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We narrow the gap between concrete implementations of cryptographic protocols and their ver-
ified models. We develop and verify a small functional implementation of the Transport Layer

Security protocol (TLS 1.0). We make use of the same executable code for interoperability testing

against mainstream implementations, for automated symbolic cryptographic verification, and for
automated computational cryptographic verification. We rely on a combination of recent tools,

and we also develop a new tool for extracting computational models from executable code. We

obtain strong security guarantees for TLS as used in typical deployments.

Categories and Subject Descriptors: C.2.0 [Computer-Communication Networks]: Security and Protection;
C.2.2 [Computer-Communication Networks]: Network Protocols; D.2.4 [Software Engineering]: Software/Pro-
gram Verification; F.3.1 [Logics and Meanings of Programs]: Specifying and Verifying and Reasoning about
Programs

General Terms: Security, Verification

1. VERIFYING PROTOCOLS AND THEIR IMPLEMENTATIONS

There has been much recent progress in formal methods and tools for cryptography, en-
abling the automated verification of complex security protocols. In practice, however, these
methods and tools remain difficult to apply. Often, verification occurs independently of the
development process, rather than during design, prototyping, and testing. Also, as a pro-
tocol or its implementations evolve, it is difficult to carry over security guarantees from
past formal verification. Moreover, the verification of a system that uses a given protocol
involves more than the cryptographic verification of an abstract model; it may rely as well
on more standard analyses of code (e.g. to ensure memory safety) and system configuration
(e.g. to enforce policy). For these reasons, we are interested in the integration of modern
cryptographic protocol verifiers into the arsenal of software testing and verification tools.

Symbolic vs Computational Cryptography. Two complementary approaches have been
successfully applied to protocol verification.

1An earlier version of this paper appears in the proceedings of the 15th ACM Conference on Computer and
Communications Security (CCS 2008).
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—Symbolic models treat cryptographic primitives as black boxes and focus on the logical
properties of a protocol, as pioneered by Needham and Schroeder [1978] and formalized
by Dolev and Yao [1983]. They have led to efficient automated tools (e.g. Blanchet
[2001]) widely applied to the verification of large protocols.

—Computational models tackle cryptographic assumptions more concretely; they treat
primitives as probabilistic algorithms over concrete bitstrings, and reason about the ad-
vantage of an adversary with bounded computational capabilities. Computational veri-
fication methods do not scale up as well as symbolic ones, sometimes leading to long,
delicate, hand-crafted proofs. Automatable proof methods are more recent (e.g. Laud
[2005]; Backes and Laud [2006]) and practical verification tools are just emerging
(Blanchet [2008]; Blanchet and Pointcheval [2006]; Tsahhirov and Laud [2007]).

Implementations vs Abstract Models. Protocol specifications include many details; most
(but not all) of them are of no importance for security. In the process of distilling a for-
mal cryptographic model, most of these details are discarded. When is a protocol model
oversimplified? In contrast with formal guarantees proved within the model, the relevance
of the model relies on the experience of the formalist. The problem is compounded when
considering protocol implementations. Thus, as far as possible, we propose to verify de-
tailed protocol implementations and deployments, rather than handwritten abstract models.
Using automated tools based on sound proof techniques, the details can either be safely
erased, or dealt with by brute-force analysis.

From Implementations to Cryptographic Models. More recent works advocate the auto-
matic extraction and verification of symbolic cryptographic models from executable code
[Goubault-Larrecq and Parrennes 2005; Bhargavan et al. 2006].

Bhargavan et al. [2006] verify protocol implementations written in F#, a dialect of ML
for the .NET runtime, by compilation to symbolic models in ProVerif [Blanchet 2001].
Their approach is to verify as much protocol code as possible, while providing hand-written
models for the rest, such as the core libraries that provide cryptographic primitives, using
bitstrings for concrete execution and symbolic terms for verification.

In this work, we rely on their tools for symbolic verification, and also experiment with
direct computational cryptographic verifications of protocol implementations, by compila-
tion to CryptoVerif, a recent tool for computational cryptography [Blanchet 2008].

Our Approach. Figure 1 illustrates our general approach to developing, testing, and verify-
ing a reference implementation of a protocol plus a typical application. In contrast with the
use of specialized modelling languages for cryptographic protocols, our use of a standard
development platform enables early testing, for instance to disambiguate the specification,
to confirm functional correctness, and to experiment with potential attacks.

Verification consists of selecting a part of the implementation, writing additional “verifi-
cation harness” code that specifies the attacker model, the cryptographic assumptions, and
the target security properties, and then compiling their combination to some automated
prover. Since the verification tool chain is automated, one can easily re-verify the code
base as it evolves, much like regression testing.

In our experience, symbolic and computational verifications are complementary. Com-
putational verification is more precise but also more difficult to achieve; we obtain results
only for the cryptographic core of the protocol implementation. Symbolic verification typ-
ically applies to the whole protocol, sometimes even including the application, but does not
ACM Journal Name, Vol. V, No. N, July 2011.
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Fig. 1. Verification Architecture and Tools

detect low-level cryptographic errors. Overall, we believe that the overhead of formal ver-
ification is getting affordable, in comparison with design, development, and testing. The
next generation of tools could enable their integration in the development process.

Implementing & Verifying TLS. As an extended case study, this paper considers imple-
mentations of TLS 1.0, one of the most widely deployed communications protocols. Due
to its popularity, many systems embed an implementation of TLS and rely on its security
for communications. As well as being of practical importance, TLS is a well-understood
protocol, with a carefully written, self-contained specification, a series of successive ver-
sions, and a large body of related verification work, providing a detailed history of security
vulnerabilities and improvements. Also, TLS is not an academic protocol, optimized (or
designed) for verification purposes. This sometimes complicates its security analysis, but
also provides a good benchmark for assessing verification techniques.

Contributions.

(1) We program a small functional implementation of TLS in F#. Using simple client and
server code, we confirm that it interoperates with mainstream implementations.

(2) Relying on a combination of model-extraction and verification tools, we obtain a range
of positive security results, covering both symbolic and computational cryptographic
aspects of the protocol. We thus provide security guarantees for code as it is used in
typical deployments of TLS.

(3) To support computational verification, we develop a new tool for extracting crypto-
graphic models from F# code. To our knowledge, this enables the first automated
verification of executable code under standard cryptographic assumptions.

(4) We review known weaknesses for earlier variants of TLS, and confirm that they are
exposed as we attempt to verify the corresponding weakened variants of our code.

Contents. Section 2 recalls the main security features of TLS. Section 3 discusses ref-
erence protocol implementations in ML. Section 4 outlines our implementation for TLS,
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describes its main modules, and reports on interoperability. Section 5 presents our results
using symbolic models; it also discusses formal security issues and related work. Section 6
describes a new tool for extracting computational models and relating computational se-
curity assumptions to concrete cryptography APIs. Section 7 presents our results using
computational models of TLS; it also discusses cryptographic issues and related work.
Section 8 concludes and suggests future work.

Our verification tools, the code for our TLS implementation, and an extended report with
more details are available at http://msr-inria.inria.fr/projects/sec/fs2cv

2. TRANSPORT LAYER SECURITY PROTOCOLS (REVIEW)

The Secure Session Layer (SSL) protocol was promoted by Netscape as a means of provid-
ing privacy over the Internet, by securing HTTP connections between web browsers and
servers. Its first public version, SSL 2.0 [Hickman 1995], was released in 1994. Its suc-
cessor, SSL 3.0 [Frier et al. 1996], includes major changes and addresses serious security
flaws. It then evolved into an Internet standard, named Transport Layer Security (TLS 1.0)
[Dierks and Allen 1999]. Two more recent versions of the standard, TLS 1.1 and TLS 1.2
[Dierks and Rescorla 2006; 2008], include further improvements and clarifications, no-
tably changes to thwart new cryptographic attacks. Since the three versions of TLS are
relatively similar, we refer to them generically as the TLS protocol(s).

To facilitate interoperability tests, our code targets mostly TLS 1.0, the most widely-
deployed version of the protocol. Next, we recall its main security features, at the level
of detail needed for the rest of the paper. We follow the notations and terminology of the
standard [Dierks and Allen 1999]; we refer to it for a more general presentation.

TLS provides secure communications between a client and a server, with certificate-
based authentication of the server and, optionally, of the client. The protocol distinguishes
between sessions and connections; from an established session, each party can derive one
or more connections, and use them to send and receive sequences of messages. The pro-
tocol has two layers. The lower layer consists of the Record protocol, for exchanging
messages using current connection parameters. The upper layer includes the Handshake
protocol for establishing sessions, the Alert protocol for communicating error messages,
as well as application protocols.

2.1 Record Protocol

The Record protocol receives uninterpreted data from the upper layer. This data is first
(possibly) compressed and split, then formatted into a series of records, and passed to a
lower, reliable but unprotected transport protocol, such as TCP.

Both parties independently maintain state for the read and write directions of the con-
nection. Each record is protected depending on the security parameters negotiated by
the Handshake protocol, which include a ciphersuite, and on the current connection state
(e.g. keys and IVs). A ciphersuite specifies a key exchange mode (either Diffie-Hellman-
or RSA-based), an encryption algorithm, and a hash algorithm. The encryption and hash
algorithms are relevant only to the Record protocol, while the key exchange mode is rele-
vant only to the Handshake protocol.

Initially, the ciphersuite is set to null, indicating no security transformations. Thus, the
messages of the Handshake protocol are not protected by the Record protocol, until shared
security parameters can be established. After the handshake, each fragment is protected
using the mac-then-encrypt technique, and prefixing the result with a record header. The
ACM Journal Name, Vol. V, No. N, July 2011.
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record header has three fields: the content type of the sub-protocol the fragment belongs
to, the version of the protocol used for processing this record, and the fragment length.
The mac is computed by applying HMAC [Bellare et al. 1996] (with the hash algorithm
and hash secret given by the security parameters and current state) to the concatenation of
the fragment, the record header, and the record sequence number. The fragment and the
resulting mac are then fed to the encryption algorithm, in cipher block chaining (CBC)
mode, after padding to a length that is a multiple of the block size.

