
Relating two standard notions of secrecy?

Véronique Cortier1, Michaël Rusinowitch1, and Eugen Zălinescu1

Loria, UMR 7503 & INRIA Lorraine projet Cassis & CNRS, France

Abstract. Two styles of definitions are usually considered to express
that a security protocol preserves the confidentiality of a data s.
Reachability-based secrecy means that s should never be disclosed while
equivalence-based secrecy states that two executions of a protocol with
distinct instances for s should be indistinguishable to an attacker. Al-
though the second formulation ensures a higher level of security and is
closer to cryptographic notions of secrecy, decidability results and auto-
matic tools have mainly focused on the first definition so far.
This paper initiates a systematic investigation of situations where syn-
tactic secrecy entails strong secrecy. We show that in the passive case,
reachability-based secrecy actually implies equivalence-based secrecy for
signatures, symmetric and asymmetric encryption provided that the prim-
itives are probabilistic. For active adversaries in the case of symmetric
encryption, we provide sufficient (and rather tight) conditions on the
protocol for this implication to hold.

1 Introduction

Cryptographic protocols are small programs designed to ensure secure commu-
nications. Since they are widely distributed in critical systems, their security
is primordial. In particular, verification using formal methods attracted a lot of
attention during this last decade. A first difficulty is to formally express the secu-
rity properties that are expected. Even a basic property such as confidentiality
admits two different acceptable definitions namely reachability-based (syntac-
tic) secrecy and equivalence-based (strong) secrecy. Syntactic secrecy is quite
appealing: it says that the secret is never accessible to the adversary. For exam-
ple, consider the following protocol where the agent A simply sends a secret s
to an agent B, encrypted with B’s public key.

A→ B : {s}pub(B)

An intruder cannot deduce s, thus s is syntactically secret. Although this no-
tion of secrecy may be sufficient in many scenarios, in others, stronger security
requirements are desirable. For instance consider a setting where s is a vote and
B behaves differently depending on its value. If the actions of B are observ-
able, s remains syntactically secret but an attacker can learn the values of the
? This work has been partially supported by the ACI-SI Satin and the ACI Jeunes

Chercheurs JC9005.

vote by watching B’s actions. The design of equivalence-based secrecy is tar-
geted at such scenarios and intuitively says that an adversary cannot observe
the difference when the value of the secret changes. This definition is essential to
express properties like confidentiality of a vote, of a password, or the anonymity
of participants to a protocol.

Although the second formulation ensures a higher level of security and is
closer to cryptographic notions of secrecy, so far decidability results and auto-
matic tools have mainly focused on the first definition. The syntactic secrecy
preservation problem is undecidable in general [13], it is co-NP-complete for a
bounded number of sessions [17], and several decidable classes have been iden-
tified in the case of an unbounded number of sessions [13, 10, 7, 16]. These re-
sults often come with automated tools, we mention for example ProVerif [5],
CAPSL [12], and Avispa [4]. To the best of our knowledge, the only tool capa-
ble of verifying strong secrecy is the resolution-based algorithm of ProVerif [6]
and only one decidability result is available: Hüttel [14] proves decidability for a
fragment of the spi-calculus without recursion for framed bisimilarity, a related
equivalence relation introduced by Abadi and Gordon [2]. Also in [8], Borgström
et al propose an incomplete decision procedure based on a symbolic bisimulation.

In light of the above discussion, it may seem that the two notions of secrecy
are separated by a sizable gap from both a conceptual point of view and a prac-
tical point of view. These two notions have counterparts in the cryptographic
setting (where messages are bitstrings and the adversary is any polynomial prob-
abilistic Turing machine). Intuitively, the syntactic secrecy notion can be trans-
lated into a similar reachability-based secrecy notion and the equivalence-based
notion is close to indistinguishability. A quite surprising result [11] states that
cryptographic syntactic secrecy actually implies indistinguishability in the cryp-
tographic setting. This result relies in particular on the fact that the encryption
schemes are probabilistic thus two encryptions of the same plaintext lead to
different ciphertexts.

Motivated by the result of [11] and the large number of available systems for
syntactic secrecy verification, we initiate in this paper a systematic investigation
of situations where syntactic secrecy entails strong secrecy. Surprisingly, this
happens in many interesting cases.

We offer results in both passive and active cases in the setting of the applied
pi calculus [1]. We first treat in Section 2 the case of passive adversaries. We
prove that syntactic secrecy is equivalent to strong secrecy. This holds for sig-
natures, symmetric and asymmetric encryption. It can be easily seen that the
two notions of secrecy are not equivalent in the case of deterministic encryption.
Indeed, the secret s cannot be deduced from the encrypted message {s}pub(B)

but if the encryption is deterministic, an intruder may try different values for
s and check whether the ciphertext he obtained using B’s public key is equal
to the one he receives. Thus for our result to hold, we require that encryption
is probabilistic. This is not a restriction since this is de facto the standard in
almost all cryptographic applications. Next, we consider the more challenging
case of active adversaries. We give sufficient conditions on the protocols for syn-

2

tactic secrecy to imply strong secrecy (Section 3). Intuitively, we require that
the conditional tests are not performed directly on the secret since we have seen
above that such tests provide information on the value of this secret. We again
exhibit several counter-examples to motivate the introduction of our conditions.
An important aspect of our result is that we do not make any assumption on
the number of sessions: we put no restriction on the use of replication.

The interest of our contribution is twofold. First, conceptually, it helps to
understand when the two definitions of secrecy are actually equivalent. Second,
we can transfer many existing results (and the armada of automatic tools) de-
veloped for syntactic secrecy. For instance, since the syntactic secrecy problem
is decidable for tagged protocols for an unbounded number of sessions [16], by
translating the tagging assumption to the applied-pi calculus, we can derive a
first decidability result for strong secrecy for an unbounded number of sessions.
Other decidable fragments might be derived from [13] for bounded messages
(and nonces) and [3] for a bounded number of sessions.

