
Monitoring Events that Carry Data

Klaus Havelund1∗, Giles Reger2, Daniel Thoma3, and Eugen Zălinescu4

1 Jet Propulsion Laboratory, California Inst. of Technology, USA
2 University of Manchester, UK

3 Universität zu Lübeck, Germany,
4 Technische Universität München, Germany

Abstract. Very early runtime verification systems focused on monitoring what
we can refer to as propositional events: just names of events. For this, finite state
machines, standard regular expressions, or propositional temporal logics were
sufficient formalisms for expressing properties. However, in practice there is a
need for monitoring events that in addition carry data arguments. This adds com-
plexity to both the property specification languages, and monitoring algorithms,
which is reflected in the many alternative such approaches suggested in the liter-
ature. This chapter presents five different formalisms and monitoring approaches
that support specifications with data, in order to illustrate the challenges and var-
ious solutions.

Keywords: Runtime verification, data rich events, temporal logic, state machines, rule
systems, stream processing.

1 Introduction

Runtime verification (RV) as a field is broadly defined as focusing on processing ex-
ecution traces (output of an observed system) for verification and validation purposes,
ignoring how the traces are generated, in contrast to testing, where test case (input to
observed system) generation is in focus. Of particular interest is the problem of verify-
ing that a sequence of events, a trace, satisfies a temporal property, formulated e.g. as a
state machine or temporal logic formula. Applications cover such domains as security
monitoring and safety monitoring.

We shall distinguish between two variants of this problem: propositional and pa-
rameterised runtime verification, according to the format of events. In the proposi-
tional case, events are atomic without structure, for example simple identifiers, such
as openGate and closeGate. Here we assume a finite (and usually small) alphabet Σ

of atomic identifiers. This case resembles the classic finite trace language member-
ship of language theory [52], where properties are stated for example as finite state
machines or regular expressions with atomic letters, as in the following regular ex-
pression: (openGate; closeGate)∗. Similarly, the propositional verification problem has

∗The research performed by this author was carried out at Jet Propulsion Laboratory, Califor-
nia Institute of Technology, under a contract with the National Aeronautics and Space Adminis-
tration.

been studied in model checking [51], where properties for example are stated in Linear
Temporal Logic (LTL), and where models are infinite traces of atomic propositions.
Very early RV systems supported only this propositional case. Within recent years,
however, emphasis within the research community has been on parameterised runtime
verification, where events carry data. Here events are drawn from an alphabet Σ×D∗ for
some possibly infinite value domain D, which includes values occurring in monitored
events, for example reals, strings, objects, etc. This chapter reviews five alternative ap-
proaches to parameterised runtime verification, covering extensions of temporal logic
and automata with quantification, as well as rule-based and stream processing systems.

As an example consider the following (well studied) data parameterised property,
which we shall name UnsafeMapIterator, and which will be formalised in the different
approaches. The property concerns the use of Java collections, which are part of the Java
library API. The property requires that if a collection is created from a java.util.Map
object (i.e the key set of the map), and then a java.util.Iterator object is created from
that collection, and the original map thereafter is updated, then thereafter the next()
method cannot be called on that iterator. Four events are relevant: create(m,c) records
the creation of collection c from map m; iterator(c, i) records the creation of iterator i
from collection c; update(m) records the update of m; and next(i) records the call of
the next() method on iterator i. More complicated properties can easily be imagined,
requiring computations to be performed, such as counting, etc. Due to lack of space we
shall, however, limit ourselves to this property as a running example.

The chapter presents five formalisms and monitoring approaches, chosen to repre-
sent a broad view of the solution space wrt. logics and algorithms. FOTL [16, 17] is a
first-order temporal logic, with a monitoring algorithm that has roots in approaches for
checking temporal integrity constraints of databases [26]. MMT (Monitoring Modulo
Theories) [34] is a generic framework that allows lifting monitor synthesis procedures
for propositional temporal logics to a temporal logic over structures within some first-
order theory using SMT solving. These first two approaches represent variations of
first-order linear temporal logic, a very important class of candidate logics for runtime
verification. The two systems also represent different interesting monitoring algorithms
for this case. QEA (Quantified Event Automata) [10] are automata supporting quan-
tification over data. The corresponding approach generalises the concept of trace slic-
ing as found in earlier influential RV systems such as TRACEMATCHES [5] and MOP
[25, 62]. Trace slicing likely provides the most efficient monitors among state-of-the-
art systems. LOGFIRE [47] is a rule-based framework interpreting rules working on a
collection of facts. It is implemented using an adaption of the RETE algorithm known
from artificial intelligence. It is furthermore implemented as an internal DSL (an API in
the Scala programming language). LOLA [29] is a stream-based specification language
inspired by Lustre and Esterel. The corresponding approach incrementally constructs
output streams from input streams. This is a rather new approach to monitoring.

The chapter is organised as follows. Section 2 introduces preliminary notation. Sec-
tions 3 to 7 introduce the five different formalisms and monitoring approaches. Sec-
tion 8 further discusses and compares the five approaches. Section 9 presents related
work, while Section 10 concludes the chapter.

2

2 Preliminaries

Primitive Types By B we denote the set of Boolean values {true, false} together with
the usual operators such as ¬,∧,∨,→. By N we denote the set of natural numbers
{0,1,2, . . .} and by R the set of real numbers. We assume a set of event names N , a set
of variable names V , and an infinite domain D of values (data occurring in events).

Non-Primitive Types A power set type is denoted by ℘(T), denoting the set of all
subsets of the type T . Tuple types are denoted by T1×T2× . . .×Tn, containing elements
of the form (v1, ...,vn) for vi ∈ Ti.

By S→ T we denote the set of total functions from S to T . By S 9 T we denote the
set of partial functions from S to T with a finite domain, also referred to as maps. A map
can be explicitly constructed with the notation: [x1 7→ v1, ...,xn 7→ vn], with [] denoting
the empty map. A map is applied with the same notation as function application: m(xi)
yielding vi. The values for which a map m is defined is denoted by dom(m), resulting
in the set {x1, ...,xn}. One map m1 is overridden by another map m2 with the notation
m1 † m2. That is, if m = m1 † m2 then m(x) = m2(x) if x ∈ dom(m2) else m(x) = m1(x).
Maps are expected to be applied to values in their domain.

By T ∗ we denote the set of finite sequences over T where each sequence element
is of type T . A sequence σ of length N is a function of type {n ∈ N | n < N} → T .
The length of a sequence σ is denoted by |σ |. The element at position i ∈ N in se-
quence σ is denoted σ(i) or σi. A sequence can be explicitly constructed using the
notation: 〈v1, . . . ,vn〉, with 〈 〉 denoting the empty sequence. A non-empty sequence
s = 〈v1,v2, . . . ,vn〉 of type T ∗ can be deconstructed with the functions head : T ∗ → T
and tail : T ∗→ T ∗ as follows: head(s) = v1 and tail(s) = 〈v2, . . . ,vn〉. We occasionally
write v to represent a sequence 〈v1, . . . ,vn〉. Sequences are also referred to as lists.

First-order Logic A signature S = (C,P,ar) consists of finite disjoint sets C and P of
constant and respectively relation (or predicate) symbols, and a arity function ar : P→ N.
A term is a constant c ∈C or a variable x ∈ V .

First-order formulas over the signature S = (C,P,ar) are given by the grammar

ϕ ::= p(t1, . . . , tar(p)) | ¬ϕ | ϕ ∨ϕ | ∃x.ϕ,

where p ranges over P, the tis range over terms, and x ranges over V . As syntactic sugar,
we use standard Boolean constants and connectives such as true, false, ∧,→, and the
universal quantifier ∀x. The set of free variables of a formula ϕ , that is, those that are
not in the scope of some quantifier in ϕ , is denoted by fv(ϕ). A sentence is a formula
without free variables.

A structure S over the signature S consists of a (finite or infinite) domain D 6= /0
and interpretations cS ∈ D and pS ⊆ Dar(r), for each c ∈ C and p ∈ P. Given a
structure with domain D, a valuation is a mapping θ : V → D. For a valuation θ ,
x = (x1, . . . ,xn) ∈ V n, and d = (d1, . . . ,dn) ∈ Dn, we write θ [x 7→ d] for the valuation
that maps xi to di, for 1 ≤ i ≤ n, and leaves the other variables’ valuation unaltered.
We abuse notation and apply a valuation θ also to constants, with θ(c) = cS , for all
c ∈C. The semantics of first-order formulas is defined as usual. We write (S ,θ) |= ϕ

if a formula ϕ is satisfied for some structure S and valuation θ .

3

Events and Traces An event is a tuple (id,〈v1, . . . ,vn〉) consisting of a name id ∈N
and a sequence of values vi ∈D. An event is typically written as id(v1, . . . ,vn). The type
of events is denoted by E= N ×D∗. The type of (event) traces is denoted by E∗.

The Monitoring Problem We will focus on the following problem: given some spec-
ification language L , find a procedure M : L → (E∗→ Verdict), that for any specifi-
cation ϕ ∈ L and any trace τ ∈ E∗, computes a verdict M(ϕ)(τ) indicating whether
the trace τ satisfies the specification ϕ or not. Note, however, that Verdict generally
can be any data domain, including the traditional case of Booleans or some extension
of Booleans. Such a procedure normally processes the trace iteratively, event by event,
keeping state between iterations. A verdict is consequently issued for each new event,
and not just at the end of the trace. Thus, Verdict typically includes a special verdict
with the meaning “unknown verdict” or “no definitive verdict (yet).” We refer to such a
procedure as a monitoring algorithm.

3 Monitoring First-order Temporal Properties

3.1 Overview

First-order temporal logics are natural specification languages for formalising require-
ments of hardware and software systems. In particular, the first-order aspect is well-
suited to capture relations between data and quantify over data. While first-order tem-
poral logics are not widely used in verification because of decidability issues [50], they
do admit efficient monitoring.

In this section we present a monitoring approach for the past-only fragment of first-
order temporal logic (FOTL). The presentation is a stripped-down version, due to lim-
ited space, of the approaches in [16, 17], given for richer logics, which additionally
include future temporal operators, quantitative temporal constraints to express dead-
lines, interpreted functions like arithmetic operators, rigid predicates like inequality,
and SQL-like aggregation operators. In a nutshell, the monitoring algorithm is based
on a translation of formulas in a fragment of FOTL into relational algebra expressions.
The algorithm is implemented in the MONPOLY tool [15].

To get a glimpse of the specification language, we formalise next the UnsafeMap-
Iterator property. To each event we associate a corresponding predicate symbol. Then
the following FOTL formula represents a possible formalisation.

�∀i.
(
next(i)→∃m,c.

