfy. These assumptions specify basic system requirements that
are prerequisites to formalizing security policies. For example, for systems imple-
menting role-based access control (RBAC) [Ferraiolo et al. 2001], one such well-
formedness assumption is that users can only be assigned to existing roles.

(3) Specify the security policy as formulas φ1, . . . , φn in the MFOTL fragment for which
we can use the monitoring algorithm described in Sections 3 and 4.

We can then use the monitoring algorithm either online to monitor events as they occur
or offline to read log files for detecting and reporting policy violations.

We illustrate these steps in the remainder of this subsection for three different
policies. Afterwards we report on the monitors’ performance.

6.1.1. Approval Requirements. Recall from Example 2.3 the policy that whenever a
business report is published, its publication must have been previously approved. The
formalization � ∀f. publish(f)→ � approve(f) from Example 2.3 is somewhat simplistic.
In practice, we would also require, for example, that the person who publishes the
report must be an accountant and the person who approves the publication must be
the accountant’s manager. Moreover, the approval must happen within a given time
window, such as at most 10 days before the publication.

Before we give our MFOTL formalization of this refined policy, we point out that
flexible predicates like approving a report and being somebody’s manager are different
in the following respect. The act of approving a report is an event: it happens at a time
point and does not have a duration. In contrast, being someone’s manager describes a
state that has a duration. Since the semantics of MFOTL is point-based, it naturally
captures events. Entities that have a duration, like system states, do not have a direct
counterpart in MFOTL. However, we can model such entities using start and finish
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events. The following formalization of the above security policy illustrates these two
different kinds of entities and how we handle them. To distinguish between them, we
use the terms event predicate and state predicate.

Signature. The signature consists of the unary predicates accs and accf , and the
binary predicates mgrs, mgrf , publish, and approve. All of them are flexible predicates.
Intuitively speaking, mgrs(m, a) marks the time when m starts being a’s manager and
mgrf(m, a) marks the corresponding finishing time. Analogously, accs(a) and accf(a)
mark the starting and finishing times when a is an accountant. With these markers, we
can simulate state predicates in MFOTL. For example, the formula acc(a) := ¬accf(a) S
accs(a) holds at the time points where a is an accountant. It states that a starting event
for a being an accountant has previously occurred and the corresponding finishing
event has not occurred since then. Analogously, we use the formula mgr(m, a) :=
¬mgrf(m, a) Smgrs(m, a) for the state predicate that m is a’s manager.

Formalization. Before we formalize the refined approval policy, we formally state the
assumptions about the start and finish events in a temporal structure (D̄, τ̄). These
assumptions reflect the system requirement that these events are generated in a well-
formed way. First, we assume that start and finish events do not occur at the same
time point, since their ordering would then be unclear. Formally, for the start and finish
events of being an accountant, we assume that (D̄, τ̄) satisfies the formula

�∀a.¬
(
accs(a) ∧ accf(a)

)
. (A1)

In other words, we require that a cannot start and stop being an accountant at the same
time point. Furthermore, we assume that every finish event is preceded by a matching
start event and between two start events there is a finish event. Formally, for the start
and finish events of being an accountant, we assume that (D̄, τ̄) satisfies the formulas

�∀a. accf(a)→  
(
¬accf(a) S accs(a)

)
(A2)

and
�∀a. accs(a)→ ¬ 

(
¬accf(a) S accs(a)

)
. (A3)

The assumptions for the predicates mgrs and mgrf are similar and we omit them.
Our formalization of the policy that whenever a report is published, it must be

published by an accountant and the report must be approved by her manager within at
most 10 time units prior to publication is now given by the formula

�∀a.∀f. publish(a, f)→ acc(a) ∧ �[0,11) ∃m.mgr(m, a) ∧ approve(m, f) . (P1)

Note that the state predicates acc and mgr can change over time and that such changes
are accounted for in our MFOTL formalization of this security policy. In particular, at
the time point where m approves the report f , the formula (P1) requires that m is a’s
manager. However, m need no longer be a’s manager when a publishes f , although a
must be an accountant at that time point.

Remark 6.1. Our approach of formalizing state predicates like acc and mgr in
MFOTL using start and finish events generalizes to state predicates of any arity.
For the sake of brevity, in the following we just introduce the predicate p of arity
n ≥ 1 and implicitly assume that the signature contains the corresponding n-ary
predicates ps and pf . Moreover, we require that a given temporal structure satisfies the
assumptions (A1) to (A3) for p. Finally, we use p(x1, . . . , xn) as an abbreviation of the
formula ¬pf(x1, . . . , xn) S ps(x1, . . . , xn).

Note that under the assumptions (A1) to (A3), the semantics of a syntactically-defined
state predicate like being an accountant (acc(a) = ¬accf(a)Saccs(a)) does not necessarily
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capture the intuitive meaning of the corresponding state predicate when acc(a) occurs
in the scope of a temporal operator with metric constraints. For example, consider the
formula �[3,4) acc(a). Recall that �[3,4) acc(a) not only requires that a was previously
an accountant, say at time point j, it additionally requires that between the current
time point i and the time point j exactly 3 time units have passed. As a result, even
when there was a start event and no finish event for a being an accountant, the formula
�[3,4) acc(a) is false at the current time point i for a when no previous time point j

satisfies the timing constraint τi − τj = 3. To avoid these non-intuitive aspects, we
stipulate that a state predicate occurring in the scope of a temporal operator with
metric constraints must be relativized by an event predicate [Basin et al. 2012a] as,
for example, the occurrence of mgr(m, a) in the formula (P1) with the event predicate
approve(m, f).