2.2 Handshake Protocol

The Handshake protocol authenticates the server, optionally authenticates the client, es-
tablishes a shared master secret, derives cryptographic materials for their connections, and
confirms that both parties agree on their exchanged parameters. In this paper, we con-
sider only the most common, RSA-based modes. We begin with the message flow for a
handshake with an anonymous client:

ClientHello ------>
ServerHello

Certificate
<------ ServerHelloDone

ClientKeyExchange
[ChangeCipherSpec]
Finished ------>

[ChangeCipherSpec]
<------ Finished

For our discussion, it is convenient to decompose the protocol into four phases, explained
in more detail below.

(1) The client and server exchange connection parameters by means of the hello messages.
(2) They establish an intermediate shared pre master secret (pms); when using RSA, the

client chooses pms, so the phase consists of a single ClientKeyExchange message.
(3) They each compute a shared master secret (ms); this enables the record layer to derive

fresh cryptographic materials for each direction of the Record protocol.
(4) They exchange ChangeCipherSpec messages, immediately followed by Finished mes-

sages, to confirm that they share matching keys, check server authentication, and en-
sure integrity of the handshake messages.

The Hello messages include fresh nonces, a session identifier picked by the server, and
session parameters; their logical content is

ClientHello(ver max, cr, rsid, cipher suites, comp methods)
ServerHello(version, sr, sid, cipher suite, comp method)

The Certificate message carries the server’s X.509 certificate; the ServerHelloDone mes-
sage has no payload.

TLS enables the negotiation of some connection parameters: a protocol version (version),
a ciphersuite (cipher suite), and a compression method (comp method). These parameters
are passed unprotected in the Hello messages: the client expresses its preference as a range
of parameters, then the server sets the session parameters within that range. The negoti-
ation is authenticated later by the Finished messages, whose protection itself depends on
these parameters. This circularity is a source of concerns for TLS, discussed in Section 5.
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The client announces its highest supported version in the ver max field of ClientHello and
includes its lowest supported version (ver min) in the version field of the record header that
encloses ClientHello (provisionally using this version record format, for backward com-
patibility). The server announces its choice in the version field of ServerHello, and also
includes it in the enclosing record header.

The ClientKeyExchange message includes the RSA encryption of a fresh random pre-
master secret pms, using the public key of the received certificate. In order to confirm
the highest version supported by the client, the protocol version (ver max) influences the
padding before RSA encryption, and is also embedded as the first two bytes of pms:

pms = ver max || random

where || is bitstring concatenation and random consists of 46 random bytes. From the
pms and exchanged random values, both parties compute the master secret using a pseudo-
random function (PRF). This function takes as input a secret, an identifying label, and
a seed, and generates a stream of bytes, using HMAC (with two hash algorithms, MD5
and SHA1) as base primitive. For generating ms, the secret is pms and the seed is the
concatenation of a fixed bitstring and the two nonces exchanged in the hello phase:

ms = PRF(pms, ‘‘master secret’’, cr || sr ).

The materials for the Record protocol are generated similarly:

key block = PRF(ms, ‘‘key expansion’’, sr || cr ).

This key block bitstring is truncated and split into six secrets for the initial read and write
connections: two encryption keys, two mac secrets, and two IVs.

The two ChangeCipherSpec messages appear in brackets because they are not consid-
ered part of the Handshake protocol. They signal the use of the newly-negotiated algo-
rithms and keys, so the Finished messages are the first to be maced and encrypted by the
Record protocol, thereby providing key confirmation. These Finished messages contain a
(hashed) transcript of the handshake to this point; their logical contents is

verify data = PRF(ms, finished label, MD5(hsm) ||SHA1(hsm))

where finished label is a constant string (either ‘‘client finished’’ or ‘‘server finished’’ de-
pending on the message sender) and hsm is the concatenation of the sequence of handshake
messages (including Handshake subprotocol headers, but not the outer TLS record head-
ers). The resulting authentication guarantees are detailed in Section 5. After a successful
handshake, the parties can start exchanging application data in both directions.

2.3 Abbreviated Handshake Protocol (Resumption)

Instead of performing a full handshake, TLS offers the possibility of resuming a previously
established session, and even of duplicating an existing session, in order to derive further
connections.

Assume that the parties have already performed a successful handshake, thus estab-
lishing a session. The client can propose an abbreviated handshake by sending an Hello
message that includes a fresh nonce and the old session identifier. If the server accepts
this session identifier, both parties skip phases (2) and (3), immediately derive fresh cryp-
tographic materials, and exchange Finished messages. Thus, the message flow for the
abbreviated handshake is:
ACM Journal Name, Vol. V, No. N, July 2011.
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ClientHello ------>
ServerHello

[ChangeCipherSpec]
<------ Finished

[ChangeCipherSpec]
Finished ------>

Otherwise, the server generates a fresh session identifier and the handshake continues as in
the general case. The standard does not mandate whether the original connection should
be used to protect the resumption; experimentally, we observe that common server im-
plementations of TLS accept resumption ClientHello messages either protected with the
current security parameters or sent in the clear.

3. PROTOCOL IMPLEMENTATIONS IN ML

We write our protocol implementations in the F# programming language. The structure
and style of our programs reflect our goal to use the same code, as far as possible, for four
different tasks, as depicted in Figure 1: concrete execution, for interoperability testing;
symbolic execution, for debugging; symbolic verification; and computational verification.

For symbolic debugging and verification, every .NET function or operating system call
that appears in protocol or application code must be given a symbolic model. Similarly,
for computational verification, such function calls must be given a computational interpre-
tation. We identify a set of commonly-used functions and collect them in a set of core
library modules written in F#. We require that protocol implementations use only these
library functions to interact with the .NET runtime and operating system. For each library
function, we define both symbolic and computational models that are used to extract full
symbolic and computational models from protocol implementations.

Our model extraction tools only support a subset of rich language features of F#. In the
remainder of this section, we describe the core library modules and language features used
by our TLS implementations and supported by our tools.

Libraries for Networking and Cryptography. We use three core library modules, Net,
Crypto, and Prins.

module Net
type conn // TCP Socket
val connect: string → conn
val listen : string → conn
val close: conn→ unit
val send: conn→ bytes→ unit
val recv: conn→ bytes

The module Net defines functions to set up and
use TCP connections. For example, by calling
connect with a URI u, a client application can cre-
ate a TCP socket to a server listening at u. It can
then call the functions send and recv to exchange
messages on this connection.

module Crypto
val mkRandom: int→ bytes
val md5: bytes→ bytes
val sha1: bytes → bytes
val aes encrypt: symkey→ bytes→ bytes
val aes decrypt: symkey→ bytes→ bytes
val hmacsha1: mackey→ bytes→ bytes
val hmacsha1Verify: mackey→ bytes→ bytes→ bool
val rsa encrypt: pubkey→ bytes→ bytes
val rsa decrypt: privkey → bytes→ bytes

The module Crypto defines stan-
dard cryptographic primitives. For
example, our Record protocol im-
plementation calls hmacsha1 and
aes encrypt to mac-then-encrypt
messages, while the Handshake im-
plementation creates a fresh pms
using mkRandom and encrypts it
using rsa encrypt.
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module Prins
type CertName // X.509 subject name
val genX509Cert: CertName→ unit
val getX509Cert: CertName→ bytes
val getPrivateKey: CertName→ privkey
val checkX509Cert: bytes→ (CertName ∗ pubkey)
val leakX509: CertName→ privkey

The module Prins (for principals)
defines functions to create, retrieve,
and check the validity of X.509 certifi-
cates. Each module has a public and a
private interface. Public interfaces are
those offered to applications and are
also used for symbolic verification. Private ones are only used within our reference im-
plementation. For example, the private interface of the Prins module is as above, whereas
the public interface does not have the getPrivateKey function. (Hence, the attacker may
only obtain private keys through leakX509.) Unless mentioned explicitly, we assume that
a module’s public and private interfaces coincide.

Our concrete implementation relies on various classes in the .NET Framework; for in-
stance, the Crypto module implements hmacsha1 by calling the ComputeHash method in
System.Security.Cryptography.HMACSHA1 and Net implements connect by using System
.Net.Sockets.TcpClient.

Library Models for Debugging and Verification. Following an approach proposed by
Bhargavan et al. [2006] (see Figure 1), we also develop a symbolic implementation of
these libraries, for use in symbolic verification and debugging. In this version, the Crypto
module models hashing and encryption as algebraic datatype constructors for an abstract
type; for instance, hmacsha1(key,text) simply returns a term HMACSHA1(key,text) that
represents the keyed hash; Net models connections as communications on local channels
between processes; and Prins models the X.509 store as a local private database.

For computational verification, we develop a third version of these library functions,
encoding our computational cryptographic assumptions in the source language of Cryp-
toVerif, as described in Section 6.2.

All three versions of the library modules implement the same interfaces. By compiling
a protocol implementation and application against the concrete libraries, we obtain an exe-
cutable that can be deployed on the network and tested against remote clients and servers.
By compiling against the symbolic libraries, we obtain an executable that can be used for
generating symbolic traces for local debugging. For symbolic (and computational) verifi-
cation, we assume that the concrete implementation of these libraries follows their models;
as such, these libraries represent the trusted computing base for our verification results.