(
¬update(m)S

(
iterator(c, i)∧ �create(m,c)

)))
The formula requires that always,5 for any iterator i, if this iterator is used, then there
are a map m and a collection c such that (a) at some previous time point the iterator i
was created from collection c, (b) before that, the collection c was created from the
map m, and (c) since the iterator’s creation, the map m has not been updated.

5Since we restrict ourselves to the past-only fragment of FOTL, the outermost temporal
operator � (“always”) is not part of our definition of the logic given in Section 3.2. However, we
include it in the formalisation to emphasise that the property must be fulfilled at all time points.

4

3.2 Syntax and Semantics

FOTL formulas over the signature S = (C,P,ar) are given by the grammar

ϕ ::= p(t1, . . . , tar(p)) | ¬ϕ | ϕ ∨ϕ | ∃x.ϕ | ϕ | ϕ Sϕ

where p ranges over P, the tis range over C∪V , and x ranges over V . The symbols
and S denote the “previous” and the “since” temporal operators. Intuitively, the formula
 ϕ states that ϕ holds at the previous time point, while the formula ϕ Sψ states that
there is a time point in the past where ψ holds and from the next time point and onwards
the formula ϕ continuously holds. As syntactic sugar, besides the one for first-order
logic, we use the temporal operator � (“once”) with �ϕ := trueSϕ .

A temporal structure over the signature S is a sequenceT = (T0,T1, . . .) of struc-
tures over S such that

(1) all structures Ti, with i≥ 0, have the same domain, denoted D, and
(2) constant symbols have rigid interpretation: cTi = cT0 , for all c ∈C and i > 0.

We call the indices of the elements in the sequenceT time points. In a temporal struc-
ture, predicates may have different interpretations at different time points. As detailed
later, predicates and their interpretations are used to represent events. Recall that there
are no function symbols (beside constants) to be interpreted.

Definition 1. LetT be a temporal structure over the signature S, withT =(T0,T1, . . .),
ϕ a formula over S, θ a valuation, and i ∈ N. We define the satisfaction relation
(T ,θ , i) |= ϕ inductively as follows:

(T ,θ , i) |= p(t1, . . . , tar(p)) iff
(
θ(t1), . . . ,θ(tar(p))

)
∈ pTi ,

(T ,θ , i) |= ¬ψ iff (T ,θ , i) 6|= ψ,

(T ,θ , i) |= ψ ∨ψ ′ iff (T ,θ , i) |= ψ or (T ,θ , i) |= ψ ′,
(T ,θ , i) |= ∃x.ψ iff (T ,θ [x 7→ d], i) |= ψ , for some d ∈ D,

(T ,θ , i) |= ψ iff i > 0 and (T ,θ , i−1) |= ψ,

(T ,θ , i) |= ψ Sψ ′ iff for some j ≤ i, (T ,θ , j) |= ψ ′,and
(T ,θ ,k) |= ψ, for all k with j < k ≤ i.

For a temporal structureT , a time point i ∈ N, and a formula ϕ with the vector x̄
of free variables, let [[ϕ]](T ,i) :=

{
d ∈ D|fv(ϕ)|

∣∣(T ,θ [x 7→ d], i) |= ϕ
}

. The set [[ϕ]](T ,i)

consists of the satisfying elements of ϕ at time point i inT . Instead of [[ϕ]](T ,i) we write
[[ϕ]]i whenT is clear from the context.

3.3 Monitoring Algorithm

Setup We assume that property formalisations are of the form �∀x.ϕ , where ϕ is an
FOTL formula and x is the sequence of ϕ’s free variables. The property requires that
∀x.ϕ holds at every time point in the temporal structureT representing the monitored
system’s behaviour. Moreover, we assume that T has domain D and it is a temporal
database, i.e. the relation pTi is finite, for any p ∈ P and i ∈ N.

5

The inputs of the monitoring algorithm are a formula ψ , which is logically equiva-
lent to ¬ϕ , and a temporal databaseT , which is processed iteratively. That is, at each
iteration i≥ 0, the monitor processes the structure Ti. The algorithm outputs, again iter-
atively, the relation [[ψ]]i, for each i≥ 0. As ψ and ¬ϕ are equivalent, the tuples in [[ψ]]i

represent the property violations at time point i. Note that we drop the topmost uni-
versal quantifier, since an instantiation of the free variables x that satisfies ψ provides
additional information about the violation. Note that the property is satisfied if and only
if the output at each iteration is the empty set.

Remark 1. Given an event trace τ , we build a temporal database as follows, assuming
that all events with the same name have the same number of arguments. We also assume
a signature (C,P,ar) with N ⊆ P, and arities of predicate symbols matching those of
the corresponding events names. The temporal database T is built as follows: if at
position i, with 0≤ i < |τ| the event e(d1, . . . ,dn) occurs then eTi = {(d1, . . . ,dn)} and
pTi = /0, for any p ∈ P with p 6= e. For all i≥ |τ| we take pTi = /0, for all p ∈ P.

Note that, since we are considering here the past-only fragment of FOTL, struc-
tures at time points j > i are irrelevant for the evaluation at time point i. Thus, when
monitoring a trace τ , the algorithm is stopped after iteration |τ|−16.

Example 1. We illustrate this setup on the UnsafeMapIterator property. Consider the
following event sequence:

create(m,c1).create(m,c2).iterator(c1, i1).update(m).iterator(c2, i2).next(i1)

The corresponding temporal database contains the interpretations createT0 = {(m,c1)},
createT1 = {(m,c2)}, and createTi = /0, for i ∈ {2,3, . . .}, etc.

Let ϕ be the formula from Section 3.1 (page 4) formalising the UnsafeMapIterator
property with the � operator and the ∀ quantifier stripped off. Furthermore let γ(i) be
the consequent of the implication in ϕ and let ψ(i) := next(i)∧¬γ(i). We thus have
ψ(i)≡ ¬ϕ(i). One can check that [[ψ]]i = /0, for i ∈ {0, . . . ,4}, and that [[ψ]]5 = {(i1)},
meaning that there are no violations at time points 0 to 4, and there is a violation at time
point 5, for iterator i1.

Remark 2. Note that when encoding event traces as temporal databases, the interpreta-
tion of predicate symbols are always either empty or singleton relations. This need not
be the case in arbitrary temporal databases. For instance, the relations at a time point
could contain the tuples involved in a database transaction.

Monitorable Fragment The computation of [[ψ]]i is by recursion over ψ’s formula
structure, using relational algebra operators to compute the evaluation of a formula from

6When considering specifications with a future dimension, see [17], we require that future
operators are bounded: they only look boundedly far into the future; this corresponds to hard-time
specifications, and can be specified with metric temporal constraints; that is in Metric FOTL [53].
Note that the approach thus handles a safety fragment of (Metric) FOTL. Then, to handle a finite
trace, since it is assumed that time is observed by the monitoring algorithm only through event
timestamps, a new dummy event with a sufficiently large timestamp is added at the end of the
trace, and the algorithm is stopped after observing this last event.

6

the evaluation of its direct subformulas, possibly from previous time points. Not all
formulas in FOTL are effectively monitorable, since unrestricted use of logic operators
may require infinite relations to be built during evaluation. Thus the algorithm is only
able to deal with formulas from the following monitorable fragment of FOTL, which
consists of the formulas ψ that satisfy the following conditions:

1. fv(α) = fv(β), for any subformula of ψ of the form α ∨β ;
2. fv(α)⊆ fv(β), for any subformula of ψ of the form β ∧¬α ,7 α Sβ , and ¬α Sβ ;
3. a subformula of the form ¬α can only appear as part of a subformula of the form

β ∧¬α or ¬α SI β .

This set of syntactic restrictions on ψ ensure in particular that [[ψ]]i is finite, for any
i∈N. Consider for instance the non-monitorable formula ψ = p(x)∨q(y). Given that D
is infinite, there are infinitely many tuples (a,b) ∈D2 that satisfy ψ , at any time point i,
namely all tuples in (pTi×D)∪ (D×qTi). For example, if p(a) holds at i (i.e. a ∈ pTi),
then, for any b ∈ D, the formula p(a)∨q(b) holds at i, i.e. (a,b) ∈ [[ψ]]i.

The MONPOLY tool implements a set of heuristics to rewrite non-monitorable for-
mulas into monitorable formulas. While these heuristics have proved to be effective
in practice, they are often not necessary as it is usually easy to directly express a
domain-independent formula8 ¬ϕ as an equivalent monitorable formula ψ . For in-
stance, for ϕ = p(x,y)→ �(q(x)∨ r(y)), the non-monitorable formula ψ = p(x,y)∧
¬ �(q(x)∨ r(y)) can be rewritten to the monitorable formula (p(x,y)∧¬ �q(x))∨
(p(x,y)∧¬ �r(y)).

Algorithm We start with some definitions. A table is a tuple (R,x), written Rx, where
R ⊆ Dk is a relation and x is a sequence of k variables, for some k ∈ N. Given tables A
and B and variable sequence x, we denote by σC(A), πx(A), A ./ B, A�B, and A∪B,
the relational algebra operators selection, projection, (natural) join, antijoin, and re-
spectively union applied to tables A and B, where C is a set of constraints of the form
t = t ′, for t, t ′ ∈C∪V . We refer to textbooks on databases, e.g. [4], for their definitions.

Example 2. Let A〈x,y〉, B〈y,z〉, C〈y〉 be tables with A = {(1,2),(1,4),(3,4)}, B = {(2,5),
(2,6)}, and C = {4}. We have A〈x,y〉 ./ B〈y,z〉 = {(1,2,5),(1,2,6)}〈x,y,z〉, A〈x,y〉�C〈y〉 =
{(1,2)}〈x,y〉, σx=3(A〈x,y〉) = {(3,4)}〈x,y〉, and π〈y〉(A〈x,y〉) = {2,4}〈y〉.

Next, the free variables of a formula α are used as attributes of the relation [[α]]i.
We write [[α]]ix for the table ([[α]]i)x, where x̄ is the vector of free variables of α . The
following equalities express in our notation the standard correspondence, known as
Codd’s theorem, between first-order logic and relational algebra.

[[α ∧β]]iz = [[α]]ix ./ [[β]]
i
y [[α ∨β]]ix = [[α]]ix∪ [[β]]ix

[[α ∧¬β]]iz = [[α]]ix� [[β]]iy [[∃y′.α]]ix′ = πx′ [[α]]ix

7Note that here we treat the operator ∧ as a primitive.
8The notion of domain independence [4, 17] intuitively requires that the satisfying valuations

of a formula are independent of the domain of quantification. This semantic notion is laxer than
the monitorability requirement, and also guarantees finiteness of [[ψ]]i, but is, however, undecid-
able.

