
A Trace-based Model for Multiparty Contracts

Tom Hvitveda,1, Felix Klaedtkeb, Eugen Zălinescub

aDepartment of Computer Science, University of Copenhagen, Denmark
bComputer Science Department, ETH Zurich, Switzerland

Abstract

In this article we present a model for multiparty contracts in which contract
conformance is defined abstractly as a property on traces. A key feature of
our model is blame assignment, which means that for a given contract, every
breach is attributed to a set of parties. We show that blame assignment is
compositional by defining contract conjunction and contract disjunction. More-
over, to specify real-world contracts, we introduce the contract specification
language CSL with an operational semantics. We show that each CSL contract
has a counterpart in our trace-based model and from the operational semantics
we derive a run-time monitor. CSL overcomes limitations of previously proposed
formalisms for specifying contracts by supporting: (history sensitive and con-
ditional) commitments, parametrised contract templates, relative and absolute
temporal constraints, potentially infinite contracts, and in-place arithmetic ex-
pressions. Finally, we illustrate the general applicability of CSL by formalising
in CSL various contracts from different domains.

Keywords: contracts, blame assignment, contract specification language,
operational semantics, run-time monitoring.

1. Introduction

Contracts are legally binding agreements between parties and in e-business
it is particularly crucial to automatically check conformance to them, for exam-
ple for minimising financial penalties. The Aberdeen Group [1, 2] has recently
identified contract lifecycle management (CLM) as a key methodology in e-
business: CLM is a broad term used to cover the activities of systematically
and efficiently managing contract creation, contract negotiation, contract ap-
proval, contract analysis, and contract execution. Monitoring the execution of
contracts constitutes the primary incentive for enterprises to use CLM, since it
enables qualified decision making and makes it possible to issue reminders for
upcoming deadlines, which may lead to a significant decrease of financial loss
due to noncompliance:

1Contact author. Email: hvitved@diku.dk

Preprint submitted to The Journal of Logic and Algebraic Programming January 3, 2012

“[...] the average savings of transactions that are compliant with
contracts is 22%.” [1, page 1]

Consequently, several systems that implement the CLM methodology have
been deployed.2 More traditional enterprise resource planning (ERP) systems
such as Microsoft Dynamics NAV [3] and Microsoft Dynamics AX [4] are also
used for managing business agreements. However, a shortcoming of existing
CLM and ERP systems is that contracts are dealt with in an ad hoc manner
rather than as first-class objects. In fact, the before mentioned studies by the
Aberdeen Group [1, 2] suggest the use of a domain-specific language as the basis
for automated CLM.

Although various authors have proposed domain-specific languages for repre-
senting contracts [5–11], constructing a widely applicable contract specification
language remains a challenge [12]. One reason is that contracts involve many
different aspects like absolute temporal constraints (as in deadlines), relative
temporal constraints (for imposing an ordering on the occurrence of certain
actions), reparation clauses, conditional commitments, different deontic modal-
ities [13] (such as obligations and permissions), and repetitive patterns. In order
to make some of these aspects concrete, consider the contract in Figure 1, which
we will use as a running example in the remainder of this article. This sample
contract involves both obligations (Paragraph 1), permissions (Paragraph 5), ab-
solute deadlines (Paragraph 1), relative deadlines (Paragraph 3), and reparation
activities (Paragraph 4). Additionally, it involves data dependencies between
paragraphs, for example the payment amount in Paragraph 4 depends on the
amount defined in Paragraph 3.

Besides being able to capture the various aspects found in contracts men-
tioned above, a contract specification language should also be amenable to au-
tomatic analysis. In particular, the language should support run-time monitor-
ing [14] of contracts, that is reporting of (potential) contract breaches during
execution—for instance as the result of passing a deadline or performing a for-
bidden action. Furthermore, in case of noncompliance the run-time monitor
should be able to assign blame to one or more of the parties involved in the

2Examples of such systems include (all URLs retrieved on May 18th 2011):
• Blueridge Software Contract Assistant, http://www.blueridgesoftware.bz.
• CobbleStone Systems ContractInsight, http://www.cobblestonesystems.com.
• Moai CompleteSource Contract Management, http://www.moai.com.
• Ecteon Contraxx, http://www.ecteon.com.
• Emptoris Contract Management Solutions, http://www.emptoris.com.
• Great Minds Software Contract Advantage, http://www.greatminds-software.com.
• IntelliSoft Group IntelliContract, http://www.intellisoftgroup.com.
• Ketera Contract Management, http://www.ketera.com.
• Open Text Contract Management, http://www.opentext.com.
• 8over8 ProCon Contract Management, http://www.8over8.com.
• SAP SAP CLM, http://www.sap.com.
• Procuri TotalContracts, http://www.procuri.com.
• Upside Software UpsideContract, http://www.upsidesoft.com.

2

http://www.blueridgesoftware.bz
http://www.cobblestonesystems.com
http://www.moai.com
http://www.ecteon.com
http://www.emptoris.com
http://www.greatminds-software.com
http://www.intellisoftgroup.com
http://www.ketera.com
http://www.opentext.com
http://www.8over8.com
http://www.sap.com
http://www.procuri.com
http://www.upsidesoft.com

Paragraph 1. Seller agrees to transfer and deliver to Buyer, on or before 2011-01-01, the
goods: 1 laser printer.

Paragraph 2. Buyer agrees to accept the goods and to pay a total of e200 for them according
to the terms further set out below.

Paragraph 3. Buyer agrees to pay for the goods half upon receipt, with the remainder due
within 30 days of delivery.

Paragraph 4. If Buyer fails to pay the second half within 30 days, an additional fine of 10%
has to be paid within 14 days.

Paragraph 5. Upon receipt, Buyer has 14 days to return the goods to Seller in original,
unopened packaging. Within 7 days thereafter, Seller has to repay the total amount to Buyer.

Figure 1: A sales contract between a buyer and a seller.

contract, rather than simply reporting noncompliance without specifying who
is responsible for the breach of contract. Surprisingly, even though run-time
monitoring of contracts has been studied extensively [6, 8, 9, 11, 15, 16], blame
assignment has not been given much attention yet. To the best of our knowledge
only Xu [16] investigates blame assignment though not from the viewpoint of
run-time monitoring, but rather from an off-line viewpoint where blame has to
be determined from a set of unfulfilled, dependent commitments.

In this article, we present a contract specification language that targets at
naturally formalising and monitoring contracts. In particular, contracts for-
malised in our language can directly be monitored, and in case of noncompli-
ance the monitor assigns blame to the responsible contract parties. Although
our focus is on business contracts, our language is not essentially restricted to
this particular application area.

Breach of contract and blame assignment

A first question that arises when designing such a contract specification
language is what constitutes a breach of contract? Returning to the example
contract in Figure 1, one can think of several scenarios which arguably constitute
breaches of contract:

(1) Seller fails to deliver to Buyer on time.

(2) Seller delivers on time, Buyer pays first half on delivery, but Buyer does not
pay second half on time.

(3) Seller delivers on time, Buyer pays first half on delivery, Buyer does not pay
second half on time, and Buyer does not pay the additional fine on time.

Clearly, the first scenario represents a breach of contract, and Seller is to
be blamed for not delivering the goods to Buyer. In the second scenario, it is
less clear, since Buyer has violated Paragraph 3, but depending on whether the
extended deadline has passed, Buyer may or may not have breached the contract.
Finally, in the last scenario it is clear that Buyer has breached the contract, but

3

it is perhaps less clear whether violating Paragraph 3 or Paragraph 4 (or both)
constitutes the breach of contract.

The approach we take is that of fundamental breaches: a breach of contract
takes place only when a violation happens, from which the contract cannot re-
cover, and from which it therefore does not make sense to continue executing
the contract. In terms of run-time monitoring, a breach of contract hence takes
place only when it is impossible to complete a conforming execution. With this
rather informal definition of contract breach, we see that the first scenario con-
stitutes indeed a breach of contract. Regarding the second scenario, it depends
whether Buyer will pay the fine or not, as only neglecting to pay the fine con-
stitutes a breach of contract. Thus scenario (2) does not yet represent a breach,
in contrast to the last scenario (3).

We deliberately use the term breach rather than violation in order to dis-
tinguish our concept of (fundamental) breach from the more traditional notion
of violation known from standard deontic logic (SDL) with contrary-to-duty
obligations [17]. In the context of SDL, it is tempting to encode reparation
clauses like the one in Paragraph 4 in the form of a contrary-to-duty obligation.
Yet, with such an encoding there is an implicit agreement that the primary
obligation (Paragraph 3) should be complied with first and foremost, and only
complying with the reparation obligation constitutes a violation, even though—
from a contractual point of view—the contract is fulfilled.

A classical example which illustrates the subtle, but important, difference is
the “gentle murderer”: do not kill, but if you kill, kill gently [18]. The gentle
murderer is an actual contrary-to-duty obligation, because there is an implicit
agreement that you should not kill—only if you have no other options than
killing, then at least you should do so gently.

We argue, however, that contracts should not contain implicit agreements,
in particular because parties may have conflicting interests. Hence if one party
wishes to impose that an obligation be primary, then the only way to do so is by
making sure that there is an incentive for the responsible (counter) party to per-
form the primary obligation, for example by imposing a penalty for complying
only with the reparation obligation. Hence the gentle murderer, as a contract,
would be: do not kill, but if you kill, kill gently and go to jail. Attaching penal-
ties to violations yields new obligations. Violating such an obligation might
result in new obligations until either all obligations are fulfilled or eventually a
breach of contract is reached. For the example, killing non-gently represents a
breach of contract. Killing gently and not going to jail also represents a breach
of contract. However, killing gently and going to jail is not a breach of contract.
Note that the consequences of breaching the contract are not specified.

Ideally, blame assignment should be deterministic, that is it should uniquely
determine the parties responsible for a breach. However, not all contracts allow
for deterministic blame assignment, as illustrated by the following scenario: If
one paragraph specifies that Alice has to fulfil an obligation by time τ , and
another paragraph that Bob has to fulfil another obligation by the same time τ ,
and the contract only asks for conformance with one of the paragraphs, then
we are in a delicate situation—who is to blame if neither Alice nor Bob has

4

fulfilled her/his obligation?3 Contracts involving disjunction, such as this one,
lead to non-deterministic blame assignment. In other words, such contracts are
ambiguous. For simplicity, we choose not to model them, except in the special
cases when the same parties are blamed in both subcontracts. Our choice is
also motivated by the fact that such scenarios rarely correspond to real-world
contracts.

Contributions and organisation

We see our main contributions as follows. First, we present an abstract,
trace-based model for contracts that has blame assignment at its core. Fur-
thermore, our model supports modular composition of contracts by contract
conjunction and disjunction. Second, we introduce the contract specification
language (CSL) that fits naturally—by means of a mapping—to our abstract
model, and that overcomes many of the limitations of previous specification lan-
guages for contracts. Third, we describe a run-time monitoring algorithm for
CSL specifications obtained as a by-product of the reduction semantics of CSL.

The remainder of this article is structured as follows. In Section 2 we present
our abstract, trace-based model for contracts, relying on the informal notion of
contract breach and blame assignment described above. We show how our model
encodes various high-level aspects, such as obligations, permissions, and repa-
ration clauses without relying on such notions. We also provide operators for
composing contracts and show that they fulfil desirable algebraic properties. In
Section 3 we introduce the contract specification language CSL, together with
a formal semantics which maps CSL into our abstract, trace-based contract
model. Furthermore, from the small-step, reduction-based semantics of CSL,
we derive a run-time monitoring algorithm. We also demonstrate the applica-
bility of CSL by means of several example contracts. We discuss related work
in Section 4 and we draw conclusions in Section 5. The appendix contains
additional proof details.

2. Trace-based contract model

Trace-based contract models have been proposed before [6, 19], but unlike
our model, those models partition traces into conforming and nonconforming
traces, without taking blame assignment into account. A trace is a sequence of
actions that represent the complete history of actions that have occurred during
the execution of a contract. In order to capture real-time aspects, and not
only relative temporality, actions of a trace are timestamped. In this article we
ignore how actions are generated, and neither do we model how parties agree
that actions have taken place—the latter would usually involve a hand-shaking
protocol, which is outside the scope of our work. For the purpose of defining
contracts, we hence assume a trace of timestamped actions is given.

3We leave it to the reader to ponder whether blaming neither of the two, or blaming both
of them is acceptable. Our view is that neither option is acceptable.

5

2.1. Notation and terminology

Before presenting our contract model, we fix the notation and terminology
that we use in the remainder of the text. Throughout this article, P denotes
the set of parties, A the set of actions, and Ts the set of timestamps. The sets P
and A can be finite or infinite but we require that they are both non-empty.
We require that Ts is totally ordered by the relation ≤, and that Ts has a
least element and that no element in the set is an upper bound, that is for all
τ ∈ Ts there is some τ ′ ∈ Ts such that τ 6= τ ′ and τ ≤ τ ′. In the following, for
representation issues, we assume that Ts = N.

We write a finite sequence σ over an alphabet Σ as 〈σ[0], σ[1], . . . , σ[n− 1]〉,
where σ[i] ∈ Σ denotes the (i+1)st letter of σ. Its length is n and denoted by |σ|.
In particular, 〈〉 denotes the empty sequence which has length 0. Analogously,
an infinite sequence σ over Σ is written as 〈σ[0], σ[1], σ[2], . . . 〉 with σ[i] ∈ Σ, for
every i ∈ N. The length of an infinite sequence σ is |σ| =∞. We write σ < σ′ if
the sequence σ is a finite prefix of the sequence σ′, that is if σ is finite and there
is a sequence σ′′ such that σ′ = σσ′′, where σσ′′ denotes the concatenation of
the sequences σ and σ′′.

An event is a tuple (τ, α), where τ ∈ Ts is a timestamp and α ∈ A an action.
We write ts(ε) for the timestamp of an event ε = (τ, α), that is ts(ε) = τ . A trace
σ is a finite or infinite sequence of events where the sequence of timestamps are

(1) increasing, that is ts(σ[i]) ≤ ts(σ[j]) for all i, j ∈ N with i ≤ j < |σ|, and

(2) progressing for infinite traces, that is for all τ ∈ Ts there is some i ∈ N such
that ts(σ[i]) ≥ τ whenever |σ| =∞.

We denote the set of all traces by Tr, and the subset of finite traces by Trfin,
that is Trfin = {σ ∈ Tr | |σ| 6= ∞}. Trτ denotes the subset of traces where
all timestamps are at least τ , and similarly for Trτfin. For a finite non-empty
trace σ, the timestamp of the last event in σ is denoted by end(σ), and for the
empty trace, we define end(〈〉) = 0.

For a trace σ ∈ Tr and a timestamp τ ∈ Ts, στ denotes the longest prefix
of σ with end(στ) ≤ τ . This prefix exists, since the properties (1) and (2) ensure
that there are only finitely many prefixes σ′ < σ with end(σ′) ≤ τ .