Supported F# Language Features. The subset of F# supported by our verification tools
is rich enough to write modular code that accounts for detailed message formats, crypto-
graphic operations, and security events. Our code uses typical functional language features
such as nested function applications, tuples, records, algebraic datatypes, pattern match-
ing, exceptions, and modules. However, it avoids other features such as mutable references,
higher-order functions, and classes, because they are not fully supported by our verification
tools. Moreover, as mentioned above, every .NET function or operating system call that
we use must be included in the libraries described above. For example, in order to use file
I/O operations, we would need to extend our libraries.

Our code uses recursive functions sparingly, because they usually lead to non-terminating
runs of ProVerif, and are difficult to verify in CryptoVerif. For example, we have a recur-
sive list membership function for lists of publicly known elements, but no list concatena-
tion over private data. Moreover, we tend to separate purely functional code from code
that has side effects, such as events or networks operations. Pure functions are efficiently
ACM Journal Name, Vol. V, No. N, July 2011.
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Fig. 2. Structure and Module Dependencies for our Implementation

translated to our target verification tools (for instance into ProVerif reductions), whereas
functions with side effects are translated to processes, which are more complex to verify.

Programming for verification imposes a coding discipline that can seem restrictive, but
is still rich enough to write fully functional protocol implementations, as we shall see next.

4. REFERENCE IMPLEMENTATION

We now describe our reference implementation of TLS 1.0. Although the standard does not
specify any particular API, the TLS protocol is usually implemented as a library, linked to
web-based applications such as browsers, proxies, and servers. Figure 2 gives the structure
of our reference TLS implementation; each box represents an F# module; each arrow rep-
resents a direct dependency between modules. Hence, the Handshake and Record modules
implement the Handshake and Record protocols, respectively; and their interfaces enable
some Application module to send and receive messages over TLS. The Formats module
contains functions to build and parse formatted TLS messages; it relies on the Conversions
module for low-level encodings of strings and TLS-specific tags. In the rest of this section,
we outline the implementations of these modules.

4.1 Record Module
val send: ConnectionId→ bytes→ unit
val recv: ConnectionId→ bytes

type Connection = {
net conn: Net.conn;
entity: ConnectionEnd;
sessid: bytes;
crt version: ProtocolVersion;
read: ConnectionState;
write: ConnectionState; }

The Record public interface (to the right) consists of
only two functions that enable applications to send
and receive messages over TLS connections.

The module maintains a private database of active
connections, indexed by ConnectionIds and popu-
lated by the Handshake protocol as new connections
are established. The record type Connection repre-
sents an established TLS connection. It contains the
underlying TCP connection net conn, the entity (Client or Server) which owns the connec-
tion, the identifier of the session from which the connection is derived, the protocol version
used for this connection, and the read and write connection states.
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type ConnectionState = {
cipher state: CipherState;
mk: bytes;
seq num: int;
sparams: SecurityParameters; }

type SecurityParameters = {
cipher type: CipherType;
bulk cipher algorithm:

BulkCipherAlgorithm;
mac algorithm: MACAlgorithm; }

Each read or write connection state is a record
containing the cipher state (represented in our case,
i.e. for block ciphers, by the encryption key and
the current initialization vector), the secret mk used
by the mac algorithm, the current sequence num-
ber seq num, and the security parameters sparams
established by the Handshake protocol, which in-
cludes the cipher type (i.e. stream or block cipher),
the encryption algorithm (like AES), and the mac
algorithm (like HMAC-SHA1).

Given an established TLS connection conn, the send and recv functions write and read
payloads over the connection, in accordance with the Record protocol. As they process
messages, they log two security events:

Send(entity,payload,conn) Recv(entity,payload,conn)

where entity is a label with value either Client or Server. The first event logs that entity
sends message payload over connection conn. The second event logs that entity accepts
message payload as valid over connection conn (after cryptographic record processing,
before passing it to the application). These events have no effect at runtime; they are used
only to specify our security goals for verification.

let recv (connid:ConnectionId) =
let conn = getConnection connid in
let conn, input = recvRecord conn in
let conn, msg = verifyPayload conn

CT application data input in
log tr (Recv(conn.entity, msg, conn));
let conn = updateReadSeqNum conn in
storeConnection connid conn;
msg

To illustrate our coding style, we detail the
code for the recv function, which takes one ar-
gument, a connection identifier connid, and re-
turns a record payload msg. The function is writ-
ten as a sequence of function calls. It first calls
getConnection to retrieve the connection record
conn; it then calls recvRecord, which blocks until
the next message input is received on the connec-
tion; it calls verifyPayload to decrypt the payload msg and verify the mac; it calls log to log
a Recv event as described above; it calls updateReadSeqNum to increment the sequence
number of the read connection state; and it finally calls storeConnection to update the
connection database with new connection parameters before returning msg.

let verifyPayload (conn:Connection) (ct:ContentType)
(input:bytes)=

let (bct, bver, blen, ciphertext) = parseRecord input in
let rct, rver, rlen = getAbstractValues bct bver blen in
let ver = conn.crt version in
if rver 6= ver then failwith "bad version" else

let connst = conn.read in
let connst,plaintext = decrypt ver connst ciphertext in
let payload,recvmac = parsePlaintext ver connst plaintext in
let len = bytes of int 2 (length payload) in
let bseq = bytes of seq connst.seq num in
let maced = concat5 bseq bct bver len payload in
let mres = hmacVerify connst maced recvmac in
if mres = false then failwith "bad record mac" else

checkContentType ct rct payload;
let conn = updateReadConnectionState conn connst in
(conn, payload)

The cryptographic checks are
all performed in verifyPayload.
The function takes three ar-
guments: a connection record
conn, an expected content type,
and a message input received
over conn, and returns an
updated connection conn and
the received message payload.
Most of the function prepares
materials for calling the two
cryptographic functions decrypt
and hmacVerify. The call to
decrypt decrypts ciphertext us-
ing the algorithm, key, and ini-
ACM Journal Name, Vol. V, No. N, July 2011.
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tialization vector stored in the connection read state connst, and yields plaintext and a new
connection state with an updated initialization vector. The decrypted plaintext consists of a
payload and a mac recvmac. The call to hmacVerify verifies the mac, using the algorithm
and mac secret in connst, thereby authenticating the sequence number, content type, pro-
tocol version, ciphertext length, and payload. Finally checkContentType, besides checking
the content type of the received record, handles the case when an alert is received.

The function fails with an exception if the mac is incorrect, if the version, content type,
or sequence number do not match the expected values, if the message is an alert, or if any
parsing function fails. In all other cases, it returns an updated connection and payload.

4.2 Handshake Module

The Handshake module exports four functions that enable client and server applications to
set up new sessions, resume old sessions, and close connections:
val connect: Net.conn→ServerName→ConnectionId ∗ SessionId
val resume: Net.conn→SessionId→ConnectionId ∗ SessionId
val accept: Net.conn→CertName→ConnectionId ∗ SessionId
val close: ConnectionId→ bool→ unit

The second parameter for close is a Boolean that indicates whether to wait for the TCP
connection to be terminated or not. The usage of the other functions is detailed below.

The module maintains a private database of active sessions, indexed by SessionIds. The
type Session characterizes a TLS session:
type Session = {

sid: bytes;
ms: bytes;
server cert: Certificate;

ch: ClientHello;
sh: ServerHello;
pms: bytes; }

It is a record of a session identifier sid, the master secret ms, the server certificate, the client
and server Hello messages, and the pre-master secret pms. All these fields are exchanged
during the full handshake that establish the session. The fields in the left column suffice to
run the protocol; the other fields are included only for the security analysis.

A server calls accept to listen on a TCP connection for a TLS connection request; when
a client calls connect over the same TCP connection, the client and server engage in a
full handshake to establish a new session and a new connection in each direction. Upon
completion of a full handshake, both accept and connect construct their own Session and
Connection records and populate them with all the values authenticated by the handshake,
including, for instance, the session identifier, ciphersuite, security parameters, and com-
puted keys. To indicate completion of the protocol and agreement on these values, the two
functions log the following events:

SendFinished(entity,session,conn) AcceptFinished(entity,session,conn)

Each event contains the entity that logs it, and full Session and Connection records. These
are the records that are stored in the private databases, and of which indexes are returned
by the connect and accept functions.

A client can call resume for stored sessions to start an abbreviated handshake. A server
executing accept can also perform an abbreviated handshake if the clients asks for resump-
tion and the requested session is stored in the server’s database of active sessions. (Our
server always resumes a stored session when asked.) Upon completion of the Resump-
tion protocol, both accept and resume construct their own new Connection records and
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populate them with the new negotiated values, that is the version and the freshly com-
puted keys. To indicate completion of an abbreviated handshake and agreement on these
values, the two functions log the events SendFinishedRes(entity,session,conn,ch,sh) and
AcceptFinishedRes(entity,session,conn,ch,sh). The parameters of these events have the
same meaning as for a full handshake. In addition, the client and server Hello records are
tracked. In these events, all fields in session (including for example session.ch and session
.sh) refer to the initial full handshake, while the last two parameters ch and sh refer to the
Hello messages in the abbreviated handshake.

4.3 Sample Applications and Interoperability

Using our reference implementation, we write three applications:

—a client that connects to an HTTPS URI and retrieves a web page over a TLS connection;
—a server that listens at an HTTPS URI and returns a web page over a TLS connection;
—a mutually authenticated client-server application where the client authenticates to the

server using a password over a TLS connection.

Next, we outline the code for the two client applications, and we describe how we test them
symbolically and concretely.