7

where α and β are monitorable formulas with free variables x and respectively y, z is
the sequence x concatenated with the subsequence of y of variables not in x, and x′

is the subsequence of x without the variable y′. For instance, if α = p(x1,x2) and
β = q(x2,x3), then x̄ = 〈x1,x2〉, ȳ = 〈x2,x3〉, and z̄ = 〈x1,x2,x3〉. We have omitted
the equation for predicates p(t̄), which is straightforward but tedious, and uses the
selection and projection operators. E.g., if x is a variable and a is a constant, then
[[p(x,a)]]i〈x〉 = π〈x〉(σ{y=a}(pTi

〈x,y〉)). Note also that when x̄ = ȳ, then the join (i.e. ./) and
antijoin (i.e. �) operations are identical to the set intersection (i.e. ∩) and respectively
set difference (i.e. \) operations.

We now consider the evaluation of formulas ψ that have temporal operators as their
main connective. In contrast to the first-order connectives, their evaluation at a time
point depends on the evaluation of their subformulas at previous time points. The eval-
uation of [[ψ]]i for i > 0 is based on the following equalities:

[[α]]ix = [[α]]i−1
x [[α Sβ]]iy = [[β]]iy∪

(
[[α Sβ]]i−1

y ./ [[α]]ix
)

where α , β , x, and y are as in the previous set of equations. For i = 0, we have
[[α]]ix = /0x and [[α Sβ]]iy = [[β]]iy. A similar equality is used for formulas of the form
¬α Sβ , replacing the join with the antijoin. To accelerate the computation of [[ψ]]i, the
monitoring algorithm maintains state for each temporal subformula, storing previously
computed intermediate results. Namely, the algorithm stores between the iterations i−1
and i, when i > 0, the relation [[α]]i−1 and respectively [[α Sβ]]i−1. By storing these rela-
tions, the subformulas α and β need not be evaluated again at time points j < i during
the evaluation of ψ at time point i.

It is straightforward to translate the previous equalities into a bottom-up evaluation
procedure of [[ϕ]]i, for i ∈ N. We note that relational algebra operators have standard,
efficient implementations [42], which can be used to evaluate the right-hand side rela-
tional algebra expressions.

Example 3. We present next a partial run of the algorithm for the property Unsafe-
MapIterator on the event sequence from Example 1. The formulas ψ and γ are as in
Example 1. We also let the subformulas β , β ′, and γ ′ be as follows:

ψ(i) = next(i)∧¬∃m,c.
(
¬update(m)S

(
iterator(c, i)∧ �create(m,c)︸ ︷︷ ︸

β ′(m,c)

)
︸ ︷︷ ︸

β (c,i,m)

)

︸ ︷︷ ︸
γ ′(m,c,i)

That is, we have

β ′(m,c) := �create(m,c), γ(i) = ∃m,c.γ ′(m,c, i),
β (c, i,m) := iterator(c, i)∧β ′(m,c), ψ(i) = next(i)∧¬γ(i).
γ ′(m,c, i) := ¬update(m)Sβ (c, i,m),

8

j nextT j updateT j iteratorT j createT j [[β ′]] j [[β]] j [[γ ′]] j [[γ]] j [[ψ]] j

0 /0 /0 /0 {(m,c1)} {(m,c1)} /0 /0 /0 /0
1 /0 /0 /0 {(m,c2)} B /0 /0 /0 /0
2 /0 /0 {(c1, i1)} /0 B {(c1, i1,m)} {(c1, i1,m)} {i1} /0
3 /0 {m} /0 /0 B /0 /0 /0 /0
4 /0 /0 {(c2, i2)} /0 B {(c2, i2,m)} /0 /0 /0
5 {i1} /0 /0 /0 B /0 /0 /0 {i1}

Table 1. Relations computed by the monitoring algorithm for a sample trace.

The algorithm computes the set [[ψ]] j of violations, for j ∈N, based on the following
equalities:

[[β ′]] j
〈m,c〉 =

 create
T j
〈m,c〉∪ [[β

′]] j−1
〈m,c〉 if j > 0 [[γ]] j

〈i〉 = π〈i〉([[γ
′]] j
〈c,i,m〉)

create
T j
〈m,c〉 if j = 0 [[ψ]] j

〈i〉 = next
T j
〈i〉 � [[γ]] j

〈i〉

[[β]] j
〈c,i,m〉 = iterator

T j
〈c,i〉 ./ [[β

′]] j
〈m,c〉

[[γ ′]] j
〈c,i,m〉 =

{
[[β]] j
〈c,i,m〉∪

(
[[γ ′]] j−1

〈c,i,m〉�update
T j
〈c,i〉
)

if j > 0

[[β]] j
〈c,i,m〉 if j = 0

Concretely, the algorithm computes the relations [[α]] j, shown in Table 1, at itera-
tions j ∈ {0, . . . ,5}, for α ∈ {β ′,β ,γ ′,γ,ψ}, where B = {(m,c1),(m,c2)}. We recall
that the relations [[β ′]] j and [[γ ′]] j are stored by the algorithm between iterations, while
all other relations are discarded.

4 Monitoring Modulo Theories

4.1 Overview

For propositional temporal logics such as LTL or CaRet [6] monitoring has been stud-
ied extensively and appropriate semantics and monitor synthesis procedures have been
developed [20, 22, 35, 31, 21]. Monitoring Modulo Theories (MMT) is a general frame-
work for lifting any of these logics, their semantics and the corresponding synthesis al-
gorithms from the propositional setting to the setting of data values and data constraints.
To achieve this, it introduces a general notion of temporal logic, capturing many well
known propositional temporal logics such as LTL, RLTL [54] or CaRet [6], and the no-
tion of data logic based on first-order theories to express constraints over data without
any temporal aspects. Next, it combines the two logics into one, temporal data logic,
whose semantics clearly separates the time and data aspects. This separation gives rise
to a monitoring procedure that combines classical monitoring of propositional tempo-
ral properties with SMT solving. In this section we present a simplified version of the
framework, instantiated for a particular data logic, namely the logic of equality con-
straints. We refer to [33, 34] for the general framework and for more details. We note
that the restriction to equality constraints is a significant restriction and also means that
a full SMT solver is not needed. The approach is implemented in the jUnitRV tool [32].

9

For a brief illustration, consider the UnsafeMapIterator property. Its temporal as-
pect can be modelled naturally using LTL. Its data aspect can be modelled easily using
equality constraints. Combining LTL as a temporal logic and the logic of equality con-
straints as a data logic results in a formalism that is well suited to model our example
property, using for instance the following formula.

∀c,m, i.�(create(m,c)→©�(iterator(c, i)→©�(update(m)→©�¬next(i))))

Due to the simplicity of the data aspect in this example the formula does not contain
any explicit first-order constraint. However, the first-order subformulas create(m,c),
iterator(c, i), update(m), and next(i) are seen as atomic propositions for the temporal
logic, and they give raise to equality constraints at run time. For instance, if the event
next(i1) occurs, then the constraint i = i1 is generated.

4.2 Syntax and Semantics

We will define a temporal data logic (TDL) as the extension of a temporal logic (TL)
from the propositional setting to the first-order setting. There are two main differences
between TDL and FOTL from the previous section: first, TDL is parameterised by the
propositional temporal logic, and second, it has a finite not an infinite trace semantics.

We assume that the temporal logic is given over some finite non-empty set AP of
atomic propositions, its models are finite traces over Σ :=℘(AP), and its truth values
are elements of a complete lattice (V,v) (that is, it does not necessarily have a Boolean
semantics).9 Thus, the semantics of a TL formula ψ is given as a function [[ψ]] : Σ ∗→V.

To define TDL in terms of TL, we fix a first-order signature S (see page 3), a finite
set X ⊆ V of variables, and a finite set F := {χ1, . . . ,χn} of first-order formulas over S
with free variables from X . The set F constitutes TL’s set AP of “atomic propositions.”
That is, TDL and TL view the same set differently: TDL considers its elements as
formulas and TL views them as propositions i.e. it is agnostic to their structure.10

A TDL formula ϕ consists of a TL core formula ψ over AP and a sequence of
preceding global first-order quantifiers binding free variables in ψ . Formally, the syntax
of TDL formulas ϕ is defined according to the grammar

ϕ ::= ∃x.ϕ | ∀x.ϕ | ψ

where x ∈ V is a variable and ψ is a TL formula over F.

Example 4. We illustrate how the formula given in Section 4.1 can be seen as a TDL
formula. We take S = (/0,{next,update, iterator,create,=},ar), with ar as expected,
X = {m,c, i}, and F = {cr, it,u,n}, where cr := create(m,c), it := iterator(c, i), u :=
update(m), and n := next(i). Then ϕ = ∀c,m, i.ψ , with

ψ =�(cr→©�(it→©�(u→©�¬n)))

9A complete lattice is a partial order (M,v) where every subset N ⊆ M has a least upper
bound tN and a greatest lower bound uN.

10A one-to-one mapping from F to AP can be defined, but we refrain to do so, for simplicity.

10

TDL formulas are interpreted over finite sequences of first-order structures11 over
the signature S, with the same domain D, and with finite intepretations of predicate
symbols. We also assume that S contains the equality predicate symbol =, interpreted
rigidly, that is, all structures interpret equality in the same way, as expected. The orig-
inal approach from [33] generalises this assumption and presents a setting where data
constraints can be expressed in a so-called data logic, not only through equality, but
through richer first-order theories; see [34] for details. We let Γ denote the set of all
such first-order structures, which we call observations.

Finally, to define the TDL semantics, we also need a way to project a sequence of
observations from Γ into a sequence of letters from Σ . To this end, we define next, for
a valuation θ : V → D, the projection function πθ : Γ → Σ as follows.

πθ (γ) := {χ ∈ F | (γ,θ) |= χ}

That is, the projection of a first-order structure γ is the set of formulas in F that are
true in that structure for θ . Recall that such formulas can be viewed as propositional
symbols in the temporal logic as there is a direct mapping between F and AP.

We define the semantics of a TDL formula ϕ as a mapping [[ϕ]]θ : Γ ∗ → V, with
respect to a valuation θ : V → D, as follows:

[[∃x.ϕ ′]]θ (γ) :=
⊔

d∈D
[[ϕ ′]]θ [x 7→d](γ), [[∀x.ϕ ′]]θ (γ) :=

l

d∈D
[[ϕ ′]]θ [x 7→d](γ),

[[ψ]]θ (γ) := [[ψ]](πθ (γ))

where ψ is a TL formula, u and t denote the meet and respectively the join of the lattice
(V,v), and πθ is extended to sequences as expected: πθ (γ1 . . .γn) = πθ (γ1) . . .πθ (γn).
If ϕ is a sentence, that is, it does not contain any free variable, we omit to annotate a
specific valuation θ and write [[ϕ]] for its semantics. This is well-defined since valua-
tions of variables that do not occur freely in ϕ do not affect its semantics. Note also that
the [[·]] notation is overloaded; however, its meaning will be clear from the context.

