
Deciding key cycles for security protocols ?

Véronique Cortier1 and Eugen Zălinescu1

Loria UMR 7503 & INRIA Lorraine projet Cassis & CNRS, France

Abstract. Many recent results are concerned with interpreting proofs of security
done in symbolic models in the more detailed models of computational cryptog-
raphy. In the case of symmetric encryption, these results stringently demand that
no key cycle (e.g. {k}k) can be produced during the execution of protocols. While
security properties like secrecy or authentication have been proved decidable for
many interesting classes of protocols, the automatic detection of key cycles has
not been studied so far.
In this paper, we prove that deciding the existence of key-cycles is NP-complete
for a bounded number of sessions. Next, we observe that the techniques that we
use are of more general interest and apply them to reprove the decidability of a
significant existing fragment of protocols with timestamps.

1 Introduction

Security protocols are small programs that aim at securing communications over a pub-
lic network like Internet. The design of such protocols is difficult and error-prone; many
attacks are discovered even several years after the publication of a protocol. Two dis-
tinct approaches for the rigorous design and analysis of cryptographic protocols have
been pursued in the literature: the so-called Dolev-Yao, symbolic, or formal approach
on the one hand and the cryptographic, computational, or concrete approach on the
other hand. In the symbolic approach, messages are modeled as formal terms that the
adversary can manipulate using a fixed set of operations. The main advantage of this
approach is its relative simplicity which makes it amenable to automated analysis tools
(see, e.g., [7, 3, 22]). In the cryptographic approach, messages are bit strings and the
adversary is an arbitrary probabilistic polynomial-time Turing machine. While results
in this model yield strong security guarantees, the proofs are often quite involved and
only rarely suitable for automation (see, e.g., [16, 6]).

Starting with the seminal work of Abadi and Rogaway [1], recent results investigate
the possibility of bridging the gap between the two approaches. The goal is to obtain the
best of both worlds: simple, automated security proofs that entail strong security guar-
antees. The approach usually consists in proving that the abstraction of cryptographic
primitives made in the Dolev-Yao model is correct as soon as strong enough primitives
are used in the implementation. For example, in the case of asymmetric encryption,
it has been shown [21] that the perfect encryption assumption is a sound abstraction
for IND-CCA2, which corresponds to a well-established security level. The perfect en-
cryption assumption intuitively states that encryption is a black-box that can be opened

? This work has been partially supported by the ACI-SI Satin and the ARA SSIA Formacrypt.

only when one has the inverse key. Otherwise, no information can be learned from a
ciphertext about the underlying plaintext.

However, it is not always sufficient to find the right cryptographic hypotheses. For-
mal models may need to be amended in order to be correct abstractions of the crypto-
graphic models. This is in particular the case for symmetric encryption. For example,
in [4], the authors consider extra-rules for the formal intruder in order to reflect the
ability of a real intruder to choose its own keys in a particular manner.

A more widely used requirement is to control how keys can encrypt other keys.
In a passive setting, soundness results [1, 18] require that no key cycles can be gen-
erated during the execution of a protocol. Key cycles are messages like enc(k, k) or
enc(k1, k2), enc(k2, k1) where a key encrypts itself or more generally when the en-
cryption relation between keys contains a cycle. Such key cycles have to be disallowed
simply because usual security definitions for encryption schemes do not provide any
guarantees when such key cycles occur. In the active setting, the typical hypotheses are
even stronger. For instance, in [4, 17] the authors require that a key k1 never encrypts a
key k2 generated before k1.

Some authors circumvent the problem of key cycles by providing new security def-
initions for encryption that allow key cycles [2, 5]. However, the standard security no-
tions do not imply these new definitions and ad-hoc encryption schemes have to be
constructed in order to satisfy the definitions. These constructions use the random or-
acle model which is provably non implementable. As a consequence, it is not known
how to implement encryption schemes that satisfy the new definitions. In particular,
none of the usual, implemented encryption schemes have been proved to satisfy the
requirements.

Our main contribution is an NP-complete decision procedure for detecting the gen-
eration of key cycles during the execution of a protocol, in the presence of an in-
truder, for a bounded number of sessions. To the best of our knowledge, this prob-
lem has not been addressed before. We therefore provide a necessary component for
automated tools used in proving strong, cryptographical security properties, using ex-
isting soundness results. Our result has been obtained following the classical approach
of Rusinowitch-Turuani [25], revisited by Comon-Lundh [11, 13], where protocols are
represented by constraint systems. Since this initial procedure is already implemented
in Avispa [3] for deciding secrecy and authentication properties, we believe that our al-
gorithm can be easily implemented since it can be adapted from the existing procedure.

Our second contribution is to provide a generic approach derived from [11, 13] to
decide general security properties. Comon-Lundh showed that any constraint system
can be transformed in (possibly several) much simpler constraint systems that are called
solved forms. We show using (almost) the same transformation rules that, in order to
verify a property on a constraint system, it is always sufficient to verify the property on
the solved forms obtained after transformation. Compared to [11, 13], the framework is
slightly extended since we consider sorted terms, symmetric and asymmetric encryp-
tion, pairing and signatures. We use this approach to first prove NP-completeness of the
key-cycle problem but also to show co-NP-completeness of secrecy for protocols with
timestamps. We actually retrieve a significant fragment of the decidable class identified
by Bozga et al [9]. We believe our result can lead more easily to an implementation

since, again, we only need to adapt the procedure implemented in Avispa [3] while
Bozga et al have designed a completely new decision procedure, which de facto has not
been implemented.