6.1.2. Transaction Requirements. Our next example is a compliance policy for a banking
system that processes customer transactions. The requirements stem from anti-money
laundering regulations such as the Bank Secrecy Act [Department of the Treasury
1970] and the USA Patriot Act [107th Congress 2001].

Signature. We use the signature (C,R, ι), with C := {th},R := {≺}∪F , F being the set
{trans, auth, report} of flexible predicates, and ι(≺) := 2, ι(trans) := 3, ι(auth) := 2, and
ι(report) := 1. The ternary predicate trans represents the execution of a transaction of
some customer transferring a given amount of money. The binary predicate auth denotes
the authorization of a transaction by some employee. Finally, the unary predicate report
represents the situation where a transaction is reported as suspicious.

Formalization. We assume that the constant th is interpreted as some natural num-
ber and that the rigid predicate ≺ is interpreted as the standard ordering on the natural
numbers. We first formalize the requirement that executed transactions t of any cus-
tomer c must be reported within at most 5 days if the transferred money a exceeds a
given threshold th:

�∀c.∀t.∀a. trans(c, t, a) ∧ th ≺ a→ �[0,6) report(t) . (P2)

Moreover, transactions that exceed the threshold must be authorized by some em-
ployee e before they are executed. We formalize this requirement as the formula

�∀c.∀t. ∀a. trans(c, t, a) ∧ th ≺ a→ �[2,21) ∃e. auth(e, t) . (P3)

Here we require that the authorization takes place at least 2 days and at most 20 days
before executing the transaction.

Our last requirement concerns the transactions of a customer that has previously
made transactions that were classified as suspicious. Namely, every executed transac-
tion t of a customer c, who has within the last 30 days been involved in a suspicious
transaction t′, must be reported as suspicious within 2 days:

�∀c.∀t.∀a. trans(c, t, a) ∧
(

�[0,31) ∃t′.∃a′. t 6≈ t′ ∧ trans(c, t′, a′) ∧ �[0,6) report(t
′)
)
→

�[0,3) report(t) .
(P4)

6.1.3. Separation of Duty. As a final example, we formalize different types of separation-
of-duty (SoD) constraints. SoD is a security principle that aims to prevent fraud and
errors by requiring multiple users to be involved in critical processes. SoD constraints
are often stated on top of the standard model for role-based access control (RBAC). In a
nutshell, RBAC controls access to resources by assigning users to sets of roles, where
each role is associated with a set of permissions. A user acquires permissions by being
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assigned to one or more roles. In the context of RBAC, SoD constraints are usually
specified in terms of mutually exclusive roles.

Signature. We first describe the signature for formalizing RBAC. It contains unary
predicates for the state predicates U,R,A,O, S, binary predicates for the state predi-
cates UA, user , roles, and a ternary predicates for the state predicates PA. The unary
predicates represent the sets of users U, roles R, actions A, objects O, and sessions S in
the RBAC system at a given time point. The predicates UA and PA represent the user-
assignment relation UA ⊆ U×R and the permission-assignment relation PA ⊆ R×A×O
at a given time point. Furthermore, the predicate user indicates a user’s sessions at a
time point and roles represents the roles that are active in a session at a time point. All
these state predicates are flexible.

In order to formalize different SoD polices, our signature also contains the binary
predicate X and the ternary predicate exec. The intuitive meaning of these predicates
is that X(r, r′) holds at those time points when the roles r and r′ are mutually exclusive
and exec(s, a, o) holds when action a is executed on object o in session s. These predicates
are also flexible.

Formalization. Before we formalize different SoD constraints, we state our assump-
tions, which reflect system requirements concerning the desired RBAC semantics of the
predicates U , R, A, and so on. The formula (A4) requires that, at every time point, the
predicate UA is correctly typed, namely, it always only relates currently existing users
with currently existing roles:

�∀u.∀r.UA(u, r)→ U(u) ∧R(r) . (A4)

The formulas that ensure that the other predicates are correctly typed at each time
point are similar and we omit them. Formulas (A5) to (A8) state that each running
session is associated with exactly one user. In other words, the predicate user represents
a function from sessions to users that is constant over a session’s lifetime:

�∀s. Ss(s)→ ∃u. U(u) ∧ user(s, u) , (A5)

�∀s.∀u.∀u′. user(s, u) ∧ user(s, u′)→ u ≈ u′ , (A6)

�∀s.∀u.∀u′. user(s, u) ∧
(
# user(s, u′)

)
→ u ≈ u′ , (A7)

and

�∀s.∀u.∀u′.¬
(
userf(s, u) ∧ users(s, u

′)
)
. (A8)

Recall that user(s, u) abbreviates ¬userf(s, u)Susers(s, u), where the predicates users and
userf mark the start events and the finish events for the relationship between subjects
and users. The other predicates like Ss have similar interpretations. See Remark 6.1.
The formula (A9) ensures that the only roles that may be activated in a session are
those that are presently assigned to the user associated with the session:

�∀s.∀r. roless(s, r)→ ∃u. user(s, u) ∧UA(u, r) . (A9)

The formula (A10) expresses that actions can only be carried out on objects when the
necessary credentials are available:

�∀s.∀a.∀o. exec(s, a, o)→ ∃r. roles(s, r) ∧ PA(r, a, o) . (A10)

Finally, we assume that X is irreflexive and symmetric at every time point. We omit
the straightforward MFOTL formalization of this assumption.