2 Passive case

Cryptographic primitives are represented by functional symbols. More specifi-
cally, we consider the signature Σ = {enc, dec, enca, deca, pub, priv, 〈〉, π1, π2,
sign, check, retrieve}. T (Σ,X ,N), or simply T , denotes the set of terms built
over Σ extended by a set of constants, the infinite set of names N and the in-
finite set of variables X . A term is closed or ground if it does not contain any
variable. The set of names occurring in a term T is denoted by fn(T), the set of
variables is denoted by V(T). The positions in a term T are defined recursively
as usual (i.e. as sequences of positive integers), ε being the empty sequence. De-
note by N∗

+ the set of sequences of positive integers. Pos(T) denotes the set of
positions of T and Posv(T) the set of positions of variables in T . We denote by
T |p the subterm of T at position p and by U [V]p the term obtained by replacing
in U the subterm at position p by V . We may simply say that a term V is in a
term U if V is a subterm of U . We denote by ≤st (resp.<st) the subterm (resp.
strict) order. hU denotes the function symbol, name or variable at position ε in
the term U .

We equip the signature with an equational theory E:π1(〈z1, z2〉) = z1 deca(enca(z1, pub(z2), z3), priv(z2)) = z1
π2(〈z1, z2〉) = z2 check(z1, sign(z1, priv(z2)), pub(z2)) = ok
dec(enc(z1, z2, z3), z2) = z1 retrieve(sign(z1, z2)) = z1

The function symbols π1, π2, dec, deca, check and retrieve are called destructors.
LetRE be the corresponding rewrite system (obtained by orienting the equations
from left to right). RE is convergent. The normal form of a term T w.r.t. RE is
denoted by T↓. Notice that E is also stable by substitution of names. As usual,
we write U → V if there exists θ, a position p in U and L→ R ∈ RE such that
U |p = Lθ and V = U [Rθ]p.

3

The symbol 〈 , 〉 represents the pairing function and π1 and π2 are the as-
sociated projection functions. The term enc(M,K,R) represents the message M
encrypted with the key K. The third argument R reflects that the encryption
is probabilistic: two encryptions of the same messages under the same keys are
different. The symbol dec stands for decryption. The symbols enca and deca are
very similar but in an asymmetric setting, where pub(a) and priv(a) represent
respectively the public and private keys of an agent a. The term sign(M,K)
represents the signature of message M with key K. check enables to verify the
signature and retrieve enables to retrieve the signed message from the signature.1

After the execution of a protocol, an attacker knows the messages sent on
the network and also in which order they were sent. Such message sequences are
organized as frames ϕ = νñ.σ, where σ = {M1/y1 , . . . ,

Ml/yl
} is a ground acyclic

substitution and ñ is a finite set of names. We denote by dom(ϕ) = dom(σ) =
{y1, . . . , yl}. The variables yi enable us to refer to each message. The names in
ñ are said to be restricted in ϕ. Intuitively, these names are a priori unknown
to the intruder. The names outside ñ are said to be free in ϕ. A term M is said
public w.r.t. a frame νñ.σ (or w.r.t. a set of names ñ) if fn(M) ∩ ñ = ∅. The set
of restricted names ñ might be omitted when it is clear from the context. We
usually write νn1, . . . , nk instead of ν{n1, . . . , nk}.

2.1 Deducibility

Given a frame ϕ that represents the history of messages sent during the execution
of a protocol, we define the deduction relation, denoted by ϕ ` M . Deducible
messages are messages that can be obtained from ϕ by applying functional sym-
bols and the equational theory E.

νñ.σ ` xσ x ∈ dom(σ)
νñ.σ ` m m ∈ N\ñ

νñ.σ ` T1 · · · νñ.σ ` Tl

νñ.σ ` f(T1, . . . , Tl)
νñ.σ ` T T =E T ′

νñ.σ ` T ′

Example 1. k and 〈k, k′〉 are deducible from the frame νk, k′, r.{enc(k,k′,r)/x,
k′/y}.

A message is usually said secret if it is not deducible. By opposition to our
next notion of secrecy, we say that a term M is syntactically secret in ϕ if ϕ 6`M .

2.2 Static equivalence

Deducibility does not always suffice to express the abilities of an intruder.

Example 2. The set of deducible messages is the same for the frames ϕ1 =
νk,n1,n2,r1.

1 Signature schemes may disclose partial information on the signed message. To enforce
the intruder capabilities, we assume that messages can always be retrieved out of
the signature.

4

{enc(n1,k,r1)/x,
〈n1,n2〉/y,

k/z} and ϕ2 = νk,n1,n2,r1.{enc(n2,k,r2)/x,
〈n1,n2〉/y,

k/z}, while
an attacker is able to detect that the first message corresponds to distinct nonces.
In particular, the attacker is able to distinguish the two “worlds” represented by
ϕ1 and ϕ2.

We say that a frame ϕ = νñ.σ passes the test (U, V) where U, V are two
terms, denoted by (U = V)ϕ, if there exists a renaming of the restricted names
in ϕ such that (fn(U)∪fn(V))∩ñ = ∅ and Uσ =E V σ. Two frames ϕ = νñ.σ and
ϕ′ = νm̃.σ′ are statically equivalent, written ϕ ≈ ϕ′, if they pass the same tests,
that is dom(ϕ) = dom(ϕ′) and for all terms U, V such that (V(U) ∪ V(V)) ⊆
dom(ϕ) and (fn(U) ∪ fn(V)) ∩ (ñ ∪ m̃) = ∅, we have (U = V)ϕ iff (U = V)ϕ′.

Example 3. The frames ϕ1 and ϕ2 defined in Example 2 are not statically equiv-
alent since (dec(x, z) = π1(y))ϕ1 but (dec(x, z) 6= π1(y))ϕ2.

Let s be a free name of a frame ϕ = νñ.σ. We say that s is strongly secret
in ϕ if for every closed public terms M,M ′ w.r.t. ϕ, we have ϕ(M/s) ≈ ϕ(M ′

/s)
that is, the intruder cannot distinguish the frames obtained by instantiating the
secret s by two terms of its choice. For simplicity we may omit s and write ϕ(M)
instead of ϕ(M/s).