The messages and the intruder capabilities are modeled in Section 2. In Section 3.1,
we define constraint systems and show how they can be used to express protocol ex-
ecutions. In Section 3.2, we define security properties and the notion of satisfiability
of constraint systems. In 3.3, we explain how the satisfiability problem of any secu-
rity property can be reduced to the satisfiability of the same problem but on simpler
constraint systems. We show in Section 4.1 how this approach can be used to obtain
our main result of NP-completeness of the generation of key cycles and in Section 4.2
how it can be used to derive NP-completeness for protocols with timestamps. Some
concluding remarks about further work can be found in Section 5.

2 Messages and intruder capabilities

2.1 Syntax

Cryptographic primitives are represented by function symbols. More specifically, we
consider the signature (S,F) made of a set of sorts S = {s, s1 . . .} and a set of sym-
bols F = {enc, enca, sign, 〈 〉,pub,priv} together with arities of the form ar(f) =
s1 × s2 → s for the four first symbols and ar(f) = s → s′ for the two last ones.
The symbol 〈 〉 represents the pairing function. The terms enc(m, k) and enca(m, k)
represent respectively the message m encrypted with the symmetric (resp. asymmetric)
key k. The term sign(m, k) represents the message m signed by the key k. The terms
pub(a) and priv(a) represent respectively the public and private keys of an agent a.

We fix an infinite set of names N = {a, b . . .} and an infinite set of variables
X = {x, y . . .}. We assume that names and variables are given with sorts. The set of
terms of sort s is defined inductively by

t ::= term of sort s
| x variable x of sort s
| a name a of sort s
| f(t1, . . . , tk) application of symbol f ∈ F

where for the last case, we further require that ti is a term of some sort si and ar(f) =
s1 × . . .× sk → s. We assume a special sort Msg that subsumes all the other sorts and
such that any term is of sort Msg.

As usual, we write V(t) for the set of variables occurring in t. A term is ground
or closed if and only if it has no variables. The size of a term t, denoted |t|, is defined
inductively as usual: |t| = 1 if t is a variable or a name and t = 1 +

∑n
i=1 |ti| if

t = f(t1, . . . , tn) for f ∈ F . If T is a set of terms then |T | denotes the sum of the sizes
of its elements. We denote by St(t) the set of subterms of t.

Substitutions are written σ = {x1 = t1, . . . , xn = tn}with dom(σ) = {x1, . . . , xn}.
We only consider well-sorted substitutions, that is substitutions for which xi and ti have
the same sort. σ is closed if and only if all of the ti are closed. The application of a sub-
stitution σ to a term t is written σ(t) = tσ.

S ` x S ` y

S ` 〈x, y〉

S ` x S ` y

S ` enc(x, y)

S ` x S ` y

S ` enca(x, y)

S ` x S ` y

S ` sign(x, y)

S ` 〈x, y〉

S ` x

S ` 〈x, y〉

S ` y

S ` enc(x, y) S ` y

S ` x

S ` enca(x, pub(y)) S ` priv(y)

S ` x

S ` sign(x, priv(y))
(optional)

S ` x

x ∈ S
S ` x

Fig. 1. Intruder deduction system.

Sorts are mostly left unspecified in this paper. They can be used in applications to
express that certain operators can be applied only to some restricted terms. For example,
sorts can be used to require that messages are encrypted only by atomic keys.

2.2 Intruder capabilities

The ability of the intruder is modeled by a deduction system described in Figure 1
and corresponds to the usual Dolev-Yao rules. The first line describes the composition
rules, the two last lines describe the decomposition rules and the axiom. Intuitively,
these deduction rules say that an intruder can compose messages by pairing, encrypting
and signing messages provided he has the corresponding keys and conversely, it can
decompose messages by projecting or decrypting provided it has the decryption keys.
For signatures, the intruder is also able to verify whether a signature sign(m, k) and a
message m match (provided she has the verification key), but this does not give her any
new message. That is why this capability is not represented in the deduction system.
We also consider an optional rule S ` sign(x, priv(y))

S ` x
that expresses that an intruder can

retrieve the whole message from its signature. This property may or may not hold de-
pending on the signature scheme, and that is why this rule is optional. Note that this rule
is necessary for obtaining soundness properties w.r.t. cryptographic digital signatures.
Our results hold in both cases (that is, when the deduction relation ` is defined with or
without this rule).

A term u is deducible from a set of terms S, denoted by S ` u if there exists a
proof i.e. a tree such that the root is S ` u, the leaves are of the form S ` v with
v ∈ S (axiom rule) and every intermediate node is an instance of one of the rules of the
deduction system.

Example 1. The term 〈k1, k2〉 is deducible from the set S1 = {enc(k1, k2), k2}. A
proof of S1 ` 〈k1, k2〉 is:

S1 ` enc(k1, k2) S1 ` k2

S1 ` k1 S1 ` k2

S1 ` 〈k1, k2〉

3 Constraint systems and security properties

Constraint systems are quite common (see e.g. [13, 25]) in modeling security protocols.
We recall here their formalism and show how they can be used to specify general se-
curity properties. Then we prove that any constraint system can be transformed into a
simpler constraint system.

3.1 Constraint systems

Definition 1. A constraint system C is a finite set of expressions Ti tt or Ti ui,
where Ti is a non empty set of terms, tt is a special symbol that represents an always
deducible term, and ui is a term, 1 ≤ i ≤ n, such that:

- Ti ⊆ Ti+1, for all 1 ≤ i ≤ n− 1;
- if x ∈ V(Ti) then ∃j < i such that Tj = min{T | (T u) ∈ C, x ∈ V(u)} (for

the inclusion relation) and Tj (Ti.