In examples, we use LTL3 [22] as a concrete TL. We recall it briefly: [[ψ]](σ) =
true, if στ̄ |= ψ for any τ̄ ∈ Σ ω , [[ψ]](σ) = false, if στ̄ 6|= ψ for any τ̄ ∈ Σ ω , and
[[ψ]](σ) = ? otherwise, where τ̄ |= ψ denoted the standard, infinite trace LTL seman-
tics and V = ({false, true,?},v) with false v ? v true. Other examples of TLs are
RLTL [54], CaRet [6], and versions of LTL with finite trace semantics, see e.g. [37].

Example 5. We illustrate the TDL semantics on the formula from Example 4. To this
end, we recall the trace from Example 1:

create(m1,c1).create(m1,c2).iterator(c1, i1).update(m1).iterator(c2, i2).next(i1)

The sequence γ of observations modelling this trace is obtained as in Section 3 (see
Example 1). Table 2 presents the projections σ of γ obtained for some valuations θ ,
and the corresponding verdicts for ψ on σ , where m′, c′, and i′ denote arbitrary values
from D different from m1, from c1 and c2, and from i1 and i2, respectively. As expected,
we have [[ϕ]](γ) = false, by taking the meet of all the values [[ψ]](σ).

11These relate directly to the notion of event, as in Section 3 (see Remark 1). E.g., the event
create(m1,c1) would be represented as the structure interpreting create as the set {(m1,c1)}.

11

θ σ := πθ (γ) [[ψ]](σ)

[m 7→m1,c 7→ c1, i 7→ i1] {cr}. /0.{it}.{u}. /0.{n} false
[m 7→m1,c 7→ c1, i 7→ i2] {cr}. /0. /0.{u}. /0.{n} ?
[m 7→m1,c 7→ c1, i 7→ i′] {cr}. /0. /0. /0. /0. /0. ?
. . .

[m 7→m′1,c 7→ c′, i 7→ i′] /0. /0. /0. /0. /0. /0 ?

Table 2. Evaluation of a TL core formula over a trace for various valuations.

4.3 Monitoring Algorithm

Preliminaries A symbolic monitor M = (Q,Σ ,δ ,q0,λ ,V) is a state machine with
output, where Q is a finite set of states, Σ and V are as defined in Section 4.2, δ :
Q×Σ→Q is a transition function, q0 ∈Q is the initial state, and λ : Q→V is a labelling
function mapping states to verdicts from V. It is assumed that for a given TL, there is a
monitor generation procedure which, for any TL formula ψ builds a monitor M such
that λ (δ (q0,σ)) = [[ψ]](σ), for any σ ∈ Σ ∗.

A constraint is a quantifier-free first-order formula over a signature that contains no
predicate symbol except equality.12 For instance, x = a∧y 6= b is a constraint. Note that
such a constraint ρ describes the set Θρ of valuations θ such that ρθ holds in the theory
of equality. It is easy to see that for any observation (i.e. first-order structure) γ and a
first-order formula χ , there exists a constraint, denoted γ̂(χ), such that (γ,θ) |= χ iff
γ̂(χ)θ holds, for any valuation θ . For instance, if γ is the observation corresponding to
the event iterator(c1, i1), then γ̂(χ) is c = c1 ∧ i = i1 for χ = iterator(c, i), while γ̂(χ)
is false for χ = next(i). Note that Θγ̂(χ) = {θ | (γ,θ) |= χ} and thus γ̂(χ) can be used
to represent the set {θ | (γ,θ) |= χ}. This property that will be used in the monitoring
algorithm. We also assume a procedure SAT that takes as input a constraint and outputs
whether the constraint is satisfiable or not. We recall that the general framework [34]
considers arbitrary theories, not only that of equality, as presented here. In general, the
SAT procedure is implemented by invoking an SMT solver for the considered theory.

A constraint tree t is a finite, non-empty, full binary tree having constraints as inner
nodes and monitor states as leafs. A tree is denoted either by Inner(ρ, t1, t2) where ρ

is a constraint, and t1 and t2 are the root’s left and right subtrees respectively, or by
Leaf(q) where q ∈ Q. Each node v in a tree t induces a constraint ρ(v) defined as the
conjunction of the constraints on the path from the root to the node v.

Algorithm The monitoring algorithm incrementally processes a sequence γ of obser-
vations in order to compute the semantics of some given TDL formula ϕ . Let ψ be
ϕ’s TL core formula. The algorithm uses the symbolic monitor M for ψ . Intuitively,
the algorithm executes one instance of M for each projection πθ (γ), with θ : V → D
some valuation. As there are finitely many projections, they partition the set of valua-
tions into a finite number of equivalence classes. The algorithm maintains a mapping
from representatives θ of these classes to states q of M , where q = δ (q0,πθ (γ)). The

12In the more general framework constraints must contain interpreted predicates only.

12

q0 m =m1∧ c = c1

q1 q0

¬
m =m1∧ c = c1

q1 m =m1∧ c = c2

q1 q0

¬

¬

m =m1∧ c = c1

m =m1∧ c = c1∧ i = i1

q2 q1

¬

m =m1∧ c = c2

q1 q0

¬

¬

m =m1∧ c = c1

m =m1∧ c = c1∧ i = i1

q3 q1

¬

m =m1∧ c = c2

q1 q0

¬

¬

m =m1∧ c = c1

m =m1∧ c = c1∧ i = i1

q3 q1

¬

m =m1∧ c = c2

m =m1∧ c = c2∧ i = i2

q2 q1

¬

q0

¬

¬

m =m1∧ c = c1

m =m1∧ c = c1∧ i = i1

q4 q1

¬

m =m1∧ c = c2

m =m1∧ c = c2∧ i = i2

q2 q1

¬

q0

¬

¬

create(m1,c1) create(m1,c2) iterator(c1, i1)

update(m1)

iterator(c2, i2)

next(i1)

Fig. 1. Constraint trees built by the monitoring algorithm for a sample trace.

q0

?
start

q1

?

q2

?

q3

?

q4

f

¬cr

cr

¬it

it

¬u

u

¬n

n

true

Fig. 2. Symbolic monitor for the formula �(cr→©�(it→©�(u→©�¬n))).

13

Algorithm 1 The monitoring algorithm.

proc step(t, γ) = traverse(γ , t, true)

proc traverse(γ , t, ρ)
case t = Inner(ρ ′, t1, t2): Inner(ρ ′, traverse(γ , t1, ρ ∧ρ ′), traverse(γ , t2, ρ ∧¬ρ ′))
case t = Leaf(q): split(γ , q, F, ρ , /0)

proc split(γ , q, P, ρ , a)
if P = /0 then Leaf(δ (q,a))
else

χ , P′ := choose(P)
t1 := if SAT(ρ ∧ γ̂(χ)) then split(γ , q, P′, ρ ∧ γ̂(χ), a∪{χ}) else Empty
t2 := if SAT(ρ ∧¬γ̂(χ)) then split(γ , q, P′, ρ ∧¬γ̂(χ), a) else Empty
if t1 = Empty then t2 else if t2 = Empty then t1 else Inner(γ̂(χ), t1, t2)

property that [[ψ]](πθ (γ)) = λ (q) allows the algorithm to compute the verdict associ-
ated with the current sequence γ of observations, by iterating through the verdicts λ (q),
for q in the image of the mentioned mapping. Indeed, in case all global quantifiers in ϕ

are universal, the verdict is the meet over all verdicts λ (q). In general, when existential
quantifiers are also present, the computation of the verdict is more involved; see [34].

The mapping from equivalence classes of valuations to states q is represented algo-
rithmically by a constraint tree. Namely, for each leaf node v with state q, the constraint
ρ = ρ(v) describes the set Θρ of valuations. By construction, these sets of valuations
are the equivalence classes mentioned previously. We briefly describe how the algo-
rithm maintains the constraint tree. The initial constraint tree is Leaf(q0). For a new
observation γ ∈ Γ and a monitor instance at v, if all valuations in Θρ project γ to the
same letter a ∈ Σ , then the monitor instance changes its state from q to δ (q,a). Other-
wise, if γ is mapped to different letters for different valuations in Θρ , then Θρ is split and
new monitor instances are created. More precisely, if for some χ ∈ F both ρ ∧ γ̂(χ) and
ρ ∧¬γ̂(χ) are satisfiable, then there are two valuations θ ,θ ′ ∈Θρ such that (γ,θ) |= χ

and (γ,θ ′) 6|= χ . It follows that χ ∈ πθ (γ) while χ 6∈ πθ ′(γ), and thus the projections are
different. In this case, a new inner node with constraint γ̂(χ) is created. This procedure
is performed for each χ ∈ F. For each new path to a leaf, the state at the leaf node is up-
dated to δ (q,a), where a is the projection corresponding to that path. The pseudo-code
of the procedure that updates the constraint tree is given in Listing 1.

Example 6. Figure 1 shows a run of the algorithm for the UnsafeMapIterator property
on the event sequence from Example 5, using the symbolic monitor given in Figure 2.

5 Parametric Trace Slicing

5.1 Overview

Parametric trace slicing was introduced as an attempt to efficiently monitor properties
with a notion of behaviour being specified for each set of values. The initial focus was

14

on efficient algorithms and the formal descriptions and relation to quantification came
later. The fundamental idea is to separate monitoring into two parts. The first part slices
a trace with respect to the data values it contains by associating each set of values with
the subtrace of events containing only those values. The second part separately checks
each slice against the same property.

The idea was first introduced by TRACEMATCHES [5] where regular expressions
are matched against suffixes of a trace slice. The suffix-matching semantics allowed a
simple monitoring algorithm as each potential matching suffix could be monitored sep-
arately. This was later generalised to total matching and called parametric trace slicing
[25, 62] and implemented in the JAVAMOP [56] tool. There are various languages based
on parametric trace slicing and we have chosen to present the concepts using quantified
event automata (QEA) [10, 58]. Work on QEA extend the earlier work on parametric
trace slicing by giving a more general quantifier-based notion of acceptance as well as
using local free (unquantified) variables to allow the per-slice property to reason about
values in the slice (see the AuctionBidding example below).