Simple HTTPS Client. Our basic HTTPS client (shown below) uses functions from the
Handshake and Record modules.

let clientHttps uri =
let connid, sessionid =

tlsconnect uri in
httpGet connid uri

let tlsconnect uri =
let conn = Net.connect uri in
let shost = Net.get host uri in
Handshake.connect conn shost

let httpGet connid uri =
let req = buildHttpGet uri in
Record.send connid req;
let resp = Record.recv connid in
parseHttpGetResponse resp connid

The function clientHttps fetches a single page from a server, by calling the auxiliary
functions tlsconnect and httpGet. The function tlsconnect first establishes a TCP connec-
tion (conn) with the server by calling Net.connect and then calls Handshake.connect to
perform a TLS handshake over this unprotected connection. If the handshake succeeds, it
returns a connection identifier (connid) and a session identifier (sessionid). The function
httpGet performs an HTTP exchange over the TLS connection. It builds an HTTP/Get
request, sends the request over the TLS connection, waits for a response, and returns its
parsed contents.

Password-based Client Authentication. To illustrate how applications with additional se-
curity properties may be built on top of our TLS implementation, we develop a client-server
application where the client sends its user name and password over a TLS connection, and
the server checks these values to authenticate the client. We assume that the client pass-
words are already shared between clients and servers, and stored in a private database on
the server side. The code for the client is as follows:

let clientPasswd uri =
let connid, sessionid = tlsconnect uri in
Printf.printf "\nType your user name\n";
let client = read line() in
sendPasswd connid (str client) uri

let sendPasswd connid client server =
let pwd = get password client server in
log tr (SendPasswd(Client, pwd, client, server));
let msg = concatvar (utf8 client) pwd in
Record.send connid msg

As in the simple HTTPS application, the client calls tlsconnect to establish a TLS connec-
tion. It then reads the user name from a console and calls the function sendPasswd that
ACM Journal Name, Vol. V, No. N, July 2011.
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performs a secure message exchange with the server. The get password function returns a
bitstring and may be implemented in several ways. For instance, it may ask the user to en-
ter her password, or it may query a password database. (Our symbolic verification does the
latter.) The client logs the password with the identities of the involved parties, and sends
its user name and password over the Record protocol. (The function concatvar prepends a
length field to the concatenated bitstring so that the server may unambiguously parse the
record payload.)

Concrete Executions and Interoperability Testing. As a first experiment, we run our
applications concretely over a network and test them against one another. For instance, our
HTTPS client and server are successfully able to perform both handshake and resumption
protocols, and to perform HTTP exchanges on top of the established connections.

Then to test interoperability, we run our applications concretely over a network against
popular client/server applications. In our experiments, our simple HTTPS client applica-
tion successfully fetches pages from web servers running Microsoft IIS 7.0 or Apache 2.2.9;
and our HTTPS server application successfully serves pages to clients running Microsoft
Internet Explorer 7 or Mozilla Firefox 3.0.6. Both applications successfully resume ses-
sions when asked, for instance, to refresh a web page displayed in a previous session.
Hence, at least for these applications, our reference implementation interoperates with
the mainstream TLS implementations used by these browsers and web servers, including
OpenSSL and the Windows CryptoAPI.

In practice, most TLS implementations expose only a selection of cryptographic suites,
and sometimes slightly deviate from the standard, for instance in the handling of the ver-
sions in ClientHello and ClientKeyExchange messages. Our experiments also helped us
explore these issues and disambiguate details of the standard.

In comparison to mainstream implementations, our reference implementation supports
a smaller subset of the standard. We focus on TLS 1.0 in RSA mode for the key ex-
change, and provide partial support for SSL 3.0 and TLS 1.1. In this mode, we sup-
port all ciphersuites using AES, DES, RC4, SHA, and MD5 algorithms, thus for example
TLS RSA WITH AES 128 CBC SHA and TLS RSA WITH RC4 128 MD5. Our implemen-
tation does not support renegotiation, data compression, or fragmentation; it does not send
alerts, and it silently fails upon receiving a bad message. Despite these limitations, our
experiments show that it is adequate for writing simple client and server applications.

5. SYMBOLIC VERIFICATION

Our symbolic verification is based on an existing tool chain consisting of a model extractor
[Bhargavan et al. 2006], that compiles code written in F# to process models in an applied
pi calculus [Abadi and Fournet 2001], and the state-of-the-art verifier ProVerif [Blanchet
2001], that analyzes such models automatically. Although our symbolic verification prob-
lem is undecidable in general, for many protocol implementations, the verifier either proves
the security goals or produces a counter-example. In some cases, the verifier may not ter-
minate; in others, it may take several gigabytes of memory.

To use this tool chain, we write symbolic implementations for selected low-level li-
braries, as described in Section 3; we define the attacker model in terms of the public in-
terface exposed by these libraries and by our reference implementation; and we write our
authentication and secrecy goals as correspondences between events logged by functions
in the interface. Then, we can extract a symbolic model from the reference implemen-
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tation and verify security queries automatically. If the tool proves a query, we obtain a
security theorem about the protocol implementation, against all attackers that use its pub-
lic interface. Our results rely on the correctness of the core translations and algorithms
underpinning the model extractor and ProVerif [Bhargavan et al. 2006; Blanchet 2001].

Attacker Model. The attacker capabilities are given by the public interfaces of the modules
Net, Crypto, Prins, Handshake, and Record. Thus, we let attackers range over arbitrary
programs that use the functions given in these interfaces. This yields a rich symbolic threat
model à la Dolev and Yao [1983] with an active attacker that can

—control the network (Net) and perform cryptographic operations (Crypto);
—create any number of servers by generating certificates and, optionally, compromise any

server by reading its private key—whenever this occurs, an event Leak(subj) is emitted
to record the subject subj of the compromised certificate (Prins);

—run any number of sessions between clients and servers of its choice, obtaining their
connection and session identifiers; and trigger the Resumption protocol for any session
identifier (Handshake);

—send and receive messages over the record layer (Record).

We let System range over programs that consist of the symbolic implementations of
the Net, Crypto, and Prins modules, of the implementations of the Handshake, Record,
Formats, and Conversions modules, and of arbitrary code with access to the public inter-
faces of Net, Crypto, Prins, Handshake, and Record. All the security results of this section
hold for any run of any such program.

5.1 Handshake Protocol

We first present symbolic results for the Handshake protocol. For the Full Handshake,
authentication is specified as a correspondence from events triggered when a party accepts
the peer’s Finished message to prior events triggered when the party sends that message.
The more information these events record, the stronger the property. We say that a server
has been corrupted when its private key has been leaked to the attacker. We say that a client
is corrupted if its pms is known to the attacker.

THEOREM 1 (FULL HANDSHAKE AUTHENTICATION). In any run of System , for any
AcceptFinished event logged by an entity (client or server), either there is a SendFinished
event logged by the opposite entity (server or client respectively) with matching connection
and session parameters, or the opposite entity is corrupted.

In these statements, the server identity is just its certificate subject; it is left to the ap-
plication to correlate this authenticated identity with the intended peer server, using for
instance the target URL. (Experimentally, neither Internet Explorer nor Firefox sends the
client Finished message when this correlation fails.)

The proof is by automated verification of the two queries below on the extracted model.

query ev: AcceptFinished(Client, sess, conn)
=⇒ principals: sess, subj, pms & correctParam: sess & connections: conn, conn’

& (ev: SendFinished(Server, sess, conn’) | ev: Leak(subj)).

query ev: AcceptFinished(Server, sess, conn)
=⇒ principals: sess, subj, pms & correctParam: sess & connections: conn, conn’

& (ev: SendFinished(Client, sess, conn’) | attacker: pms).
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In the queries, lowercase parameters are variables, whereas Client and Server are sym-
bolic constants. Queries relate facts using logical conjunction (&), disjunction (|), and tem-
poral implication (=⇒): e =⇒ e’ means that whenever e is true, e’ must have been true
before. Of the three connectives, & has the highest precedence and =⇒ the lowest. All
variables in a query are universally quantified, except for the variables on the right-hand-
side of =⇒ that do not appear in the left hand side, which are existentially quantified. Each
fact has the form p: m1,...,mn, where p is a predicate and m1,...,mn are symbolic terms.

The predicates ev and attacker are predefined in ProVerif; ev: e means that the event e
has been logged, and attacker: m means that the attacker knows message m.

The predicates principals, correctParam, and connections are defined by us; principals:
sess, subj, pms holds when the subject of the certificate sess.server cert, and sess.pms
equal respectively subj and pms; correctParam: sess holds when sess.sid equals the sid
field of the ServerHello message sess.sh; connections: conn,conn’ holds when the version
field crt version of the two connections are equal, and when the read connection state of
conn equals the write connection state of conn’ (and vice-versa).

The two queries require that, at the end of the handshake, the server and client agree on
the important fields of the session. These fields include sid, pms, ms, server cert, and also
cr, sr, version, and cipher suite from ch and sh in session. The derived cryptographic ma-
terials (within the read and write connection states of conn and conn’) are also correlated.

As a minor technical point, there is no formal agreement on the client’s lowest supported
version for TLS (ver min): the attacker may change this value, together with the message
record format for ClientHello, without detection. However, this is innocuous as long as
(1) the client checks that version ≥ ver min and (2) the server’s choice of version does not
depend on ver min. Indeed, the standard says that the server should pick version to be
either ver max or its highest supported version, whichever is lower.

Session Resumption. We obtain a similar theorem for the Resumption protocol.

THEOREM 2 (RESUMPTION AUTHENTICATION). In any run of System , for any Accept
FinishedRes event logged by an entity (client or server), either there is a SendFinishedRes
event logged by the opposite entity (server or client) with matching connection and session
parameters, or the opposite entity is corrupted.

Moreover, within each AcceptFinishedRes and SendFinishedRes event, the new Server-
Hello message has the same session identifier and ciphersuite as the old session.