Of course an intended syntactical secret name s must be restricted, but when
talking about instances of s we must consider it (at least) a free name (if not a
variable). Hence we compare syntactic secrecy and strong secrecy regarding the
same frame modulo the restriction on the secret s. We use the notation νs.ϕ for
ν(ñ ∪ {s}).σ, where ϕ = νñ.σ. Thus s is syntactically secret if νs.ϕ 0 s.

2.3 Syntactic secrecy implies strong secrecy

Syntactic secrecy is usually weaker than strong secrecy! We first exhibit some
examples of frames that preserves syntactic secrecy but not strong secrecy. They
all rely on different properties.

Probabilistic encryption. The frame ψ1 = νk, r.{enc(s,k,r)/x,
enc(n,k,r)/y}

does not preserve the strong secrecy of s. Indeed, ψ1(n) 6≈ ψ1(n′) since (x =
y)ψ1(n) but (x 6= y)ψ1(n′). This would not happen if each encryption used a
distinct randomness, that is, if the encryption was probabilistic.

Key position. The frame ψ2 = νn.{enc(〈n,n′〉,s,r)/x} does not preserve the
strong secrecy of s. Indeed, ψ2(k) 6≈ ψ2(k′) since (π2(dec(x, k)) =n′)ψ2(k) but
(π2(dec(x, k)) 6= n′)ψ2(k′). If s occurs in key position in some ciphertext, the
intruder may try to decrypt the ciphertext since s is replaced by public terms
and check for some redundancy. It may occur that the encrypted message does
not contain any verifiable part. In that case, the frame may preserve strong
secrecy. It is for example the case for the frame νn.{enc(n,s,r)/x}. Such cases are
however quite rare in practice.

No destructors. The frame ψ3 = {π1(s)/x} does not preserve the strong
secrecy of s simply because (x = k) is true for ψ3(〈k, k′〉) while not for ψ3(k).

Retrieve rule. The retrieve(sign(z1, z2)) = z1 may seem arbitrary since not
all signature schemes enable to get the signed message out of a signature. It is ac-
tually crucial for our result. For example, the frame ψ4 = {sign(s,priv(a))/x,

pub(a)/y}

5

does not preserve the strong secrecy of s because (check(n, x, y) = ok) is true
for ψ4(n) but not for ψ4(n′).

In these four cases, the frames preserve the syntactic secrecy of s, that is
νs.ψi 6` s, for 1 ≤ i ≤ 4. This leads us to the following definition.

Definition 1. A frame ϕ = νñ.σ is well-formed w.r.t. some name s if

1. Encryption is probabilistic, i.e. for any subterm enc(M,K,R) of ϕ, for any
term T ∈ ϕ and position p such that T |p = R we have p = q.3 for some
q and T |q = enc(M,K,R). In addition, if s occurs in M at a position p′

such that no encryption appears along the path from the root to p′ then R
must be restricted, that is R ∈ ñ. The same conditions hold for asymmetric
encryption. and

2. s is not part of a key, i.e. for all enc(M,K,R), enca(M ′,K ′, R′), sign(U, V),
pub(W), priv(W ′) subterms of ϕ, s /∈ fn(K,K ′, V,W,W ′, R,R′).

3. ϕ does not contain destructor symbols.

Condition 1 requires that each innermost encryption above s contains a restricted
randomness. This is not a restriction since s is meant to be a secret value and such
encryptions have to be produced by honest agents and thus contain a restricted
randomness.

For well-formed frames, syntactic secrecy is actually equivalent to strong
secrecy.

Theorem 1. Let ϕ be a well-formed frame w.r.t. s, where s is a free name in ϕ.

νs.ϕ 0 s if and only if ϕ(M/s) ≈ ϕ(M ′
/s)

for all M,M ′ closed public terms w.r.t. ϕ.

Proof. We present the skeleton of the proof; all details can be found in a technical
report [18]. Let ϕ = νñ.σ be a well-formed frame w.r.t. s. If νs.ϕ ` s, this
trivially implies that s is not strongly secret. Indeed, there exists a public term
T w.r.t. ϕ such that Tσ =E s (this can be easily shown by induction on the
deduction system). Let n1, n2 be fresh names such that n1, n2 /∈ ñ and n1, n2 /∈
fn(ϕ). Since Tσ(n1/s) =E n1 the frames ϕ(n1/s) and ϕ(n2/s) are distinguishable
with the test (T = n1).

We assume now that νs.ϕ 0 s. We first show that any syntactic equality
satisfied by the frame ϕ(M/s) is already satisfied by ϕ.

Lemma 1. Let ϕ = νñ.σ be a well-formed frame w.r.t. a free name s, U, V
terms such that V(U),V(V) ⊆ dom(ϕ) and M a closed term, U , V and M
public w.r.t. ñ. If νs.ϕ 0 s then Uσ(M/s) = V σ(M/s) implies Uσ = V σ. Let T be
a subterm of a term in σ that does not contain s. If νs.ϕ 0 s then T = V σ(M/s)
implies T = V σ.

The key lemma is that any reduction that applies to a deducible term U
where s is replaced by some M , directly applies to U .

6

Lemma 2. Let ϕ = νñ.σ be a well-formed frame w.r.t. a free name s such that
νs.ϕ 0 s. Let U be a term with V(U) ⊆ dom(ϕ) and M be a closed term in
normal form, U and M public w.r.t. ñ. If Uσ(M/s) → V , for some term V , then
there exists a well-formed frame ϕ′ = νñ.σ′ w.r.t. s

– extending ϕ, that is xσ′ = xσ for all x ∈ dom(σ),
– preserving deducible terms: νs.ϕ `W iff νs.ϕ′ `W ,
– and such that V = V ′σ′(M/s) and Uσ → V ′σ′ for some V ′ public w.r.t. ñ.