We now turn to the formalization of the static and dynamic SoD constraints. Static
SoD states that no user may be assigned to a pair of roles that are considered mutually
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exclusive. This is formalized by

� ∀r. ∀r′. X(r, r′)→ ¬∃u.UA(u, r) ∧UA(u, r′) . (P5)

Simple dynamic SoD states that a user may be a member of any two exclusive roles as
long as he does not activate them both in the same session. This is formalized by

�∀r. ∀r′. X(r, r′)→ ¬∃s. roles(s, r) ∧
(
¬Sf(s) S roles(s, r′)

)
. (P6)

Recall that a session is always associated with the same user and that the user remains
constant over the session’s lifetime. The formula (P7) formalizes object-based SoD,
which states that a user may be a member of any two exclusive roles and may also
activate them both within the same session, but he must not act upon the same object
through both:

�∀r. ∀r′. X(r, r′) →
¬∃s.∃o.

(
∃a. exec(s, a, o) ∧ roles(s, r) ∧ PA(r, a, o)

)
∧(

¬Sf(s) S ∃a′. exec(s, a′, o) ∧ roles(s, r′) ∧ PA(r′, a′, o)
)
.

(P7)

This prohibits executing an action on an object whenever the same user has executed
an action on the same object associated with a conflicting role in a single session.

6.2. Monitor Implementations
We implemented two prototype tools, MonPoly-Reg and MonPoly-Fin, which respec-
tively implement our monitoring algorithm for the regular-relation setting (Section 3)
and the finite-relation setting (Section 4). Both tools are written in the OCaml program-
ming language and their source code is publicly available at [MONPOLY 2013].

For MonPoly-Fin, the monitored formula must satisfy the requirements given in
Section 4.2.3. In particular, each formula must be range restricted or the heuristics
described Section 4.2.4 must succeed in rewriting the given formula to a range restricted
one. MonPoly-Reg does not need these restrictions. It only requires that the given
formula is bounded. Both tools use the same input format for representing the temporal
structure, which is incrementally processed by the tools. In particular, every relation of
a structure at a time point must be finite and given by an enumeration of its elements.

Since both tools extensively manipulate relations, the data structure used to rep-
resent them has a huge impact on the tools’ performance. MonPoly-Fin uses the data
type for finite sets from OCaml’s standard library, which is implemented using bal-
anced binary trees. MonPoly-Reg represents regular relations by deterministic finite
automata (DFAs), which we always minimize. For this we use the automata library from
the MONA tool [Henriksen et al. 1995; Klarlund et al. 2002], which is implemented
in C and provides a BDD-based data structure for DFAs along with basic automaton
constructions like the product construction. Domain elements and time stamps are
natural numbers, which we encode as bit strings, with the least significant bit first.
Since padding 0s at the end of such a string does not alter the element it represents,
we do not need the special letter # used in convolution to encode tuples of domain
elements; see Section 3.1.

6.3. Monitor Performance
In the following, we report on an experimental evaluation of our two tools. We used ver-
sions 1.0 of MonPoly-Reg and 1.1.2 of MonPoly-Fin, and a standard desktop computer
with an Intel Core i5 2.67 GHz CPU and 8 GBytes of RAM. Furthermore, for our experi-
ments, we used the formulas (P1) to (P4), formalizing the security policies described
in Sections 6.1.1 and 6.1.2. We evaluated these formulas on synthetically generated
log files, which satisfy the assumptions that “well-formed” systems should satisfy, as
stated in the respective sections. We dropped the formulas’ universal quantifiers so that
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Fig. 7. Run time for MonPoly-Reg for (P3) and increasing upper bounds on values for the parameters t and c.

the tools report policy violations as pairs of an accountant a and a report f , in the case
of (P1), and as triples of a customer c, a transaction t and an amount a, in the other
cases. The scripts used in the evaluation, for instance, to generate the data, are publicly
available at the tools’ web page [MONPOLY 2013].

We assess the tools’ performance by carrying out experiments to answer the following
questions. (1) What are the tools’ run time and memory consumption with respect to
different event rates, which is the average number of events per second? (2) What is the
maximum event rate that the tools can handle online? (3) How do the tools’ performance
compare with an off-the-shelf database management system (DBMS)?

6.3.1. Preliminaries. Before describing the experiments, we make several remarks. First,
when generating log files, we restrict ourselves for simplicity to relational structures
with singleton relations. Thus there is exactly one event per time point in a generated
log file. By default, a generated log file spans over 300 seconds. For generation, we also
fix the event rate, that is, the average number of events per second. For each time
stamp, the number of events is randomly chosen within ±10% of the fixed event rate.
Moreover, the generated log files are such that the number of violations with respect to
a policy depends on the event rate. For instance, for policy (P1) the number of violations
is on average 5% of the number of events. We populate the log files by generating a
stream of publish events, for (P1), and respectively trans events, for (P2) to (P4), with
randomly generated parameters. We then generate and correlate the other events such
that the event and violation rates are respected.

Second, except for the formula (P4), MonPoly-Fin’s rewriter automatically obtains
monitorable formulas. For (P4), the implemented heuristics fail and we had to manually
rewrite the formula to guide MonPoly-Fin’s rewriter to obtain a monitorable formula.

Finally, note that MonPoly-Reg’s run times depend on the magnitude of the data
values occurring in the processed log file. Indeed, the sizes of the DFAs built during the
runs have a huge impact on the tool’s running times, and the DFA’s sizes in turn depend
on the sizes of the constants. For instance, the minimal DFA for the formula x ≈ c, with
x a variable and c ∈ N a constant, has size O(log c). MonPoly-Fin’s performance has no
such dependencies since it uses machine integers with a fixed bit length.