The left-hand side (right-hand side) of a constraint T u is T (respectively u).
The left-hand side of a constraint system C, denoted by lhs(C), is the maximal set of
messages Tn. The right-hand side of a constraint system C, denoted by rhs(C), is the
set of right-hand sides of its constraints. V(C) denotes the set of variables occurring
in C. ⊥ denotes the unsatisfiable system. The size of a constraint system is defined as
|C| def= |lhs(C)|+ |rhs(C)|.

A constraint system is denoted as a conjunction of expressions. The left-hand side
of a constraint system C usually represents the messages sent on the network.

Example 2. Consider the famous Needham-Schroeder asymmetric key authentication
protocol [23] designed for mutual authentication.

A → B : enca(〈NA, A〉,pub(B))
B → A : enca(〈NA, NB〉,pub(A))
A → B : enca(NB ,pub(B))

The agent A sends to B his name and a fresh nonce (a randomly generated value)
encrypted with the public key of B. The agent B answers by copying A’s nonce and
adds a fresh nonce NB , encrypted by A’s public key. The agent A acknowledges by
forwarding B’s nonce encrypted by B’s public key. We assume that a potential intruder
has a complete control of the network: he may intercept, block and send new messages
to arbitrary agents.

Let T0 = {a, b, i, pub(a),pub(b),pub(i),priv(i)} be the initial knowledge of the
intruder. The following constraint system C1 models a scenario where A starts a session
with a corrupted agent I (whose private key is known to the intruder) and B is willing
to answer to A. We consider this scenario for simplicity, but of course we could also
consider for example A talking to B and B responding to I .

T1
def= T0 ∪ {enca(〈na, a〉,pub(i))} enca(〈x, a〉,pub(b)) (1)

T2
def= T1 ∪ {enca(〈x, nb〉,pub(a))} enca(〈na, y〉,pub(a)) (2)

T3
def= T2 ∪ {enca(y, pub(i))} enca(nb,pub(b)) (3)

where na and nb are names of sort Msg and x and y are variables of sort Msg. The
set T1 represents the messages known to the intruder once A has contacted the cor-
rupted agent I . Then the equations 1 and 2 can be read as follows: if a message of the
form enca(〈x, a〉,pub(b)) can be sent on the network, then B would answer to this
message by enca(〈x, nb〉,pub(a)), which is added to T1. Subsequently, if a message
of the form enca(〈na, y〉,pub(a)) can be sent on the network, then A would answer
by enca(y, pub(i)) since A believes she is talking to I . The run is successful if B can
finish his session by receiving the message enca(nb,pub(b)). Then B believes he has
talked to A while A actually talked to I . If the protocol was secure, such a constraint
system should not have a solution. The variables represent those parts of messages that
are a priori unknown to the agents.

3.2 Security properties

A security property is modeled by a predicate on (lists of) terms. The terms represent
some information about the execution of the protocol, for example the messages that
are sent on the network.

Definition 2. A security property is a predicate on lists of messages. For a list L we
denote by Ls the set of messages of the list L.

Let C be a constraint system, L a list of terms such that V(Ls) ⊆ V(C) and P
a security property. A solution of C for P w.r.t. L is a closed substitution θ such that
∀(T u) ∈ C, Tθ ` uθ and P (Lθ) holds. Every substitution satisfies T tt and none
satisfies ⊥.

Example 3. If the predicate P is simply the true predicate (which holds for any list
of terms) and the only sort is Msg then we simply retrieve the usual constraint system
deduction problem, which is known to be NP-complete [11, 25].

Example 4. Secrecy can be easily expressed by requiring that the secret data is not
deducible from the messages sent on the network. We consider again the constraint
system C1 defined in Example 2. Let L1 be a list of the messages in lhs(C1). We define
the predicate P1 to hold on a list of messages if and only if nb is deducible from it.
That is, P1(L) = true iff Ls ` nb. Then the substitution σ1 = {x = na, y = nb} is
a solution of C1 for the property P1 w.r.t. L1 and corresponds to the attack found by
G. Lowe [19]. Note that such a deduction-based property can be directly encoded in the
constraint system by adding a constraint T nb where T = lhs(C1).

Example 5. Authentication can also be defined using a predicate P2 on lists of mes-
sages. For this purpose we use corresponding assertions and we introduce, following
the syntax of Avispa [3], two new function symbols witness and request of arity 4
with the following intution: request(a, b, id,m) says that the agent a (id being simply
a constant identifying the request since there might be several requests in one execution
of a protocol) now believes that it is really agent b who sent the message m (that is, a
authenticates b on m), and witness(b, a, id,m) says that b has just sent the message m
to a. The predicate P2 holds on a list L of messages if whenever request(a, b, id,m)
appears in the list there is a corresponding occurrence witness(b, a, id,m) (defining an

R1 C ∧ T u C ∧ T tt if T ∪ {x | (T ′ x) ∈ C, T ′ (T}`u

R2 C ∧ T u σ Cσ ∧ Tσ uσ if σ = mgu(t, u), t ∈ St(T),
t 6= u, t, u not variables

R3 C ∧ T u σ Cσ ∧ Tσ uσ if σ = mgu(t1, t2), t1, t2 ∈ St(T),
t1 6= t2, t1, t2 not variables

R4 C ∧ T u ⊥ if V(T, u) = ∅ and T 6` u

Rf C ∧ T f(u, v) C ∧ T u ∧ T v for f ∈ { 〈 〉, enc, enca, sign}

Fig. 2. Simplification rules.

injection) appearing before it in the list (that is, at a smaller position), for any agents a,
b different from the intruder. Choosing L2 to be a list of the messages in lhs(C) follow-
ing the order induced by the constraints (that is m appears before m′ in L2 whenever
m ∈ Ti, m /∈ Tj , m′ ∈ Tj , Ti ⊆ Tj) we obtain Lowe’s definition of injective agree-
ment [20]. Formally, a protocol has an attack on the authentication property iff the
constraint system C has a solution for P2 w.r.t. L2, where P2 is the negation of P2.