A QEA for the UnsafeMapIterator property is given below (left). This specifies
three universally quantified variables m, c, and i standing for the map, collection and
iterator in the example. What follows is a state machine describing the required be-
haviour for a single slice of the trace with respect to those variables. In this case the
state machine describes the set of transitions needed to reach a failure state, i.e. it cap-
tures the bad behaviour (this relies on the skip state modifier explained below). A slice
is a projection of a trace obtained by keeping only events that are relevant to a given
instantiation of the quantified variables. Acceptance is defined in terms of which slices
are accepted by the state machine i.e. for universal quantification this is all slices.

The UnsafeMapIterator property is suited (and often used) for parametric trace slic-
ing as, once the slicing has occurred, the underlying property can be treated proposi-
tionally. To demonstrate a case where the slice is not treated propositionally consider an
AuctionBidding property of an auction bidding site where items are listed with a reserve
price and bids are strictly increasing. This is captured by the second QEA below where
transitions are extended with optional guards and assignments. Notice how variables r
and a are not quantified, these are used to store the reserve price and current bid amount
respectively. As these values are used to evaluate the property they must be preserved in
the trace so this can no longer be treated propositionally. Lastly, this second QEA does
not use an explicit failure state but relies on state closure (see later), i.e. it captures
good behaviour.

qea(UnsafeMapIterator) {
forall(m,c,i)
accept skip(start){

create(m,c) → createdC}
accept skip(createdC){

iterator(c, i) → createdI}
accept skip(createdI){

update(m) → updated}
accept skip(updated){

next(i) → failure}
}

qea(AuctionBidding) {
forall(i)
accept next(start){

list(i,r) do c := 0 → listed}
accept next(listed){

bid(i,a) if a > c do c := a → listed
sell(i) if c > r → sold

}
accept next(sold){}

}

15

5.2 Syntax and Semantics

In Roşu and Chen’s parametric trace slicing theory [25, 62] there is a strong separation
between the notion of quantification (although they did not call it quantification) which
defines what the slices are, and per-slice acceptance (by so-called plugin languages)
which decides whether a slice is accepted. We repeat this presentation here with event
automata describing the plugin language.

Basic Definitions An event pattern is an ordered pair of an event name and a list of
parameters where a parameter is a variable in V or value in D. That is, an event pattern
is a tuple (id, p) ∈N × (V ∪D)∗, written id(p). When an event pattern only contains
values in D it coincides with the notion of an event as defined in Section 2. We write
N (X) for any event alphabet that contains event patterns using names in N , variables
in X ⊆ V , and values in D. Note that N (X) does not contain all such event patterns but
the ones relevant to the monitored property. For instance, for the UnsafeMapIterator
property we have N ({m,c, i}) = {create(m,c), iterator(c, i),update(m),next(i)}.

A valuation θ ∈ Env = V 9D is a map from variables to values. By abusing valua-
tions to treat them as total functions (by implicit extension with the identify function) we
can apply valuations to event patterns as follows: given an event pattern id(p1, . . . , pn)
let θ(id(p1, . . . , pn)) = id(θ(p1), . . . ,θ(pn)). An event e and an event pattern ep match
if there exists a valuation θ such that θ(ep) = e. Let matches(e,ep) hold iff e and
ep match and let match(e,ep) be the smallest (wrt v) valuation that matches them
(and undefined if they do not match). Two valuations θ and θ ′ are consistent, written
consistent(θ ,θ ′), if for every x in dom(θ)∩ dom(θ ′) we have θ(x) = θ ′(x). We also
write θ1 v θ2 iff dom(θ)⊆ dom(θ ′) and θ1 and θ2 are consistent.

A guard g ∈ Guard = Env→ B is a predicate on valuations and an assignment
γ ∈ Assign = Env→ Env is a function from valuations to valuations. We do not fix a
guard or assignment language, but use programming language notation in examples.

Trace Slicing Slicing a trace means projecting it to a subtrace, called a slice, with
respect to a valuation, which identifies the relevant events in the trace. An event e is
relevant to a valuation θ and event alphabet N (Z) if there is an event pattern in N (Z)
that matches e with respect to θ , i.e.

relevant(e,θ ,N (Z)) iff ∃ep ∈N (Z) : matches(e,θ(ep))

Trace slicing is then defined as follows. Giving a valuation θ , the θ -slice of trace τ with
respect to event alphabet N (Z) is the trace τ ↓N (Z)

θ
, defined as follows:

〈 〉 ↓N (Z)
θ

= 〈 〉 e.τ ↓N (Z)
θ

=

{
e.(τ ↓N (Z)

θ
) if relevant(e,θ ,N (Z)),

τ ↓N (Z)
θ

otherwise.

Example 7. Consider the AuctionBidding QEA from page 15 and the trace

τ = list(b,5).bid(b,1).list(d,2).bid(b,2).bid(d,1).sell(d).bid(b,2).

16

We compute (for N (Z) = {list(i,r),bid(i,a),sell(i)}) the following trace slices.

τ ↓N (Z)
[i 7→ b] = list(b,5).bid(b,1).bid(b,2).bid(b,2)

τ ↓N (Z)
[i 7→ d] = list(d,2).bid(d,1).sell(d)

Event Automata An event automaton E over the event alphabet N (Z) is a tuple
(N (Z),Q,q0,δ ,F) where Q is a finite set of states with q0 ∈ Q an initial state and
F ⊆ Q a set of final states, and δ ⊆ Q×N (Z)×Guard×Assign×Q is a finite set of
transitions between states labelled with an event pattern, a guard, and an assignment.
Furthermore, there are exactly two states that have no outgoing transitions: success
∈ F and failure /∈ F .

A configuration is a tuple (q,θ) ∈Q×Env. A trace τ is in the language of the event
automaton E , written τ ∈L (E), if there exists a state q ∈ F such that (q0, [])

τ→ (q,θ)
for some valuation θ , where τ→ is the transitive lifting of e→ defined by

(q,θ) e→

 (q′,γ(θ ′)) if
∃(q,ep,g,γ,q′) ∈ δ : matches(e,ep)∧

θ ′ = θ †match(e,ep)∧g(θ ′)
(q,θ) otherwise

Quantified Event Automata A quantified event automaton (QEA) over the event al-
phabet N (X ∪Y) is a tuple (Λ ,E) where Λ ∈ ({∀,∃}×X)∗ is a sequence of quantifi-
cations and E is an event automata over the same alphabet, with X and Y disjoint sets of
quantified and free variables respectively. The QEA is well-formed if Λ mentions each
of the variables in X exactly once.

The domain of a (quantified) variable is derived form a trace τ by matching against
event patterns in the alphabet as follows:

domτ(x) := {match(e,ep)(x) | e ∈ τ ∧ ep ∈N (X ∪Y) ∧ matches(e,ep)∧
x is a parameter of ep}.

A trace τ is accepted by the QEA if τ |=[] Λ .E where |=θ is defined as

τ |=θ (∀x)Λ ′.E iff for all d in domτ(x) we have τ |=θ†[x 7→d] Λ ′.E
τ |=θ (∃x)Λ ′.E iff for some d in domτ(x) we have τ |=θ†[x 7→d] Λ ′.E

τ |=θ 〈 〉.E iff τ ↓N (X∪Y)
θ

∈L (E (θ))

where E (θ) denotes the instantiation of the event automaton as expected i.e. by replac-
ing variables by values in event patterns, guards and assignments. Informally, checking
acceptance using this definition consists of building valuations θ of quantified variables,
slicing the trace with respect to θ , checking per-slice acceptance, and finally combining
the results to produce a verdict.

To describe QEA textually we rely on the (not formally defined) language used
earlier where a state and its transitions may be written as

[accept] [next/skip](state){
id(p1, . . . , pn) if [guard] do [assign] → state list

}

17

Algorithm 2 A basic monitoring algorithm for QEA.
1: M← [[] 7→ {(q0, [])}]
2: for event e ∈ τ do
3: New← {θ | ∀(xi 7→ vi) ∈ θ : ∃ep ∈N (X ∪Y) : (xi 7→ vi) ∈match(e,ep) ∧ xi ∈ X}
4: for θ ∈ dom(M) sorted from largest to smallest do
5: Extensions←

{
θ † θ ′ | θ ′ ∈ New ∧ consistent(θ ,θ ′) ∧ relevant

(
e,θ † θ ′,N (X ∪Y)

)}
6: for θExt ∈ Extensions do
7: if θ = θExt or θExt /∈ dom(M) then
8: C← {(q,θfree) | ∃c ∈M(θ) : c e→E (θExt) (q,θfree) ∧ dom(θfree)∩X = /0}
9: M← M † [θExt 7→C]

The optional accept modifier captures if the state is in F . The next/skip modifiers
refer to the implicit closure of the state, i.e. what should happen when a transition for
an event does not exist; next closes to a failure state and skip introduces self-looping
transitions. The above semantics assumed skip. Each transition starting at the state is
given with (optional) guards and assignments.

Example 8. We can now complete the example given in Example 7 by computing the
configurations reached by each slice to obtain the following runs:

(start, [])
list(b,5)−−−−→ (listed, [r 7→ 5,c 7→ 0])

bid(b,1)−−−−→

(listed, [r 7→ 5,a 7→ 1,c 7→ 1])
bid(b,2)−−−−→ (listed, [r 7→ 5,a 7→ 2,c 7→ 2])
bid(b,2)−−−−→ (failure, [r 7→ 5,a 7→ 2,c 7→ 2])

and

(start, [])
list(d,2)−−−−→ (listed, [r 7→ 2,c 7→ 2])

bid(d,1)−−−−→

(listed, [r 7→ 2,a 7→ 1,c 7→ 2])
sell(d)−−−→ (failure, [r 7→ 2,a 7→ 1,c 7→ 2]).

As domτ(i) = {b,d} and both runs reach the failure state, we conclude that τ 6|=
∀i.AuctionBidding. The two runs fail as we cannot satisfy the guard needed to take a
transition and as the state modifier is next this leads to implicit failure (not directly
captured in the above semantics).

5.3 Monitoring Algorithm

The semantics introduced previously is non-incremental; it is necessary to first extract
the domains of quantified variables before slicing and checking the trace. To address
this we introduce an incremental algorithm and discuss optimisations.