Finally, we denote the domain of a (partial) function f by dom(f), that is
dom(f) is the set of elements a for which f(a) is defined. For a function f and
a set X ⊆ dom(f), f |X denotes the restriction of f to X.

2.2. Contracts

We capture blame assignment by generalising the outcome of a contract
execution from a binary result (conformance or nonconformance) to verdicts,
defined as elements of the set

V = {�} ∪ {(τ,B) | τ ∈ Ts and B is a non-empty finite subset of P},

where � represents contract conformance, that is no one is to be blamed, and
(τ,B) represents a breach of contract at time τ by the parties in B. Whenever

6

|B| > 1 then multiple parties have breached the contract simultaneously. For
instance, both parties of a barter deal may breach the contract if neither hands
over the agreed goods.

A contract is defined as a function that maps traces to verdicts:

Definition 1. Let P be a non-empty and finite subset of P. A contract between
parties P , starting at time τ0 ∈ Ts, is a function c : Trτ0 → V that satisfies the
following conditions for all σ ∈ Trτ0 and (τ,B) ∈ V:

if c(σ) = (τ,B) then B ⊆ P and τ ≥ τ0, (1)

and

if c(σ) = (τ,B) then c(σ′) = (τ,B), for all σ′ ∈ Trτ0 with στ = σ′τ . (2)

The contract for which all traces are conforming is denoted c�, that is c�
is the function with c�(σ) = �, for all σ ∈ Trτ0 .

The definition entails that contracts are deterministic, as c is a function.
Since traces are considered complete, condition (2) guarantees that a breach
at time τ only depends on what has (and has not) happened up until time τ .
Moreover, the verdict of a contract can only depend on what has happened after
the contract started.

Example 1. We illustrate our contract model by representing Paragraph 1 in
Figure 1 as a contract c1 : Trτ0 → V, for a suitable τ0. As the paragraph only
defines an obligation on the party Seller, we define c1 as a contract “between”
{Seller} with

c1(σ) =

� if σ[i] = (τ,delivery), for some i ∈ N and τ ∈ Ts

with i < |σ| and τ ≤ τd,(
τd, {Seller}

)
otherwise.

The action delivery represents the delivery of goods to the party Buyer and τd
represents the deadline 2011-01-01. Note that dates like 2011-01-01 can be easily
interpreted as non-negative integers by taking for instance the corresponding
UNIX time. It is easy to check that c1 satisfies the properties of Definition 1.

2.3. Contract conformance on infinite traces

The definition of contracts implicitly includes the crucial requirement that all
breaches of contract are associated with a point in time. From this restriction it
follows that contract conformance is not a liveness property [20], such as: Buyer
must deliver the printer to Seller eventually. We see this as a natural restriction,
since one of the purposes of formalising contracts is to run-time monitor their
execution, and hence breaches of contract should be detected in finite time—in
other words, every obligation must have a deadline.

The following lemma follows directly from the definition of contracts, because
στ is the longest prefix up to time τ of the trace σ.

7

Lemma 1. Let c : Trτ0 → V be a contract and let σ be a (finite or infinite)
trace. Then c(σ) = (τ,B) if and only if c(στ) = (τ,B).

The previous lemma entails that any nonconforming trace (in particular,
any nonconforming infinite trace) has a nonconforming prefix. However, not all
extensions of this prefix need be nonconforming too. Indeed, a nonconforming
finite trace may be extended to a conforming trace (for instance, simply by
performing an unfulfilled obligation), even if the time of the breach coincides
with the timestamp of the last event: a contract c may satisfy, for example,
c
(
〈(τ, α)〉

)
= (τ,B) and c

(
〈(τ, α), (τ, α′)〉

)
= �, for some α, α′ ∈ A, τ ∈ Ts, and

parties B ⊆ P. Still, any extension of a nonconforming finite trace after the
time of the breach is also nonconforming.

Proposition 2. The set of infinite traces conforming with a contract is a safety
property.

Proof. Let c : Trτ0 → V be a contract and let

C = {σ ∈ Trτ0 | σ is infinite and c(σ) = �}.

We need to show that for any infinite trace σ 6∈ C, there is a prefix σ′ of σ such
that for any infinite trace σ′′ with σ′ < σ′′, it holds that σ′′ 6∈ C.

Let σ 6∈ C be an infinite trace. Then c(σ) = (τ,B) for some τ and B.
Let σ′ be an arbitrary prefix of σ with end(σ′) > τ , and consider an infinite
trace σ′′ with σ′ < σ′′. Then, since end(σ′) > τ , it follows that σ′′τ = στ ,
and consequently condition (2) yields that c(σ′′) = (τ,B), hence σ′′ 6∈ C, as
required.

The following lemma shows that “contracts” defined only on finite traces
extend uniquely to contracts. In other words, contracts are uniquely determined
by their verdicts on finite traces.

Lemma 3. Let P be a set of parties and c : Trτ0fin → V be a function such that
if c(σ) = (τ,B) then B ⊆ P , τ ≥ τ0, and c(σ′) = (τ,B), for all σ′ ∈ Trτ0fin

with στ = σ′τ . Then there exists a unique extension c′ : Trτ0 → V of c, that is
c = c′|Trτ0fin , such that c′ is a contract.

Proof. Let c′ : Trτ0 → V be the function that extends c to infinite traces by

c′(σ) =

� if whenever c(σ′) = (τ,B) and σ′ < σ then end(σ′) ≤ τ ,

c(σ′) otherwise, where σ′ is the shortest prefix of σ such that

c(σ′) = (τ ′, B′) and end(σ′) > τ ′,

for any infinite trace σ. We first show that c′ is a contract between parties P
starting at time τ0.

First note that c′(σ) = (τ,B) if and only if there is σ′ < σ with c(σ′) = (τ,B)
and end(σ′) > τ , hence property (1) follows immediately.

We show property (2), namely that if c′(σ) = (τ,B) for some (finite or
infinite) trace and some breach (τ,B), then c′(σ′) = (τ,B), for any (finite or
infinite) trace σ′ with σ′τ = στ . We can have one of the following cases:

8

• σ is finite and σ′ is finite. This case follows directly from the hypotheses
of the lemma.

• σ is finite and σ′ is infinite. Then c′(σ) = c(σ) = c(στ). Let ε be such
that σ′τ ε < σ′. We have ts(ε) > τ , hence end(σ′τ ε) > τ . Moreover,
c(σ′τ ε) = (τ,B) as (σ′τ ε)τ = στ . Hence, by definition, c′(σ′) = (τ,B).

• σ is infinite and σ′ is finite. By definition of c′, there is σ′′ < σ such that
c(σ′′) = (τ,B) and end(σ′′) > τ . Then c(σ′′τ) = (τ,B). As σ′τ = σ′′τ , it
follows that c(σ′) = (τ,B).

• σ is infinite and σ′ is infinite. As in the previous case, there is σ′′ < σ
such that c(σ′′τ) = (τ,B) and end(σ′′) > τ . Then σ′′τ = στ = σ′τ . Let ε
be such that σ′τ ε < σ′. As in the second case, we obtain that c′(σ′) =
c(σ′′τ) = (τ,B).

This shows that c′ is a contract between parties P starting at time τ0. We now
prove that this extension is unique. Let c′′ be a contract such that c′′|Trτ0fin = c.

We show that c′ = c′′. The contracts c′ and c′′ agree on all finite traces by
construction, so assume for the sake of contradiction that c′(σ) 6= c′′(σ) for some
infinite trace σ. Then either c′(σ) = (τ,B) or c′′(σ) = (τ,B), for some τ and B,
so assume that c′(σ) = (τ,B). Then by Lemma 1 we have that c′(στ) = (τ,B),
and since στ is finite, also c′′(στ) = (τ,B), and hence again by Lemma 1 we have
that c′′(σ) = (τ,B), which is a contradiction. The case where c′′(σ) = (τ,B) is
symmetric.

2.4. Contract composition

By composing contracts, through conjunction and disjunction, new contracts
are obtained. Given that a contract assigns verdicts to traces, defining such
compositions amounts to stating how verdicts are composed.

Contract conjunction. This type of composition models the simultaneous com-
mitment to several (sub)contracts. Conjunction is implicit in paper contracts:
typically the involved parties have to conform with all the clauses therein. When
some parties do not conform with some clauses, the resolution of blame assign-
ment is given by the fundamental breach assumption: the earliest breach repre-
sents the overall verdict. When breaches of several clauses happen at the same
time, then all breaching parties are to be blamed.

Definition 2. Let ν1, ν2 ∈ V be two verdicts. The verdict conjunction ν1 ∧ ν2

of ν1 and ν2 is given by:

ν1 ∧ ν2 =

ν1 if either ν2 = �,

or ν1 = (τ1, B1), ν2 = (τ2, B2), and τ1 < τ2,

ν2 if either ν1 = �,

or ν1 = (τ1, B1), ν2 = (τ2, B2), and τ1 > τ2,

(τ,B) if ν1 = (τ,B1), ν2 = (τ,B2), and B = B1 ∪B2.

9

Definition 3. Let c1 : Trτ0 → V and c2 : Trτ0 → V be two contracts. The
conjunction of contracts is defined by

(c1 ∧ c2)(σ) = c1(σ) ∧ c2(σ).

Note that (c1 ∧ c2)(σ) = � if and only if c1(σ) = c2(σ) = �, for any trace σ.
The following lemma confirms the intuition that the conjunction of two con-

tracts is a contract.

Lemma 4. Let c1 : Trτ0 → V and c2 : Trτ0 → V be two contracts between parties
P1 and P2, respectively. Then the composition c1 ∧ c2 : Trτ0 → V is a contract
between parties P1 ∪ P2.

Proof. Property (1) follows immediately from the definition of verdict conjunc-
tion, so we need to prove property (2). Suppose that (c1 ∧ c2)(σ) = (τ,B) and
σ′ is such that σ′τ = στ . We can have one of the following cases:

• c1(σ) = �. Then c2(σ) = (τ,B) and it follows that c2(σ′) = (τ,B).

If c1(σ′) = � then clearly (c1 ∧ c2)(σ′) = (τ,B). Suppose that c1(σ′) =
(τ ′, B′) for some (τ ′, B′) 6= (τ,B). If τ ′ ≤ τ then σ′τ ′ < σ′τ < σ and hence
c1(σ) = (τ ′, B′)—contradiction. Hence τ ′ > τ . Since (τ,B) ∧ (τ ′, B′) =
(τ,B) it follows that (c1 ∧ c2)(σ) = (τ,B).

• c2(σ) = �. This case is symmetric to the previous one.

• c1(σ) = (τ1, B1) and c2(σ) = (τ2, B2) such that (τ1, B1)∧(τ2, B2) = (τ,B).
We then have c1(σ′) = (τ1, B1) and c1(σ′) = (τ2, B2). Hence (c1∧c2)(σ′) =
(τ,B).

Example 2. Continuing Example 1, the first part of Paragraph 3 in Figure 1
(that is “Buyer agrees to pay for the goods half upon receipt”) can be represented
by the contract c3 between {Buyer}, where

c3(σ) =

� if D = ∅, or if D 6= ∅ and σ[j] = (τ1,payment1)

for some j with i1 < j < |σ|,
(τ1, {Buyer}) otherwise,

with D = {i | σ[i] = (τ,delivery), 0 ≤ i < |σ|, τ ≤ τd}, i1 = min(D), and τ1 =
ts(σ[i1]). Furthermore, the action payment1 represents the first half payment to
the Seller, and i1 (τ1) is the index (timestamp) that represents the receipt time
of the first delivery, assuming that delivery time and receipt time coincide.

The second part of Paragraph 3 (that is “Buyer agrees to pay [. . .] the
remainder within 30 days of delivery”) can be encoded by the contract c′3 between
{Buyer}, where

c′3(σ) =

� if D = ∅, or if D 6= ∅ and σ[j] = (τ,payment2)

for some i1 < j < |σ| and τ ≤ τ ′1,
(τ ′1, {Buyer}) otherwise,

10

with τ ′1 = τ1 + 30 (we assume that the time unit is 1 day), and the action
payment2 represents the second half payment to the Seller.

Using the previous lemma, Paragraph 3 of Figure 1 is represented by the
contract c3 ∧ c′3 between {Buyer}.

Contract disjunction. This type of composition models the situation where ful-
filling only one of the clauses of a contract is sufficient to fulfil the entire contract.
Unlike conjunction, the case when all clauses are breached is problematic, as
each of the clauses is individually an option. To be able to give an answer in
this case, we take a global view: all involved parties are at any time aware
of the contract execution status. Thus, those parties responsible for the latest
breach are to blame for the overall failure, because they should have fulfilled
their obligations after knowing that other options are not available anymore.
Still, when breaches happen at the same time, there is no other way than to
choose nondeterministically between the breaches. Note that blaming the par-
ties altogether is not a better alternative, as then the nondeterminism would
be hidden somewhere else: the cause of the overall failure could be any of the
causes of the individual breaches.

It is not a surprise that the treatment of disjunction is more complicated,
since disjunction is inherently nondeterministic. Nevertheless, in the special
case where all clauses stipulate commitments on the same contract participant,
disjunction corresponds to a choice that said participant has. In this case it is
clear who is to blame when all clauses are breached.

Definition 4. Let ν1, ν2 ∈ V be two verdicts such that if ν1 = (τ,B1) and
ν2 = (τ,B2) then B1 = B2. The verdict disjunction ν1 ∨ ν2 of ν1 and ν2 is
given by:

ν1 ∨ ν2 =

� if ν1 = � or ν2 = �,
(τ1, B1) if ν1 = (τ1, B1), ν2 = (τ2, B2) and τ1 > τ2,

(τ2, B2) if ν1 = (τ1, B1), ν2 = (τ2, B2) and τ1 < τ2,

(τ,B) if ν1 = ν2 = (τ,B).

Two contracts c1 and c2 have unique blame assignment if for all traces σ,
whenever c1(σ) = (τ,B1) and c2(σ) = (τ,B2), then B1 = B2.

Definition 5. Let c1 : Trτ0 → V and c2 : Trτ0 → V be two contracts with
unique blame assignment. The disjunction of contracts c1 and c2 is defined by

(c1 ∨ c2)(σ) = c1(σ) ∨ c2(σ).

Note that (c1∨c2)(σ) = � if and only if c1(σ) = � or c2(σ) = �, for any σ ∈ Trτ0 .
The following lemma confirms the intuition that the disjunction of two con-

tracts is a contract.

Lemma 5. Let c1 : Trτ0 → V and c2 : Trτ0 → V be two contracts with unique
blame assignment, between parties P1 and P2, respectively. Then the composi-
tion c1 ∨ c2 : Trτ0 → V is a contract between parties P1 ∪ P2.