The proof is by automated verification of the two queries

query ev: AcceptFinishedRes(Client, sess, conn, ch, sh)
=⇒ principals: sess, subj, pms & correctParam: sess & connections: conn, conn’

& matchRes: sess, ch, sh
& ((ev: SendFinishedRes(Server, sess, conn’, ch, sh)

=⇒ ev: SendFinished(Server, sess, conn’’)) | ev: Leak(subj)).
query ev: AcceptFinishedRes(Server, sess, conn, ch, sh)

=⇒ principals: sess, subj, pms & correctParam: sess & connections: conn, conn’
& matchRes: sess, ch, sh
& ((ev: SendFinishedRes(Client, sess, conn’, ch, sh)

=⇒ ev: SendFinished(Client, sess, conn’’)) | attacker: pms).

These queries use a new predicate matchRes that correlates session parameters from
the original handshake (recorded in sess) with the connection parameters established by
the new abbreviated handshake (recorded in the Hello messages ch and sh). In particular,
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matchRes requires that the old sess.sid equals both the rsid requested in the new ch and
the sid returned in the new sh; it also requires that the old cipher suite (within sess.sh)
equals the new cipher suite (within sh).

Conversely, matchRes does not ask for equality between the version fields of the old
and new ServerHello message, and with good reason: the above queries do not hold if
matchRes also require agreement on the protocol version. As explained in Section 5.5,
this reflects a potential version rollback attack on TLS resumption.

In the two queries, the second =⇒ is a requirement that a full handshake have been
executed before resumption. For instance, when verifying the first query, whenever an
AcceptFinishedRes event occurs, some SendFinishedRes event (with matching parame-
ters) must have occurred before, and moreover, this SendFinishedRes event can only have
occurred after some SendFinished event. These queries encode a weak form of client au-
thentication: during resumption, the new connection is associated with the same client as
for the initial connection; hence, an adversary cannot use resumption to hijack a session.

Handshake Secrecy. We prove secrecy for all secrets generated during full and abbrevi-
ated handshakes, including pms, ms, the two encryption keys, the two mac secrets, and the
two IVs. Our theorem asserts syntactic secrecy; it requires that the secret values are not
obtained by the attacker, unless he has compromised the server or controls the client.

THEOREM 3 (HANDSHAKE SECRECY). In any run of System , for any connection in
any session between two entities, either the values of pms, ms, all encryption and mac
keys, and initial IVs are syntactically secret, or one of the entities is corrupted.

To encode this secrecy requirement, we extend the protocol interface with a function
that allows an attacker to guess the value of a secret and, if the guess matches the value
stored in the connection or session database, logs an event LeakedSecret to indicate that
the attacker has compromised the session and connection. Then, the theorem is established
by proving the query

query ev: LeakedSecret(entity, sess, conn)
=⇒ principals: sess, subj, pms & (ev: Leak(subj) | attacker:pms).

stating that, if any of the secret values stored in the database is obtained by the attacker,
then one of the two entities in the session must be corrupted.

5.2 Record Protocol

For the Record protocol, authentication is specified as a correspondence between the Recv
events emitted when a receiver accepts a message and the Send events emitted when mes-
sages are sent.

THEOREM 4 (RECORD AUTHENTICATION). In any run of System , for any Recv event
logged by an entity (client or server), either there is a Send event logged by the opposite
entity (server or client) with matching payload and connection parameters, or one of the
two entities is corrupted.

The proof is by verification of the two queries below.

query ev: Recv(Client, payload, conn)
=⇒ principals: sess, subj, pms & connections: conn, conn’

& connInSess: conn, sess & ev: AcceptFinished(Client, sess, conn’’)
& (ev: Send(Server, payload, conn’) | ev: Leak(subj) | attacker: pms).
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query ev: Recv(Server, payload, conn)
=⇒ principals: sess, subj, pms & connections: conn, conn’

& connInSess: conn, sess & ev: AcceptFinished(Server, sess, conn’’)
& (ev: Send(Client, payload, conn’) | ev: Leak(subj) | attacker: pms).

The queries say that if a Recv event is logged for a connection conn that is part of a
session sess, then either the corresponding Send event was logged, or one of the entities
in sess is corrupted. In contrast with handshake authentication, our record authentication
theorem allows for the corruption of either entities. This is because record authentication
depends upon the secrecy of session and connection secrets, specifically the authentication
keys and IVs, and these are secret only if neither entity is corrupted (Theorem 3). Note also
that the Recv event only mentions the connection conn and not the session; so both queries
use the AcceptFinished event to choose some valid session sess and then call connInSess:
conn, sess to check that the session identifier in sess matches the one in conn.

Record authentication implies that the client and server have the same sequence num-
ber (read.seq num). In TLS, sequence numbers are incremented each time a record is
processed, to ensure connection integrity: if a sequence of records is received by some
party on a connection, then the corresponding party has sent (at least) the same sequence
of message on the same connection. Although Theorem 4 is stated in terms of a single
message, it implies connection integrity in the following sense. It guarantees that, when-
ever a record payload is accepted, both parties agree on its sequence number. Hence, if
the accepted payloads and sent payloads are arranged in order of their sequence numbers,
either the accepted sequence is a prefix of the sent sequence, or the sending entity is cor-
rupted. This argument holds for arbitrarily large sequence numbers; we support it in our
symbolic model by allowing the adversary to choose sequence numbers (the sender reads
the sequence number for the next record from a public channel).

Next, we show that the Record protocol preserves payload secrecy. More precisely,
we prove that if a freshly generated (secret) nonce is used as a record payload over an
established connection, then it remains syntactically secret as long as both client and server
are uncorrupted. To specify this property, we extend the Record module with two new
functions. First, we add a function send’ that only sends fresh nonces as record payloads:

let send’ (id:ConnectionId) = let nonce = mkRandom 16 in send id nonce

Second, we add a function that allows the attacker to guess the value of a payload and,
if the guess matches one of these fresh nonces, logs an event LeakedPayload to indicate
that a secret payload has been obtained by the attacker. We add both these functions to the
Record public interface and remove the function recv—otherwise, recv acts as a decryption
oracle allowing the attacker to trivially obtain the secret payload. We let System ′ be the
variant of System with this modification.

THEOREM 5 (RECORD PAYLOAD SECRECY). In any run of System ′, for any record
payload sent over a connection between two entities, either the payload is syntactically
secret, or one of the entities is corrupted.

The proof is by verification of the query

query ev: LeakedPayload(entity, payload, conn)
=⇒ principals: sess, subj, pms

& connInSess: conn, sess & ev: AcceptFinished(entity, sess, conn’)
& (ev: Leak(subj) | attacker: pms).
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This query is structurally similar to the authentication queries; it retrieves a valid session
for the connection and states that either the client or the server must be corrupted.

5.3 Password-based Client Authentication

Section 4.3 describes an application that uses shared passwords for client authentication
on top of TLS connections. Clients are identified by a username and password; servers
are identified as usual by the subject name of their X.509 certificates. The application is
implemented in the Passwd module, and has the interface:
val generatePasswd: UserName→ServerName→ unit
val clientPasswd: UserName→ServerName→ unit
val serverPasswd: ServerName→ unit

The function generatePasswd creates a new username-password record for use at a par-
ticular server and stores it in a protected password database. The functions clientPasswd
and serverPasswd start new instances of the client and server application, respectively.

We let System ′′ be System augmented with the Passwd module and arbitrary code with
access to the interface of Passwd plus all the public interfaces of System .

THEOREM 6 (PASSWORD-BASED USER AUTHENTICATION). In any run of System ′′,
for any AcceptPasswd event logged by a server, either there is a SendPasswd event logged
by a client with matching username, password, and server name, or the password is known
to the attacker, or the server is corrupted.

The proof is by verification of the query
query ev: AcceptPasswd(Server, pwd, user, subj)

=⇒ ev: SendPasswd(Client, pwd, user, subj) | attacker: pwd | ev: Leak(subj).

5.4 Experimental Results

All the queries in this section are automatically verified on the systems described above. In
some cases, we had to hand-tune the protocol code extensively in order to make verification
feasible—otherwise ProVerif either ran out of memory, or did not terminate for several
days. To this end, during early development, we also verified parts of the protocol in
isolation. For comparison, Figure 3 gives the number of queries and verification times for
these simpler experiments as well as for the full systems. All experiments are performed
on a computer with Intel Xeon Dual Quad-core processors at 3 GHz, and 32GB RAM. We
used FS2PV version 1.1 and ProVerif version 1.14pl5.

The first row of Figure 3 describes the verification of handshake authentication (Theo-
rem 1) on just the Handshake module, with Record and Resumption protocols disabled.
(These protocols are disabled by removing their functionality from the public interface.)
The second row verifies handshake secrecy (Theorem 3) again for just the Handshake pro-
tocol. The third row verifies the Handshake module for resumption authentication (Theo-
rem 2), but with the Record protocol disabled. The fourth row verifies our full reference
implementation of TLS for record authentication (Theorem 4). The fifth row verifies the
full implementation for all the queries in this section, establishing Theorems 1–5. The final
row verifies our password-based client-server application (Theorem 6).

5.5 Related Work: Symbolic Attacks on TLS

Previous formal and informal analyses of SSL and TLS have uncovered a range of vulner-
abilities and attacks. For instance, SSL 2.0 does not guarantee integrity of many elements
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Verified Parts of TLS Security Goals F# Code Queries Time Memory
Full Handshake Authentication 1418 lines 2 27 s 60 MB
Full Handshake Secrecy 1418 lines 2 25 s 80 MB
Full Handshake & Authentication 2194 lines 2 8 min 460 MB
Resumption
Full Handshake & Authentication 3344 lines 2 11 min 700 MB
Resumption & Record (Record Only)
Full Handshake & Authentication & 3344 lines 10 3.5 h 4.5 GB
Resumption & Record Secrecy
Full TLS & User 3855 lines 1 1.5 h 1.2 GB
Password-based Application Authentication

Fig. 3. Summary of experimental results for symbolic verification

of the handshake negotiation, including the ciphersuite. Hence, if the client and server
both prefer to use strong cryptography, but are also willing to use weak cryptography, then
an attacker may convince them both to establish a session with weak cryptography; this
is called a ciphersuite rollback attack. In our model, this attack appears as a failure of
handshake authentication (Theorem 1). We experimented with an SSL 2.0-like variant
of our client implementation that sends application data before receiving a valid Finished
message. ProVerif rightfully fails to prove an authentication query, and instead produced a
counter-example indicating the attack.