Figure 7 provides a concrete illustration of the impact of the sizes of the data values
on MonPoly-Reg’s run time. In this experiment, we generated 10 logs files that differ in
the upper bound of one of the parameters t or c in the formula (P3). For each index i
on the x-axis, the parameter t (for the solid line) and c (for the dashed line) is at most
100 · 2i. The upper bounds for the parameters a, e, and t or c are 2500, 100, and 1000,
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Fig. 8. Average run time and maximal memory usage for MonPoly-Fin, for (P4) and event rates r.

respectively. Note that either only t’s or only c’s upper bound varies with the index i.
The parameter th is always 2000. The time span of the logs is fixed to 60 seconds and the
event rate is 100 events per second on average. Our experiment shows that increasing
c’s upper bound has almost no effect on MonPoly-Reg’s run time (the dashed line slowly
increases from 36 to 37 seconds). In contrast, the impact of increasing t’s upper bound
is significant.

The observed behavior can be explained as follows. First, the upper bound for either c
or t has a minor impact on the average size of the minimal DFA for the relation transDj .
The average number of states is between 14 and 18, where the average is taken over
all time points j, for each upper bound. Second, the sizes of the minimal DFAs for
the subformula α := �[2,21) ∃e. auth(e, t) grow significantly when increasing the upper
bound on t. Concretely, the average size of the minimal DFAs for α grows from 49 to 427
states. Instead, when increasing the upper bound on c, the average size of the minimal
DFAs for α is always 159, as c does not occur in α. We note that the average cardinality
of the relation αDj is always around 30 tuples, when varying the upper bounds for
either c or t.

In the following experiments, the upper bounds for parameters m in policy (P1) and
a in policies (P2) to (P4) are 10 and respectively 2500, while the upper bounds on all
other parameters depend on the event rate and are at most 50 times larger than the
event rate.

6.3.2. Resource Consumption with Respect to the Event Rate. Figure 8 shows MonPoly-Fin’s
resource consumption for the formula (P4) for the event rates 900, 1,200, 1,500, 1,800,
and 2,100 events per second on average. For this experiment, we generated for each of
these event rates, five log files as described above. The reported values, for each of the
event rates, are the average over the five respective log files. The run time on individual
log files deviates from the average by at most 15%. We conducted similar experiments
for all the other formulas with both tools. The graphs are similar and are thus omitted.

We observe in the graph of the run times (left-hand side of Figure 8) that the time
needed to process the logs grows linearly with the time span of the log files, where
the slope depends on the event rate. This shows that processing a time point does
not depend on the size of the log file, but only on the amount of data present in the
relevant time window. In our experiments, this amount is constant on average because
the event rate is fixed and because the relevant time window also has a fixed size for
the formulas (P2) to (P4), as the intervals labeling the temporal operators are bounded.
For the formula (P1), even though the formula contains unbounded past operators, the
amount of data in the relevant time window does not grow as time progresses because
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Fig. 9. Average run time and memory usage for MonPoly-Fin for (P4) for increasing event rates.

on average the sizes of the accountant and manager relations do not change over time
(as for instance, new accountants come and old accountants go).

We further observe in the graph of memory usage (right-hand side of Figure 8)
that after a start-up phase the memory consumption stabilizes. In particular, memory
consumption does not grow as the total number of events increases. In the case of
MonPoly-Reg, the memory consumption increases slightly over time, up to 5 MBytes
during a run. This is because, in our implementation, the index and age fields in
the auxiliary relations are absolute and not relative to the current time point. This
results in larger constants at later time points and thus larger DFAs, as discussed in
Section 6.3.1.

Figure 9 shows how MonPoly-Fin’s resource consumption varies with respect to the
event rate, again for the formula (P4). We remark that the run time grows polynomially
and memory consumption grows linearly. This is consistent with the complexity of the
atomic operations on relations, in particular intersection, union, and join, which are the
ones affected by the change in the event rate. We conducted the same experiments for the
formulas (P1) to (P3). The graphs and the observations are similar to those observed for
the formula (P4), with the exception of (P1) for which memory consumption is quadratic
in the event rate. This behavior is due to the size of one of the intermediate relations
(that is, the satisfying valuations of the subformula �[0,11) ∃m.mgr(m, a)∧approve(m, f))
being quadratic in the event rate. Furthermore, for the formula (P3) the run times
grow linearly with the event rate. This is because the handling of temporal operators
labeled by intervals I with 0 6∈ I is optimized. For such operators it is possible to group
auxiliary relations by time stamp, instead of by time point, thus iterating through a
smaller number of indices.

We conducted the same experiments with MonPoly-Reg. The graphs and the observa-
tions are similar to those for Figure 9. However, the slopes of the graphs are smaller,
especially for memory usage. This is because the event rates used in the experiments for
MonPoly-Reg, are smaller compared to the ones used in the MonPoly-Fin experiments,
namely, 20, 100, 1000, and 10 times smaller for the policies (P1), (P2), (P3), and (P4),
respectively. The reason for using smaller event rates becomes clear with the following
experiments.

6.3.3. Maximal Event Rate for Online Monitoring. As we have seen in the previous subsection,
the performance of both tools degrades as the event rate increases. In this experiment,
we determine the maximal event rate for which the average time used to process one
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Table I. Maximal event rate for online monitoring and corre-
sponding space consumption.

formula MonPoly-Reg MonPoly-Fin
event rate space event rate space

(P1) 61 19 1,038 389
(P2) 95 24 14,272 70
(P3) 140 18 156,761 99
(P4) 46 31 1,506 32

Note: Event rate is in events per second and space in
MBytes.

second of logged data is smaller than one second. In other words, we determine the
maximal event rate that is less than or equal to the corresponding throughput, where a
monitor’s throughput is defined as average number of events it processes in one second.
This value thus roughly corresponds to the maximal event rate for which the tools’ can
be used online.

We determine this maximal event rate for online monitoring by iteratively increasing
the event rate and computing the throughput (as the run time divided by the time
span, namely 300 seconds) at each iteration until the throughput is less than the event
rate. Table I lists the obtained event rates for each tool and each of the four formulas,
together with the maximal space consumption during a run at these event rates.