11

Proof. Property (1) follows immediately from the definition of verdict disjunc-
tion, so we need to prove property (2). Suppose that (c1 ∨ c2)(σ) = (τ,B) and
σ′ is such that σ′τ = στ . We can have one of the following cases:

• c1(σ) = (τ,B) and c2(σ) = (τ2, B2) with τ2 < τ . It follows that c1(σ′) =
(τ,B) and c2(στ2) = (τ2, B2). As στ2 < στ < σ′, we have c2(σ′) = (τ2, B2).
Hence (c1 ∨ c2)(σ) = (τ,B).

• c2(σ) = (τ,B) and c1(σ) = (τ1, B1) with τ1 < τ . This case is symmetric
to the previous one.

• c1(σ) = (τ,B) and c2(σ) = (τ,B). We then have c1(σ′) = (τ,B) and
c1(σ′) = (τ,B). Hence (c1 ∨ c2)(σ′) = (τ,B).

Example 3. Continuing Example 2, the second part of Paragraph 4 in Figure 1
(that is “an additional fine of 10% has to be paid within 14 days”) can be encoded
by the contract c4 between {Buyer}:

c4(σ) =

� if D = ∅, or if D 6= ∅ and σ[j] = (τ,payment′2)

for some i1 < j < |σ| and τ ≤ τ ′′1 ,
(τ ′′1 , {Buyer}) otherwise,

where τ ′′1 = τ1 + 44 and the action payment′2 represents the payment of the
second half together with the 10% fine by Buyer. (Note that the confusion with
regard to the reference for the 10% computation would have to be solved at a
different level—when defining payment′2 concretely.)

As, for all traces, the contracts c′3 and c4 only blame Buyer, the previous
lemma ensures that c′3 ∨ c4 is a well-defined contract. The first four paragraphs
are thus represented by the contract c1 ∧ (c3 ∧ (c′3 ∨ c4)) between {Buyer,Seller}.
(We note that Paragraph 2 of Figure 1 is encoded implicitly in the encoding of
the other paragraphs.)

Algebraic properties of contract composition. The following lemma shows that
the conjunction and disjunction operators on verdicts enjoy the expected alge-
braic properties, like commutativity, associativity, and distributivity.

Lemma 6. Let ν, ν1, ν2, ν3, ν
′
1, ν
′
2, ν
′
3 be verdicts such that if ν′i = (τ,Bi) and

ν′j = (τ,Bj) then Bi = Bj, for any i, j ∈ {1, 2, 3}. Then the following equalities
hold:

ν1 ∧ ν2 = ν2 ∧ ν1 (Commutativity)

ν′1 ∨ ν′2 = ν′2 ∨ ν′1 (Commutativity)

ν1 ∧ (ν2 ∧ ν3) = (ν1 ∧ ν2) ∧ ν3 (Associativity)

ν′1 ∨ (ν′2 ∨ ν′3) = (ν′1 ∨ ν′2) ∨ ν′3 (Associativity)

ν′1 ∨ (ν′1 ∧ ν′2) = ν′1 (Absorption)

12

ν′1 ∧ (ν′1 ∨ ν′2) = ν′1 (Absorption)

ν′1 ∨ (ν′2 ∧ ν′3) = (ν′1 ∨ ν′2) ∧ (ν′1 ∨ ν′3) (Distributivity)

ν1 ∧ (ν′2 ∨ ν′3) = (ν1 ∧ ν′2) ∨ (ν1 ∧ ν′3) (Distributivity)

� ∧ ν = ν ∧ � = ν (Unit)

� ∨ ν = ν ∨ � = � (Unit)

Proof. These equalities follow directly from Definitions 2 and 4.

These algebraic properties are easily lifted from verdicts to contracts, which
allows us to perform algebraic, meaning-preserving rewritings of contracts.

Corollary 7. Let C be a set of contracts that is closed under contract conjunc-
tion and disjunction, c� ∈ C, and for all c1, c2 ∈ C, the contracts c1 and c2

have unique blame assignment. Then (C,∨,∧) is a distributive lattice with unit
element c�.

We recall that the idempotency equalities c ∧ c = c and c ∨ c = c, that hold
for any contract c, follow from the absorption equalities. We also note that the
equalities that only concern conjunction hold for arbitrary contracts.

2.5. Run-time monitoring

The contract model presented above considers complete traces, which are
either finite or infinite, and there is no restriction as to whether the verdict of a
contract can be computed or not. For run-time monitoring, however, traces are
always partial and finite, and it should be possible to compute verdicts at run-
time. We consequently define, abstractly, what constitutes run-time monitoring
for the contract model, using a conventional many-valued semantics [14].

The output of a run-time monitor is an element of the union of the sets
V? = {ν? | ν ∈ V} for ? ∈ {!, ?}, where ν! is a final verdict, and ν? is a
potential verdict. Final verdicts are output when all extensions of the current
partial trace have the same verdict. In other words, the verdict on the complete
trace, whatever this would be, is uniquely determined by (the verdict on) the
partial trace; there is hence no need to perform further monitoring. In contrast,
potential verdicts are output when the verdicts on extensions of the current
partial trace differ. Of course, if the current trace is a complete trace (in this
case no more events occur), then the potential verdict is the actual verdict on
this trace.

Definition 6. Let c : Trτ0 → V be a contract between parties P . A run-time
monitor for c is a computable function mon : Trτ0fin → V! ∪ V? that satisfies

mon(σ) =

�! if c(σ′) = � for all σ′ with σ < σ′,

(τ,B)! if c(σ′) = (τ,B) for all σ′ with σ < σ′,

�? if c(σ) = � and c(σ′) 6= � for some σ < σ′,

(τ,B)? if c(σ) = (τ,B) and c(σ′) 6= (τ,B) for some σ < σ′.

13

Note that, in case of a potential breach, that is if mon(σ) = (τ,B)? then condi-
tion (2) of Definition 1 guarantees that end(σ) ≤ τ , hence (τ,B)? is always an
indication of a future—but avoidable—breach.

The definition expresses both impartiality and anticipation [14]. Impartiality
means that a final verdict is only output if the partial trace cannot be extended
into a complete trace with a different verdict. Formally,

if mon(σ) = ν! then c(σ′) = ν for all σ′ with σ < σ′.

Anticipation is the reverse of impartiality. It means that inevitable—possibly
future—verdicts are output as early as possible, that is a potential verdict is
only output if it is possible to reach a different verdict. Formally,

if c(σ′) = ν for all σ′ with σ < σ′ then mon(σ) = ν!.

Anticipation can be relaxed, for instance by allowing final breaches to be output
only when the time of breach has been reached, but impartiality is a crucial
requirement for run-time monitoring which cannot be relaxed.

Example 4. Consider the contract c1 ∧ (c3 ∧ (c′3 ∨ c4)) between {Buyer,Seller}
from Example 3, and the following events:

ε1 = (2011-01-01,delivery), ε2 = (2011-01-02,delivery),

ε3 = (2011-01-01,payment1), ε4 = (2011-01-10,payment2),

ε5 = (2011-02-10,payment′2).

The output of an associated run-time monitor on the following sample traces is
as follows:

mon
(
〈〉
)

= (2011-01-01, {Seller})?,

mon
(
〈ε2〉

)
= (2011-01-01, {Seller})!,

mon
(
〈ε1〉

)
= (2011-01-01, {Buyer})?,

mon
(
〈ε1, ε3〉

)
= (2011-02-14, {Buyer})?,

mon
(
〈ε1, ε3, ε4〉

)
= mon

(
〈ε1, ε3, ε5〉

)
= �!.

3. A contract specification language

The previous section provided a semantic account for compositional con-
tracts. However, it is cumbersome to specify contracts directly in the abstract
model, as we have seen in Examples 1–3. Thus we propose a contract specifi-
cation language, CSL, which enables succinct, syntactic representation of real-
world contracts in a human-readable form, and which has a formal semantics
in terms of the abstract contract model. The primary target of CSL is business
contracts, but rather than fixing the set of actions to for instance payments and
deliveries, we parametrise the language with respect to a signature, which can
be thought of as the vocabulary used in a contract.

14

s ::= letrec {fi(~xi)〈~yi〉 = ci}ni=1 in c starting τ (CSL specification)

c ::= fulfilment (No obligations)
| 〈e1〉 k(~x) where e2 due d remaining z then c1 (Obligation)
| if k(~x) where e due d remaining z then c1 else c2 (External choice)
| if e then c1 else c2 (Internal choice)
| c1 and c2 (Conjunction)
| c1 or c2 (Disjunction)
| f(~e1)〈~e2〉 (Instantiation)

e ::= x | v | ¬e1 | e1 ? e2 | e1 ≺ e2 (Expression)
d ::= after e1 within e2 (Deadline expression)

Figure 2: The grammar of CSL. f ∈ F ranges over template names, x, y, z ∈ V range over
variables, k ∈ K ranges over action kinds, and v ∈

⋃
t∈T JtK ranges over values. Furthermore,

? ∈ {+,−, ∗, /,∧} and ≺∈ {<,=}.

Formally, a signature is a triple S = (K, ar, T), where K is a finite set
of action kinds with associated arities and types, ar : K → T ∗, where T is
a finite set of types. The domain of a type t is denoted by JtK, and we as-
sume that T contains the basic types Bool, Int, Time, and Party, with the
corresponding domains JBoolK = {false, true}, JIntK = Z, JTimeK = Ts, and
JPartyK = P, respectively. Signatures provide structure to actions, and we con-
sequently redefine the set of actions, with respect to a given signature, as follows:
A = {k(~v) | k ∈ K, ar(k) = 〈t1, . . . , tn〉, and ~v ∈ Jt1K×· · ·× JtnK}. Furthermore,
we assume an infinite set of variables V, ranged over by x, y, z, and an infinite
set of template names F , ranged over by f .

3.1. CSL syntax

The grammar of CSL is presented in Figure 2. In what follows, we describe
informally each construct of the language.

The atomic expressions of CSL are values v ∈ JtK of some type t and vari-
ables. From integer values and variables, arithmetic and Boolean expressions
are formed by using arithmetic operators, equalities, and inequalities. We note
in particular that “/” denotes integer division and the specification needs to take
into account the possible loss in precision with regard to real division. Abusing
language, a deadline expression actually represents an interval of integers, as
explained shortly.

A CSL specification s is a set of template definitions together with a body c
and an absolute point in time τ , which defines the starting time of the contract.
Templates can be instantiated in the body of the specification. Mutual recursion
is allowed and it enables potentially infinite contract executions. The parame-
ters of a template are values ~x and parties ~y. Value parameters are dynamic,
that is they can be instantiated with values from earlier events, whereas party

15

parameters are static, that is all parties are fixed before the contract is started,
and they do not change over time.

Clauses describe the normative content of contracts. The bodies of CSL
specifications and of template definitions are clauses. All deadlines that occur
in clauses are relative to unspecified reference points which are given by the
starting time of the specification and by the time of event occurrences. Thus,
these relative deadlines are only lifted to absolute deadlines when the CSL spec-
ification is executed. The only atomic clause is fulfilment, which represents
the clause that is always fulfilled.

Fully instantiated obligation clauses have the form

〈p〉 k(~x) where e due after n1 within n2 remaining z then c,

which should be read:

Party p is responsible that (but need not be in charge of) an action of
kind k satisfying condition e takes place. This action should happen
after n1 time units, but within n2 time units thereafter. If these
requirements are satisfied, then the continuation clause c determines
any further obligations.

The variables of the vector ~x are bound to the parameters of the action, and their
scope is e and c. The variable z is bound to the remainder of the deadline: if the
deadline is for instance after 2 within 5 and the action takes place 4 time units
after the reference point, then z is bound to (2 + 5)− 4 = 3. The scope of z is c
only. All deadlines in the continuation c are relative to the time of the action.

External choices are similar to obligation clauses, but they contain an al-
ternative continuation branch which becomes active if the deadline passes. For
this reason, external choices have no responsible party parameter, since no one
has to be blamed in case the deadline expires.

The clause if e then c1 else c2 represents an internal choice, where the
branching condition e can be computed directly without having to wait for ex-
ternal input (that is for events). The clauses c1 and c2 and c1 or c2 represent
clause conjunction and disjunction, respectively. Finally, f(~e1)〈~e2〉 is instantia-
tion of template f , where ~e1 are value parameters and ~e2 are party parameters.

We use standard syntactic sugar such as e1∨e2 for ¬(¬e1∧¬e2), e1 ≤ e2 for
(e1 < e2) ∨ (e1 = e2), and e1 6= e2 for ¬(e1 = e2). Also, we omit continuations
and else branches if they are fulfilment, we omit the after part of a deadline
if it is 0, we write immediately for within 0, and we omit the remaining
part if it is not used. Finally, we use abbreviations like 30D to denote the value
representing an amount of time of 30 days, that is the integer 30 ∗ 24 ∗ 60 ∗ 60,
assuming that the time unit is of one second.

In terms of deontic modalities [13], it may seem that CSL only supports
obligations, and not permissions and prohibitions. However, permissions in
a contractual context are only of interest if they entail new obligations (on
counter parties). Hence we model permissions as external choices that trigger
new obligations, as illustrated in the following example. Prohibitions can also be

16

letrec sale(deliveryDeadline, goods, payment)〈buyer, seller〉 =
〈seller〉 Deliver(s,r,g) where s = seller ∧ r = buyer ∧ g = goods

due within deliveryDeadline
then
〈buyer〉 Payment(s,r,a) where s = buyer ∧ r = seller ∧ a = payment/2

due immediately
then
((〈buyer〉 Payment(s,r,a) where s = buyer ∧ r = seller ∧ a = payment/2

due within 30D
or
〈buyer〉 Payment(s,r,a) where s = buyer ∧ r = seller ∧ a = (payment/2) ∗ 110/100

due within 14D after 30D)
and
if Return(s,r,g) where s = buyer ∧ r = seller ∧ g = goods due within 14D then
〈seller〉 Payment(s,r,a) where s = seller ∧ r = buyer ∧ a = payment due within 7D)

in
sale(0, “Laser printer”, 200)〈Buyer, Seller〉 starting 2011-01-01

Figure 3: A CSL specification of a sales contract between a buyer and a seller.

modelled as external choices, where the consequence is an unfulfillable obligation
on the party who performed the prohibited action, as we shall see in Section 3.7,
where we provide further examples.

Example 5. Figure 3 shows the specification in CSL of the sales contract in
Figure 1. The formalisation assumes a signature that includes the action kinds
{Deliver,Payment,Return} ⊆ K, with types ar(Deliver) = ar(Return) = 〈Party,
Party, String〉 and ar(Payment) = 〈Party, Party, Int〉. The domain of String is
the set of all strings, and the two parties of each action kind represent the sender
and receiver, respectively. The example disambiguates the informal contract: the
10% fine is calculated with respect to half of the total price, and Buyer is only
entitled to return the goods if the first half is paid upon delivery. A different
disambiguation could be given by another CSL specification. Note also how we
encode the permission to return the goods as an external choice which has the
consequence that Seller has to pay the original amount back to Buyer.