This lemma allows us to conclude the proof of Theorem 1. Fix arbitrarily two
public closed terms M,M ′. We can assume w.l.o.g. that M and M ′ are in nor-
mal form. Let U 6= V be two public terms such that V(U),V(V) ⊆ dom(ϕ)
and Uσ(M/s) =E V σ(M/s). Then there are U1, . . . , Uk and V1, . . . , Vl such that
Uσ(M/s) → U1 → . . . → Uk, V σ(M/s) → V1 → . . . → Vl, Uk = Uσ(M/s) ↓,
Vl = V σ(M/s)↓ and Uk = Vl.

Applying repeatedly Lemma 2 we obtain that there exist public terms U ′
1, . . . , U

′
k

and V ′
1 , . . . , V

′
l and well-formed frames ϕui = νñ.σui , for i ∈ {1, . . . , k} and

ϕvj = νñ.σvj , for j ∈ {1, . . . , l} (as in the lemma) such that Ui = U ′
iσ

ui(M/s),
U ′

iσ
ui → U ′

i+1σ
ui+1 , Vj = V ′

j σ
vj (M/s) and V ′

j σ
vj → V ′

j+1σ
vj+1 .

We consider ϕ′ = νñ.σ′ where σ′ = σuk ∪ σvl . Since only subterms of ϕ have
been added to ϕ′, it is easy to verify that ϕ′ is still a well-formed frame and for
every term W , νs.ϕ `W iff νs.ϕ′ `W . In particular νs.ϕ′ 0 s.

By construction we have that U ′
kσ

uk(M/s)=V ′
l σ

vl(M/s). Then, by Lemma 1,
we deduce that U ′

kσ
uk = V ′

l σ
vl that is Uσ =E V σ. By stability of substitution

of names, we have Uσ(M ′
/s) =E V σ(M ′

/s). We deduce that ϕ(M/s) ≈ ϕ(M ′
/s).

3 Active case

To simplify the analysis of the active case, we restrict our attention to pairing and
symmetric encryption: the alphabetΣ is now reduced toΣ = {enc, dec, 〈〉, π1, π2}
and E is limited to the first three equations.

3.1 Modeling protocols within the applied pi calculus

The applied pi calculus [1] is a process algebra well-suited for modeling crypto-
graphic protocols, generalizing the spi-calculus [2]. We briefly describe its syntax
and semantics. This part is mostly borrowed from [1].

Processes, also called plain processes, are defined by the grammar:

P,Q := processes
0 null process νn.P name restriction
P | Q parallel composition u(z).P message input
!P replication u〈M〉.P message output
if M = N then P else Q conditional

where n is a name, U , V are terms, and u is a name or a variable. The null process
0 does nothing. Parallel composition executes the two processes concurrently.

7

Replication !P creates unboundedly new instances of P . Name restriction νn.P
builds a new, private name n, binds it in P and then executes P . The conditional
if M = N then P else Q behaves like P or Q depending on the result of the test
M = N . If Q is the null process then we use the notation [M = N].P instead.
Finally, the process u(z).P inputs a message and executes P binding the variable
z to the received message, while the process u〈M〉.P outputs the message M and
then behaves like P . We may omit P if it is 0. In what follows, we restrict our
attention to the case where u is a name since it is usually sufficient to model
cryptographic protocols.

Extended processes are defined by the grammar:

A,B := extended processes
P plain process νn.A name restriction
A | B parallel composition νx.A variable restriction
{M/x} active substitution

Active substitutions generalize let , in the sense that νx.({M/x}|P) corresponds to
let x = M in P , while unrestricted, {M/x} behaves like a permanent knowledge,
permitting to refer globally to M by means of x. We identify variable substi-
tutions {M1/x1 , . . . ,

Ml/xl
}, l ≥ 0 with extended processes {M1/x1}| . . . |{Ml/xl

}. In
particular the empty substitution is identified with the null process.

We denote by fv(A), bv(A), fn(A), and bn(A) the sets of free and bound
variables and free and bound names of A, respectively, defined inductively as
usual for the pi calculus’ constructs and using fv({M/x}) = fv(M) ∪ {x} and
fn({M/x}) = fn(M) for active substitutions. An extended process is closed if it
has no free variables except those in the domain of active substitutions.

Extended processes built up from the null process (using the given construc-
tions, that is, parallel composition, restriction and active substitutions) are called
frames2. To every extended process A we associate the frame ϕ(A) obtained by
replacing all embedded plain processes with 0.

An evaluation context is an extended process with a hole not under a repli-
cation, a conditional, an input or an output.

Structural equivalence (≡) is the smallest equivalence relation on extended
processes that is closed by α-conversion of names and variables, by application
of evaluation contexts and such that the standard structural rules for the null
process, parallel composition and restriction (such as associativity and commu-
tativity of |, commutativity and binding-operator-like behavior of ν) together
with the following ones hold.

νx.{M/x} ≡ 0 ALIAS

{M/x} |A ≡ {M/x} |A{M/x} SUBST

{M/x} ≡ {N/x} if M =E N REWRITE

If ñ represents the (possibly empty) set {n1, . . . , nk}, we abbreviate by νñ the
sequence νn1.νn2 . . . νnk. Every closed extended process A can be brought to
2 We see later in this section why we use the same name as for the notion defined in

section 2.

8

the form νñ.{M1/x1}| . . . |{Ml/xl
}|P by using structural equivalence, where P is

a plain closed process, l ≥ 0 and {ñ} ⊆ ∪i fn(Mi). Hence the two definitions of
frames are equivalent up to structural equivalence on closed extended processes.
To see this we apply rule SUBST until all terms are ground (this is assured
by the fact that the considered extended processes are closed and the active
substitutions are cycle-free). Also, another consequence is that if A ≡ B then
ϕ(A) ≡ ϕ(B).

Two semantics can be considered for this calculus, defined by structural
equivalence and by internal reduction and labeled reduction, respectively. These
semantics lead to observational equivalence (which is standard and not recalled
here) and labeled bisimilarity relations. The two bisimilarity relations are equal [1].
We use here the latter since it relies on static equivalence and it allows to take
implicitly into account the adversary, hence having the advantage of not using
quantification over contexts.