These numbers also show which policies are hard to monitor with each tool. As
expected, (P1) and (P4) are harder to monitor than (P2) and (P3), because (P1) and
(P4) are larger and contain more temporal operators. The formula (P2) is easier to
monitor than (P3) because the constructions of the auxiliary relations for past temporal
operators are simpler than those for future operators. Furthermore, for MonPoly-Fin,
this difference is accentuated by the previously mentioned optimization. Monitoring
the formula (P1) is faster than monitoring (P4) for MonPoly-Reg, and conversely for
MonPoly-Fin. Due to the different structures of both the formulas and of the generated
log files, it is difficult to pinpoint the precise reasons for this behavior. One explanation
is that, due to optimizations in MonPoly-Fin, the presence of future temporal operators
in (P4) has a smaller impact for MonPoly-Fin than for MonPoly-Reg. What has a larger
impact for MonPoly-Fin is the fact that an intermediary relation for (P1) has quadratic
size in the event rate, while all intermediary relations for (P4) are at most linear in the
event rate.

In addition to the experiments reported on here, we also used MonPoly-Fin in a
real-world case study. In [Basin et al. 2013], we analyzed a log file containing more
than 218 million events, representing roughly one year’s worth of logged data. In this
case study, the average event rate was thus 6, with a peak of 3,964 events per second.
Furthermore, there were 14 formulas and the formulas’ largest time window was 30
days. Only two of the formulas needed to be manually rewritten for monitoring. For each
formula, the log file was processed in less than an hour. While we used MonPoly-Fin
offline in this case study to report policy violations after the fact, it could also have been
used online, since the lowest throughput was approximately 60,771 events per second,
which is significantly larger than the average event rate.

6.3.4. Comparison with a DBMS. As a final experiment, we compare both tools with an
off-the-shelf DBMS, namely PostgreSQL version 9.1.4 [PostgreSQL Global Development
Group 2012]. For the comparison, we first generate SQL queries that are equivalent to
the formulas (P1) to (P4). We then run MonPoly-Reg, MonPoly-Fin, and PostgreSQL on
synthetically generated log files and the corresponding databases, respectively.

The translation of MFOTL formulas into SQL queries is performed automatically
in two steps. The first step embeds MFOTL into first-order logic. In the second step,
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Table II. Comparison of run times of PostgreSQL, MonPoly-Reg, and MonPoly-Fin.