3.2. CSL type system

We equip CSL with a type system. For this purpose, we define different
typing judgements over an implicit signature S = (K, ar, T). Before presenting
the typing judgements, we introduce some notation. We write f : A ⇀fin B for
a partial function f from A to B with a finite domain. Furthermore, f [a 7→ b]
denotes the function which maps a to b and behaves like f on all other input.
We write f [~a 7→ ~b] for f [a1 7→ b1] · · · [an 7→ bn], for vectors ~a = (a1, . . . , an) and
~b = (b1, . . . , bn). Finally, we write A ⊆fin B to say that A ⊆ B and A is finite.

17

Γ ` e : t x ∈ dom(Γ)

Γ ` x : Γ(x)

v ∈ JtK
Γ ` v : t

Γ ` e1 : Int Γ ` e2 : Int
(? ∈ {+,−, ∗})

Γ ` e1 ? e2 : Int

Γ ` e1 : Int n2 ∈ JIntK
(n2 6= 0)

Γ ` e1/n2 : Int

Γ ` e : Bool
Γ ` ¬e : Bool

Γ ` e1 : Bool Γ ` e2 : Bool

Γ ` e1 ∧ e2 : Bool

Γ ` e1 : Int Γ ` e2 : Int

Γ ` e1 < e2 : Bool

Γ ` e1 : t Γ ` e2 : t

Γ ` e1 = e2 : Bool

Λ ` e′ : P x ∈ V
{x} ` x : ∅

p ∈ P

∅ ` p : {p}

Γ ` d : Deadline Γ ` e1 : Int Γ ` e2 : Int

Γ ` after e1 within e2 : Deadline

Figure 4: Typing judgements for expressions e, party expressions e′, and deadline expres-
sions d.

Our typing judgements use the following typing environments:

Λ ⊆fin V (Party typing environment)

Γ : V ⇀fin T (Variable typing environment)

∆ : F ⇀fin T ∗ × N (Template typing environment)

The typing environment for parties Λ keeps track of parametrised parties (such
as the parameter buyer of the template sale in Figure 3), and the typing envi-
ronment for values Γ keeps track of parametrised values and their type (such
as the parameter goods of the template sale in Figure 3). The typing environ-
ment for clause templates ∆ associates with each template name the types of its
parameters and the number of party parameters. Also, we use the meta-types
Deadline, Clause〈P 〉, and Contract〈P 〉, parametrised by a finite set of parties
P ⊆fin P, to represent the type of deadlines, clauses involving parties P , and
contracts involving parties P , respectively.

The typing judgements for expressions Γ ` e : t, for party expressions (that
is the expressions determining responsibility in obligations) Λ ` e′ : P , and for
deadline expressions Γ ` d : Deadline are presented in Figure 4. The typing
rules for expressions are standard, but we require that the denominator of a
division expression be known statically in order to avoid division by zero. The
typing rules for party expressions Λ ` e′ : P are used to determine the parties
that are involved in a given clause.

The typing rules for clauses ∆,Λ,Γ ` c : Clause〈P 〉, for template defini-
tions ∆ ` D, and for full CSL specifications ` s : Contract〈P 〉 are presented in
Figure 5. A derivation ∆,Λ,Γ ` c : Clause〈P 〉 intuitively means that in tem-
plate environment ∆ and variable environment Γ, c is a clause in which only

18

∆,Λ,Γ ` c : Clause〈P 〉
∆, ∅,Γ ` fulfilment : Clause〈∅〉

Γ′ = Γ[~x 7→ ar(k)]
Γ2 = Γ′[z 7→ Int]

Λ1 ` e1 : P1

Γ′ ` e : Bool
Γ ` d : Deadline ∆,Λ2,Γ2 ` c : Clause〈P2〉

∆,Λ1 ∪ Λ2,Γ ` 〈e1〉 k(~x) where e due d remaining z then c : Clause〈P1 ∪ P2〉

Γ′ = Γ[~x 7→ ar(k)]
Γ1 = Γ′[z 7→ Int]

Γ′ ` e : Bool
Γ ` d : Deadline

∆,Λ1,Γ1 ` c1 : Clause〈P1〉
∆,Λ2,Γ ` c2 : Clause〈P2〉

∆,Λ1 ∪ Λ2,Γ ` if k(~x) where e due d remaining z then c1 else c2 : Clause〈P1 ∪ P2〉

Γ ` e : Bool ∆,Λ1,Γ ` c1 : Clause〈P1〉 ∆,Λ2,Γ ` c2 : Clause〈P2〉
∆,Λ1 ∪ Λ2,Γ ` if e then c1 else c2 : Clause〈P1 ∪ P2〉

∆,Λ1,Γ ` c1 : Clause〈P1〉 ∆,Λ2,Γ ` c2 : Clause〈P2〉
∆,Λ1 ∪ Λ2,Γ ` c1 and c2 : Clause〈P1 ∪ P2〉

|Λ1 ∪ Λ2|+ |P1 ∪ P2| ≤ 1 ∆,Λ1,Γ ` c1 : Clause〈P1〉 ∆,Λ2,Γ ` c2 : Clause〈P2〉
∆,Λ1 ∪ Λ2,Γ ` c1 or c2 : Clause〈P1 ∪ P2〉

∆(f) = (〈t1, . . . , tm〉, n) ∀i ∈ {1, . . . ,m}.Γ ` ei : ti ∀i ∈ {1, . . . , n}.Λi ` e′i : Pi

∆,
⋃n
i=1 Λi,Γ ` f(e1, . . . , em)〈e′1, . . . , e′n〉 : Clause〈

⋃n
i=1 Pi〉

∆ ` D Γi =
[
~xi 7→ ~ti, ~yi 7→

−−−→
Party

]
∀i, j ∈ {1, . . . , n}.i 6= j ⇒ fi 6= fj

∆ =
[
f1 7→ (~t1, |~y1|), . . . , fn 7→ (~tn, |~yn|)

]
∀i ∈ {1, . . . , n}.∆, ~yi,Γi ` ci : Clause〈∅〉

∆ ` {fi(~xi)〈~yi〉 = ci}ni=1

` s : Contract〈P 〉 ∆ ` D ∆, ∅, ∅ ` c : Clause〈P 〉
` letrec D in c starting τ : Contract〈P 〉

Figure 5: Typing judgements for CSL clauses c, template definitions D, and specifications s.

parties P and parametrised parties Λ can be blamed for a breach of contract.
The typing rule for clause disjunction, c1 or c2, uses this invariant to check
that at most one party can breach either c1 or c2, which guarantees that verdict
disjunction is well-defined. The typing rules for obligations and external choices
illustrate the scope of the bound variables ~x and z.

The typing rule for template definitions ∆ ` D requires that the body of
each definition contains no “hard coded” parties, that is it may only contain
variables, but not values of type Party. The restriction is strictly speaking
not necessary, however we consider it best practice not to have hard coded
parties inside template definitions, and we therefore rule out this possibility.
We furthermore allow party parameters to be used in the scope of ordinary
expressions; see the definition of Γi, and the body of the template sale in Figure 3

19

for an example.
An expression e is well-typed in the variable typing environment Γ, if there

is a type t such that Γ ` e : t. Similarly, a deadline expression d is well-typed
in the variable typing environment Γ, if Γ ` d : Deadline. A clause c involving
parties P is well-typed in the variable environment Γ, party environment Λ,
and template environment ∆, if ∆,Λ,Γ ` c : Clause〈P 〉. A specification s
involving parties P is well-typed, if ` s : Contract〈P 〉. We say simply that a
CSL construct is well-typed, if there are appropriate environments and involved
parties within which the construct is well-typed.

Lastly, we remark that the type system presented here is declarative, that is
checking whether CSL specifications are well-typed cannot be directly imple-
mented based on the given typing rules. This is because of the rule for template
definitions, for which one has to guess the types of value parameters. An actual
implementation will either rely on explicit type annotations of template param-
eters or perform type inference. While we treat neither approaches formally
here, we note that explicit type annotations will immediately give rise to an
algorithmic type system.

3.3. Well-formed specifications

Unfolding of template definitions need not always terminate—even for well-
typed specifications—as illustrated in the following example:

sΩ = letrec f()〈〉 = f()〈〉 in f()〈〉 starting 2011-01-01

We avoid such ill-formed specifications by considering only specifications that
satisfy a certain syntactic criterion that we introduce next.

Given a clause c, we recursively define the immediate subclauses of c as
follows:

Sub(c) = {c} ∪

Sub(c2) if c = if k(~x) where e due d
remaining z then c1 else c2

Sub(c1) ∪ Sub(c2) if c = c1 and c2,

Sub(c1) ∪ Sub(c2) if c = c1 or c2,

Sub(c1) ∪ Sub(c2) if c = if e then c1 else c2,

∅ otherwise.

Given a set of template definitions D, we let FD denote the names of the
templates defined in D. The immediate unfolding relation ⇒D on FD is defined
as follows: f ⇒D g if and only if there is a subclause g(~e1)〈~e2〉 ∈ Sub(cf) where
cf is such that (f(~x)〈~y〉 = cf) ∈ D. Intuitively,⇒D represents a dependency re-
lation between templates, where f ⇒D g means that the unfolding of f requires
an immediate unfolding of g. The definition of immediate subclauses reflects
this intuition. For instance, in the continuation clause c1 of an obligation, the
templates in c1 are not immediately instantiated—they are instantiated only
after the obligation is fulfilled.

We say that a specification s is well-formed with parties P , if s involving
parties P is well-typed and the immediate unfolding relation on the template

20

e ⇓ v
v ⇓ v

e1 ⇓ n1 e2 ⇓ n2
(? ∈ {+,−, ∗, /})

e1 ? e2 ⇓ n1 ? n2

e ⇓ true

¬e ⇓ false

e ⇓ false

¬e ⇓ true

e1 ⇓ true e2 ⇓ true

e1 ∧ e2 ⇓ true

e1 ⇓ false

e1 ∧ e2 ⇓ false

e2 ⇓ false

e1 ∧ e2 ⇓ false

e1 ⇓ v1 e2 ⇓ v2

(
≺∈ {<,=}, b =

{
true, if v1 ≺ v2

false, if v1 6≺ v2

)
e1 ≺ e2 ⇓ b

d ⇓τ (τ1, τ2) e1 ⇓ n1 e2 ⇓ n2

after e1 within e2 ⇓τ (τ + n1, τ + n1 + n2)

Figure 6: Evaluation of expressions and deadline expressions.

names of s is acyclic. By requiring that the unfolding relation be acyclic, we
avoid exactly those cases where the unfolding of a template f requires a series
of immediate unfoldings leading to an unfolding of f itself. Note that the speci-
fication given in Figure 3 is well-formed, while the above specification sΩ is not.

3.4. CSL semantics

We now present the operational semantics for CSL, which is used to define
the mapping of CSL specifications to abstract contracts, and which gives rise
to a run-time monitoring algorithm as well. Inspired by Andersen et al. [6], we
define a reduction semantics, which has the advantage that residual obligations,
after an event has taken place, can be seen directly by inspecting the reduced
term. More generally it follows that any analysis applicable to initial CSL
specifications will also be applicable at any given point in time, since running
CSL specifications are conceptually no different from initial specifications.

We first define the evaluation of well-typed expressions e ⇓ v and well-
typed deadline expressions d ⇓τ (τ1, τ2) in Figure 6, using standard derivation
rules. The timestamp τ in the rule for deadlines is the time with respect to
which relative deadlines are calculated. It represents the starting time of the
specification or the time of its last update, which equals the time of the last event
occurrence. The following lemma shows the expected correspondence between
the typing rules and the evaluation rules for (deadline) expressions.

Lemma 8. Let e be an expression, d be a deadline expression, and t be a type.
If ∅ ` e : t, then there is a unique v ∈ JtK such that e ⇓ v. If ∅ ` d : Deadline,
then for any τ ∈ Ts, there are unique τ1, τ2 ∈ Z with d ⇓τ (τ1, τ2).

Proof. For the first claim, existence follows by induction on the derivation of
∅ ` e : t, while uniqueness follows by structural induction on e. The last claim
follows immediately from the first one.

During reductions, variables are instantiated with values in expressions and
clauses. Since party parameters do not depend on event data, we use two kinds
of (applications of) substitutions, namely substitutions of value parameters and

21

e[θ]
x[θ] =

{
θ(x), if x ∈ dom(θ)

x, otherwise

v[θ] = v

(¬e)[θ] = ¬e[θ]
(e1 ? e2)[θ] = e1[θ] ? e2[θ]

(e1 ≺ e2)[θ] = e1[θ] ≺ e2[θ]

d[θ] (after e1 within e2)[θ] = after e1[θ] within e2[θ]

c[θ] fulfilment[θ] = fulfilment(
〈e1〉 k(~x) where e2 due d
remaining z then c

)
[θ] =

〈e1〉 k(~x) where e2[θ|V\~x] due d[θ]
remaining z then c[θ|V\(~x∪{z})](

if k(~x) where e due d
remaining z then c1 else c2

)
[θ] =

if k(~x) where e[θ|V\~x] due d[θ]
remaining z then c1[θ|V\(~x∪{z})] else c2[θ]

(c1 and c2)[θ] = c1[θ] and c2[θ]

(c1 or c2)[θ] = c1[θ] or c2[θ]

(if e then c1 else c2)[θ] = if e[θ] then c1[θ] else c2[θ]

f(e1, . . . , en)〈~e′〉[θ] = f(e1[θ], . . . , en[θ])〈~e′〉

c〈θ〉 fulfilment〈θ〉 = fulfilment(
〈e1〉 k(~x) where e2 due d
remaining z then c

)
〈θ〉 =

〈e1[θ]〉 k(~x) where e2 due d
remaining z then c〈θ〉(

if k(~x) where e due d
remaining z then c1 else c2

)
〈θ〉 =

if k(~x) where e due d
remaining z then c1〈θ〉 else c2〈θ〉

(c1 and c2)〈θ〉 = c1〈θ〉 and c2〈θ〉
(c1 or c2)〈θ〉 = c1〈θ〉 or c2〈θ〉

(if e then c1 else c2)〈θ〉 = if e then c1〈θ〉 else c2〈θ〉
f(~e)〈e′1, . . . , e′n〉〈θ〉 = f(~e)〈e′1[θ], . . . , e′n[θ]〉

Figure 7: Substitution of value parameters into expressions e[θ], deadline expressions d[θ], and
clauses c[θ]; and substitution of party parameters into clauses c〈θ〉.

substitutions of party parameters. Formally, a (value) substitution is an element
of the set V ⇀fin

⋃
t∈T JtK. A party substitution is a substitution having P as the

codomain. Hence, party substitutions are special cases of value substitutions.
In Figure 7, we define two types of applications of substitutions to CSL con-

structs: substitutions of value parameters in (deadline) expressions and clauses,
denoted e[θ], d[θ], and c[θ], respectively, where θ is a substitution; and substi-
tution of party parameters in clauses, denoted c〈θ〉, where θ is a party substi-
tution. We write c[v/x] for the application on clause c of the substitution that
maps x to v. Also, c[~v/~x] = c[v1/x1] . . . [vn/xn] for vectors ~v = (v1, . . . , vn) and
~x = (x1, . . . , xn). Finally, we abuse notation by interpreting vectors of variables
as sets in Figure 7.