Internal reduction is the largest relation on extended processes closed by
structural equivalence and application of evaluation contexts such that:

c〈x〉.P | c(x).Q → P | Q COMM

if M = M then P else Q → P THEN

if M = N then P else Q → Q ELSE

for any ground terms M and N such that M 6=E N

On the other hand, labeled reduction is defined by the following rules.

c(x).P
c(M)−−−→ P{M/x} IN c〈u〉.P c〈u〉−→ P OUT-ATOM

A
c〈u〉−−−→ A′

νu.A
νu.c〈u〉−−−−−→ A′

u 6= c OPEN-ATOM A
α−→ A′

νu.A
α−→ νu.A′

u does not
occur in α

SCOPE

A
α−→ A′

A|B α−→ A′|B
(*) PAR

A ≡ B B
α−→ B′ B′ ≡ A′

A
α−→ A′

STRUCT

where c is a name and u is a metavariable that ranges over names and variables,
and the condition (*) of the rule PAR is bv(α) ∩ fv(B) = bn(α) ∩ fn(B) = ∅.

Definition 2. Labeled bisimilarity (≈l) is the largest symmetric relation R on
closed extended processes such that ARB implies:

1. ϕ(A) ≈ ϕ(B);
2. if A→ A′ then B →∗ B′ and A′RB′, for some B′;
3. if A α→ A′ and fv(α) ⊆ dom(ϕ(A)) and bn(α) ∩ fn(B) = ∅ then B →∗ α→→∗

B′ and A′RB′, for some B′.

We denote A⇒ B if A→ B or A α→ B.

Definition 3. A frame ϕ is valid w.r.t. a process P if there is A such that
P ⇒∗ A and ϕ ≡ ϕ(A).

9

Definition 4. Let P be a closed plain process without variables as channels and
s a free name of P , but not a channel name. We say that s is syntactically
secret in P if, for every valid frame ϕ w.r.t. P , s is not deducible from νs.ϕ.
We say that s is strongly secret if for any closed terms M,M ′ such that bn(P)∩
(fn(M) ∪ fn(M ′)) = ∅, P (M/s) ≈l P (M ′

/s).

Let Mo(P) be the set of outputs of P , that is the set of terms m such that
c〈m〉 is a message output construct for some channel name c in P , and let Mt(P)
be the set of operands of tests of P , where a test is a couple M = N occurring
in a conditional and its operands are M and N . Let M(P) = Mo(P) ∪Mt(P)
be the set of messages of P . Examples are provided at the end of this section.

The following lemma intuitively states that any message contained in a valid
frame is an output instantiated by messages deduced from previous sent mes-
sages.

Lemma 3. Let P be a closed plain process, and A be a closed extended process
such that P ⇒∗ A. There are l ≥ 0, an extended process B = νñ.σl|PB, where
PB is some plain process, and θ a substitution public w.r.t. ñ such that: A ≡ B,
{ñ} ⊆ bn(P), for every operand of a test or an output T of PB there is a message
T0 in P (a operand of a test or an output respectively), such that T = T0θσl,
and, σi = σi−1 ∪ {Miθiσi−1/yi}, for all 1 ≤ i ≤ l, where Mi is an output in P , θi

is a substitution public w.r.t. ñ and σ0 is the empty substitution.

The proof is done by induction on the number of reductions in P ⇒∗ A.
Intuitively, B is obtained by applying the SUBST rule (from left to right) as
much as possible until there are no variables left in the plain process. Note
that B is unique up to the structural rules different from ALIAS, SUBST and
REWRITE. We say that ϕ(B) is the standard frame w.r.t. A.

As a running example we consider the Yahalom protocol:

A⇒ B : A,Na

B ⇒ S : B, {A,Na, Nb}Kbs

S ⇒ A : {B,Kab, Na, Nb}Kas , {A,Kab}Kbs

A⇒ B : {A,Kab}Kbs

In this protocol, two participants A and B wish to establish a shared key
Kab. The key is created by a trusted server S which shares the secret keys Kas

and Kbs with A and B respectively. The protocol is modeled by the following
process.

PY (kab)=νkas, kbs.(!PA)|(!PB)|(!νk.PS(k))|PS(kab) with

PA = νna.c〈a, na〉.c(za).[b = Ub].[na = Una
].c〈π2(za)〉

PB = c(zb).νnb, rb.c〈b, enc(〈π1(zb), 〈π2(zb), nb〉〉, kbs, rb)〉.c(z′b).[a = π1(dec(z′b, kbs))]
PS(x) = c(zs).νrs, r′s.c〈enc(〈π1(zs), 〈x, Vn〉〉, kas, rs), enc(〈Va, x〉, kbs, r

′
s)〉

and Ub = π1(dec(π1(za), kas)) Una = π1(π2(π2(dec(π1(za), kas))))
Va = π1(dec(π2(zs), kbs)) Vn = π2(dec(π2(zs), kbs)).

10

For this protocol the set of outputs and operands of tests are respectively:

Mo(PY) = {〈a, na〉, za, π2(za), 〈b, enc(〈π1(zb), 〈π2(zb), nb〉〉, kbs, rb)〉, z′b,
enc(〈π1(zs), 〈x, Vn〉〉, kas, rs), enc(〈Va, x〉, kbs, r

′
s)} and

Mt(PY) = {b, Ub, na, Una
, a, π1(dec(z′b, kbs))}.

3.2 Our hypotheses

In what follows, we assume s to be the secret. As in the passive case, destruc-
tors above the secret must be forbidden. We also restrict ourself to processes with
ground terms in key position. We consider the process
P1 = νk, r, r′.(c〈enc(s, k, r)〉 | c(z).c〈enc(a, dec(z, k), r′)〉). The name s in P1 is
syntactically secret but not strongly secret. Indeed,

P1 ≡ νk, r, r′.(νz.({enc(s,k,r)/z} | c〈z〉 | c(z).c〈enc(a, dec(z, k), r′)〉))
→ νk, r, r′.({enc(s,k,r)/z} | c〈enc(a, s, r′)〉) (COMM rule)

≡ νk, r, r′.(νz′.({enc(s,k,r)/z,
enc(a,s,r′)/z′} | c〈z′〉))

νz′.c〈z′〉−−−−−→ νk, r, r′.{enc(s,k,r)/z,
enc(a,s,r′)/z′}

def= P ′
1

and P ′
1 does not preserve the strong secrecy of s (see the frame ψ2 of Section 2.3).