formula
`````````tool

time span
300 600 1,200 2,400 4,800 9,600 19,200 38,400

(P1)
PostgreSQL 4.3 16 67 266 1,065 4,234 16,974 †
MonPoly-Reg 7.3 16 35 74 158 338 703 1,493
MonPoly-Fin 0.02 0.05 0.1 0.2 0.5 0.9 1.9 3.8

(P2)
PostgreSQL 0.3 0.8 2.0 22 76 289 199 †
MonPoly-Reg †
MonPoly-Fin 2.6 5.4 11 21 42 87 167 307

(P3)
PostgreSQL 0.3 0.8 2.1 22 75 290 197 †
MonPoly-Reg 18,275 †
MonPoly-Fin 1.6 3.1 6.2 12 25 51 100 201

(P4)
PostgreSQL 0.7 2.3 840 3,246 12,563 †
MonPoly-Reg 1,456 3,087 6,465 13,326 †
MonPoly-Fin 1.7 3.3 6.7 13 27 55 110 221

Notes: Run times are in second. The symbol † means that the run did not finish within 6
hours (i.e. 21,600 seconds).

first-order formulas are translated into relational algebra expressions, which are then
written as SQL queries. The first step is briefly presented in the next paragraph, while
the second step is standard [Abiteboul et al. 1995].

The embedding of MFOTL into first-order logic consists of (i) transforming signatures
S = (C,R, ι) into new signatures S′ by increasing the arity of each predicate in R by 2,
adding a new predicate tpts of arity 2, and predicates and function symbols for the
standard arithmetic operations like ≤ and −, (ii) translating temporal structures over
S into structures over S′, and (iii) translating MFOTL formulas φ over S into first-order
formulas φ̄ over S′. Given a temporal structure (D̄, τ̄), we build a structure M with
tptsM := {(i, τi) | i ∈ N} and rM := {(i, τi, ā) | i ∈ N and ā ∈ rDi}, for any r ∈ R. The
translation of formulas is defined inductively over the formula structure. The translation
of formulas whose main connective is not a temporal connective is straightforward,
while for temporal formulas we encode the temporal constraints explicitly. For instance,
we have �[b,b′) φ := ∃i′.∃t′. tpts(i′, t′) ∧ i′ ≤ i ∧ b ≤ t− t′ ∧ t− t′ < b′ ∧ φ, where b, b′ ∈ N
and the free variables i and t represent the current time point and its time stamp.
We thus have that

⋃
i∈N φ

(D̄,τ̄ ,i) = (∃i.∃t. tpts(i, t) ∧ φ̄)M. In the experiment, for each
generated log file we construct a database. The construction follows the translation
of (ii), except that we only consider a finite prefix of a temporal structure of length ` ∈ N.
By restricting the time points i ∈ N to time points with i < `, we build the structure
Mfin where the relations for the flexible predicates are finite.

We generate log files with the following event rates: 10 events per second on average
for (P1), 100 for (P4), and 1,000 for (P2) and (P3). For each formula, we iteratively
generate a sequence of log files, the first log file having a time span of 300 seconds, and
each subsequent log file having a time span twice as large as the previous one. Thus, the
number of events in the log file at iteration i is approximately (300 · 2i) · r, where r is the
event rate. For each formula, at each iteration, we load the log file into a PostgreSQL
database, following the translation described above. We then execute the SQL query
obtained as above on this database, and also run MonPoly-Reg and MonPoly-Fin on the
log file. Table II shows each tool’s run times in seconds. Note that the run times for
PostgreSQL do not include the times for loading a log file into a database.

We observe that MonPoly-Fin’s run time doubles at each iteration. This behavior
corresponds to the one illustrated in Figure 8. We observe a similar behavior for
MonPoly-Reg, with a multiplication factor slightly larger than 2, due to the use of
absolute indices and time stamps, as previously explained. For PostgreSQL, the run-
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time growth rate is not constant, because PostgreSQL generally changes the query
execution plan from one iteration to the next. In all cases, the run time explodes after
some iterations.

Note that when this explosion occurs, we observe that temporary files are created
on disk, indicating that intermediary data no longer fits into main memory. For the
formulas (P2) and (P3), PostgreSQL is faster up to a point, while for the other two
formulas, MonPoly-Fin is faster. MonPoly-Reg is substantially slower than the other
tools for all formulas except (P1), for which it quickly outperforms PostgreSQL. Fur-
thermore, indexing does not significantly influence PostgreSQL’s run times. Note that
a comparison of the run times between the different formulas for the same tool is not
sensible since the event rates of the generated log files for the formulas differ.

In summary, MonPoly-Reg is outperformed by PostgreSQL. In contrast, MonPoly-Fin
performs reasonably well even in an offline setting, where it may outperform Post-
greSQL, especially for complex policies. In an online setting, one clearly benefits from
a specialized approach: after some time, the data processed no longer fits into main
memory, which drastically reduces PostgreSQL’s performance. This experiment also
demonstrates that MonPoly-Reg’s generality comes at a cost in performance. The ob-
served performance difference between MonPoly-Reg and MonPoly-Fin is consistent
with our observations when measuring the maximal throughput of the two tools.

7. RELATED WORK
Temporal logics are widely applicable in computing since they allow one to formally
and naturally express system properties and to reason about them algorithmically. For
instance, the propositional temporal logics LTL, CTL, and PSL are extensively used in
system verification, in particular, in model checking [Pnueli 1977; Clarke and Emerson
1982; Vardi 2009]. In the following, we focus on related monitoring algorithms that han-
dle temporal logic specifications. We group these with respect to their application areas.

Program Verification. Monitoring program executions has emerged as a light-weight
alternative to software model checking [Havelund and Visser 2002]. Executions are
represented as sequences of events obtained by instrumenting the program’s source
or binary code. In some cases, the monitors themselves are directly instrumented
into the code. Many of the developed monitoring algorithms for program verification
use a propositional temporal logic for specifying properties. For example, monitoring
algorithms exist for LTL and variants [Giannakopoulou and Havelund 2001; Finkbeiner
and Sipma 2004] and for propositional real-time logics [Thati and Roşu 2005; Bauer
et al. 2011]. All these monitoring algorithms are based on either translating formulas
into finite-state automata of some kind or on formula rewriting. When using finite-state
automata, a monitor updates the automaton’s state when processing an event and it
checks for violations depending on the automaton’s current state. When using rewriting,
a formula is rewritten based on the current event, resulting in a formula that states
the obligations that must be satisfied by the remainder of the execution [Havelund and
Roşu 2004; Roşu and Havelund 2005].

Boolean propositions are often too coarse to express relationships between events
with data values, in particular when the data values are not known in advance and their
number cannot be fixed a priori. Various monitoring algorithms overcome this limitation
by handling specification languages with propositions that have parameters. Examples
include EAGLE [Barringer et al. 2004], LOLA [D’Angelo et al. 2005], J-LO [Stolz and
Bodden 2006], RuleR [Barringer et al. 2010b], LogScope [Barringer et al. 2010a], and
TraceContract [Barringer and Havelund 2011]. The semantic models underlying these
monitoring algorithms are different from ours. For instance, EAGLE’s models are
sequences of states, where a state is a mapping from parameters to data values, while
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MFOTL models are temporal structures. EAGLE’s models can be seen as temporal
structures over a signature with a single predicate, say state, whose interpretation at
every time point is a singleton.

Another difference between parameterized approaches and MFOTL is how param-
eters and variables are bound and instantiated. EAGLE, for example, does not have
an explicit notion of quantification. However its variable binding has the flavor of
binding under freeze quantification, which binds a variable to the corresponding data