Consider again the constraint system C1 defined in Example 2 where T0 is replaced
by T ′

0 = T0 ∪{enca(〈n′a, a〉,pub(b))}: the agent A also initiates a session with B, and
T ′

1 = T ′
0 ∪ T1 ∪ {witness(b, a, 1, x), request(b, a, 2, nb)}: B asserts that A should rely

on the value of x for his authentication to A, and now B believes he talked with A. The
substitution σ1 defined in Example 4 is a solution of C1 for the property P2 w.r.t. L2,
since there is no corresponding witness assertion for request(b, a, 2, nb) in L2.

In Section 4, we provide other examples of predicates which encode time constraints
or express that no key cycles are allowed.

3.3 General approach

Using some simplification rules, solving general constraint systems can be reduced to
solving simpler constraint systems that we called solved. We say that a constraint sys-
tem is solved if it is different from ⊥ and each of its constraints are of the form T tt
or T x, where x is a variable. This corresponds to the notion of solved form in [13].

Solved constraint systems with the single sort Msg are particularly simple in the
case of the true predicate since they always have a solution, as noticed in [11]. Indeed,
let T1 be the smallest (w.r.t. inclusion) left hand side of a constraint. From the definition
of a constraint system we have that T1 is non empty and has no variables. Let t ∈ T1.
Then the substitution θ defined by xθ = t for every variable x is a solution since
T ` xθ = t for any constraint T x of the solved system.

The simplification rules we consider are defined in Figure 2. All the rules are in
fact indexed by a substitution: when there is no index then the identity substitution
is implicitly considered. We write C n

σ C ′ if there are C1, . . . , Cn with n ≥ 1,
C ′ = Cn, C σ1 C1 σ2 · · · σn Cn and σ = σ1σ2 . . . σn. We write C ∗

σ C ′ if
C n

σ C ′ for some n ≥ 1, or if C ′ = C and σ is the empty substitution.
The simplification rules are correct, complete and terminating in polynomial time.

Theorem 1. Let C be a constraint system, θ a substitution, P a security property and
L a list of messages such that V(Ls) ⊆ V(C).

1. (Correctness) If C ∗
σ C ′ for some constraint system C ′ and some substitution σ

and if θ is a solution of C ′ for the property P w.r.t. Lσ then σθ is a solution of C
for the property P w.r.t. L.

2. (Completeness) If θ is a solution of C for the property P w.r.t. L, then there exist a
constraint system C ′ and substitutions σ, θ′ such that θ = σθ′, C ∗

σ C ′ and θ′ is
a solution of C ′ for the property P w.r.t. Lσ.

3. (Termination) If C n
σ C ′ for some constraint system C ′ and some substitution σ

then n is polynomially bounded in the size of C.

Theorem 1 extends the result of [11] to sorted messages and general security properties.
This last point simply relies on the fact that whenever C ∗

σ C ′ then L(σθ) = (Lσ)θ
for any substitution θ. We introduced explicit sorts since soundness results are usually
obtained for models with atomic sorts for keys and nonces for example. The proof is
actually a simple extension of [11] and all the details can be found in [14].

The following corollary is easily obtained from the previous theorem by observing
that we can guess the simplification rules which lead to a solved form.

Corollary 1. Any property P that can be decided in polynomial time on solved con-
straint systems can be decided in non-deterministic polynomial time on arbitrary con-
straint systems.

4 Decidability of some specialized security properties

Using the general approach presented in the previous section, verifying particular prop-
erties like the existence of key cycles or the conformation to an a priori given order re-
lation on keys can be reduced to deciding these properties on solved constraint systems.
We deduce a new decidability result, useful in models designed for proving crypto-
graphic properties. This approach also allows us to retrieve a significant fragment of [9]
for protocols with timestamps.

4.1 Encryption cycles

To show that formal models (like the one presented in this article) are sound with respect
to cryptographical ones, the authors usually assume that no key cycle can be produced
during the execution of a protocol or, even stronger, assume that the “encrypts” relation
on keys follows an a priori given order.

In this section we restrict our attention to key cycles and key order on symmetric
keys since there are very few papers constraining the key relations in an asymmetric
setting. We consider atomic keys for symmetric encryption since soundness results are
only obtained in this setting. In particular, there exists no general definition (with a
cryptographic interpretation) of key cycles in the case of arbitrary composed keys. More
precisely, we assume a sort Key ⊂ Msg and we assume that the sort of enc is Msg ×
Key → Msg. All the other symbols are of sort Msg × · · · ×Msg → Msg. Hence only
names and variables can be of sort Key.