Without loss of generality with respect to cryptographic protocols, we assume
that terms occurring in processes are in normal form and that no destructor
appears above constructors. Indeed, terms like π1(enc(m, k, r)) are usually not
used to specify protocols. We also assume that tests do not contain constructors.
Indeed a test [〈M1,M2〉 = N] can be rewritten as [M1 = N1].[M2 = N2] if N =
〈N1, N2〉, and [M1 = π1(N)].[M2 = π2(N)] if N does not contain constructors,
and will never hold otherwise. Similar rewriting applies for encryption, except
for the test [enc(M1,M2,M3) = N] if N does not contain constructors. It can
be rewritten in [dec(N,M2) = M1] but this is not equivalent. However since
the randomness of encryption is not known to the agent, explicit tests on the
randomness should not occur in general.

This leads us to consider the following class of processes. But first, we say
that an occurrence qenc of an encryption in a term T is an agent encryptions
w.r.t. a set of names ñ if t|qenc = enc(M,K,R) for some M,K,R and R ∈ ñ.

Definition 5. A process P is well-formed w.r.t. a name s if it is closed and if:

1. any occurrence of enc(M,K,R) in some term T ∈ M(P) is an agent en-
cryption w.r.t. bn(P), and for any term T ′ ∈M(P) and position p such that
T ′|p = T there is a position q such that q.3 = p and T ′|q = enc(M,K,R);

2. for every term enc(M,K,R) or dec(M,K) occurring in P , K is ground;
3. any operand of a test M ∈ Mt is a name, a constant or has the form

π1(dec(. . . πn(dec(πn+1(z),Kl)) . . . ,K1)), with l ≥ 0, where the πi are words
on {π1, π2} and z is a variable;

4. there are no destructors above constructors, nor above s.

11

Conditional tests should not test on s. For example, consider the process
P3 = νk, r.(c〈enc(s, k, r)〉 | c(z).[dec(z, k) = a].c〈ok〉) where a is a non restricted
name. s in P3 is syntactically secret but not strongly secret. Indeed, P3 →
νk, r.({enc(s,k,r)/z} | [s = a].c〈ok〉). The process P3(a/s) reduces further while
P3(b/s) does not. That is why we have to prevent hidden tests on s. Such tests
may occur nested in equality tests. For example, let

P4 = νk, r, r1, r2.(c〈enc(s, k, r)〉 | c〈enc(enc(a, k′, r2), k, r1)〉
| c(z).[dec(dec(z, k), k′) = a].c〈ok〉)

→ P ′
4 = νk,r,r1,r2.({enc(s,k,r)/z}|c〈enc(enc(a, k′, r2), k, r1)〉|[dec(s, k′) = a].c〈ok〉)

Then P4(enc(a,k′,r′)/s) is not equivalent to P4(n/s), since the process P ′
4(

enc(a,k′,r′)/s)
emits the message ok while P ′

4(
n/s) does not. This relies on the fact that the de-

cryption dec(z, k) allows access to s in the test.
For the rest of the section we assume that z0 is a new fixed variable.
To prevent hidden tests on the secret, we compute an over-approximation

of the ciphertexts that may contain the secret, by marking with a symbol x all
positions under which the secret may appear in clear.

We first introduce a function fep that extracts the least encryption over s and
“clean” the pairing function above s. Formally, we define the partial function

fep : T × N∗
+ ↪→ T × N∗

+

fep(U, p) = (V, q) where V and q are defined as follows: q ≤ p is the posi-
tion (if it exists) of the lowest encryption on the path p in U . If q does not
exist or if p is not a maximal position in U , then fep(U, p) =⊥. Otherwise,
V is obtained from U |q by replacing all arguments of pairs that are not on
the path p with new variables. More precisely, let V ′ = U |q. The subterm
V ′ must be of the form enc(M1,M2,M3) and p = q.i.q′. Then V is defined
by V = enc(M ′

1,M
′
2,M

′
3) with M ′

j = Mj for j 6= i and M ′
i = prune(Mi, q

′)
where prune is recursively defined by: prune(〈N1, N2〉, 1.r) = 〈prune(N1, r), xr〉,
prune(〈N1, N2〉,2.r) = 〈xr, prune(N2, r)〉 and prune(N, ε) = N .
For example, fep(enc(enc(〈〈a, b〉, c〉, k2, r2), k1, r1), 1.1.2) = (enc(〈zε, c〉, k2, r2), 1).

The function fe is the composition of the first projection with fep. With the
function fe, we can extract from the outputs of a protocol P the set of ciphertexts
where s appears in clear below the encryption.

E0(P) = {fe(M [x]p, p) |M ∈Mo(P) ∧ M |p = s}.

For example, E0(PY) = {enc(〈z1, 〈x, z1.2〉〉, kas, rs), enc(〈z1, x〉, kbs, r
′
s)}, where

PY is the process corresponding to the Yahalom protocol defined in previous
section.

However s may appear in other ciphertexts later on during the execution
of the protocol after decryptions and encryptions. Thus we also extract from
outputs the destructor parts (which may open encryptions). Namely, we define
the partial function

fdp : T × N∗
+ ↪→ T × N∗

+

12

fdp(U, p) = (V, q) where V and q are defined as follows: q ≤ p is the occurrence
of the highest destructor above p (if it exists). Let r ≤ p be the occurrence of
the lowest decryption above p (if it exists). We have U |r = dec(U1, U2). Then
U1 is replaced by the variable z0 that is V = (U [dec(z0, U2)]r)|q. If q or r do not
exist then fdp(U, p) =⊥.