value at the current time point. The freeze quantifier was introduced by Alur and
Henzinger [1994] for time variables, which are variables that relate the time stamps of
different time points. Freeze quantification corresponds to a restricted form of standard
first-order quantification, see also [Henzinger 1990]. In particular, it restricts variable
instantiations to state or event parameters, rather than permitting quantification over
the entire domain. For the restricted semantic models described above, the three forms
of quantification coincide only when an MFOTL formula implicitly restricts the scope of
an universal or existential quantifier to the current state, since then there is exactly one
possible variable instantiation. For instance, replacing both quantifiers in the MFOTL
formula �∀x. p(x) → �[1,5) ∃y. q(x, y) by freeze quantifiers would closely mimic the
formula’s MFOTL semantics. Note, however, that the placement of the quantifiers does
matter for the formula’s meaning. For instance, by moving the existential quantifier
outside the second � operator, the scope of y’s existential quantification is no longer
locally restricted to a single time point and freeze quantification would be too weak
then. The formulas (P5), (P6), and (P7) from Section 6.1 are further examples where
the quantification is not locally restricted to a time point and freeze quantification is
insufficient. In these examples, the roles r and r′, referenced at each time point, might
occur as data values only at previous time points.

Local variables from the temporal specification languages PSL [IEEE Std 1850-
2010] and SVA [IEEE Std 1800-2009] are also related to the parameterized monitoring
semantics. In fact, they can be used to mimic freeze quantification. A data value that
occurs at the current position in the trace can be assigned to a local variable, which can
be read at other positions in the trace. However, local variables are different from logical
variables. In particular, we can apply functions to them like increment and decrement,
which modify the local variables’ stored value. This means that local variables have the
flavor of variables in imperative programming. Although monitoring approaches for
PSL and SVA exist, for example, that of Pnueli and Zaks [2006], we are not aware of
any monitoring approach for PSL or SVA that supports local variables. Note that since
the type of a local variable in PSL and SVA is always a finite set, local variables do not
increase the expressivity of these specification languages. However, they can be useful
for specifying properties succinctly.

Another approach to monitoring parametric specifications is that of JavaMOP [Mered-
ith et al. 2012], which was further extended by Roşu and Chen [2012]. This approach
separates parameter binding from property checking, and this leads to a monitoring
framework that can handle various specification languages like regular expressions
and temporal logics. The framework slices the input trace at run-time by removing
parameters and non-relevant events, and monitors each slice with respect to the non-
parameterized version of the specification. Note that, as with the other parameterized
monitoring approaches, no distinction can be made between universal and existential
quantification of variables. Furthermore, in contrast to other approaches, the scope of
parameters is the entire formula and cannot be restricted to subformulas. Finally, in
contrast to our approach, no verdict is given for the initial parameterized trace and
instead a verdict is given for each slice. Work of [Barringer et al. 2012] generalizes the
parametric trace slicing approach by using so-called quantified event automata. There,
parameters can be explicitly quantified and the quantification ranges over the values
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that appear in the trace. However, automata for complex policies can be large and thus
difficult to specify, understand, and maintain. It is unclear if there is an equivalent
declarative specification language.

In summary, while MFOTL’s semantic model is more general than parameterized
event or state sequences, its semantics and expressivity is in general incomparable to
parameterized specification languages. This incompatibility is rooted in the differences
between MFOTL’s standard first-order quantification and the specific way in which
parameters are instantiated in a particular parameterized specification language.
Nevertheless, in terms of expressing system properties, MFOTL seems better suited for
security and compliance policies, such as the ones in Section 6, especially due to its more
general semantic model and its support for universal and existential quantification. In
contrast, when verifying program behavior during runtime, the model restrictions of
the parameterized monitoring approaches are often met, and these approaches have
proved to be effective there.

Hardware Verification. Dedicated monitoring algorithms have also been developed to
check the real-time behavior of hardware components, where properties are specified
in a real-time temporal logic. We refer to [Basin et al. 2012a] for a comparison of the
different underlying time models and their impact on monitoring. The restriction to a
propositional temporal logic is not a limitation here, since one only needs to reason about
Boolean or numeric signal values. In particular, Maler and Nickovic [2013] present an
algorithm for monitoring continuous numeric signals, where properties are specified
in a real-time logic that extends propositional metric temporal logic with numerical
predicates on signal values. Reinbacher et al. [2013] present a specialized monitoring
algorithm for discrete hardware systems that admits an efficient hardware realization.

Security and Audit. Linear-time temporal logics have been used to formalize regu-
lations and usage-control policies. See, for instance, [Giblin et al. 2005; Zhang et al.
2005; Hilty et al. 2005]. Furthermore, Barth et al. [2006] and Dougherty et al. [2007]
suggest using standard automata-based techniques to reason about security policies, in
particular, privacy policies and policies with obligations. However, their focus is not on
monitoring, but rather on finding appropriate models for expressing security policies.

Monitoring algorithms similar to the ones for program verification have been pre-
sented in [Dinesh et al. 2008; Maggi et al. 2011; Baresi et al. 2009; Baader et al. 2009].
[Dinesh et al. 2008] uses a formula-rewriting approach, similar to EAGLE, for checking
conformance of traces to regulations. Maggi et al. [2011] adapt the automata approach
to detect violations of multiple constraints using a single automaton for monitoring the
execution of business processes with respect to constraints expressed in LTL. Baresi
et al. [2009] adapt the translation from LTL to alternating automata in order to monitor
the interaction between web services with regard to properties expressed in a temporal
assertion language. Baader et al. [2009] use a translation to Büchi automata to monitor
temporal properties expressed in a variant of LTL. In this work, propositions are re-
placed by axioms in a description logic to express local properties of states that have
a complex structure. Roger and Goubault-Larrecq [2001] present an automata-based
monitoring algorithm for intrusion detection. Attack patterns are expressed in a special-
ized temporal logic with parameterized propositions. Common to all these monitoring
algorithms is that properties are specified in a propositional linear-time temporal logic,
where propositions are, in some cases, parameterized as previously explained.

In contrast to the above, the monitoring algorithm of Hallé and Villemaire [2012]
for monitoring data-aware contracts on XML-based message interactions between web
services directly supports existential and universal quantification of variables. However,
quantified variables must be guarded and only range over elements that appear at
the current position of the input trace. This restriction guarantees that quantified
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variables range over finitely many data values. To illustrate the restriction imposed