Key cycles Many definitions of key cycles are available in the literature. They are
defined by considering cycles in the encrypts relation between keys. But this relation
differs from one article to another. For example, the early definition proposed by Abadi
and Rogaway [1] says that k encrypts k′ as soon as there exists a term enc(m, k) such
that k′ is a subterm of m. For example, both enc(k, k) and enc(enc(a, k), k) contain
key cycles. However, in the definition proposed by Laud [18], enc(enc(a, k), k) does
not contain a key cycle since the relation “k encrypts k′” is restricted to keys k′ that
occur in plaintext. We consider the two variants for the notion of key cycles.

We write s <st t if and only if s is a subterm of t. We define recursively the least
reflexive and transitive relation v satisfying: s1 v (s1, s2), s2 v (s1, s2), and if s v t
then s v enc(t, t′). Intuitively, s v t if s is a subterm of t that occurs (at least once) in
a plaintext position.

Definition 3. Let ρ1 be a relation chosen in {<st,v}. Let S be a set of messages and
k, k′ two terms of sort Key. We say that k encrypts k′ in S (denoted k ρS

e k′) if there
exist m ∈ S and a term m′ such that

k′ ρ1 m′ and enc(m′, k) v m.

With ρ1 =<st, we retrieve the definition of Abadi and Rogaway. With ρ1 =v we
retrieve the definition of Laud. For simplicity, we may write ρe instead of ρS

e if S is
clear from the context.

We say that a set of messages S contains a key cycle if there is a cycle in the relation
ρS

e . If m is a message we denote by ρm
e the relation ρ

{m}
e and say that m contains a cycle

if {m} contains a cycle.

Definition 4. Let K be a set of names of sort Key. We define the predicate PK
kc as

follows: PK
kc holds on a list of messages L if and only if S = Ls ∪ {m | Ls ` m}

contains a key cycle (k1, . . . , kn), with n ≥ 1 and ki ∈ K for all 1 ≤ i ≤ n.

Definition of key order In order to establish soundness of formal models in a symmet-
ric encryption setting, the requirements on the encrypts relation can be even stronger, in
particular in the case of an active intruder. In [4] and [17], the authors require that a key
never encrypts a younger key. More precisely, the encrypts relation has to be compatible
with the order in which the keys are generated. Hence we also want to check whether
there exist executions of the protocol for which the encrypts relation is incompatible
with an a priori given order on keys.

Definition 5. Let ≤ be a partial order on a set of names K of sort Key. We define the
predicate PK

≤ as follows: PK
≤ holds on a list of messages L if and only if the encrypts

relation ρS
e (restricted to K ×K), where S = Ls ∪ {m | Ls ` m}, is compatible with

≤, that is
k ρm

e k′ ⇒ k′ 6≤ k, for all k, k′ ∈ K.

For example, in [4, 17] the authors choose ≤ to be the order in which the keys are
generated: k ≤ k′ if k has been generated before k′. We denote by P

K

≤ the negation of

PK
≤ . Indeed, an attack in this context is an execution such that the encrypts relation is

incompatible with ≤, that is the predicate P
K

≤ holds.
The following proposition states that in the passive case a key cycle can be deduced

from a set S only if it already appears in S.

Proposition 1. Let L be a list of messages, K a set of names of sort Key and ≤ a
partial order on K. The predicate PK

kc (resp. P
K

≤) holds on L if and only if

– there is k ∈ K such that k is deducible from Ls, that is Ls ` k, or
– Ls contains a key cycle (resp. the encrypts relation on Ls is not compatible with≤).

Indeed if k is deducible from Ls then enc(k, k) is deducible from Ls. Hence there
is a deducible message containing a key cycle and for which the encrypts relation is not
compatible with the order ≤. If there are no deducible keys then it can be easily shown
that the encrypts relation on any deducible message is included in the encrypts relation
on Ls, hence the equivalences in the proposition.

Decidability In what follows, a solution of C for the true predicate w.r.t. an arbitrary
list is said to be a partial solution to C. A key is a term of sort Key.

We show how to decide the existence of key cycles or the conformation to an order
in polynomial time for solved constraint systems without variables of sort Key. Indeed,
the instantiation of key variables can be guessed in advance (see the next section). Note
that the set of messages on which our two predicates are applied usually contains all
messages sent on the network and possibly some additional intruder knowledge.

Proposition 2. Let C be a solved constraint system without variables of sort Key and
L be a list of messages such that V(Ls) ⊆ V(C) and lhs(C) ⊆ Ls. Let K be a set of
names of sort Key such that Lsθ 6` k for any θ partial solution of C and for any k ∈ K.
Let ≤ be a partial order on K.

– Deciding whether C has a solution for PK
kc w.r.t. L can be done in O(|L|+|K|2).

– Deciding whether C has a solution for P
K

≤ w.r.t. L can be done in O(|L|+|K|2).

Since the keys of K are not deducible from Lsθ, for any θ partial solution of C, we
know by Proposition 1 that it is sufficient to look at the encrypts relation only on Lsθ
(and not on every deducible term).

Since C is solved, any constraint of C is of the form T x or T tt. For each
variable x of C we denote Tx = min{T | T x ∈ C}. Let tx be the term obtained by
pairing all terms of Tx (in some arbitrary order). We construct the following substitution
τ = τ1 . . . τq, where q is the number of variables in C, and τj is defined inductively as
follows:

- dom(τ1) = {x1} and x1τ1 = tx1

- τj+1 = τj ∪ {txi
τj/xi}, where i = min{i′ | xi′ /∈ dom(τj)}.

The construction is correct by the definition of a constraint system. It is clear that τ is a
partial solution of C.