For example, fdp(enc(π1(dec(π2(y), k1)), k2, r2), 1.1.1.1) = (π1(dec(z0, k1)), 1).
The function fd is the composition of the first projection with fdp. By ap-

plying the function fd to messages of a well-formed process P we always ob-
tain terms D of the form D = D1(. . . Dn) where Di = πi(dec(z0,Ki)) with
1 ≤ i ≤ n, Ki are ground terms and πi is a (possibly empty) sequence of projec-
tions πj1(πj2(. . . (πjl

) . . .)).
With the function fd, we can extract from the outputs of a protocol P the

meaningful destructor part:

Do(P) = {fd(M,p) |M ∈Mo(P) ∧ p ∈ Posv(M)}.

For example, Do(PY) = {π2(dec(z0, kbs)), π1(dec(z0, kbs))}.
We are now ready to mark (with x) all the positions where the secret might

be transmitted (thus tested). We also define inductively the sets Ei(P) as follows.
For each element E of Ei we can show that there is an unique term in normal
form denoted by E such that V(E) = {z0} and E(E)↓ = x. For example, let
E1 =enc(〈z1, 〈x, z2〉〉, kas, rs), then E1 = π1(π2(dec(z0, kas))). We define

Ei(P) = {U | ∃E ∈ Ei(P), U ≤st E and ∃q ∈ Pos(U), hU |q = dec},
Ei+1(P) = {M ′[x]q | ∃M ∈Mo(P), p ∈ Posv(M) s.t. fep(M,p) = (M ′, p′),

fdp(M ′, p′′) = (D, q), p = p′.p′′, and D1 ∈ E i(P)}.

For example,
E0(PY) = {π1(π2(dec(z0, kas))), π2(dec(z0, kas)), dec(z0, kas),

π2(dec(z0, kbs)), dec(z0, kbs)}
E1(PY) = {enc(〈z1, 〈z1.2, x〉〉, kas)}
E1(PY) = {π2(π2(dec(z0, kas))), π2(dec(z0, kas)), dec(z0, kas)}
and Ei(PY) = ∅ for i ≥ 2.

Note that E(P) = ∪i≥0Ei(P) is finite up-to renaming of the variables since
for every i ≥ 1, every term M ∈ Ei(P), Pos(M) is included in the (finite) set of
positions occurring in terms of M0.

We can now define an over-approximation of the set of tests that may be
applied over the secret.

Ms
t (P)={M ∈Mt(P) | ∃p ∈ Posv(M) s.t. D = D1(. . . Dn) = fdp(M,p) 6=⊥,
and ∃E ∈ E(P),∃i s.t. Di = πi(dec(z0,K)), E = enc(U,K,R) and x ∈ Di(E)↓}

For example, Ms
t (PY) = {π1(π2(π2(dec(π1(za), kas))))}.

Definition 6. We say that a well-formed process P w.r.t. s does not test over s
if the following conditions are satisfied:

13

1. for all E ∈ E(P), for all D = D1(. . . Dn) ∈ Do(P), if Di = πi(dec(z0),K)
and e = enc(U,K,R) and x ∈ Di(E)↓ then i = 1 and E 6<st D1,

2. if M = N or N = M is a test of P and M ∈Ms
t (P) then N is a restricted

name.

Note that E(P) can be computed in polynomial time from P and that whether
P does not test over s is decidable. We show in the next section that the first
condition is sufficient to ensure that frames obtained from P are well-formed.
It ensures in particular that there are no destructors right above s. If some Di

cancels some encryption in some E and x∈Di(E)↓ then all its destructors should
reduce in the normal form computation (otherwise some destructors (namely
projections from Di) remain above x). Also we have i = 1 since otherwise a Di

may have consumed the lowest encryption above x, thus the other decryption
may block, and again there would be destructors left above x.

The second condition requires that whenever a operand of a test M = N is
potentially dangerous (that is M or N ∈Ms

t (P)) then the other operand should
be a restricted name.

3.3 Main result

We are now ready to prove that syntactic secrecy is actually equivalent to strong
secrecy for protocols that are well-formed and do not test over the secret.

Theorem 2. Let P be well-formed process w.r.t. a free name s, which is not a
channel name, such that P does not test over s. We have νs.ϕ 0 s for any valid
frame ϕ w.r.t. P if and only if P (M/s) ≈l P (M ′

/s), for all ground terms M,M ′

public w.r.t. bn(P).

Proof. Again, we only provide a sketch of the proof. Showing that strong se-
crecy implies syntactic secrecy is simple so we concentrate here on the converse
implication. Let P be well-formed process w.r.t. a free name s with no test over
s and assume that P is syntactically secret w.r.t. s.

Let M,M ′ be to public terms w.r.t. bn(P). To prove that P (M/s) and P (M ′
/s)

are labeled bisimilar, we need to show that each move of P (M/s) can be matched
by P (M ′

/s) such that the corresponding frames are bisimilar (and conversely).
By hypothesis, P is syntactically secret w.r.t. s thus for any valid frame ϕ
w.r.t. P , we have νs.ϕ 0 s. In order to apply our previous result in the passive
setting (Theorem 1), we need to show that all the valid frames are well-formed.
However, frames may now contain destructors in particular if the adversary sends
messages that contain destructors. Thus we first need to extend our definition
of well-formedness for frames.

Definition 7. We say that a frame ϕ = νñ.σ is extended well-formed w.r.t.
s if for every occurrence qs of s in T↓, where T = xσ for some x ∈ dom(σ),
there exists an agent encryption w.r.t. ñ above s. Let qenc < qs the occurrence
of the lowest encryption. It must verify that hT |q = 〈〉, for all positions q with
qenc < q < qs.

14

This definition ensures in particular that there is no destructor directly above s.
Theorem 1 can easily be generalized to extended well-formed frames.

Proposition 1. Let ϕ be an extended well-formed frame w.r.t. s, where s is a
free name in ϕ. Then νs.ϕ 0 s iff ϕ(M/s) ≈ ϕ(M ′

/s) for all M,M ′ closed public
terms w.r.t. ϕ.

The first step of the proof of Theorem 2 is to show that any frame produced
by the protocol is an extended well-formed frame. We actually prove directly a
stronger result, crucial in the proof: the secret s always occurs under an honest
encryption and this subterm is an instance of a term in E(P).