22

The following lemma shows that the substitutions defined in Figure 7 fulfil
the expected properties with respect to the type system. Moreover, party pa-
rameters are typed using relevance typing [21], that is parametrised parties are
used at least once in the body of a template definition.

Lemma 9. Consider a well-typed expression Γ ` e : t, a well-typed deadline
expression Γ ` d : Deadline, and a well-typed clause ∆,Λ,Γ ` c : Clause〈P 〉.
For any substitution θ such that θ(x) ∈ JΓ(x)K for all x ∈ dom(θ) ∩ dom(Γ), it
holds that

Γ′ ` e[θ] : t,

Γ′ ` d[θ] : Deadline,

∆,Λ,Γ′ ` c[θ] : Clause〈P 〉,

where Γ′ = Γ|dom(Γ)\dom(θ). Moreover, for any party substitution θ, it holds that

∆,Λ \ dom(θ),Γ ` c〈θ〉 : Clause〈P ∪ {p | θ(x) = p, x ∈ dom(Λ) ∩ dom(θ)}〉.

Proof. The first typing judgement (that is Γ′ ` e[θ] : t) follows easily by induc-
tion on the typing derivation Γ ` e : t, and the second judgement then follows
immediately. The third judgement follows by induction on the typing derivation
∆,Λ,Γ ` c : Clause〈P 〉, and the same goes for the fourth judgement.

The reduction semantics for well-formed specifications is presented in Fig-
ure 8. The reduction relation for clauses has the form D, τ ` c ε−→ c, where D
is a set of template definitions, τ is the time of the last update to the contract
(initially the starting time), c is the clause to reduce, ε is the event that takes
place, and c is the residue. A residue c is either a clause, representing the
remaining obligations, or a breach of contract.

The second, third, and fourth rules describe the three different situations
for obligations: (1) either the event fulfils the obligation, and the residue is
determined by the continuation clause; or (2) the event does not fulfil the obli-
gation by missing the deadline, in which case a breach of contract takes place;
or (3) the event does not fulfil the obligation, but nor does it violate the dead-
line, so the obligation—with updated deadlines—remains the residue. The three
rules for external choice are similar, except that in the second case the residue
is determined by the alternative branch of the choice, rather than a breach of
contract.

It follows from the operational semantics that a clause can only be breached
by missing a deadline, and the time of breach is determined by the deadline
itself. However, we need to take into account that deadlines may be negative, in
which case we define the time of breach as the time of the last update. Similarly,
we need to take negative deadlines into account for external choices. Note that
in the rules, clauses are fully instantiated, that is they have no free variables
(for the straightforward definition of free variables): the type system guarantees
that well-typed clauses are fully instantiated, as we shall see shortly.

23

D, τ ` c ε−→ c
D, τ ` fulfilment

ε−→ fulfilment

e[~v/~x] ⇓ true d ⇓τ (τ1, τ2) τ1 ≤ τ ′ ≤ τ2

D, τ ` 〈p〉 k(~x) where e due d remaining z then c
(τ ′,k(~v))−−−−−−→ c[~v/~x, τ2 − τ ′/z]

d ⇓τ (τ1, τ2) τ ′ > τ2

D, τ ` 〈p〉 k(~x) where e due d remaining z then c
(τ ′,k′(~v))−−−−−−−→ (max(τ, τ2), {p})

d ⇓τ (τ1, τ2)
τ ′ ≤ τ2 τ ′ < τ1 or k′ 6= k or e[~v/~x] ⇓ false d′ = after τ1 − τ ′ within τ2 − τ1

D, τ ` 〈p〉 k(~x) where e due d remaining z then c
(τ ′,k′(~v))−−−−−−−→

〈p〉 k(~x) where e due d′ remaining z then c

e[~v/~x] ⇓ true d ⇓τ (τ1, τ2) τ1 ≤ τ ′ ≤ τ2

D, τ ` if k(~x) where e due d remaining z then c1 else c2
(τ ′,k(~v))−−−−−−→ c1[~v/~x, τ2 − τ ′/z]

d ⇓τ (τ1, τ2) τ ′ > τ2 D,max(τ, τ2) ` c2
(τ ′,k′(~v))−−−−−−−→ c

D, τ ` if k(~x) where e due d remaining z then c1 else c2
(τ ′,k′(~v))−−−−−−−→ c

d ⇓τ (τ1, τ2)
τ ′ ≤ τ2 τ ′ < τ1 or k′ 6= k or e[~v/~x] ⇓ false d′ = after τ1 − τ ′ within τ2 − τ1

D, τ ` if k(~x) where e due d remaining z then c1 else c2
(τ ′,k′(~v))−−−−−−−→

if k(~x) where e due d′ remaining z then c1 else c2

D, τ ` c1
ε−→ c1 D, τ ` c2

ε−→ c2

D, τ ` c1 and c2
ε−→ c1 ? c2

D, τ ` c1
ε−→ c1 D, τ ` c2

ε−→ c2

D, τ ` c1 or c2
ε−→ c1 > c2

e ⇓ true D, τ ` c1
ε−→ c1

D, τ ` if e then c1 else c2
ε−→ c1

e ⇓ false D, τ ` c2
ε−→ c2

D, τ ` if e then c1 else c2
ε−→ c2

~e ⇓ ~v (f(~x)〈~y〉 = c) ∈ D D, τ ` c[~v/~x, ~p/~y]〈~p/~y〉 ε−→ c

D, τ ` f(~e)〈~p〉 ε−→ c

s
ε−→ s D, τ ` c ε−→ (τ ′, B)

letrec D in c starting τ
ε−→ (τ ′, B)

D, τ ` c ε−→ c′ ts(ε) = τ ′

letrec D in c starting τ
ε−→ letrec D in c′ starting τ ′

Figure 8: Reduction semantics for CSL clauses c and specifications s.

24

The semantics of clause conjunction and clause disjunction use lifted versions
of the corresponding verdict compositions, which are defined by:

c1 ? c2 =

c1 and c2 if c1 = c1 and c2 = c2,

(τ1, B1) if c1 = (τ1, B1) and c2 = c2,

(τ2, B2) if c2 = (τ2, B2) and c1 = c1,

(τ1, B1) ∧ (τ2, B2) if c1 = (τ1, B1) and c2 = (τ2, B2),

and

c1 > c2 =

c1 or c2 if c1 = c1 and c2 = c2,

c1 if c1 = c1 and c2 = (τ2, B2),

c2 if c2 = c2 and c1 = (τ1, B1),

(τ1, B1) ∨ (τ2, B2) if c1 = (τ1, B1) and c2 = (τ2, B2).

The reduction semantics is lifted to specifications s
ε−→ s, where the residue s

is either a residual specification or a breach of contract. Note that the time of
the last update (that is event) is recorded in the residual specification.

The following theorem shows that the semantics satisfies type preserva-
tion [22]. Moreover, the set of parties in the typing of the residual specification
may decrease, matching the intuition that parties may become free of obligations
during the execution of a contract.

Theorem 10. Let s be a well-formed specification involving parties P and s′

be a specification. If s
ε−→ s′ then s′ is a well-formed specification involving

parties P ′, for some P ′ ⊆ P .

Proof. The proof is deferred to page 37. The proof is by induction on the typing
derivation.

The following theorem shows that the semantics also satisfies the progress
property [22], that is well-formed specifications never get stuck.

Theorem 11. Let s be a well-formed specification with parties P and starting
time τ0. Then for any event ε with ts(ε) ≥ τ0 there is a unique residue s such

that s
ε−→ s. Furthermore, whenever s = (τ,B) then τ0 ≤ τ ≤ ts(ε) and B ⊆ P .

Proof. The proof is deferred to page 40. The proof is by nested induction on
the structure of the immediate unfolding relation and the step derivation.

3.5. Mapping CSL specifications to contracts

The reduction semantics presented in Section 3.4 is event-driven: at the
occurrence of an event, a specification reduces to either a breach of contract
or a residual specification. However, the absence of events is also significant,
because it may imply that the contract execution is considered finished and no
more events are produced. In this case a verdict needs to be associated with the
residual specification. Formally, we associate the verdict ν with a specification s

25

D, τ ` c ↓ ν D, τ ` fulfilment ↓ �

d ⇓τ (τ1, τ2)

D, τ ` 〈p〉 k(~x) where e due d remaining z then c ↓ (max(τ, τ2), {p})

d ⇓τ (τ1, τ2) D,max(τ, τ2) ` c2 ↓ ν2

D, τ ` if k(~x) where e due d remaining z then c1 else c2 ↓ ν2

e ⇓ true D, τ ` c1 ↓ ν1

D, τ ` if e then c1 else c2 ↓ ν1

e ⇓ false D, τ ` c2 ↓ ν2

D, τ ` if e then c1 else c2 ↓ ν2

D, τ ` c1 ↓ ν1 D, τ ` c2 ↓ ν2

D, τ ` c1 and c2 ↓ ν1 ∧ ν2

D, τ ` c1 ↓ ν1 D, τ ` c2 ↓ ν2

D, τ ` c1 or c2 ↓ ν1 ∨ ν2

~e ⇓ ~v f(~x)〈~y〉 = c ∈ D D, τ ` c[~v/~x, ~p/~y]〈~p/~y〉 ↓ ν
D, τ ` f(~e)〈~p〉 ↓ ν

` s ↓ ν D, τ ` c ↓ ν
` letrec D in c starting τ ↓ ν

Figure 9: Verdict ν associated with specification s.

if ` s ↓ ν can be derived using the derivation rules of Figure 9. For any well-
formed specification s, there exists a unique verdict ν associated with s.

We can now associate a verdict with a specification and an event trace by
running the specification on the trace: at each step the specification is reduced
on the current event, until either a breach occurs or there are no more events,
in which case we check if the residual specification is fulfilled according to the
relation in Figure 9. Formally, the function JsK : Trτ0 → V where τ0 is the start
time of s, is defined on finite traces inductively by:

JsK(σ) =

ν if σ = 〈〉 and ` s ↓ ν,
(τ,B) if σ = εσ′ and s

ε−→ (τ,B),

Js′K(σ′) if σ = εσ′ and s
ε−→ s′,

and on infinite traces by the (unique) extension in Lemma 3.
The following theorem shows that CSL specifications indeed represent con-

tracts in the sense of Definition 1.

Theorem 12. Let s be a well-formed specification with parties P and start
time τ0. Then JsK is a contract between parties P starting at time τ0.

Proof. The proof is deferred to page 43. The proof follows by induction on the
length of the trace using Theorems 10 and 11.

Corollary 13. Let s = letrec D in c starting τ be a well-formed specification.

26

Then

JsK =

c� if c = fulfilment,

Js1K ∧ Js2K if c = c1 and c2,

Js1K ∨ Js2K if c = c1 or c2,

where si = letrec D in ci starting τ .

Proof. For finite traces the proofs follow by induction on the trace length, similar
to the proof of Theorem 12. For infinite traces the results then follow from the
uniqueness result of Lemma 3.

The theorem and its corollary show that CSL enjoys the principles under-
pinning the contract model defined in Section 2, that is deterministic blame
assignment and compositionality. Moreover, the algebraic properties stated in
Corollary 7 carry over to CSL.

3.6. Monitoring CSL specifications

The reduction semantics presented above gives rise to an incremental run-
time monitoring algorithm for CSL specifications. The main ingredient of the
monitor is the function mon : S× Trτ0fin → (V! ∪ V?)× S defined by

mon(s, σ) =

(ν?, s) if σ = 〈〉 and ` s ↓ ν,
(ν!, s

′) if σ = σ′ε and mon(s, σ′) = (ν!, s
′),

((τ,B)!, s
′) if σ = σ′ε and mon(s, σ′) = (ν?, s

′)

and s′
ε−→ (τ,B),

(ν?, s
′′) if σ = σ′ε and mon(s, σ′) = (ν′?, s

′)

and s′
ε−→ s′′ and ` s′′ ↓ ν,

where S is the set of all well-formed CSL specifications.
The monitor is invoked whenever an event occurs, provided that the monitor

has not already output a final verdict. Between invocations, it only needs to
remember the previous result, that is in order to process the event ε, after the
events σ have happened, we only need the previous result mon(s, σ) in order to
compute the new result mon(s, σε).

The function mon is not a run-time monitor in the sense of Definition 6.
However, it is very close to one, as shown by the following theorem, which
follows directly from Theorem 12.

Theorem 14. Let s be a specification with starting time τ0. The function mon is
computable and for any trace σ ∈ Trτ0fin, verdict ν?, and residual specification s′,
with mon(s, σ) = (ν?, s

′), it holds that

(1) if ν? = (τ,B)! then JsK(σ′) = (τ,B) for all σ′ with σ < σ′,

(2) if ν? = �? then JsK(σ) = �, and

27

(3) if ν? = (τ,B)? then JsK(σ) = (τ,B) and τ ≥ end(σ).

The result above shows that our run-time monitor satisfies impartiality (1),
however it does not always satisfy anticipation. For instance, if the body of a
specification is fulfilment, then our monitor always outputs �?, even if anticipa-
tion requires that it outputs �!. Building a run-time monitor which guarantees
anticipation is hard, because the expression language can “hide” anticipated
verdicts. Consider for instance the clauses

c1 = 〈p〉 k(x) where e due d remaining z then c,

c2 = if k(x) where e due d remaining z then c else fulfilment,

where e is some expression for which e[v/x] ⇓ false for all values v, for instance
e = x > 0 ∧ x < 0. The contract represented by c1 is always breached, while
the one represented by c2 is never breached. Hence, in order to guarantee
anticipation, one first needs to decide satisfiability for the expression language.

Example 6. We demonstrate the reduction semantics and run-time monitor
using the CSL specification in Figure 3. As in Example 4, we consider the trace
〈ε1, ε3, ε4〉, where the events are as in the example, except that they use concrete
actions instead of abstract actions:

ε1 = (2011-01-01,Deliver(Seller, Buyer, “Laser printer”))

ε3 = (2011-01-01,Payment(Buyer, Seller, 100))

ε4 = (2011-01-10,Payment(Buyer, Seller, 100))

We first define the specifications si, with i ∈ {0, 1, 2, 3}:
si = letrec sale(deliveryDeadline, goods, payment)〈buyer, seller〉= c

in ci[θ] starting 2011-01-01

where θ(deliveryDeadline) = 0, θ(goods) = “Laser printer”, θ(payment) = 200,
θ(buyer) = Buyer, θ(seller) = Seller, and

c0 = sale(0, “Laser printer”, 200)〈Buyer, Seller〉
c = 〈seller〉 Deliver(s,r,g) where s = seller ∧ r = buyer ∧ g = goods

due within deliveryDeadline
then c1

c1 = 〈buyer〉 Payment(s,r,a) where s = buyer ∧ r = seller ∧ a = payment/2
due immediately

then c2

c2 = (〈buyer〉 Payment(s,r,a) where s = buyer ∧ r = seller ∧ a = payment/2
due within 30D

or
〈buyer〉 Payment(s,r,a) where s = buyer ∧ r = seller ∧ a = (payment/2) ∗ 110/100

due within 14D after 30D)
and
if Return(s,r,g) where s = buyer ∧ r = seller ∧ g = goods

due within 14D
then
〈seller〉 Payment(s,r,a) where s = seller ∧ r = buyer ∧ a = payment due within 7D

28

Paragraph 1. The following agreement is enacted on 2011-01-01, and is valid for 5 years.