by guarded quantification, consider the MFOTL formula �∀x. p(x)→ ∃y. �[1,5) q(x, y).
The quantification over x is guarded by the predicate p(x), while the one over y is
not guarded. The data values for y are not restricted to the data values that appear
at the current time point i. The formulas (P5), (P6), and (P7) from Section 6.1 also
use unguarded quantification. While we allow unrestricted quantification, for finite
relations we require instead that formulas are range-restricted. Furthermore, in [Hallé
and Villemaire 2012], quantification is handled algorithmically by explicit variable
instantiation. The cost of handling quantification this way is a polynomial of degree k,
where k is the maximum number of nested quantifiers. In contrast, in our setting for
finite relations, the cost is a polynomial of small degree, depending on the implemen-
tation of the relation algebra operators, but is independent of the number of nested
quantifiers. A final difference is that the monitoring algorithm of Hallé and Villemaire
[2012] does not handle past operators and future operators need not be bounded. Bauer
et al. [2009] present a monitoring algorithm for checking history-based access-control
policies, which are expressed in a temporal first-order logic with restrictions similar to
those of Hallé and Villemaire [2012]. In particular, quantifiers must be guarded and
are also handled by variable instantiations.

In the context of checking privacy regulations, Garg et al. [2011] consider the problem
of auditing incomplete log files, where policies are expressed in a first-order logic
with guarded quantification and multiple truth values. The audit is performed by
formula rewriting, where the formula obtained after rewriting contains only atoms
whose truth value is unknown due to incomplete data. Their algorithm is not well
suited for processing data online. An adaptation of our monitoring algorithm for finite
relations and multiple truth values to cope with incomplete log files, suitable for online
monitoring, appears in [Basin et al. 2013a].

Databases. Different runtime monitoring algorithms have been developed for
checking temporal integrity constraints of databases and for specifying temporal
database triggers. In fact, our monitoring algorithm shares many similarities with
Chomicki’s [1995] monitoring algorithm. Our algorithm handles a richer specification
language than Chomicki’s. For example, it supports bounded future operators and,
when using automatic structures, no syntactic restrictions on the MFOTL formula
to domain-independent queries are necessary. Furthermore, the incremental update
constructions for the metric operators are simplified and optimized.

The monitoring algorithm by Lipeck and Saake [1987] relies on formula rewriting
in disjunctive normal form and variable instantiations. It is more restrictive than
Chomicki’s and ours: temporal operators and quantification cannot be nested and it
only supports future operators. The two monitoring algorithms presented in [Sistla
and Wolfson 1995] do not handle the nesting of future and past operators. Their
first algorithm handles only future operators and their second one handles only past
operators. Furthermore, in both algorithms, variable quantification is handled similar
to parameter instantiation used in the monitoring algorithms for program verification.

Data-stream Processing and Complex-event Processing. Data-stream processing is
concerned with the online analysis of rapidly evolving data streams, which are time-
stamped sequences of relations. Analysis is performed by issuing continuous queries
expressed in SQL-like languages [Arasu et al. 2006] extended with constructs for
selecting portions of the data streams. Complex-event processing focuses on detecting
temporal patterns in event streams, which are time-stamped sequences of tuples.
Patterns are usually expressed using formalisms inspired by regular expressions,
augmented with features to express event parameters and relations between them, and
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constraints on the time of event occurrences. Such patterns define so-called complex
events from simple ones, and these can in turn be used in other patterns. We refer
to [Cugola and Margara 2012] for a survey on data-stream processing and complex-event
processing.

Our monitoring algorithm can be seen as processing an input data stream, given as
a temporal structure, and producing an output data stream, which is the sequence of
satisfying valuations. However, in contrast with related work in stream processing, the
specification languages and data and time models used by stream and event processors
are not based on temporal logics, which makes a direct comparison difficult. It remains
to be seen whether we can leverage work in these domains to increase the scope and
efficiency of our monitoring algorithm, in particular for the finite-relation setting.

8. CONCLUSION
Runtime monitoring has evolved over the past several decades from a specialist topic
into a field of its own merit with a wide range of algorithms, system integration
techniques, and applications. Through examples from the domain of security and
compliance, we have illustrated the usefulness of expressive specification languages
in general, and MFOTL in particular. We provided a monitoring algorithm for a large
safety fragment of MFOTL that handles temporal structures with infinite domains and
regular relations. We also specialized it to the important case where the relations that
change over time are finite. We show that the algorithm has wide applicability and that,
for the specialization to finite relations, time and space requirements are moderate in
practice. Overall, our results show that MFOTL is an effective language for specifying
and monitoring a wide variety of practically relevant system properties.

We emphasize that our approach is not a panacea: there is no one silver bullet that
covers all applications and handles all system properties equally well. Recently, Basin
et al. [2013b] extended MFOTL with features commonly found in stream processing
languages namely, aggregation operators like the maximum, sum, and average over
a specified time window. Returning to our transaction-processing example from Sec-
tion 6.1.2, these extensions allow one to formalize and monitor requirements like “the
transactions of any customer must be reported within 5 days, if the customer has cumu-
latively transferred more than a given amount, say $10,000, within the last 30 days.”
We can envision further extensions here, for example, support for specifications with
arbitrary user-defined recursive functions. Additionally, one could liberalize some of our
semantic assumptions, for example, by weakening the assumption that the time stamps
associated with events are exact to that they are merely approximate, for instance,
within some interval.

Another area for future work concerns distributed and highly scalable monitoring.
Many IT systems are composed of distributed, concurrently executing subsystems and
monitoring their compliance to policies is a major challenge. One fundamental problem
is to soundly and effectively distribute monitoring for a global system property. Since the
monitors then only observe local system behavior, they may need to communicate with
each other or cope with partial knowledge about the system’s global behavior. Another
problem is to scale-up to the amount of data that modern distributed IT systems process,
which can be on the order of billions of actions per day or even per hour. To support
such enormous quantities of data, parallelized monitoring appears necessary. While
progress on both problems has been made, see, for example, [Bauer and Falcone 2012]
and [Basin et al. 2014] for decentralized and parallel monitoring respectively, many
challenges remain both in the design of robust theoretical solutions and their application
in practice. For instance, Bauer and Falcone [2012] assume a lock-step semantics of the
system components, and Basin et al. [2014] use the MapReduce framework [Dean and
Ghemawat 2008], which is ill-suited for monitoring system behavior online.
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