We construct the following directed graph G = (K, A) as follows: if k encrypts k′

in Ls then (k, k′) ∈ A; and, if k encrypts x in Ls (where x ∈ V(Ls)) then (k, k′) ∈ A
for all k′ ρ1 xτ . The graph captures exactly the encrypts relation induced by τ on C and
any possible encrypts relation is contained in the graph.

Lemma 1. Let θ be a partial solution of C and k, k′ ∈ K be two non deducible keys,
that is Lsθ 6` k, k′. If k ρLsθ

e k′, that is k encrypts k′ in Lsθ then (k, k′) ∈ A. Con-
versely, if (k, k′) ∈ A then k ρLsτ

e k′, that is k encrypts k′ in Lsτ .

We deduce that deciding whether C has a solution for PK
kc w.r.t. L can be done

simply by deciding whether the graph G has cycles. Indeed, if there is a solution θ such
that there is a cycle (k1, . . . , kn) in Lsθ, that is, for each i we have kiρ

Lsθ
e ki+1, then

(by Lemma 1) (ki, ki+1) ∈ A for each i, that is (k1, . . . , kn) is a cycle in the graph G.
Conversely, if (k1, . . . , kn) is a cycle in G then, again by Lemma 1, τ is a solution of
C for PK

kc w.r.t. L.
Deciding whether C has a solution for P

K

≤ w.r.t. L can be done by deciding whether
the graph G has the following property PG: there is (k, k′) ∈ A such that k ≤ k′. And
indeed, if there is a solution θ such that P

K

≤ holds on Lθ, that is PK
≤ does not hold on

Lθ, then there are k, k′ ∈ K such that kρLsθ
e k′ and k ≤ k′. Hence (k, k′) ∈ A and

k ≤ k′. That is the property PG on the graph G holds. Conversely, if the property PG

holds then there are k, k′ ∈ K such that k encrypts k′ in Lτ and k ≤ k′, that is τ is a
solution of C for P

K

≤ w.r.t. L.
The graph can be constructed in O(|Ls|+ |K|2). Testing for cycles and verifying

property PG can be simply done by traversing the graph in O(|K|2).

NP-completeness Consider a constraint system C, a set K of names of sort Key and
a list of messages L such that V(Ls) ⊆ V(C) and lhs(C) ⊆ Ls. We want to decide
the existence of a solution of C for PK

kc (resp. PK
≤) w.r.t. L. By Proposition 1, there is a

solution if and only if

1. either there exists k∈K such that there exists a partial solution to Ck
def= C∧Ls k,

2. or no key from k ∈ K is deducible (that is Lsθ 0 k, for all θ partial solution of C)
and C has a solution for PK

kc (resp. PK
≤) w.r.t. L.

We guess whether we are in case 1 or 2 and in case 1 we also guess which key is de-
ducible. In the first case, we check whether Ck has a partial solution in non-deterministic
polynomial time using Corollary 1. In the second case, we guess an instantiation θ of
variables of sort Key and of codomain the set of keys appearing in L (a finite set). Then
we check whether Cθ has a solution for PK

kc (resp. PK
≤) w.r.t. Lθ using Theorem 1 and

Proposition 2.
NP-hardness is obtained by adapting the construction for NP-hardness provided

in [25]. More precisely, we consider the reduction of the 3SAT problem to our problem.
For any 3SAT boolean formula we construct a protocol such that the intruder can deduce
a key cycle if and only if the formula is satisfiable. The construction is the same as
in [25] (pages 15 and 16) except that, in the last rule, the participant responds with the
term enc(k, k), for some fresh key k (initially secret), instead of Secret. Then it is easy

to see that the only way to produce a key cycle on a secret key is to play this last rule
which is equivalent, using [25], to the satisfiability of the corresponding 3SAT formula.

4.2 Timestamps

For modeling timestamps, we introduce a new sort Time ⊆ Msg for time and we as-
sume an infinite number of names of sort Time, represented by rational numbers or in-
tegers. We assume that the only two sorts are Time and Msg. Any value of time should
be known to an intruder, that is why we add to the deduction system the rule

S ` a
for any name a of sort Time. All the previous results can be easily extended to such a
deduction system since ground deducibility remains decidable in polynomial time.

To express relations between timestamps, we use timed constraints. An integer
timed constraint or a rational timed constraint T is a conjunction of formulas of the
form

Σk
i=1αixi n β,

where the αi and β are rational numbers, n ∈ {<,≤}, and the xi are variables of sort
Time. A solution of a rational (resp. integer) timed constraint T is a closed substitution
σ = {x1 = c1, . . . , xk = ck}, where the ci are rationals (resp. integers), that satisfies
the constraint.

Timed constraints between the variables of sort Time are expressed through satisfi-
ability of security properties.

Definition 6. A predicate P is a timed property if P is generated by some (rational or
integer) timed constraint T , that is if T has variables x1, . . . , xk then for any list L of
messages P (L) holds if and only if

– L contains exactly k messages t1, . . . , tk of sort Time that appear in this order in
the list, and

– T (t1, . . . , tk) is true.

Such timed properties can be used for example to say that a timestamp x1 must be
fresher than a timestamp x2 (x1 ≥ x2) or that x1 must be at least 30 seconds fresher
than x2 (x1 ≥ x2 + 30).

Example 6. We consider the Wide Mouthed Frog Protocol [10].