Paragraph 2. The Employee agrees not to disclose any information regarding the work
carried out under the Employer, as stipulated in Paragraph 3.

Paragraph 3. (Omitted.)

− � −
letrec nda()〈employee〉 =
if Disclose(e) where e = employee due within 5Y then
〈employee〉 Unfulfillable where false due immediately

in
nda()〈Employee〉 starting 2011-01-01

Figure 10: A non-disclosure agreement (paper version top, CSL version bottom).

c3 = if Return(s,r,g) where s = buyer ∧ r = seller ∧ g = goods
due after −9D within 5D

then
〈seller〉 Payment(s,r,a) where s = seller ∧ r = buyer ∧ a = payment due within 7D

The specification in Figure 3 equals s0. We have s0
ε1−→ s1

ε3−→ s2
ε4−→ s3. Note

that the relative deadline in c3 for returning the goods is shifted with regard
to the corresponding relative deadline in c2, due to the passing of time. The
incremental output of the monitor on the trace 〈ε1, ε3, ε4〉 is as follows:

mon(s0, 〈〉) = ((2011-01-01, {Seller})?, s0),

mon(s0, 〈ε1〉) = ((2011-01-01, {Buyer})?, s1),

mon(s0, 〈ε1, ε3〉) = ((2011-02-14, {Buyer})?, s2),

mon(s0, 〈ε1, ε3, ε4〉) = (�?, s3).

Finally, remark that on all traces, except the last one, the value of mon coincides
with the value of the run-time monitor of Definition 4.

3.7. Contract examples

We have seen one example of a realistic contract specified in CSL, namely the
sales contract in Figure 1. The example illustrates how dependencies between
paragraphs are realised as continuation clauses, how obligations and permissions
are represented, and how contract disjunction enables choices. In this section we
provide further specification examples, which illustrate prohibitions, potentially
infinite contracts, linear treatment of events (as in linear logic [23]), and a more
involved application of arithmetic expressions.

Prohibitions. Prohibitions are not built-in to CSL, yet it is possible to express
prohibitions using external choices and obligations. Consider the non-disclosure
agreement in Figure 10 (top). The agreement is formalised in Figure 10 (bot-
tom), using a signature that includes the action kinds {Disclose,Unfulfillable} ⊆
K, with types ar(Disclose) = 〈Party〉 and ar(Unfulfillable) = 〈〉. We use the ac-
tion kind Unfulfillable to point out that the corresponding obligation cannot

29

Paragraph 1. The term of this lease is for 6 months, beginning on 2011-01-01. At the
expiration of said term, the lease will automatically be renewed for a period of one month
unless either party (Landlord or Tenant) notifies the other of its intention to terminate the
lease at least one month before its expiration date.

Paragraph 2. The lease is for 1 apartment, which is provided by Landlord throughout the
term.

Paragraph 3. Tenant agrees to pay the amount of e1000 per month, each payment due on
the 7th day of each month.

− � −
letrec lease(property, leaseStart, leasePeriod, leasePeriods, payment, payDeadline,

terminationRequested)〈lessor, lessee〉 =
if leasePeriods ≤ 0 ∧ terminationRequested then

fulfilment
else
〈lessee〉 Payment(s,r,a) where s = lessee ∧ r = lessor ∧ a = payment

due immediately after leaseStart + payDeadline
and
〈lessor〉 Provide(s,r,p,l) where s = lessor ∧ r = lessee ∧ p = property ∧ l = leasePeriod

due immediately after leaseStart
then if terminationRequested then

lease(property, leasePeriod, leasePeriod, leasePeriods − 1, payment,
payDeadline, true)〈lessor, lessee〉

else if ReqTermination(s) where s = lessor ∨ s = lessee
due within leasePeriod remaining z

then
lease(property, z, leasePeriod, min(1,leasePeriods − 1), payment,

payDeadline, true)〈lessor, lessee〉
else

lease(property, 0, leasePeriod, leasePeriods − 1, payment,
payDeadline, false)〈lessor, lessee〉

in
lease(“Apartment”, 0, 1M, 6, 1000, 7D, false)〈Landlord, Tenant〉 starting 2011-01-01

Figure 11: A lease agreement (paper version top, CSL version bottom).

be fulfilled. Besides the technique for encoding prohibitions, the example illus-
trates an important point, namely that we do not model how parties agree that
events have taken place. In the agreement above, a dispute is more likely to in-
volve proving (or disproving) disclosure of information, rather than interpreting
whether disclosing information is allowed or not.

Lease agreement. The next example is a lease agreement presented in Fig-
ure 11 (top). The contract is formalised in Figure 11 (bottom), using a signature
that includes the action kinds {Payment,ReqTermination,Provide} ⊆ K, with
types ar(Payment) = 〈Party,Party, Int〉, ar(ReqTermination) = 〈Party〉, and
ar(Provide) = 〈Party,Party,String, Int〉. We assume that the expression lan-
guage has been extended with a function for calculating the minimum of two
integers.

The example demonstrates how recursive template definitions enable poten-
tially infinite contracts: each lease period is guaranteed to be executed at least
6 times, but there is no a priori upper bound on the number of iterations. The

30

Paragraph 1. The master agreement between Vendor and Customer is for 1000 printers,
with a unit price of e100. The agreement is valid for one year, starting 2011-01-01.

Paragraph 2. The customer may at any time order an amount of printers (with the total
not exceeding the threshold of 1000), after which the Vendor must deliver the goods before
the maximum of (i) 14 days, or (ii) the number of ordered goods divided by ten days.

Paragraph 3. After delivering the goods, Vendor may invoice the Customer within 1 month,
after which the goods must be paid for by Customer within 14 days.

− � −
letrec master(goods, amount, terminationDeadline, payment, invoiceDeadline,

paymentDeadline, id)〈vendor, customer〉 =
if amount = 0 then

fulfilment
else if Request(s,r,n,g) where s = customer ∧ r = vendor ∧ n ≤ amount ∧

n > 0 ∧ g = goods
due within terminationDeadline remaining z

then
sale(n, g, n∗payment, max(14D,n∗24∗60∗6),

invoiceDeadline, paymentDeadline, id)〈vendor, customer〉
and
master(goods, amount − n, z, payment,

invoiceDeadline, paymentDeadline, id + 1)〈vendor, customer〉

sale(number, goods, payment, deliveryDeadline, invoiceDeadline, paymentDeadline, id)
〈seller, buyer〉 =

〈seller〉 Deliver(s,r,n,g,i)
where s = seller ∧ r = buyer ∧ n = number ∧ g = goods ∧ i = id
due within deliveryDeadline

then
if IssueInvoice(s,r,i) where s = seller ∧ r = buyer ∧ i = id

due within invoiceDeadline
then
〈buyer〉 Payment(s,r,a,i) where s = buyer ∧ r = seller ∧ a = payment ∧ i = id

due within paymentDeadline
in
master(“Printer”, 1000, 1Y, 100, 1M, 14D, 0)〈Vendor, Customer〉 starting 2011-01-01

Figure 12: Master sales agreement (paper version top, CSL version bottom).

example also illustrates the usage of the remaining construct, which is needed
in order to determine the start of the next lease period, when one of the parties
requests a termination.

Master sales agreement. Next we consider a master sales agreement in Fig-
ure 12 (top). The contract is formalised in Figure 12 (bottom), using a signature
that includes the action kinds {Request, IssueInvoice,Deliver,Payment} ⊆ K,
with types ar(Request) = 〈Party, Party, Int, String〉, ar(IssueInvoice) = 〈Party,
Party, Int〉, ar(Deliver) = 〈Party, Party, Int, String, Int〉, and ar(Payment) =
〈Party, Party, Int, Int〉. We assume that the expression language has been
extended with a function for calculating the maximum of two integers.

The encoding illustrates the usage of multiple template definitions and that
deadlines can be calculated dynamically based on previous events. Moreover, the

31

Paragraph 1. Buyer agrees to pay to Seller the total sum e10000, in the manner following:

Paragraph 2. e500 is to be paid at closing, and the remaining balance of e9500 shall be
paid as follows:

Paragraph 3. e500 or more per month on the first day of each and every month, and
continuing until the entire balance, including both principal and interest, shall be paid in full;
provided, however, that the entire balance due plus accrued interest and any other amounts
due hereunder shall be paid in full on or before 24 months.

Paragraph 4. Monthly payments shall include both principle and interest with interest at
the rate of 10%, computed monthly on the remaining balance from time to time unpaid.

− � −
letrec instalments(balance, instalment, payDeadline, start, end, frequency,

rate, closingPayment, seller)〈buyer〉 =
if balance ≤ 0 then
〈buyer〉 Payment(s,r,a) where s = buyer ∧ r = seller ∧ a = closingPayment

due within end
else if end ≤ start then
〈buyer〉 Payment(s,r,a) where s = buyer ∧ r = seller ∧ a = balance + closingPayment

due within end
else
〈buyer〉 Payment(s,r,a) where s = buyer ∧ r = seller ∧ a ≥ min(balance,instalment) ∧

a ≤ balance
due within payDeadline after start remaining z

then
instalments(((100 + rate) ∗ (balance − a)) / 100, instalment,

payDeadline, frequency − payDeadline + z,
end − start − payDeadline + z,
frequency, rate, closingPayment, seller)〈buyer〉

in
instalments(10000, 500, 1D, 0, 24M, 1M, 10, 500, Seller)〈Buyer〉 starting 2011-01-01

Figure 13: Instalment sale (paper version top, CSL version bottom).

action kinds pertaining to each individual sale contain identifiers that are needed
in order to distinguish potentially identical payments, deliveries, or invoices
when there are simultaneous orders.

Instalment sale. The last contract we consider is an instalment sale in Fig-
ure 13 (top). For simplicity, we have only included the payment part of the
contract, and not sellers obligation to deliver goods. The CSL formalisation
is presented in Figure 13 (bottom), and it shows a more involved application
of in-place arithmetic expressions, namely calculation of the remaining balance
after each instalment has been payed. Note that contract termination not only
depends on the initial 24 months period, but that the contract may end earlier,
in case the remaining balance is fully payed.

4. Related work

Formal specification of contracts and automatic reasoning about contracts
has drawn interest from a wide variety of research areas within computer sci-
ence, going back to the late eighties with the pioneering work by Lee [10].

32

Contract formalisms typically fall into three categories: (deontic) logic based
formalisms [9–11], event-condition-action based formalisms [8, 24], and trace
based formalisms [6, 19]. The logic based approaches mainly focus on declara-
tive specification of contracts, and on (meta) reasoning, such as decidability of
the logic. On the other hand, the event-condition-action and trace based models
focus mainly on contract execution. The latter approach takes a more exten-
sional view of contracts, that is contracts are denoted by the set of traces they
accept. Other approaches to contract modelling include combinator libraries [5],
defeasible reasoning [25–27], commitment graphs, that is graph theoretic repre-
sentations of responsibility between parties [16, 28], finite state machines [15],
and more informal frameworks [7, 29–31]. Common to all approaches is the
goal of modelling (electronic) contracts in general, except for Peyton-Jones and
Eber [5], Andersen et al. [6], and Tan and Thoen [25] who specifically consider
financial contracts, commercial contracts, and trade contracts, respectively.

Existing contract frameworks tend to focus either on contract execution
models [15, 16, 28, 31], or on concrete specification languages [5–11, 25, 27, 30],
rather than considering both an abstract semantic model and a specification
language. Consequently, these frameworks either lack a language for specifying
contracts, or they lack an operational interpretation—with the exception of [6,
11], who however do not characterise contracts abstractly in terms of their
semantic models. In contrast, we consider both an abstract execution model and
a specification language. Besides giving a formal operational interpretation to
specifications, this makes it possible to consider different specification languages
for different contract domains, and still compare their semantics in terms of
the abstract model. Moreover, by mapping a specification language into our
model, deterministic blame assignment is guaranteed, algebraic properties of
conjunction and disjunction follow automatically, and run-time monitoring has
a well-defined meaning.

Compared with the previous contract execution models [15, 16, 28, 31], our
abstract contract model relies on fewer high-level concepts. For instance, the ex-
isting models rely on concepts such as deadlines [16, 28], deontic modalities [15]
and logical formulae [31], which are all definable within our model.

Compared with the previous contract specification languages [5–11, 25, 27,
30], ours mainly distinguishes itself by incorporating deterministic blame as-
signment. Besides, existing languages all fall short of other important features.
History sensitive commitments, that is commitments which depend on what has
happened in the past, are only supported in few languages [6, 9]. History sensi-
tivity is typically not supported because actions are modelled as propositional
variables, hence actions cannot carry values. Only the language of Andersen et
al. [6] has support for (recursive) contract templates; we have adapted their con-
struction to CSL. Furthermore, potentially infinite contracts are only supported
in few languages [6, 10, 11]. Finally, some languages lack absolute temporal con-
straints [11, 26, 27], and instead consider only relative temporal constraints.

The importance of monitoring contracts is widely recognised [6, 8, 9, 11, 15,
16, 28], yet few authors provide a formal, operational semantics for contract
execution [6, 11]. Such a semantics is a prerequisite for showing that a monitor

33

achieves its goals. Furthermore, deterministic blame assignment is crucial for
run-time monitoring, a feature which—to the best of our knowledge—has only
previously been recognised by Xu and Jeusfeld [28]. However, Xu and Jeusfeld
only consider monitoring and blame assignment for their particular specification
language, while we also define these notions in a general and abstract setting.

Compositional specification of contracts is traditionally obtained by means
of conjunction and disjunction [5, 6, 9, 11]. Besides, Andersen et al. [6] present
a language which supports linear conjunction [23]. Despite the fact that com-
positionality of contracts has previously been considered, there has been no
previous treatment of the effect of compositionality on blame assignment, and
in particular on how disjunctions involving different parties may give rise to
nondeterminism.