A Basic Incremental Algorithm Algorithm 2 presents a basic incremental algorithm
for monitoring QEA. This assumes a QEA described using the notation discussed pre-
viously. The algorithm maintains a mapping M from valuations (of quantified variables)

18

Event Updates to M Using θ ∈ dom(M)

create(m1,c1) ([m 7→m1,c 7→ c1] 7→ createdC) []

create(m1,c2) ([m 7→m1,c 7→ c2] 7→ createdC) []

iterator(c1, i1) ([m 7→m1,c 7→ c1, i 7→ i1] 7→ createdI) [m 7→m1,c 7→ c1]

update(m1) ([m 7→m1,c 7→ c1] 7→ createdC) [m 7→m1,c 7→ c1]
([m 7→m1,c 7→ c2] 7→ createdC) [m 7→m1,c 7→ c2]
([m 7→m1,c 7→ c1, i 7→ i1] 7→ updated) [m 7→m1,c 7→ c1, i 7→ i1]

iterator(c2, i2) ([m 7→m1,c 7→ c2, i 7→ i2] 7→ createdI) [m 7→m1,c 7→ c2]

next(i1) ([m 7→m1,c 7→ c1, i 7→ i1] 7→ failure) [m 7→m1,c 7→ c1, i 7→ i1]

Fig. 3. Illustrating the updates to M for the UnsafeMapIterator example.

to sets of configurations. The valuations may be partial with respect to quantified vari-
ables in X as the events building a full valuation may appear incrementally. The algo-
rithm does not show how M can be used to determine a verdict but this follows the
definition of acceptance above; in the case of pure universal quantification all config-
uration sets must contain a final state. This gives a verdict for the current trace prefix,
which can be lifted to a four-valued domain providing anticipatory results [10].

For each event, the algorithm first computes any potentially new values for vari-
ables in X . Then, for each existing valuation θ in M, it tries to extend θ with this new
information and update M accordingly. Key to this approach is the way in which M is
iterated over; from the largest valuations to the smallest (wrtv). This ensures that when
a new valuation is added it extends the largest existing consistent valuation; this is the
principle of maximality. Maximality is ensured by the check on line 7 i.e. if this check
fails then θExt has already been added, possibly earlier in this iteration by extending a
larger valuation.

The set C computed on line 8 is the set of new configurations for θExt . This uses
→E (θ) i.e. the transition relation for the instantiated event automaton E (θ). Importantly,
a transition cannot be taken if it captures quantified variables; this may be possible as
θExt can be partial with respect to X .

Example 9. Figure 3 considers the UnsafeMapIterator QEA from page 15 which
has the alphabet N (X ∪Y) = {create(m,c), iterator(c, i),update(m),next(i)} for X =
{m,c, i} and Y = /0. We use the running trace from page 6 and use single states to rep-
resent configurations as the property is deterministic without free variables. The table
gives the valuation θ ∈ dom(M) used to make the update; note that new valuations fol-
low the previously described notion of maximality. The final event produces a valuation
in the failure state, meaning that the trace is rejected.

Indexing Approaches This basic algorithm is still not efficient enough for effective
monitoring as it requires a linear search of M for every event and M can grow very
large. One solution is to use an index to identify the relevant valuations in M. In the
following we describe the value-based indexing approach as, whilst other approaches
exist [57, 59], this is the most prominent approach in the literature and in use in tools.
These alternative approaches also make heavy use of indexing on values and therefore
the approach described here is also the most relevant in general.

19

Value-based indexing was introduced in the JAVAMOP tool [56] and uses the val-
ues in an event to lookup the valuations in M that the current event is relevant to. As
motivation consider some examples. When considering valuations possibly occurring at
runtime, the event update(c1) is only relevant to valuations that already bind c1, which
could be found via direct lookup. However, to find valuations relevant to iterator(c1, i1)
we must, e.g., find [m 7→m1,c 7→ c1] which does not refer to i1 but refers to more than c1.
Therefore, looking up the valuation or its subparts directly will not suffice.

To implement the necessary lookup a map U : Env 9℘(Env) is maintained such
that valuations in M are mapped to by their sub-valuations of interest. It can be complex
to compute which sub-valuations are required and in the worst case all sub-valuations
can be used. Algorithm 2 can be updated to use U by firstly ensuring U is
1. sub-valuation-closed: for any θ ∈ dom(M), we have θ ′ ∈ dom(U) if θ ′ < θ ,
2. relevance-closed: for any θ ′ ∈ dom(U) and θ ∈ dom(M), if θ ′ v θ then θ ∈U(θ ′).

These two conditions ensure that U can be used to find θ given any sub-valuation of θ .
Secondly one must ensure that M is
3. union-closed: if two consistent valuations are in dom(M), their union is in dom(M).

This last condition is already ensured by Algorithm 2. If these properties are main-
tained (see e.g. [56], Algorithm C) then it is sufficient to update the configurations for
valuations in {θ}∪U(θ) for each θ ∈ New i.e. line 4 of Algorithm 2 becomes

for θ ∈ New ∪
⋃

θ ′∈New U(θ ′) sorted from largest to smallest do

The amount of work needed to process each event is now bounded by the size of θ and
U(θ), which are related to the size of X and density of values in τ (a pathological case
could lead to U(θ) being proportional to the size of τ). This is a significant improve-
ment; in certain cases a previously linear complexity becomes constant i.e. where there
is a single quantified variable.

Example 10. After the third event (iterator(c1, i1)) in the above example, U would con-
tain the following mappings:

[] 7→ {[m 7→m1,c 7→ c1], [m 7→m1,c 7→ c2], [m 7→m1,c 7→ c1, i 7→ i1]}
[m 7→m1] 7→ {[m 7→m1,c 7→ c1], [m 7→m1,c 7→ c2], [m 7→m1,c 7→ c1, i 7→ i1]}
[i 7→ i1] 7→ {[m 7→m1,c 7→ c1, i 7→ i1]}
[c 7→ c1] 7→ {[m 7→m1,c 7→ c1], [m 7→m1,c 7→ c1, i 7→ i1]}
[c 7→ c2] 7→ {[m 7→m1,c 7→ c2]}
[m 7→m1,c 7→ c1] 7→ {[m 7→m1,c 7→ c1, i 7→ i1]}
[m 7→m1, i 7→ i1] 7→ {[m 7→m1,c 7→ c1, i 7→ i1]}
[c 7→ c1, i 7→ i1] 7→ {[m 7→m1,c 7→ c1, i 7→ i1]}

On event update(m1), New = {[m 7→m1]}, and U([m 7→m1]) gives the relevant valua-
tions to update. Then on event iterator(c2, i2), New = {[c 7→ c2, i 7→ i2]} and we add the
required [m 7→ m1,c 7→ c2, i 7→ i2] to M using [m 7→ m1,c 7→ c2] ∈U([c 7→ c2]) as we
did before but without searching M.

As a final note, it is possible to statically (from N (X ∪Y)) detect which entries in U
may be used e.g. in this example we know we will never query using m and i together.
This information can be used to optimise the entries stored in U .

20

6 Rule-Based Monitoring

6.1 Overview

Rule systems have been extensively studied within the artificial intelligence community,
and used for example in expert systems. It turns out that with slight modifications these
systems are applicable to runtime verification. A rule system can abstractly be seen as a
collection of rules, each of the form: c1, . . . ,cn⇒ a, consisting of a list of conditions ci
and an action a. A rule system executes on a rule state, referred to here as the database,
which abstractly can be considered as a set of facts (named data records). A condition
can for example be a fact pattern or the negation thereof. A rule will fire if each pattern
on the left-hand side matches a fact in the database (in the case of negation: no matching
fact exists), in which case the rule right-hand side executes. Multiple occurrences of a
variable on the left-hand side must match the same value. In the case that all conditions
on a rule’s left-hand side match, producing an environment of bound variables, the right-
hand side action is executed, adding and/or deleting facts to and from the database. A
special fact is the error fact.

We here present LOGFIRE [47], a rule-based monitoring framework implemented
as an internal DSL, essentially an API/library, in the SCALA programming language.
The UnsafeMapIterator property can be formulated as follows:13

class UnsafeMapIterator extends Monitor {
val create, iterator, update, next = event
val createdC, createdI, updated = fact

r1: create(m,c) ⇒ createdC(m,c)
r2: createdC(m,c), iterator(c,i) ⇒ createdI(m,i)
r3: createdI(m,i), update(m) ⇒ updated(i)
r4: updated(i), next(i) ⇒ error

}

The property is expressed as a SCALA class that extends a pre-defined class Monitor,
which provides all the LOGFIRE features. The UnsafeMapIterator class defines
four rules, named r1, ..., r4. Each rule name is followed by the symbol ‘:’ followed
by a list of conditions on the left of the ‘⇒’ symbol, and an action on the right. The
monitored events are create, iterator, update, and next. An event will only be present
in the database long enough to evaluate all the left-hand sides of rules to determine
which can fire, followed by the removal of the event, and execution of the right-hand
sides. Three facts are generated: createdC(m,c) representing that the collection c has
been extracted from the map m, createdI(m, i) representing that the iterator i has been
extracted from the collection of the map m, and updated(i) representing that the iterator
i no longer is safe to iterate over since the corresponding map has been updated.

Rule r1 states that upon observation of a create(m,c) event, a createdC(m,c) fact is
generated. Here m and c are free variables that get bound when the pattern create(m,c)
matches a fact (in this case an event) in the database. These bindings will be passed
to createdC(m,c). Rule r2 states that upon observation of an iterator(c, i) event in the
presence of a createdC(m,c) fact, a createdI(m, i) fact is generated. Similarly for the
two remaining rules, noting that error denotes the error fact. Note that left-hand sides

13The syntax has been modified slightly from SCALA to a more mathematical notation.

21

of rules do not need to refer to events, and can be purely fact-triggered, although this
is not the case for the rules r1, ..., r4. LOGFIRE furthermore allows to mix rule-based
programming and general purpose programming by allowing variables and methods to
be declared and used in monitor classes, and by allowing any SCALA code in conditions
and in actions. In the following, however, focus will be on the pure rule-based fragment
of this language.

6.2 Syntax and Semantics

We present the syntax and semantics of an idealised simple rule-based language named
LF illustrating the rule-based capabilities of LOGFIRE14. The syntax of LF is defined
by the following grammar, where id ranges over event and fact names in N (fact names
are assumed included in N), x over variable names in V , v over values in D, and exp
over expressions (not defined further):

rs ::= π fp ::= id(p)
π ::= id : c⇒ α p ::= x | v
c ::= fp | not(fp) | when(exp) α ::= insert(id(exp)) | remove(id) | error

The above definition uses meta-variables ranging over types as follows: rs ∈ RS (Rule
Systems), π ∈ R (Rules), c ∈ C (Conditions), fp ∈ FP (Fact Patterns), p ∈ P (Param-
eters), α ∈ A (Actions), and exp ∈ Exp (Expressions). A rule system rs consists of a
list of rules. A rule π consists of a name, followed by a non-empty list of conditions,
forming the left-hand side of the rule, followed on the right-hand side by a non-empty
list of actions. A condition c can be a fact pattern fp, corresponding to a fact that must
be present in the database; or the negation not(fp) of a fact pattern, requiring that no
matching fact exists; or a filter expression when(exp), which has to evaluate to true on
the names bound so far in the conditions occurring earlier in the rule. A fact pattern
fp consists of a fact name, and a list of parameter patterns. A parameter pattern p can
either be a variable x or a literal value v, such as for example an integer or a string (not
further specified). Finally, an action α can be a fact insertion insert(id(exp)), where the
identifier is the name of the fact and the expression list (an expression can for example
represent a computation, such as x+ 1) evaluates to a list of fact arguments; or a fact
removal remove(id), where the identifier is the name of a fact occurring on the rule
left-hand side; or an error action adding the error fact.