Recent versions of TLS, since SSL 3.0, guarantee full handshake integrity by authenti-
cating all previous handshake messages in the final Finished messages. In particular, Hello
messages are integrity protected thus preventing ciphersuite rollback attacks. However, if
a client and server still support SSL 2.0 for backwards compatibility, then a new version
rollback attack becomes possible: an attacker may convince both parties to use SSL 2.0,
and then exploit any flaws (including ciphersuite rollback) of the earlier version. Version
rollback is a general problem faced by protocols that have multiple versions deployed at
the same time. SSL 3.0 and TLS include two mechanisms to address this problem, both
in the ClientKeyExchange message, so that a server can authenticate ver max, the highest
protocol version supported by the client. In particular, TLS clients embed ver max within
pms, but SSL 2.0 clients do not. Hence, a server can identify clients that support versions
higher than SSL 2.0 and protect itself from version rollback. Indeed, Theorem 1 asserts
that our Handshake implementation authenticates the ClientHello, which includes ver max.

The version rollback protection mechanisms of TLS does not suffice for the Resumption
protocol, since the abbreviated handshake does not contain a ClientKeyExchange message.
Hence, every implementation of TLS, including ours, is vulnerable to version rollback
during resumption. In particular, resumption authentication (Theorem 2) guarantees only
that the new connection parameters excluding ServerHello.version are correlated with the
old session parameters, not that the new version is higher than the old one. Experimentally,
we found that deployed server implementations of TLS are vulnerable to version rollback
attacks from TLS 1.0 to SSL 3.0 during resumption. However, we could not exhibit the
potentially more dangerous rollback from TLS 1.0 to SSL 2.0, partly because, in practice,
the length of session identifiers differs between these two versions. (The standard does not
impose a particular length.)

In addition to protocol-level attacks, our method also finds common implementation-
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level attacks. A common error in many TLS implementations and applications is the incor-
rect validation of received server certificates (e.g. see [Cisco 2007]). In an early version of
our implementations, we found a certificate validation error (as a failure of Theorem 1). In
other early versions, we found errors such as allowing the null ciphersuite to be selected,
or not checking that the received sequence number is correct. In each case, our verification
tools generated counter-examples to our secrecy and authentication queries.

More recent vulnerabilities in OpenSSL exposed over four hundred applications that
relied on OpenSSL for its cryptographic and TLS/SSL functionality [OpenSSL 2009]. In
essence, these applications and other functions within OpenSSL, incorrectly handled the
return values of the main signature verification functions, treating erroneous signatures as
valid. In particular, the vulnerability allowed certificate verification in the OpenSSL TLS
implementation to be bypassed in some conditions. Since our implementation does not
use return values to signal errors and instead raises exceptions, such vulnerabilities do not
directly appear in our code. However, our verification tools would find those errors as well.

On the other hand, it is worth pointing out that several well-known attacks on TLS are
outside the scope of our symbolic model. These include cryptanalyses on the underlying
cryptographic functions, traffic analyses, and padding attacks.

5.6 Related Work: Previous Symbolic Analyses

In a long line of works, starting from Dietrich [1997], researchers have used various tech-
niques to verify models, and more recently, implementations, of different versions of SSL
and TLS. We describe only those most closely related to our work.

Wagner and Schneier [1996] carry out an informal analysis of SSL 3.0. They point out
an ambiguity in the specification which allows application data to be exchanged before
the confirmation of security parameters with the Finished messages. Thus in this case
ciphersuites rollback attacks could be successful. This ambiguity was corrected in the
TLS 1.0 protocol. They also fear possible anomalies in the Resumption protocol related to
version rollback issue we have mentioned.

Mitchell et al. [1998] study a model of SSL 3.0 using the Murphi tool. They use model-
checking to perform a finite-state exploration of a sequence of protocols of increasing
complexity, including a version of SSL 3.0 with both full and abbreviated handshakes, but
limited to finite configurations consisting of, for example, two clients and a server.

Paulson [1999] develops formal, machine-checked proofs for a model of TLS 1.0 in
Isabelle, with authentication and secrecy theorems that, like ours, apply to more general
configurations of clients and servers. His model includes both full handshake and resump-
tion but does not address version rollback issues within resumption.

He et al. [2005] apply logic-based proof techniques to the IEEE 802.11i protocol, and
include a simple model of TLS as a subprotocol. Using PCL, they prove agreement on
all exchanged messages and secrecy of the pre-master secret. Dı́az et al. [2004] show
the correct message flow of the Handshake protocol in the absence of the intruder using
the UPPAAL model-checker. Ogata and Futatsugi [2005] show secrecy of the pre-master
secret and liveness properties for the Handshake protocol using the OTS/CafeOBJ tool.
Kamil and Lowe [2008] report on an analysis of a detailed strand spaces model of the
Handshake and Record protocols. They prove authentication and secrecy theorems similar
to ours, and also show that the Record protocol provides two authenticated streams and
satisfies session independence.

Jürjens [2006] verifies a Java implementation of the Handshake protocol for secrecy
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and authentication properties. His analysis works on the control-flow graph and does not
account for multiple versions or low-level message formats. Chaki and Datta [2009] ap-
ply software model checking on OpenSSL code to verify secrecy and authentication for
configurations of up to three servers and clients.

6. A COMPUTATIONAL VERIFIER FOR PROTOCOL IMPLEMENTATIONS

This section describes our computational verification approach and tools; Section 7 ap-
plies them to TLS. Compared with symbolic models, computational models adopt a less
optimistic approach to cryptography: rather than giving the adversary essentially the same
capabilities as ordinary protocol participants, they specify both minimal positive assump-
tions (guaranteeing, for instance, that the correct decryption of an encrypted message yields
the original plaintext) and minimal negative assumptions (bounding, for instance, the prob-
ability that a polynomial adversary may break a particular usage of encryption).

6.1 CryptoVerif (Review)

The CryptoVerif verifier can prove the security of a given protocol under a set of secu-
rity assumptions for its cryptographic primitives, within a probabilistic polynomial time
(PPT) model of computation. We briefly present the tool; we refer to [Blanchet 2008] and
[Blanchet and Pointcheval 2006] for an explanation of CryptoVerif syntax and semantics.

CryptoVerif takes as input a script, written in a variant of the pi calculus with an explicit
polynomial bound for every replicated process. Thus, processes represent PPT Turing
machines that exchange finite bitstrings through an adversary, modeled as an (unknown)
PPT machine. In the script, cryptographic assumptions are introduced through type and
function declarations, equations, inequations, and game-based equivalences. The equations
and inequations are typically used to describe minimal positive assumptions (the functional
correctness of the primitive), whilst the game-based equivalences are used to state minimal
negative assumptions. Section 7 gives some examples.

Proofs, Games, and Indistinguishability. The input script can be seen as an initial game,
modelling the protocol, to which CryptoVerif applies transformations, until a final game
that satisfies target security conditions is reached—this proof technique is known as game-
hopping [Blanchet and Pointcheval 2006; Corin and den Hartog 2006].

Each transformation between two consecutive games preserves PPT indistinguishability,
that is, the adversary cannot distinguish the games before and after the transformation.
Example transformations include the application of an equivalence stating the security of
a cryptographic primitive, and the semantics-preserving rearrangement of code, such as
inlining and partial evaluation. CryptoVerif runs either automatically or interactively, in
which case it receives guidance from the user for selecting transformations.

In a recent case study, CryptoVerif is used to verify a model of the Basic and Public-Key
Kerberos protocol [Blanchet et al. 2008].

Process and Variable Instances. Processes in CryptoVerif can be replicated polynomially
in a given security parameter, enabling multiple parallel executions. Hence, every replica
has access to its own instance of each variable; in addition, a special find command gives
read access to all other instances of each variable.

Target Security Properties. CryptoVerif can verify authentication and secrecy properties.
Authentication goals are written as correspondences [Blanchet 2007], much as in our sym-
bolic models. Computationally, correspondences assert that, if some event is executed,
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then other events must also have been executed, at least once, with matching parameters,
at least with overwhelming probability; this last bit reflects the computational nature of the
model. (CryptoVerif can deal with more general properties expressed as logical formulas,
and verify both injective and non-injective properties.)

Secrecy goals are expressed as indistinguishability between two configurations. (It is of-
ten called strong secrecy in symbolic models, in contrast with the weaker notion of syntac-
tic secrecy.) CryptoVerif has two notions of secrecy. The weaker notion (query secret1
in CryptoVerif) states that the adversary cannot distinguish the value of any instance of a
given variable from a random value; the stronger notion (query secret) states that the
adversary cannot distinguish the vector of values of all the instances of a given variable
from a vector of independent random values.

6.2 A Compiler from ML Programs to CryptoVerif Scripts

We outline the design of our new model extractor that translates protocol implementations
written in F# to CryptoVerif scripts. (See Bhargavan et al. [2009] for additional details.)
The extractor takes three inputs: protocol modules written in F#, such as the modules in our
reference implementation, a computational model of the cryptographic libraries expressed
as CryptoVerif assumptions, and security goals for the protocol expressed as CryptoVerif
queries. It then generates a CryptoVerif script that can be verified either automatically or
interactively. In the rest of this section, we outline the various steps of the translation.