Standard deontic logic (SDL) [13]—the logic of obligations, permissions, and
prohibitions—has inspired existing contract formalisms [9–11] due to the ap-
pealing similarities with concepts from contracts. Yet the possible worlds se-
mantics [32] of deontic logic lacks an operational interpretation, which in our
view makes SDL inappropriate as a basis for formalising contracts. To alleviate
this weakness, Prisacariu and Schneider [11] consider a restricted form of deon-
tic modalities with ought-to-do rather than ought-to-be, meaning that deontic
modalities are only to specify what should happen (“Seller ought to deliver”),
and not what should be the general state of affairs (“It ought to be the case
that Seller delivers”). The restriction to ought-to-do statements gives rise to an
alternative µ-calculus semantics based on actions. We also restrict contracts to
ought-to-do statements.

It has been argued that contrary-to-duty obligations [17]—also a SDL related
concept—are crucial for contracts as well [7, 9, 11, 31]. Although we recognise
the importance of reparation activities in contracts, we instead consider them
ordinary choices, rather than choices with an implicit agreement to conform
first and foremost with primary objectives. In consideration hereof, we avoid
the philosophical considerations of contrary-to-duty [9, 17], and the treatment of
intermediate violations generated by failing to comply with primary objectives.

5. Conclusions

In this article we have presented a novel, trace-based model for multiparty
contracts with blame assignment. We have illustrated that high-level contract
concepts such as obligations, deadlines, and reparation clauses are representable
within our model. This shows that our model is well-suited for representing
real-world contracts. For the purpose of writing contracts, we have given a
contract specification language, which enjoys the principle of blame assignment
by inheritance from the abstract model, and which is amenable to incremental
run-time monitoring.

We plan to use CSL in case studies to further evaluate its applicability for
formalising contracts and monitoring their executions. Here, we expect that the
expression language of CSL needs to be extended, while hopefully the clause

34

language does not require additions. The extensions to the expression language
should be straightforward.

A restriction in our model is that blame is deterministically assigned to
contract parties in case of breach of contract. Although deterministic blame
assignment is a desired feature, not all real-world contracts have this feature.
In future work, we plan to extend our model such that verdicts can be nonde-
terministically associated with traces. Such an extension is also motivated by
the objective for obtaining less restrictive operators for composing contracts.

Future work also includes contract analysis. Such an analysis can be based
on our abstract contract model or on the reduction semantics of CSL. For in-
stance, an immediately implementable online analysis based on the reduction
semantics is to simulate the outcome of possible future events. Together with
the information on who is responsible for an event, this is useful to avoid a
breach of contract and to issue reminders of deadlines. The monitoring algo-
rithm partly does this already by outputting potential breaches which represent
upcoming deadlines. A further goal of such an online analysis is to monitor con-
tract execution with full anticipation. However, in order to effectively perform
such monitoring of CSL specifications, it may be necessary to restrict oneself to
fragments of CSL. Other contract analyses are (1) satisfiability, that is whether
a contract can be fulfilled at all, (2) satisfiability with respect to a particular
party, that is whether a party can avoid breaching a contract in which it is
involved, (3) contract valuation, that is what is the expected value of a con-
tract for a given party, and (4) contract entailment, that is whether fulfilling
a contract entails the fulfilment of another contract. The last analysis has ap-
plications for instance in checking contract conformance with regulations, when
regulations are themselves formalised as contracts.

Acknowledgements. The authors thank the participants of the FLACOS 2010
workshop for providing valuable input to an early state of this work. The
first author would also like to thank David Basin for the invitation to visit his
research group at ETH Zurich in the first half of 2010, during which foundations
of the work presented in this article were laid.

References

[1] V. Patel, The Contract Management Benchmark Report: Procurement
Contracts, Tech. rep., Aberdeen Group, Boston, MA, USA (2006).

[2] V. Patel, C. J. Dwyer, Contract Lifecycle Management and the CFO: Op-
timizing Revenues and Capturing Savings, Tech. rep., Aberdeen Group,
Boston, MA, USA (2007).

[3] Microsoft Dynamics NAV, http://www.microsoft.com/en-us/

dynamics/products/nav-overview.aspx (2011).

[4] Microsoft Dynamics AX, http://www.microsoft.com/en-us/dynamics/
products/ax-overview.aspx (2011).

35

http://www.microsoft.com/en-us/dynamics/products/nav-overview.aspx
http://www.microsoft.com/en-us/dynamics/products/nav-overview.aspx
http://www.microsoft.com/en-us/dynamics/products/ax-overview.aspx
http://www.microsoft.com/en-us/dynamics/products/ax-overview.aspx

[5] S. Peyton Jones, J.-M. Eber, How to write a financial contract, in: The
Fun of Programming, Palgrave Macmillan Ltd., London, United Kingdom,
2003, pp. 105–130.

[6] J. Andersen, E. Elsborg, F. Henglein, J. Simonsen, C. Stefansen, Com-
positional specification of commercial contracts, International Journal on
Software Tools for Technology Transfer (STTT) 8 (2006) 485–516.

[7] A. Boulmakoul, M. Sallé, Integrated contract management, Tech. Rep.
HPL-2002-183, HP Laboratories Bristol, Bristol, United Kingdom (2002).

[8] A. Goodchild, C. Herring, Z. Milosevic, Business Contracts for B2B, in:
Proceedings of the CAiSE 2000 Workshop on Infrastructure for Dynamic
Business-to-Business Service Outsourcing (ISDO), 2000, pp. 63–74.

[9] G. Governatori, Z. Milosevic, A Formal Analysis of a Business Contract
Language, International Journal of Cooperative Information Systems (IJ-
CIS) 15 (4) (2006) 659–685.

[10] R. M. Lee, A logic model for electronic contracting, Decision Support Sys-
tems 4 (1) (1988) 27–44.

[11] C. Prisacariu, G. Schneider, A Formal Language for Electronic Contracts,
in: Formal Methods for Open Object-Based Distributed Systems, Springer
Berlin / Heidelberg, 2007, pp. 174–189.

[12] G. Pace, G. Schneider, Challenges in the Specification of Full Contracts,
in: Integrated Formal Methods, Springer Berlin / Heidelberg, 2009, pp.
292–306.

[13] G. H. von Wright, Deontic Logic, Mind 60 (237) (1951) 1–15.

[14] M. Leucker, C. Schallhart, A brief account of runtime verification, Journal
of Logic and Algebraic Programming 78 (5) (2009) 293–303.

[15] C. Molina-Jimenez, S. Shrivastava, E. Solaiman, J. Warne, Run-time mon-
itoring and enforcement of electronic contracts, Electronic Commerce Re-
search and Applications 3 (2) (2004) 108–125.

[16] L. Xu, A Multi-party Contract Model, SIGecom Exchanges 5 (2004) 13–23.

[17] H. Prakken, M. Sergot, Contrary-to-duty obligations, Studia Logica 57
(1996) 91–115.

[18] J. W. Forrester, Gentle Murder, or the Adverbial Samaritan, The Journal
of Philosophy 81 (4) (1984) 193–197.

[19] M. Kyas, C. Prisacariu, G. Schneider, Run-Time Monitoring of Elec-
tronic Contracts, in: Automated Technology for Verification and Analysis,
Springer Berlin / Heidelberg, 2008, pp. 397–407.

36

[20] B. Alpern, F. B. Schneider, Defining liveness, Information Processing Let-
ters 21 (4) (1985) 181–185.

[21] B. C. Pierce (Ed.), Advanced Topics in Types and Programming Lan-
guages, The MIT Press, 2005.

[22] B. C. Pierce, Types and Programming Languages, The MIT Press, 2002.

[23] J.-Y. Girard, Linear Logic, Theoretical Computer Science 50 (1987) 1–102.

[24] P. F. Linington, Z. Milosevic, J. Cole, S. Gibson, S. Kulkarni, S. Neal, A
unified behavioural model and a contract language for extended enterprise,
Data & Knowledge Engineering 51 (1) (2004) 5–29.

[25] Y.-H. Tan, W. Thoen, INCAS: a legal expert system for contract terms in
electronic commerce, Decision Support Systems 29 (4) (2000) 389–411.

[26] G. Governatori, Representing Business Contracts in RuleML, International
Journal of Cooperative Information Systems (IJCIS) 14 (2-3) (2005) 181–
216.

[27] G. Governatori, D. H. Pham, DR-CONTRACT: an architecture for e-
contracts in defeasible logic, International Journal of Business Process In-
tegration and Management 4 (3) (2009) 187–199.

[28] L. Xu, M. A. Jeusfeld, Pro-active Monitoring of Electronic Contracts, in:
Advanced Information Systems Engineering, Springer Berlin / Heidelberg,
2003, pp. 584–600.

[29] H. Weigand, L. Xu, Contracts in E-Commerce, in: Proceedings of the IFIP
TC2/WG2.6 Ninth Working Conference on Database Semantics: Semantic
Issues in E-Commerce Systems, Kluwer, B.V., Deventer, The Netherlands,
The Netherlands, 2003, pp. 3–17.

[30] Content Reference Forum, Contract Expression Language (CEL) – an
UN/CEFACT BCF Compliant Technology (2004).

[31] N. Oren, S. Panagiotidi, J. Vázquez-Salceda, S. Modgil, M. Luck, S. Miles,
Towards a Formalisation of Electronic Contracting Environments, in: Co-
ordination, Organizations, Institutions and Norms in Agent Systems IV,
Springer Berlin / Heidelberg, 2009, pp. 156–171.

[32] J. Woleński, Deontic Logic and Possible Worlds Semantics: A Historical
Sketch, Studia Logica 49 (1990) 273–282.

Appendix A. Additional proof details

Proof of Theorem 10. Assume that s is well-formed with parties P , that is
` s : Contract〈P 〉 and the unfolding relation on the template names of s is

acyclic. Assume furthermore that s
ε−→ s′, where s = letrec D in c starting τ .

37

Then s′ = letrecD in c′ starting ts(ε), for some clause c′, where D, τ ` c ε−→ c′.
We need to show that s′ is well-formed with parties P ′ ⊆ P , which amounts
to showing that ` s′ : Contract〈P ′〉 as the templates of s and s′ are identical.
Since s is well-typed, we have that ∆ ` D and ∆, ∅, ∅ ` c : Clause〈P 〉, so it
suffices to show that ∆, ∅, ∅ ` c′ : Clause〈P ′〉 for some P ′ ⊆ P , again since the
templates do not change. We hence need to show:

If D, τ ` c
ε−→ c′ and ∆, ∅, ∅ ` c : Clause〈P 〉 then ∆, ∅, ∅ ` c′ :

Clause〈P ′〉 for some P ′ ⊆ P .

The proof is by induction on the derivation of D, τ ` c ε−→ c′. We do a case split
on the last derivation rule:

• The last rule is:

D, τ ` fulfilment
ε−→ fulfilment

This case is trivial. (Note that P = P ′ = ∅.)

• The last rule is:

e[~v/~x] ⇓ true d ⇓τ (τ1, τ2) τ1 ≤ τ ′ ≤ τ2

D, τ ` 〈p〉 k(~x) where e due d remaining z then c1
(τ′,k(~v))−−−−−−→ c1[~v/~x, τ2 − τ ′/z]

The typing derivation for c has the form

Γ′ = [~x 7→ ar(k)]
Γ2 = Γ′[z 7→ Int]

∅ ` p : {p}
Γ′ ` e : Bool
∅ ` d : Deadline

(a)︷ ︸︸ ︷
∆, ∅,Γ2 ` c1 : Clause〈P2〉

∆, ∅, ∅ ` 〈p〉 k(~x) where e due d remaining z then c1 : Clause〈{p} ∪ P2〉

It then follows from (a) and Lemma 9 that ∆, ∅, ∅ ` c1[~v/~x, τ2 − τ ′/z] :
Clause〈P2〉, as required. (Note also that P2 ⊆ {p} ∪ P2.)

• The last rule is:

d ⇓τ (τ1, τ2)
τ ′ ≤ τ2 τ ′ < τ1 ∨ k′ 6= k ∨ e[~v/~x] ⇓ false d′ = after τ1 − τ ′ within τ2 − τ1

D, τ ` 〈p〉 k(~x) where e due d remaining z then c1
(τ′,k′(~v))−−−−−−−→

〈p〉 k(~x) where e due d′ remaining z then c1

We only need to show that ∅ ` d′ : Deadline, which follows immediately.

• The last rule is

e[~v/~x] ⇓ true d ⇓τ (τ1, τ2) τ1 ≤ τ ′ ≤ τ2

D, τ ` if k(~x) where e due d remaining z then c1 else c2
(τ′,k(~v))−−−−−−→ c1[~v/~x, τ2 − τ ′/z]

This case is similar to the second case.

• The last rule is:

d ⇓τ (τ1, τ2) τ ′ > τ2

(a)︷ ︸︸ ︷
D,max(τ, τ2) ` c2

(τ′,k′(~v))−−−−−−−→ c
′

D, τ ` if k(~x) where e due d remaining z then c1 else c2
(τ′,k′(~v))−−−−−−−→ c′

The typing derivation for c has the form

38

Γ′ = [~x 7→ ar(k)]
Γ1 = Γ′[z 7→ Int]

Γ′ ` e : Bool
∅ ` d : Deadline

(b)︷ ︸︸ ︷
∆, ∅, ∅ ` c2 : Clause〈P2〉

∆, ∅,Γ1 ` c1 : Clause〈P1〉

∆, ∅, ∅ ` if k(~x) where e due d remaining z then c1 else c2 : Clause〈P1 ∪ P2〉

So the result follows from the induction hypothesis applied to (a) and (b),
and from the fact that P2 ⊆ P1 ∪ P2.

• The last rule is:

d ⇓τ (τ1, τ2)
τ ′ ≤ τ2 τ ′ < τ1 ∨ k′ 6= k ∨ e[~v/~x] ⇓ false d′ = after τ1 − τ ′ within τ2 − τ1

D, τ ` if k(~x) where e due d remaining z then c1 else c2
(τ′,k′(~v))−−−−−−−→

if k(~x) where e due d′ remaining z then c1 else c2

This case is similar to the third case.

• The last rule is:
(a)︷ ︸︸ ︷

D, τ ` c1
ε−→ c

′
1

(b)︷ ︸︸ ︷
D, τ ` c2

ε−→ c
′
2

D, τ ` c1 and c2
ε−→ c′1 and c′2

The typing derivation for c has the form

(c)︷ ︸︸ ︷
∆, ∅, ∅ ` c1 : Clause〈P1〉

(d)︷ ︸︸ ︷
∆, ∅, ∅ ` c2 : Clause〈P2〉

∆, ∅, ∅ ` c1 and c2 : Clause〈P1 ∪ P2〉

So it follows from the induction hypothesis applied to (a) and (c) on one
hand, and (b) and (d) on the other hand, that ∆, ∅, ∅ ` c′1 : Clause〈P ′1〉
and ∆, ∅, ∅ ` c′2 : Clause〈P ′2〉 with P ′1 ⊆ P1 and P ′2 ⊆ P2. Hence it follows
that ∆, ∅, ∅ ` c′1 and c′2 : Clause〈P ′1 ∪ P ′2〉 as required.