A fact is a tuple (id,〈v1, . . . ,vn〉) consisting of a name id ∈N and a sequence of
values vi ∈ D. A fact is typically written as id(v1, . . . ,vn). The type of facts is denoted
by F= N ×D∗. A database is a set of facts of type DB=℘(F). Monitored events are
just facts. In order to show intent in later definitions, however, we introduce the type
E = F to represent events. As mentioned above, a rule is evaluated by first evaluating
the left-hand side, resulting in an environment binding free variables occurring in event
and fact patterns to values in the actual event and in actual facts. An environment is
a map of type Env = V 9 D. Finally, when executing a rule, the result is a change
request (D,A) of type CH= DB×DB, consisting of a set of facts D to be deleted and

14Providing a full definition of LOGFIRE would be too space consuming for this presentation.

22

a set of facts A to be added. We will encounter semantic definitions which produce sets
of change requests. For this we need a function merge : ℘(CH)→ CH, which merges
the deleted facts respectively added facts, with the simple definition:

merge(ch) =
(⋃
{D | (D,A) ∈ ch},

⋃
{A | (D,A) ∈ ch}

)
Definition 2. Let τ ∈ E∗ be a trace and rs ∈ RS be a rule system. The relation τ |= rs
(τ satisfies rs) is defined as: τ |= rs iff error /∈ T[[rs]](/0)(τ); where the function T[[]] :
RS→ DB→ E∗ → DB, here applied to the rule system, an initial empty set of facts,
and the trace, is defined in Figure 4.

Function T (Figure 4) is curried, and is applied to a rule system, a database, and a trace,
returning a database with facts deleted and added. Function E evaluates the rule system
against a single event. The special bottom value ⊥ denotes an “error value”. Given a
type T , the type T⊥ denotes T ∪{⊥}. Function X evaluates one step of the rule system
against a database, which is assumed to contain the event just submitted. Function Xrec
evaluates the rule system against a database, executing (after the event has been re-
moved) recursively until no rules can fire (⊥ returned from a call of X). Function R
evaluates a single rule against a database. Function LHS evaluates the rule’s conditions
against a database and the environment obtained so-far by evaluating previous condi-
tions of the rule. Function C evaluates a single condition against a database and an
environment. Function Fdb evaluates a fact pattern against a database by matching the
pattern against each fact in the database. A binding id 7→ κ is introduced, and later
used in the semantics of remove actions of the form: remove(id) (it is assumed that
D contains facts). Function Ffact evaluates a fact pattern against a fact. Function Args
evaluates a list of fact pattern parameters against a list of actual arguments to a fact.
Function Arg evaluates a single fact pattern parameter against a single fact argument.
Function RHS evaluates the right-hand side of a rule, a list of actions, in an environment
generated by evaluating the left-hand side. Function A evaluates a single action in an
environment, returning a change request. Function Exp (not further defined) evaluates
an expression in an environment, resulting in a value.

6.3 Monitoring Algorithm

In principle, the semantics shown in Section 6.2 is sufficient for execution15. However,
it is inefficient in that for each event, we process in function X each rule (rule overhead),
in LHS each condition (condition overhead), and in Fdb each database fact (fact over-
head). In the typical RV case the number of rules and conditions are small and fixed but
the facts grow, resulting in the fact overhead potentially becoming the main source of
inefficiency. These inefficiencies are addressed by the RETE algorithm (although only to
some degree in the case of fact overhead), developed by Charles L. Forgy in the 1970s
[40], and explained in careful detail in [36]. The name Rete means network in Latin,
and reflects the way rules are represented and facts stored by the algorithm. In order to

15A Scala version of this semantics has been developed.

23

T[[]] : RS→ DB→ E∗→ DB
T[[rs]](db)(τ) =

if τ = 〈 〉 then db else
let db′ = E[[rs]](db)(head(τ)) in
if error ∈ db′ then db′ else

T[[rs]](db′)(tail(τ))

E[[]] : RS→ DB→ E→ DB
E[[rs]](db)(e) =

let db′ = X[[rs]](db∪{e}) in
if db′ =⊥ then db else

Xrec[[rs]](db′ \{e})

X[[]] : RS→ DB→ DB⊥
X[[rs]](db) =

let (D,A) =
merge({R[[π]](db) | π ∈ rs})

in
if D∪A = /0 then ⊥ else
(db\D)∪A

Xrec[[]] : RS→ DB→ DB
Xrec[[rs]](db) =

let db′ = X[[rs]](db) in
if db′ =⊥ then db else

Xrec[[rs]](db′)

R[[]] : R→ DB→ CH
R[[id : c⇒ α]](db) =

let Θ = LHS[[c]](db)([]) in
merge({RHS[[α]](θ) | θ ∈Θ})

LHS[[]] : C∗→ DB→ Env→℘(Env)
LHS[[c1, . . . ,cn]](db)(θ) =

if n = 0 then {θ} else
let Θ = C[[c1]](db)(θ) in⋃
{LHS[[c2, . . . ,cn]](db)(θ ′) | θ ′ ∈Θ}

C[[]] : C→ DB→ Env→℘(Env)
C[[fp]](db)(θ) = Fdb[[fp]](db)(θ)

C[[not(fp)]](db)(θ) =
let Θ = Fdb[[fp]](db)(θ) in
if Θ = /0 then {θ} else /0

C[[when(exp)]](db)(θ) =
if Exp[[exp]](θ) then {θ} else /0

Fdb[[]] : FP→ DB→ Env→℘(Env)
Fdb[[id(p1, . . . , pn)]](db)(θ) =⋃
{
let θ ′ = Ffact[[id(p1, . . . , pn)]](κ)(θ) in
if θ ′ =⊥ then /0 else
{θ ′ † [id 7→ κ]}
|

κ ∈ db
}

Ffact[[]] : FP→ F→ Env→ Env⊥
Ffact[[id1(p1, . . . , pn)]](id2(v1, . . . ,vn))(θ) =

if id1 6= id2 then ⊥ else
Args[[p1, . . . , pn]](v1, . . . ,vn)(θ)

Args[[]] : P∗→ D∗→ Env→ Env⊥
Args[[p1, . . . , pn]](v1, . . . ,vn)(θ) =

if n = 0 then θ else
let θ ′ = Arg[[p1]](v1)(θ) in
if θ ′ =⊥ then ⊥ else

Args[[p2, . . . , pn]](v2, . . . ,vn)(θ † θ ′)

Arg[[]] : P→ D→ Env→ Env⊥
Arg[[p]](v)(θ) =

if p ∈ V then
if p ∈ dom(θ) then

if θ(p) = v then θ else ⊥
else

θ † [p 7→ v]
else

if p = v then θ else ⊥

RHS[[]] : A∗→ Env→ CH
RHS[[α]](θ) =
merge({A[[α]](θ) | α ∈ α})

A[[]] : A→ Env→ CH
A[[insert(id(exp1, . . . ,expn))]](θ) =
(/0,{id(Exp[[exp1]](θ), . . . ,Exp[[expn]](θ))})

A[[remove(id)]](θ) =
({θ(id)}, /0)

A[[error]](θ) =
(/0,{error})

Exp[[]] : Exp→ Env→ D
. . .

Fig. 4. Semantics of LF.

24

illustrate the algorithm we shall consider the UnsafeMapIterator example. For illustra-
tion purposes, we shall add a new rule r5 to the rule system, in addition to rule r4, to
reflect that it is also an error to observe a call of hasNext() on an unsafe iterator:

r4: updated(i), next(i) ⇒ error
r5: updated(i), hasNext(i) ⇒ error

The two rules share the prefix updated(i). They (ignoring here the other rules) are
translated into the RETE network shown in Figure 5 (top). This data structure represents
the full structure of the rules, and in addition stores all received events and generated
facts during monitoring. In general, a RETE network consists of four kinds of nodes:

updated(i)

next(i)

a.i=b.i

hasNext(i)
a.i=b.i

updated(i)

r4: error()

r5: error()

Event Rule Added facts
create(m1,c1) r1 createdC(m1,c1)

create(m1,c2) r1 createdC(m1,c2)

iterator(c1, i1) r2 createdI(m1, i1)

update(m1) r3 updated(i1)

iterator(c2, i2) r2 createdI(m1, i2)

next(i1) r4 error

Fig. 5. Top: RETE network for UnsafeMapIterator rules r4 and r5. Bottom: result of applying
algorithm to example trace.

– alpha memories: white rectangular nodes. There is an alpha memory for each kind
of event and fact. When a new event is received or fact generated, it is inserted into
the corresponding alpha memory, which can be viewed as a set of events/facts.

– beta memories: grey rectangular nodes, containing so-called tokens. A token (an
alternative representation of what we called an environment in the semantics) is a
list of events/facts matching a prefix of one or more rules. The left-most •-node
symbolises an initial beta memory (a singular set containing an empty token). This
is introduced to make the behaviour of join nodes (see below) uniform.

– join nodes: round processing nodes, each connected to an alpha memory and a
beta memory, the input nodes, and an output node: a beta memory or an action
node. When a fact or token arrives in a connected input alpha or beta memory: the
other (beta or alpha) memory is searched for matches. The join node contains the
fact pattern of a condition occurring in one or more rules. A match occurs in this
example when the alpha node’s i parameter equals the beta node’s i parameter (in

25

the graph expressed as a.i = b.i). Each match results in a new token created from
the old token by appending the event/fact from the alpha memory. The new token
is sent to the child beta memory or action node.

– action nodes: downwards arrow shaped nodes deleting and/or adding facts.

Let’s summarise how the algorithm works. When an event is received, it is added
to the appropriate alpha memory. This again triggers the connected child join node to
execute a search in its connected input beta memory for a matching token, each of
which is a list of previous matching facts to a rule prefix. For each such match a new
token is generated by appending the event to the input token. The new extended token
is then sent to the child beta node or action. If the child node is an action it will execute,
and add/remove facts. If the child node is another beta node, then that will again trigger
its connected child join node to search its connected input alpha node for matches, etc.
Likewise when a fact is added, it is inserted into its appropriate alpha node, and the
process is the same as just described.