Computational Models for Libraries. We first define models for all the functions in the
library modules, such as Net, Crypto, and Prins. Our model of Net treats connections as
public channels; hence, calls to Net.send and Net.recv send and read messages from a sin-
gle public channel that is controlled by the attacker. Our model of Crypto treats bytes as
concrete bitstrings, and defines cryptographic primitives as uninterpreted functions over
bitstrings. For each primitive, it defines equations, inequations, and equivalences that en-
code specific cryptographic assumptions for the protocol. Functions for generating fresh
values, such as mkRandom, are written using the CryptoVerif primitive new that chooses a
random bitstring uniformly from a type, such as the set of all 16 byte nonces. Our model
of Prins maintains a private database of public-private keypairs as a CryptoVerif array.

In contrast with Net and Prins, which are generic, Crypto must be written specifically
for the protocol at hand; the specific definitions used for TLS are described in Section 7.

Compiling Protocol Code to CryptoVerif. The compiler first applies a series of code trans-
formations to generate a smaller, more specialized source program. These transformations
include aggressive inlining of non-recursive functions, partial evaluation of functions and
patterns, and dead-code elimination.

The compiler then converts all public functions to processes, and normalizes the result-
ing code to fit in a restricted ML syntax that is very close to that of CryptoVerif. The final
CryptoVerif script is obtained by translating these processes and the protocol security goals
into CryptoVerif syntax, and by inlining abstract models for the core libraries.

Data structures such as records are translated to simpler forms such as tuples, and all type
abbreviations are inlined. All functions that do not appear in the interfaces are eliminated,
and all modules are flattened into a single module by suitably qualifying the names of
functions, variables, and types. This single module then consists of datatype definitions,
function definitions, and top-level code that evaluates expressions and binds variables.

Functions as Processes. For each function definition let f x = e, the translation first trans-
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forms the body expression e in continuation-passing style, into a sequence of imperative
commands e’: each line in e’ is either a function call or a pattern match. Each line is then
translated to CryptoVerif: function calls become processes that call CryptoVerif function
symbols; pattern matches become let processes. Some function calls are specially trans-
lated: calls to fork spawn parallel processes; calls to log yield primitive event recording
processes. Finally, the whole function definition is translated to a process of the form
let f = in(callf, x);...; out(resultf, r) that takes its arguments on channel callf and returns its re-
sult on channel resultf. Since these channels are public, the adversary may call any of the
functions in the public interface, as oracles.

Top-level Process. Each variable binding let x = e in the source code translates to a process
context that binds x to the result of evaluating e. The expression e is translated to a process,
as expressions in function definitions, possibly spawning processes using fork. Hence,
the top-level process that represents the full system consists of bindings for all variables,
parallel threads for all spawned processes, and N replicas for each function process, where
N is polynomial in the security parameter.

Verification. The full CryptoVerif script consists of the computational models of the li-
braries, the type definitions in the protocol implementation, and the top-level process repre-
senting the oracle interface provided by the implementation to the attacker. We then write
security goals as CryptoVerif queries for this process, and proceed with verification.

Besides the scripts obtained from our reference TLS implementation (Section 7), our
largest case-study so far, we have extracted CryptoVerif scripts from the code of several
sample protocols, including the Otway-Rees protocol and a password-based authentication
protocol; we could verify both authentication properties, expressed as non-injective corre-
spondences between events, and strong secrecy properties for keys and payloads. Although
all our scripts are currently automatically verified by CryptoVerif, manual guidance may
be required in general, in the form of advice.

Translation Correctness and Expressivity. To gain more confidence on the translation,
we show the soundness of the translation in ongoing work [Bhargavan et al. 2009]. We
define a probabilistic reduction semantics for F# and use it to prove the soundness of a
series of source-to-source transforms that bring our programs to a fragment of F# closer
to CryptoVerif. For this fragment, we relate our F# semantics to a lower-level abstract
machine closely related to the probabilistic polynomial semantics of CryptoVerif.

We also define abstractions for private databases and compromised keys in CryptoVerif.
Private databases allow, for instance, the modelling of principal libraries (e.g., the Prins
library described above) where key materials are stored. It also enables the modelling of
the compromise of a principal, where its keys get leaked to the adversary.

7. COMPUTATIONAL VERIFICATION

This section describes the computational security properties that we verified for our imple-
mentations of the Record and Handshake protocols. As detailed below, we verify various
configurations of these protocols, but in contrast with symbolic verification, our results do
not extend to the full TLS protocol.

7.1 Record Protocol

To verify the Record protocol (module Record in Section 4) in isolation, we write a mod-
ule Connected that abstractly simulates the Handshake protocol by populating a global

ACM Journal Name, Vol. V, No. N, July 2011.



24 · Bhargavan, Corin, Fournet, and Zălinescu

database with pre-established connections. The module provides two functions to the ad-
versary: the first generates a fresh private connection for a given connection identifier and
adds it to the database; the second leaks all the contents of a connection to the adversary,
but only after issuing a ConnLeak event that marks the connection as corrupted.

We use the tool described in Section 6 to automatically extract a computational model
from the modules Record and Connected. This yields polynomially-replicated commu-
nicating sender and receiver processes, wrapped up in a context that sets up shared con-
nections, including encryption keys and mac secrets. To obtain the final script for veri-
fication, we compose this generated code with CryptoRecord.cv, a series of handwritten
CryptoVerif declarations that model the Crypto module, including

—type definitions for the cryptographic computations;
—game equivalences that embed our security assumptions on cryptographic primitives;
—target security properties, in the form of correspondence assertions and secrecy queries.

Next, we detail these declarations.

Types for cryptography. We introduce specific types for cryptographic computations. For
instance, we have types for macs (macs), mac secrets (mkey), and the seeds for generating
mac keys (mkeyseed), and we declare a function fun mkgen(mkeyseed):mkey for generat-
ing a mac secret from a mac seed (derived from the connection state).

Security Assumptions for Mac, Symmetric Encryption, and PRF. We present our assump-
tions for the security primitives of the Record protocol. We refer to the libraries included
in the CryptoVerif distribution for the corresponding formulations as game equivalences;
see also Blanchet [2008] for other protocols that rely on these assumptions.

—MAC: The message authentication code scheme has three functions: mkgen, mac, and
check for generating a mac secret from a seed, applying the mac algorithm on a message,
and verifying a mac, respectively. For this scheme, we assume unforgeability under
chosen message attacks (UF-CMA), stated as an equivalence that replaces all calls to
mac and check, such that check performs a table lookup on any previously-generated
macs instead of recomputing it. Blanchet [2008] also relies on this equivalence, and
relates it to the usual formulation of UF-CMA (Proposition 2).

—Symmetric Encryption: The symmetric encryption scheme has three functions kgen,
enc, and dec for generating a symmetric key from a seed, encrypting a message, and
decrypting a message, respectively. Since the ciphersuites we consider use AES and
DES, we model this scheme as a block cipher. We assume the notion of super pseudo-
random permutation (SPRP), introduced by Phan and Pointcheval [2004], entailing that
encryption is a random permutation, at least when used with randomly-chosen keys.
(The “super” qualifier indicates that the adversary also has access to a decryption oracle.)
SPRP is modeled as a CryptoVerif equivalence that replaces every call to encryption and
decryption operations by lookups (via the CryptoVerif find command) on a table that
associates previous encryption and decryption queries with randomly generated values.

—PRF: We specify security for each of the pseudo random functions prf and mprf in the
Random Oracle model [Bellare and Rogaway 1993], as an equivalence that replaces
every call to the function by a table lookup, so that the first call generates a fresh random
value and subsequent calls return the same value. (Blanchet and Pointcheval [2006] use
a similar equivalence for proving the security of a signature scheme.)
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Authentication. We consider events Send’ and Recv’, variants of Send and Recv used for
symbolic verification in Section 5, where (for technical reasons) instead of the full con-
nection we only record the connection identifier. We embed our authenticity property as
a correspondence query in CryptoRecord.cv. The query also relies on ConnLeak events
that record the identifiers of (possibly) leaked connections. Let System range over the
script that consists of CryptoRecord.cv and the translation of Connected, Record, and their
auxiliary modules, composed with an arbitrary polynomial adversary. CryptoVerif auto-
matically proves record authentication on the script through 15 game transformations.

THEOREM 7 (RECORD AUTHENTICATION). With overwhelming probability, in any
run of System , for any Recv’ event there is a Send’ event with matching record payload,
or the connection is corrupted (that is, there is a ConnLeak event for the connection).

Secrecy. As in Section 5.2, we extend the Record module with a function send’ that,
generates and sends a freshly generated record payload over a connection. We add this
function to the Record public interface, we exclude the recv function (which would other-
wise act as a decryption oracle), and we disable the corruption of connections, obtaining a
variant System ′ of the system System of Theorem 7. CryptoVerif verifies the secrecy of
record payload, through 14 game transformations.

THEOREM 8 (RECORD SECRECY). In any run of System ′, the sequence of values of
record payload is computationally indistinguishable from a sequence of independent ran-
dom values.

In the theorem, computational indistinguishability means that a polynomial adversary can
not, with overwhelming probability, distinguish the real secret from a random value. Thus,
the theorem asserts that polynomial adversaries gain no information from record payloads
sent by client instances of the Record protocol.

Differences with the Symbolic Model. Symbolically, it is possible to show secrecy not only
for the record payloads, but also for the encryption keys and mac secrets used to protect the
payloads. Computationally, however, we show key secrecy only before they are actually
used; this is the case for the session keys of the Record protocol and for the pre-master
secret of the Handshake protocol. To prove secrecy after the key is used e.g. as a session
key, we would use a weaker notion such as key usability [Datta et al. 2006]. CryptoVerif
does not support this notion at present, although some first models [Blanchet et al. 2008]
have been tried via a combination of CryptoVerif code and then manual reasoning.