Lemma 4. Let P be a well-formed process with no test over s and ϕ = νñ.σ be
a valid frame w.r.t. P such that νs.ϕ 0 s. Consider the corresponding standard
frame νñ.σ = νñ.{Mi/yi | 1 ≤ i ≤ l}. For every i and every occurrence qs of s in
Mi↓, we have fe(Mi↓, qs) = E[W/x] for some E ∈ E(P) and some term W . In
addition νñ.σi↓ is an extended well-formed frame w.r.t. s.

The lemma is proved by induction on i and relies deeply on the construction
of E(P).

The second step of the proof consists in showing that any successful test in
the process P (M/s) is also successful in P and thus in P (M ′

/s).

Lemma 5. Let P be a well-formed process with no test over s, ϕ = νñ.σ a valid
frame for P such that νs.ϕ 0 s and θ a public substitution. If T1 = T2 is a test
in P , then T1θσ(M/s) =E T2θσ(M/s) implies T1θσ =E T2θσ.

This lemma is proved by case analysis, depending on whether T1, T2 ∈ Ms
t and

whether s occurs or not in fn(T1θσ) and fn(T2θσ).
To prove that P (M/s) and P (M ′

/s) are labeled bisimilar, we introduce the
following relation R between extended processes defined as follows: ARB if
there is an extended process A0 and terms M,M ′ such that P ⇒∗ A0, A =
A0(M/s) and B = A0(M ′

/s). Then we show that R satisfies the three points
of the definition of labeled bisimilarity using in particular Lemma 5. Hence we
have also R ⊆ ≈l. Since we have clearly that P (M/s)RP (M ′

/s), it follows that
P (M/s) ≈l P (M ′

/s).

3.4 Examples

We have seen in Section 3.2 that PY is a well-formed process w.r.t. kab and does
not test over kab. Applying Theorem 2, if PY preserves the syntactic secrecy of
kab, we can deduce that the Yahalom protocol preserves the strong secrecy of
kab that is PY (M/kab

) ≈l PY (M ′
/kab

) for any public terms M,M ′ w.r.t. bn(PY).
We did not formally prove that the Yahalom protocol preserves the syntactic
secrecy of kab but this was done with several tools in slightly different settings
(e.g.[9, 15]).

We have also verified that the Needham-Schroeder symmetric key protocol
and the Wide-Mouthed-Frog protocol are both well-formed process w.r.t. kab and

15

do not test over kab, where kab is the exchanged key. Again, the syntactic secrecy
of kab has been proved by several tools (e.g. [9]) in slightly different settings for
both protocols. Using Theorem 2, we can deduce that they both preserve the
strong secrecy of kab.

References

1. M. Abadi and C. Fournet. Mobile values, new names, and secure communication.
In 28th Symp. on Principles of Programming Languages (POPL’01). ACM, 2001.

2. M. Abadi and A. D. Gordon. A calculus for cryptographic protocols: The spi
calculus. In 4th Conf. on Computer and Communications Security (CCS’97), pages
36–47. ACM, 1997.

3. R. Amadio and D. Lugiez. On the reachability problem in cryptographic protocols.
In 12th Conf. on Concurrency Theory (CONCUR’00), volume 1877 of LNCS, 2000.

4. The AVISPA Project. http://www.avispa-project.org/.
5. B. Blanchet. An efficient cryptographic protocol verifier based on prolog rules. In

Computer Security Foundations Workshop (CSFW’01), pages 82–96. IEEE Comp.
Soc. Press, 2001.

6. B. Blanchet. Automatic Proof of Strong Secrecy for Security Protocols. In IEEE
Symposium on Security and Privacy (SP’04), pages 86–100, 2004.

7. B. Blanchet and A. Podelski. Verification of cryptographic protocols: Tagging
enforces termination. In Foundations of Software Science and Computation Struc-
tures (FoSSaCS’03), volume 2620 of LNCS, April 2003.

8. J. Borgström, S. Briais, and U. Nestmann. Symbolic bisimulations in the spi
calculus. In Int. Conf. on Concurrency Theory (CONCUR’04), volume 3170 of
LNCS. Springer, 2004.

9. L. Bozga, Y. Lakhnech, and M. Périn. HERMES: An automatic tool for verification
of secrecy in security protocols. In 15th Conference on Computer Aided Verification
(CAV’03), volume 2725 of LNCS, pages 219–222. Springer, 2003.

10. H. Comon-Lundh and V. Cortier. New decidability results for fragments of first-
order logic and application to cryptographic protocols. In Rewriting Techniques
and Applications (RTA’2003), LNCS 2706, pages 148–164. Springer-Verlag, 2003.

11. V. Cortier and B. Warinschi. Computationally Sound, Automated Proofs for Se-
curity Protocols. In European Symposium on Programming (ESOP’05), volume
3444 of LNCS, pages 157–171. Springer, April 2005.

12. G. Denker, J. Millen, and H. Rueß. The CAPSL Integrated Protocol Environment.
Technical Report SRI-CSL-2000-02, SRI International, Menlo Park, CA, 2000.

13. N. Durgin, P. Lincoln, J. Mitchell, and A. Scedrov. Undecidability of bounded
security protocols. In Workshop on Formal Methods and Security Protocols, 1999.

14. H. Hüttel. Deciding framed bisimilarity. In INFINITY’02, August 2002.
15. L. C. Paulson. Relations between secrets: Two formal analyses of the Yahalom

protocol. Journal of Computer Security, 9(3):197–216, 2001.
16. R. Ramanujam and S.P.Suresh. Tagging makes secrecy decidable for unbounded

nonces as well. In 23rd Conference on Foundations of Software Technology and
Theoretical Computer Science (FSTTCS’03), Mumbai, 2003.

17. M. Rusinowitch and M. Turuani. Protocol Insecurity with Finite Number of Ses-
sions and Composed Keys is NP-complete. Theoretical Computer Science, 299:451–
475, 2003.

18. Eugen Zalinescu, Véronique Cortier, and Michaël Rusinowitch. Relating two stan-
dard notions of secrecy. Research Report 5908, INRIA, Avril 2006.

16