A → S : A, enc(〈Ta, B, Kab〉,Kas)
S → B : enc(〈Ts, A, Kab〉,Kbs)

A sends to a server S a fresh key Kab intended for B. If the timestamp Ta is fresh
enough, the server answers by forwarding the key to B, adding its own timestamps. B
simply checks whether this timestamp is older than any other message he has received
from S. As explained in [10], this protocol is flawed because an attacker can use the
server to keep a session alive as long as he wants by replaying the answers of the server.

This protocol can be modeled by the following constraint system:

S1
def= {a, b, 〈a, enc(〈0, b, kab〉, kas)〉} 〈a, enc(〈xt1 , b, y1〉, kas)〉, xt2 (4)

S2
def= S1 ∪ {enc(〈xt2 , a, y1〉, kbs)} 〈b, enc(〈xt3 , a, y2〉, kbs)〉, xt4 (5)

S3
def= S2 ∪ {enc(〈xt4 , b, y2〉, kas)} 〈a, enc(〈xt5 , b, y3〉, kas)〉, xt6 (6)

S4
def= S3 ∪ {enc(〈xt6 , a, y3〉, kbs)} enc(〈xt7 , a, kab〉, kbs) (7)

where y1, y2, y3 are variables of sort Msg and xt1 , . . . , xt7 are variables of sort Time.
We add explicitly the timestamps emitted by the agents on the right hand side of the
constraints (that is in the messages expected by the participants) since the intruder can
schedule the message transmission whenever he wants.

Initially, the intruder simply knows the names of the agents and A’s message at
time 0. Then S answers alternatively to requests from A and B. Since the intruder
controls the network, the messages can be scheduled as slow (or fast) as the intruder
needs it. The server S should not answer if A’s timestamp is too old (let’s say older
than 30 seconds) thus S’s timestamp cannot be too much delayed (no more than 30
seconds). This means that we should have xt2 ≤ xt1 + 30. Similarly, we should have
xt4 ≤ xt3 + 30 and xt6 ≤ xt5 + 30. The last rule corresponds to B’s reception. In this
scenario, B does not perform any check on the timestamp since it is the first message
he receives.

We say that there is an attack if there is a solution to the constraint system that
satisfies the previously mentioned time constraints and such that the timestamp received
by B is too fresh to come from A: xt7 ≥ 30. Formally, we consider the timed property
generated by the following timed constraint: xt2 ≤ xt1 +30 ∧ xt4 ≤ xt3 +30 ∧ xt6 ≤
xt5 + 30 ∧ xt7 ≥ 30. Then the substitution corresponding to the attack is σ = {y1 =
y2 = y3 = y4 = kab, xt1 = 0, xt2 = xt3 = 30, xt4 = xt5 = 60, xt6 = xt7 = 90}.

Proposition 3. Any timed property can be decided in non-deterministic polynomial
time on solved constraints.

Proof (sketch). Let C be a solved constraint, P a timed property and T a timed con-
straint generating P . Let y1, . . . , yn be the variables of sort Msg in C and x1, . . . , xk

the variables of sort Time in C. Clearly, any substitution σ of the form σ(yi) = ui

where ui ∈ Si for some Si yi ∈ C and σ(xi) = ti for ti any constant of sort Time
is a solution of C for the true property. Let σ′ be a the restriction of σ to the timed
variables x1, . . . , xk.

Clearly, σ is a solution of C for P if and only if σ′ is a solution to T . Thus there
exists a solution of C for P if and only if T is satisfiable. The satisfiability of T is
solved by usual linear programming [26]. It is polynomial in the case of rational timed
constraints and it is NP-complete in the case of integer timed constraints, thus the result.

NP-completeness We deduce by combining Theorem 1 and Proposition 2 that the
problem of deciding timed properties on arbitrary constraint systems is in NP.

NP-hardness directly follows from the NP-hardness of constraint system solving by
considering a predicate corresponding to an empty timed constraint.

5 Further work

We have shown how the generic approach we have derived from [11, 13, 25] can be used
to retrieve two NP-completeness results. The first one enables us to detect key cycles
while the second one enables us to solve constraint systems with timed constraints. In
both cases, we had to provide a decision procedure only for a simple class of constraint
systems. Since the constraint-based approach [11, 13, 25] has already been implemented
in Avispa [3], we plan, using our results, to adapt this implementation to the case of key
cycles and timestamps.

More generally, taking advantage of our generic approach, we would like to explore
how decision procedures of distinct security properties can be combined on solved con-
straint systems. In addition, in our two cases, decidability on solved constraints systems
was quite simple. It would be interesting to understand which classes of properties can
be decided in the same manner.

Regarding key cycles, our approach is valid for a bounded number of sessions only.
Secrecy is undecidable in general [15] for an unbounded number of sessions. Such an
undecidability result could be easily adapted to the problem of detecting key cycles.
Several decidable fragments have been designed [24, 12, 8, 27] for secrecy and an un-
bounded number of sessions. We plan to investigate how such fragments could be used
to decide key cycles.

Acknowledgment. We are particularly grateful to Michaël Rusinowitch and Bogdan
Warinschi for their very helpful suggestions.

References

1. M. Abadi and Ph. Rogaway. Reconciling two views of cryptography (the computational
soundness of formal encryption). Journal of Cryptology, 2:103–127, 2002.

2. P. Adão, G. Bana, J. Herzog, and A. Scedrov. Soundness of formal encryption in the pres-
ence of key-cycles. In Proc. 10th European Symposium on Research in Computer Security
(ESORICS’05), volume 3679 of LNCS, pages 374–396, 2005.