Another difference can be seen on the security notion for macs. With CryptoVerif, the
UF-CMA equivalence only states that the integrity of the maced message is guaranteed, and
says nothing on its secrecy. In contrast, symbolic models usually treat macs as perfect one-
way constructors, thereby implicitly guaranteeing message secrecy. To highlight this dif-
ference, consider a variant of the Record protocol where, instead of mac-then-encrypting,
we encrypt only the payload and keep the mac in the clear.

As we attempt to verify this variant, CryptoVerif fails to prove Theorem 8, since nothing
guarantees that the payload remains secret. In contrast, symbolic verification still succeeds.

7.2 Handshake Protocol

To verify the Handshake protocol (module Handshake), we set up an environment con-
taining a certified trusted server. More specifically, we write F# wrapper code in a module
Certified that sets up a public/private keypair of a trusted server.
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Module Handshake is composed with Certified, as well as with the modules on which
Handshake depends upon, most notably the Record module (albeit in null mode, as pre-
scribed by the standard for the initial key setup). We consider two stages, which roughly
correspond to the phases 2–4 of the Handshake protocol:

First stage Initially, we consider a client that sends both a ClientKeyExchange (encrypting
the pre-master secret) and a Finished message (which macs the message with a derived
key from the pre-master secret). In this case, we prove secrecy of the pre-master secret,
despite it being (1) encrypted for the server and (2) used as part of the key derivation in
the subsequent Finished message (we rely both on IND-CCA2 for encryption as well as
a Random Oracle assumption on the PRF, detailed below).

Second stage Subsequently, we consider a client sending the Finished message and a server
processing it. In this case, we prove that the (newly established) master secret is agreed
between the client and server.

As done for the Record protocol, using the tool of Section 6, we extract polynomially
replicated processes from Certified, Handshake, and Record.

Security Notions for PRF and Asymmetric Encryption. We manually craft CryptoHand-
shake.cv with our cryptographic declarations and assumptions. We use the same crypto-
graphic types as with the Record protocol, and include secrecy and correspondence queries.
Finally, CryptoHandshake.cv includes CryptoVerif equivalences embedding our crypto-
graphic assumptions, detailed below.

—PRF. To prove secrecy of the master secret we need the PRF to behave as a primitive that
completely hides the pre-master secret from the later derived master secret. For this, as
we did above in the Record protocol, we specify security of the PRF in the Random
Oracle model. However, the PRF is also used as a mac primitive in order to provide
integrity of the Finished messages. In order to prove authentication of the derived master
secret via the Finished messages, we also assume that the PRF primitive is UF-CMA (as
explained above for the Record protocol).

—Asymmetric Encryption. We have functions skgen and pkgen for creating private and
public keys; we also have functions enca and deca to encrypt and decrypt messages.
(We assume a probabilistic scheme, so the encryption function inputs a seed as well.) We
use a strong notion of security for asymmetric encryption, namely indistinguishability
against chosen-ciphertext attacks (IND-CCA2). We use the standard equivalence of the
CryptoVerif libraries, which replaces encrypted plaintexts with a message consisting of
only zeroes (of the appropriate length), and replaces decryptions by table lookups.

Secrecy for the Pre-master Secret. As specified in TLS 1.0, the pre-master secret is
the concatenation of a two-byte constant TLS1p0 plus 46 bytes of random. Let System ′′

be the script that consists of CryptoHandshake.cv (embedding the IND-CCA2 and PRF
assumptions) and the translation of Certified and Handshake (including the sending of
the ClientKeyExchange and Finished messages), composed with an arbitrary polynomial
adversary. CryptoVerif verifies the secrecy of random, through 18 game transformations.

THEOREM 9 (PMS RANDOM SECRECY). In any run of System ′′, the sequence of
random values within pre-master secrets is computationally indistinguishable from a se-
quence of independent random values.
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Verification Result F# Code Crypto Assumptions Games Time
Record Authentication (Theorem 7) 1967 lines 18 lines 15 1.9 s

Record Secrecy (Theorem 8) 1967 lines 25 lines 14 0.3 s
PMS Random Secrecy (Theorem 9) 2497 lines 33 lines 18 1.1 s

MS Authentication (Theorem 10) 2497 lines 23 lines 8 24 s

Fig. 4. Summary of computational experimental results

Authentication of the Finished messages. By assuming UF-CMA for the PRF when used
as a mac, we can also prove the integrity of the master secret, agreed between the client and
server via checking of the Finished messages. We let System ′′′ be the variant of System ′′,
embedding the UF-CMA assumption, and including the sending and receipt of the Finished
messages. CryptoVerif verifies the necessary correspondence in 8 game transformations:

THEOREM 10 (MASTER SECRET AUTHENTICATION). With overwhelming probabil-
ity, in any run of System ′′′, for any AcceptFinished event, there is a SendFinished event
with matching master secret.

Differences with the Symbolic Model. Our secrecy property is close to the symbolic
notion of strong secrecy, but is finer than syntactic secrecy. For instance, symbolically, we
have syntactic secrecy for the full pms with the embedded protocol version constant, not
just its random part. In future work, it may be possible to computationally verify that the
full pms satisfies a weaker secrecy property than ours, following Morrissey et al. [2010].

Our computational theorems more limited in comparison with the symbolic results.
They do not account for resumption and server compromise, and only partly handle the
composition of the Record and Handshake protocols. Our results are at the limit of what
CryptoVerif can achieve and hence reflect its technical limitations at the time of writing.
To give an example, when we compose the Record and Handshake protocols, we find that
the resulting model grows far too large for CryptoVerif in just a few transformations. We
anticipate that as the tool evolves, future analyses will be able to improve on our results.

Experimental Results. Figure 4 gives the verification times for our theorems. All results
are automatically proved by CryptoVerif (with no user interaction). We use FS2CV ver-
sion 1.1 and CryptoVerif version 1.7. These experiments are performed on a computer with
an Intel Pentium D at 3 GHz processor.

7.3 Related Work: Previous Computational Analyses

There are many analyses of TLS in computational settings; we focus on the positive results,
although we still mention important negative results.

Krawczyk [2001] shows that the mac-then-encrypt operation (as used in the computa-
tional analysis of our record protocol) is safe when the mac is UF-CMA and the encryption
scheme is used in CBC mode and is IND-CPA. Phan and Pointcheval [2004] describe no-
tions of PRP and SPRP (which we use for modelling in CryptoVerif) and their relation to
standard semantic security and to security against active attacks.

Our treatment of (symmetric) encryption, encapsulated in the SPRP notion, assumes that
exactly one block is encrypted at a time. Plaintext bitstrings are padded toward a (single,
large) block that is then encrypted; the IV is assumed to be part of the key and is never up-
dated. Hence, attacks that rely on the CBC mode, or the implementation of padding, or the
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choice of IVs, do not appear in our model. In practice, this means that the SPRP property
may be too strong to be met by concrete implementations of the encryption primitive (e.g.
AES). We leave as future work a less abstract model of symmetric encryption that accounts
for the standard usages of cipher block chaining, padding, and initialization vectors.

Fouque et al. [2008] argue for the suitability of the HMACSHA1 construction as a PRF
as used in TLS (whereas our model assumes a random oracle). They study randomness
extraction from pre-master secret to master secret in the standard model.

Jonsson and B. S. Kaliski [2002] give a security reduction for the security of TLS/SSL
when instantiated with RSA-PKCS-1v1 5 (modelling the PRF as a random oracle). This
contrasts with our work in which the encryption primitive is not explicitly considered but
assumed to be IND-CCA2. Gajek et al. [2008] present an extended random-oracle model
to analyze a mutual authentication protocol built on top of TLS.

Klima et al. [2003] use the version check in the ClientKeyExchange to construct timing
attacks over RSA-based sessions. In our model we do not consider side channel attacks.
Padding attacks have also been exploited for the TLS protocol both for asymmetric encryp-
tion using PKCS #1 [Bleichenbacher 1998] and for symmetric encryption in CBC mode
[Yau et al. 2005]. In both cases the adversary is given an oracle that says whether plaintexts
are correctly padded or not. We do not consider padding in our work.

8. CONCLUSIONS AND FUTURE WORK

We have presented the first symbolic and computational verification results for an interop-
erable TLS implementation. Using an existing model extractor and a mature verification
tool, ProVerif, we proved symbolic authentication and secrecy properties for the full im-
plementation of the Record, Handshake, and Resumption protocols. Using a novel model
extractor and a recent verification tool, CryptoVerif, we also proved authentication and se-
crecy properties, in the more demanding computational model, for the core of the Record
and Handshake protocols.

The main open area for future work is to extend computational verification to a full
TLS implementation. We see three main challenges toward this goal. First, our model
extractor and CryptoVerif need to be more scalable to handle the code for all three TLS
protocols. Second, to compose the verification of different phases of the protocol, we
would need to use a weaker notion of key secrecy, such as key usability [Datta et al. 2006]
as used in recent verifications of Kerberos [Blanchet et al. 2008]. Third, our model of
symmetric encryption needs to be refined to account for padding, cipher block chaining
and initialization vectors.

Another area of future work is the verification of more security properties and larger
applications. Our symbolic results can be extended to verify strong secrecy of keys and
session secrets; although ProVerif supports such properties, they typically take more time
and memory, and may require further model abstractions. TLS implementations are used
within complex applications such as web browsers and web servers and the security of a
session depends upon user actions such as the inspection and approval of server certificates.
An open problem is to extend our symbolic and computational theorems to account for such
applications, including their user interfaces.

Our results show that if a protocol implementation is carefully written, automatically
verifying strong security properties against a powerful adversary is technically feasible.
Verifying legacy implementations is a natural next step, and offers its own new challenges.
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