• The last rule is:
D, τ ` c1

ε−→ c′1 D, τ ` c2
ε−→ c′2

D, τ ` c1 or c2
ε−→ c′1 or c′

2

This case is similar to the previous case.

• The last rule is:

e ⇓ true

(a)︷ ︸︸ ︷
D, τ ` c1

ε−→ c
′
1

D, τ ` if e then c1 else c2
ε−→ c′1

The typing derivation for c has the form

∅ ` e : Bool

(b)︷ ︸︸ ︷
∆, ∅, ∅ ` c1 : Clause〈P1〉 ∆, ∅, ∅ ` c2 : Clause〈P2〉

∆, ∅, ∅ ` if e then c1 else c2 : Clause〈P1 ∪ P2〉

So it follows from the induction hypothesis applied to (a) and (b) that
∆, ∅, ∅ ` c′1 : Clause〈P ′1〉 with P ′1 ⊆ P1 ⊆ P1 ∪ P2 as required.

39

• The last rule is:
e ⇓ false D, τ ` c2

ε−→ c′2

D, τ ` if e then c1 else c2
ε−→ c′2

This case is similar to the previous case.

• The last rule is:

~e ⇓ ~v (f(~x)〈~y〉 = c′) ∈ D

(a)︷ ︸︸ ︷
D, τ ` c′[~v/~x, ~p/~y]〈~p/~y〉 ε−→ c

′′

D, τ ` f(~e)〈~p〉 ε−→ c′′

The typing derivation for c has the form

∆(f) = (〈t1, . . . , tm〉, n)

(b)︷ ︸︸ ︷
∀i ∈ {1, . . . ,m}. ∅ ` ei : ti ∀i ∈ {1, . . . , n}. ∅ ` pi : {pi}

∆, ∅, ∅ ` f(e1, . . . , em)〈p1, . . . , pn〉 : Clause〈{p1, . . . , pn}〉

and it follows from ∆ ` D that ∆, ~y, [~x 7→ ~t, ~y 7→
−−−→
Party] ` c′ : Clause〈∅〉.

It then follows from Lemma 8 and (b) that vi ∈ JtiK for i = 1, . . . ,m, and
hence via Lemma 9 that ∆, ∅, ∅ ` c′[~v/~x, ~p/~y]〈~p/~y〉 : Clause〈{p1, . . . , pn}〉.
But then the result follows from the induction hypothesis applied to (a).

We need the following two auxiliary lemmas in order to prove Theorem 11.

Lemma 15. Assume that Sub(c) = {c1, . . . , cn}, for clauses c, c1, . . . , cn. Then
Sub(c[θ]) = {c1[θ], . . . , c2[θ]} for all substitutions θ.

Proof. The proof follows by straightforward structural induction on c.

Lemma 16. Let c be a well-typed clause ∆, ∅, ∅ ` c : Clause〈P 〉. Then ∆, ∅, ∅ `
c′ : Clause〈P ′〉 for all c′ ∈ Sub(c) with P ′ ⊆ P .

Proof. The proof follows by straightforward structural induction on c (or, equiv-
alently by induction on the typing derivation of ∆, ∅, ∅ ` c : Clause〈P 〉).

Proof of Theorem 11. We start with a needed definition. We say that a substi-
tution θ is type-preserving with regard to a variable environment Γ, if dom(θ) =
dom(Γ) and θ(x) ∈ JΓ(x)K, for any x ∈ dom(θ).

Let s = letrec D in c0 starting τ0 and assume that s is well-formed with
parties P . That is⇒D is an acyclic relation, ∆ ` D, and ∆, ∅, ∅ ` c0 : Clause〈P 〉
for some template environment ∆.

Assume D = {(f(~x)〈~y〉 = cf) | f ∈ FD} and let CD = {cf | f ∈ FD}. We
associate with c0 a new template name f0 6∈ FD, and let F ′D = FD ∪ {f0} and
cf0 = c0. We extend the relation ⇒D from FD to F ′D as expected: f0 ⇒D g
if and only if there is a subclause g(~e1)〈~e2〉 ∈ Sub(c0). Note that by definition
there is no g ∈ F ′D such that g ⇒D f0. Hence the extended relation ⇒D is still
acyclic. And, as ⇒D is finite, ⇒D is well-founded.

40

We let Pf = ∅ for any f ∈ FD and Pf0 = P . As ∆ ` D, there are
environments Λf , Γf such that ∆,Λf ,Γf ` cf : Clause〈Pf 〉 for all f ∈ F ′D, with
Λf0 = ∅ and Γf0 = ∅. We will show the following claim:

Claim: For any f ∈ F ′D, for any clause c = c′[θ]〈θ′〉, where c′ ∈ Sub(cf), θ′ is
a party substitution with dom(θ′) = Λf , and θ is a type-preserving substitution
with regard to Γf , the following statement holds:

For any event ε with ts(ε) ≥ τ0 there is a unique residue c such that

D, τ0 ` c
ε−→ c. Moreover, if c = (τ,B), then τ0 ≤ τ ≤ ts(ε) and

B ⊆ Pf ∪ rng(θ′).

Note that the result of the theorem then follows from the claim applied to f0,
the clause c0, and empty (party) substitutions θ and θ′.

We proceed by a nested inductive argument: an (outer) well-founded induc-
tion on f and an (inner) structural induction on the clause c.

The following observation will be used in the proof: since ∆,Λf ,Γf ` cf :
Clause〈Pf 〉 it follows from Lemma 9 that ∆, ∅, ∅ ` cf [θ]〈θ′〉 : Clause〈Pf ∪
rng(θ′)〉. Hence from Lemmas 15 and 16 it follows that ∆, ∅, ∅ ` c : Clause〈P ′〉
with P ′ ⊆ Pf ∪ rng(θ′), so we may assume in each case that c is well-typed and
closed.

• c = fulfilment. (This is a base case for the inner induction.) The claim
clearly holds in this case.

• c = 〈p〉 k(~x) where e due d remaining z then c1. Suppose ε = (τ ′, k′(~v))
for some τ ′ ≥ τ0 and some action k′(~v). As c is well-typed, it follows from
Lemma 8 that there is a unique Boolean value b and timestamps τ1, τ2
such that e[~v/~x] ⇓ b and d ⇓τ0 (τ1, τ2). We distinguish three cases:

– k = k′, b = true, and τ1 ≤ τ ′ ≤ τ2. Then take c = c[~v/~x, τ2 − τ ′/z].
– τ ′ > τ2. Take c = (max(τ0, τ2), {p}). Clearly, τ0 ≤ max(τ0, τ2) ≤ τ ′.

And, by the observation above, we know that ∆, ∅, ∅ ` c : Clause〈P ′〉,
where P ′ ⊆ Pf ∪ rng(θ′), hence p ∈ Pf ∪ rng(θ′).

– τ ′ ≤ τ2 and also k 6= k′, b = false, or τ ′ < τ1. Then take c =
〈p〉 k(~x) where e due d′ remaining z then c with d′ = after τ1 −
τ ′ within τ2 − τ1.

In all three cases the residue c satisfies the claim.

• c = if k(~x) where e due d remaining z then c1 else c2. Suppose
that ε = (τ ′, k′(~v)) for some τ ′ ≥ τ0 and some action k′(~v). As c is well-
typed, it follows from Lemma 8 that there is a unique Boolean value b
and timestamps τ1, τ2 such that e[~v/~x] ⇓ b and d ⇓τ0 (τ1, τ2). As for
obligations, we distinguish the same three cases, only the following one
having a different treatment:

41

– τ ′ > τ2. By the definition of immediate subclauses, we have that
c2 ∈ Sub(cf), hence by the inner induction hypothesis on c2 there

is a unique residue c such that D,max(τ0, τ2) ` c2
ε−→ c, and if

c = (τ,B) then max(τ0, τ2) ≤ τ ≤ ts(ε) and B ⊆ P . Clearly, the
residue c satisfies the claim.

• c = c1 and c2. By the definition of immediate subclauses, we have that
c1, c2 ∈ Sub(cf), hence by the inner induction hypothesis on c1 and c2 we

obtain that there are unique residues c1 and c2 such that D, τ0 ` c1
ε−→ c1

and D, τ0 ` c2
ε−→ c2. Moreover, if c1 = (τ1, B1) then τ0 ≤ τ1 ≤ ts(ε) and

B1 ⊆ P , and if c2 = (τ2, B2) then τ0 ≤ τ2 ≤ ts(ε) and B2 ⊆ P .

Let c = c1?c2. If c1 = (τ1, B1) and c2 = (τ2, B2), then it follows from the
definition of verdict conjunction that τ0 ≤ τ ≤ ts(ε) and B ⊆ P , where
c = (τ,B) = (τ1, B1) ∧ (τ2, B2). In the other cases (that is c1 or c2 or
both being clauses) the residue c clearly satisfies the claim.

• c = c1 or c2. This case is similar to the previous one, but in the case
where D, τ0 ` c1

ε−→ (τ1, B1) and D, τ0 ` c2
ε−→ (τ2, B2), we utilise the fact

that s is well-formed to conclude that B1 = B2 = {p}, for some p (due to
the typing rule for clause disjunctions), which guarantees that the verdict
disjunction (τ1, B1) ∨ (τ2, B2) is well-defined.

• c = if e then c1 else c2. As c is well-typed, it follows from Lemma 8 that
there is a unique Boolean value b such that e ⇓ b. By the definition of
immediate subclauses, we have that c1, c2 ∈ Sub(cf), hence by the inner
induction hypothesis on c1 if b = true and on c2 otherwise, the claim
follows directly.

• c = g(~e)〈~p〉. As c is well-typed, it follows from Lemma 8 that there are
unique values ~v such that ~e ⇓ ~v. Moreover, by hypothesis the clause c
is the instantiation of an immediate subclause g(~e1)〈~e2〉 of cf . By the
definition of ⇒D, we have that f ⇒D g. This, together with [~v/~x, ~p/~y]
being a type-preserving substitution with regard to Γg (Lemma 8) and
〈~p/~y〉 being a party substitution, allows us to apply the outer induction
hypothesis on cg[~v/~x, ~p/~y]〈~p/~y〉. The claim then follows directly.

We need the following auxiliary lemma in order to prove Theorem 12.

Lemma 17. Let s be a well-formed specification. Then there exists a unique
verdict ν such that ` s ↓ ν. Moreover, for a breach (τ,B), we have ` s ↓ (τ,B)

if and only if s
ε−→ (τ,B), for all events ε with ts(ε) > τ .

Proof. Existence follows by a nested inductive argument similar to, but much
simpler than the proof of Theorem 11. Uniqueness follows by straightforward
structural induction on c, where s = letrec D in c starting τ . The left to
right implication of the second part of the lemma follows by induction on the
derivation of ` s ↓ (τ,B), while the other implication follows by induction on

the derivation of s
ε−→ (τ,B).

42

Proof of Theorem 12. Let s = letrec D in c starting τ0 be a well-formed
specification with parties P . We then need to show that JsK is a contract between
P starting at time τ0. That is we need to show that JsK is a function from Trτ0

to V, and that it satisfies conditions (1) and (2) of Definition 1.
We first prove by induction on the length of the finite trace σ that: JsK(σ)

is well-defined, that is it exists and it is unique, and if JsK(σ) = (τ,B) then
B ⊆ P , JsK(στ) = (τ,B), and τ ≥ τ0.

Base case: σ = 〈〉. In this case it follows from Lemma 17 that there is a
unique verdict ν such that ` s ↓ ν, and hence JsK(σ) = ν. So assume now that
JsK(σ) = (τ,B). Then since στ = σ we also have that JsK(στ) = (τ,B). Lastly, it

follows from Lemma 17 that s
ε−→ (τ,B), for any event ε with ts(ε) > max(τ, τ0),

and hence from Theorem 11 we have that B ⊆ P and τ ≥ τ0 as required.
Inductive case: σ = εσ′. As s is well-formed and ts(ε) ≥ τ0, it follows from

the progress property (Theorem 11) that there is a unique residue s such that

s
ε−→ s.

• If s = (τ,B) then, also from Theorem 11, we have that B ⊆ P and
τ0 ≤ τ ≤ ts(ε). Now, if ts(ε) = τ then στ = εσ′τ so it follows immediately
that JsK(στ) = (τ,B). So assume that ts(ε) > τ . It then follows from
Lemma 17 that ` s ↓ (τ,B) and hence JsK(στ) = (τ,B) as required.

• If s = s′ then, by the type-preservation property (Theorem 10), s′ is also
well-formed with parties P ′ ⊆ P and s′ has starting time ts(ε). We have
that JsK(σ) = Js′K(σ′), so it then follows from the induction hypothesis
that Js′K(σ′) is well-defined and if Js′K(σ′) = (τ,B) then B ⊆ P ′ ⊆ P ,
Js′K(σ′τ) = (τ,B), and τ0 ≤ ts(ε) ≤ τ .

Now if JsK(σ) = (τ,B) then JsK(εσ′) = Js′K(σ′) = (τ,B) and hence by the
above Js′K(σ′τ) = (τ,B) with τ ≥ ts(ε). But then στ = εσ′τ , and hence by
definition JsK(στ) = Js′K(σ′τ) = (τ,B) as required.

We now show that if JsK(σ) = (τ,B) for some finite trace σ and breach
(τ,B), then JsK(σ′) = (τ,B), for any finite trace σ′ with σ′τ = στ . Let σ′ be a
trace with σ′τ = στ . As shown above, we have JsK(στ) = (τ,B). The proof is by
induction on the length of στ :

Base case: στ = 〈〉. Now σ′τ = 〈〉, so either σ′ = 〈〉 or σ′ = εσ′′, for some
ε and σ′′ with ts(ε) > τ . In the first case the result follows immediately, and
in the second case we have that ` s ↓ (τ,B), hence by Lemma 17 we have that

s
ε−→ (τ,B) from which the result follows.
Inductive case: στ = εσ′′. Now σ′ = εσ′′′ with σ′′ = σ′′′τ , and JsK(στ) =

(τ,B) can happen in two ways:

• s ε−→ (τ,B): In this case we have by definition that JsK(σ′) = JsK(εσ′′′) =
(τ,B).

• s ε−→ s′ and Js′K(σ′′) = (τ,B): In this case we have by definition that
JsK(σ′) = Js′K(σ′′′), and hence the result follows from the induction hy-
pothesis as σ′′ = σ′′′τ .

43

We have now proved that the restriction of JsK on finite traces satisfies the
hypotheses of Lemma 3. We can thus apply the lemma and obtain that JsK is a
contract as per Definition 1.

44

	Introduction
	Trace-based contract model
	Notation and terminology
	Contracts
	Contract conformance on infinite traces
	Contract composition
	Run-time monitoring

	A contract specification language
	CSL syntax
	CSL type system
	Well-formed specifications
	CSL semantics
	Mapping CSL specifications to contracts
	Monitoring CSL specifications
	Contract examples

	Related work
	Conclusions
	Additional proof details