3. A. Armando, D. Basin, Y. Boichut, Y. Chevalier, L. Compagna, J. Cuellar, P. Hankes
Drielsma, P.C. Héam, O. Kouchnarenko, J. Mantovani, S. Mödersheim, D. von Oheimb,
M. Rusinowitch, J. Santiago, M. Turuani, L. Viganò, and L. Vigneron. The Avispa tool for
the automated validation of internet security protocols and applications. In Proc. of Com-
puter Aided Verification (CAV’05), volume 3576 of LNCS, 2005.

4. M. Backes and B. Pfitzmann. Symmetric encryption in a simulatable Dolev-Yao style cryp-
tographic library. In Proc. 17th IEEE Computer Science Foundations Workshop (CSFW’04),
pages 204–218, 2004.

5. M. Backes, B. Pfitzmann, and A. Scedrov. Key-dependent message security under active
attacks. Cryptology ePrint Archive, Report 2005/421, 2005.

6. M. Bellare and P. Rogaway. Entity authentication and key distribution. In Advances in
Cryptology – Crypto ’93, 13th Annual International Cryptology Conference, volume 773 of
LNCS, pages 232–249, 1993.

7. B. Blanchet. An efficient cryptographic protocol verifier based on Prolog rules. In Proc.
14th IEEE Computer Security Foundations Workshop (CSFW’01), pages 82–96, 2001.

8. B. Blanchet and A. Podelski. Verification of cryptographic protocols: Tagging enforces ter-
mination. In Andrew Gordon, editor, Foundations of Software Science and Computation
Structures (FoSSaCS’03), volume 2620 of LNCS, April 2003.

9. L. Bozga, C. Ene, and Y. Lakhnech. A symbolic decision procedure for cryptographic pro-
tocols with time stamps. In Proc. 15th International Conference on Concurrency Theory
(CONCUR’04), LNCS, pages 177–192, London, England, 2004. Springer-Verlag.

10. J. Clark and J. Jacob. A survey of authentication protocol literature. Available at http:
//www.cs.york.ac.uk/∼jac/papers/drareviewps.ps, 1997.

11. H. Comon-Lundh. Résolution de contraintes et recherche d’attaques pour un nombre borné
de sessions. Available at http://www.lsv.ens-cachan.fr/∼comon/CRYPTO/
bounded.ps.

12. H. Comon-Lundh and V. Cortier. New decidability results for fragments of first-order logic
and application to cryptographic protocols. In Proc. of the 14th Int. Conf. on Rewriting
Techniques and Applications (RTA’2003), volume 2706 of LNCS, pages 148–164. Springer-
Verlag, June 2003.

13. H. Comon-Lundh and V. Shmatikov. Intruder deductions, constraint solving and insecurity
decision in presence of exclusive or. In Proc. of 18th Annual IEEE Symposium on Logic in
Computer Science (LICS ’03), pages 271–280, 2003.

14. V. Cortier and E. Zălinescu. Deciding key cycles for security protocols, extended version.
Available at http://www.loria.fr/∼zalinesc/papers/cz keycycles.ps.

15. N. Durgin, P. Lincoln, J. Mitchell, and A. Scedrov. Undecidability of bounded security
protocols. In Proc. of the Workshop on Formal Methods and Security Protocols, 1999.

16. S. Goldwasser and S. Micali. Probabilistic encryption. Journal of Computer and System
Sciences, 28:270–299, 1984.

17. R. Janvier, Y. Lakhnech, and L. Mazare. (De)Compositions of Cryptographic Schemes and
their Applications to Protocols. Cryptology ePrint Archive, Report 2005/020, 2005.

18. P. Laud. Encryption cycles and two views of cryptography. In Nordic Workshop on Secure
IT Systems (NORDSEC’02), 2002.

19. G. Lowe. Breaking and fixing the Needham-Schroeder public-key protocol using FDR. In
Tools and Algorithms for the Construction and Analysis of Systems (TACAS’96), volume
1055 of LNCS, pages 147–166. Springer-Verlag, March 1996.

20. G. Lowe. A hierarchy of authentication specification. In 10th Computer Security Founda-
tions Workshop (CSFW ’97), pages 31–44, 1997.

21. D. Micciancio and B. Warinschi. Soundness of formal encryption in the presence of active
adversaries. In Proc. 1st Theory of Cryptography Conference (TCC’04), volume 2951 of
LNCS, pages 133–151, 2004.

22. J. K. Millen and V. Shmatikov. Constraint solving for bounded-process cryptographic pro-
tocol analysis. In Proc. 8th ACM Conference on Computer and Communications Security
(CCS’01), pages 166–175, 2001.

23. R. M. Needham and M. D. Schroeder. Using encryption for authentication in large networks
of computers. Commun. ACM, 21(12):993–999, 1978.

24. R. Ramanujam and S. P. Suresh. Tagging makes secrecy decidable for unbounded nonces as
well. In Proc. of the 23rd Conference on Foundations of Software Technology and Theoretical
Computer Science (FSTTCS’03), Mumbai, 2003.

25. M. Rusinowitch and M. Turuani. Protocol insecurity with finite number of sessions and
composed keys is NP-complete. Theoretical Computer Science, 299:451–475, 2003.

26. A. Schrijver. Theory of Linear and Integer Programming. Wiley, 1998.
27. K. N. Verma, H. Seidl, and T. Schwentick. On the complexity of equational Horn clauses. In

Proc. of the 22th International Conference on Automated Deduction (CADE 2005), Lecture
Notes in Computer Science, pages 337–352. Springer-Verlag, 2005.