The application of the semantics in Figure 4 to our trace is shown in Figure 5. For
each event is shown which rule it causes to fire, and which fact is added to the database
by that rule (in this example no facts are removed). We can illustrate the algorithm using
the RETE network as well. Since the network in Figure 5 is partial and only reflects two
rules, the illustration will be partial as well. When the updated(i1) fact is generated in
the 4th step (in Figure 5), it is inserted in the left-most alpha memory. This triggers
the connected child join node to search its connected input beta memory for matches.
This is the initial beta memory containing an empty token matching everything, and the
updated(i1) fact is thus propagated to the child beta node as the token 〈updated(i1)〉
(a list containing that fact). The 6th next(i1) event is inserted in the top-most alpha
node, which again causes its child join node to search for matches in its input beta
memory, which now contains the 〈updated(i1)〉 token. This is a match, and the token
〈updated(i1),next(i1)〉 is sent to the r4 action node, causing an error to be generated.

The RETE algorithm reduces overhead by adding a fact to only the relevant alpha
memory, thereby restricting evaluation to that corresponding condition, restricting eval-
uation to only rules connected to that alpha memory, and restricting evaluation to only
that fact. The RETE algorithm optimises situations where two or more rules have a
common condition prefix, sharing conditions. The RETE algorithm needs a couple of
modifications for runtime verification, however, as described in [47]. First of all, for
each update to an alpha or beta memory, the other memory is searched sequentially for
matches. This is inefficient in the case of large data volumes in these memories. An
indexing approach can address this problem. Second, events need to be handled differ-
ently than facts: they should only be around long enough to trigger rules to execute, but
should be deleted as soon as this objective is reached. This corresponds to the removal
of the event e in the semantic function E in Section 6.2.

7 Stream Processing

7.1 Overview

Runtime verification can be seen as a special case of stream processing, in which the ob-
servable system behaviour is represented by a set of input streams, and the monitored

26

property is represented by a (Boolean) output stream of verdicts. The LOLA frame-
work [29] was the first to explicitly cast runtime verification as stream computation.
Inspired by functional stream computation languages like Lustre [45] and Esterel [23],
LOLA proposed a minimalistic language in which output streams are specified using
expressions over the same or other streams. These expressions establish dependencies
between the current value of an output stream with values of the same or other streams
at the current, past, or future positions. Evaluation is synchronous, i.e. there is a global
index into all streams representing the current progress of evaluation. Output streams
are not restricted to contain Boolean values and thus the framework goes beyond prop-
erty checking and allows for quantitative analyses to be carried over, such as computing
statistics over the observed system behaviour. In this rest of this section, we present the
LOLA framework,16 mainly following the presentation in [24].

We start by formalising in LOLA the UnsafeMapIterator property. This property
is somehow unnatural for stream processing, as it considers event streams and not data
streams (i.e. sequences of data values). There are several approaches to encode events as
stream elements, and we use one which allows for fewer intermediary streams. Namely,
we assume that a stream element is a set of tuples of data values. For input streams, these
sets are always singletons, as one element encodes one event. For instance, if at some
position j of the monitored trace the event create(m1,c1) occurs, then, at position j, the
input stream create contains the element {(m1,c1)}, otherwise (if a different event type
occurs at j) it contains the empty set. Note that we assume here four input streams, one
for each event type. The following stream equations specify the property.

createdC = create∪ createdC[−1| /0]
createdI = (iterator ./ createdC)∪ createdI[−1| /0]
updated = (update ./ createdI)∪updated[−1| /0]

ok = next⊆/ π〈i〉(updated)

The formalisation uses three intermediary streams, and one output stream, namely ok.
Each stream equation represents an equality between the element at the (implicit) posi-
tion j in the stream on the left hand side of the equation and the elements of the streams
occurring on the right hand side of the equation, at positions j′ obtained from j by an
offset, for any position j in the input streams. The first equation relates, recursively, the
jth element of createdC with the jth element of create and the (j− 1)th element of
createdC (unless j = 0, see below). In general, the expression s refers to the value of
the stream s at the current position j, and the expression s[−1|v] refers to the value of s
at the position with offset−1 with respect to the current position, that is, j−1, if j > 0,
and otherwise it refers to the value v, i.e. a default value given after the | symbol. LOLA
allows for any computable function to be used for obtaining output stream elements
from input stream elements. In this example we use relational algebra operators (see
also page 7).17 Thus, the stream createdC contains the tuples (m,c) of collections c cre-
ated so far from maps m. Similarly, the streams createdI and updated contain the tuples
(c, i,m) of iterators i created so far from collections c, in turn created from maps m; with

16An implementation can be found at https://www.react.uni-saarland.de/tools/lola/.
17We abuse notation and apply them on unnamed relations, as their attributes are as expected,

e.g. 〈m,c〉 for createdC, and 〈c, i,m〉 for createdI and updated.

27

m referring to updated maps in case of the stream updated. Finally, the stream ok is the
Boolean stream representing whether the property is satisfied at the current position,
is computed by checking whether the iterator i (if any) is among those for which the
corresponding map was updated. We end this section by noting the similarity between
this formalisation and the ones QEA and LOGFIRE have used.

7.2 Syntax and Semantics

We assume a finite set of interpreted, typed function symbols f , where f denotes a
computable function of some type T1×·· ·×Tk→ T . By abuse of notation, we identify
function symbols with their interpretation. Note that 0-ary function symbols, that is,
constants, are associated with individual values of some type. We also assume a set of
typed stream variables.

A stream of type T is a finite sequence over T . A stream is Boolean if its type is B.
For a finite set Z of stream variables, a stream valuation over Z is a partial function θ

over stream variables assigning to each variable z ∈ Z, a stream θ(z) such that the
streams associated with the different variables in Z have the same length n for some
n≥ 0. We also say that n is the length of θ , which is denoted by |θ |.

Stream Expressions Given a finite set Z of stream variables, the set of stream expres-
sions exp of type T over Z is inductively defined by the following syntax:

exp := z | z[`|c] | f (exp1, . . . ,expk)

where z ∈ Z is a variable of type T , ` 6= 0 is a non-zero integer, c is a constant of type T ,
k≥ 0 is a positive integer, f ∈F is a function symbol of some type T1×·· ·×Tk→ T , and
exp1, . . . ,expk are stream expression of type T1, . . . ,Tk, respectively. Informally, z[`|c]
refers to the value of e at the position obtained from the current position offset by `, and
the constant c is the default value assigned to positions from which the offset is after
the end or before the beginning of the stream.

Stream expressions e of type T over Z are interpreted over stream valuations θ of
type T over Z. The valuation of exp with respect to θ , written [[exp]](θ), is the stream of
type T and length |θ | inductively defined as follows for all 0≤ i < |θ |:

– [[z]](θ)(i) = θ(z)(i), for all z ∈ Z,

– [[z[`|c]]](θ)(i) =
{
[[z]](θ)(i+ `) if 0≤ i+ ` < |θ |,
c otherwise,

– [[f (exp1, . . . ,expk)]](θ)(i) = f
(
[[exp1]](θ)(i), . . . , [[expk]](θ)(i)

)
.

Example 11. Consider the Boolean stream expression exp := x∨x[1|true] over {x}. For
every stream valuation θ over {x} such that θ(x) ∈ (false true)+, i.e. alternating false
and true, the valuation of exp with respect to θ is the Boolean stream true|θ |, that is, the
sequence of length |θ | where each element is true.

28

Specification Language Given a finite set X of stream variables and a set Y = {y1, . . . ,yn},
with n≥ 1, of stream variables of type T1, . . . ,Tn respectively, with X ∩Y = /0, a LOLA
specification E over (input variables) X and (output variables) Y is a set of equations

{y1 = exp1, . . . ,yn = expn}

where exp1, . . . ,expn are stream expressions over X ∪Y of type T1, . . . ,Tn respectively.
Note that there is exactly one equation for each output variable.

A stream valuation of E is a stream valuation over X ∪Y . An input (resp. output)
of E is a stream valuation over X (resp. Y). The LOLA specification E describes a
relation, written [[E]], between inputs θX of E and outputs θY of E, defined as follows:
(θX ,θY) ∈ [[E]] iff |θX |= |θY | and for each equation y = exp of E,

[[y]](θ) = [[exp]](θ)

where θ = θX ∪ θY , defined as expected. The stream valuation θX ∪ θY is a valuation
model of E (associated with the input θX) if (θX ,θY) ∈ [[E]]. Note that in general, for a
given input θX , there may be zero, one, or multiple valuation models associated with θX .
A LOLA specification E is well-defined iff for each input θX , there is exactly one valu-
ation model of E associated with θX .

A distinction can be made between streams that are meant to represent the output
corresponding to some input and intermediate streams that only facilitate the computa-
tion of the intended output. Such a distinction is not essential here.

Example 12. We present next an alternative formalisation of the UnsafeMapIterator
property. We assume the same input streams as in Section 7.1, namely create, iterator,
update, and next.18 Note that their type is of the form ℘(T1× . . .×Tk), with T1 . . . ,Tk
among Map, Collection, Iterator. The following stream equations specify the property.

created = create∪ created[−1| /0]
notupdated =

(
(iterator ./ created)∪notupdated[−1| /0]

)
�update

ok = next⊆ π〈i〉(notupdated)

The stream ok is the Boolean stream representing the satisfaction or the violation
of the property at each position in the event sequence, i.e. ok(j) = false iff there is a
violation at position j. The auxiliary stream created of type℘(Map×Collection) stores
at position j all tuples (m,c) that have appeared in the input stream create up to (and
including) position j. The auxiliary stream notupdated of type ℘(Map×Collection×
Iterator) stores at position j all tuples (c, i,m) such that (a) at some previous posi-
tion j′, the tuples (c, i) and (m,c) appeared in the stream iterator and respectively the
stream created, and (b) between position j′ and j the tuple (m) has not appeared in the
stream update. In other words, notupdated stores those iterators that are safe to call
next() on (along with the related map and collection objects).

We note the similarity of this LOLA specification with the computation performed
by the FOTL-based monitoring algorithm for the corresponding FOTL specification

18In examples we do not make a distinction between stream variables and their denoted
streams, that is, we identify x and θ(x).

29

(see Example 3 on page 8). Namely, there is a direct correspondence between how the
streams created, notupdated, and ok are computed and how the satisfying elements
of the formulas β ′, γ ′, and respectively ϕ are computed. In particular, given the trace
from Example 1 (on page 6), the output streams notupdated and created are given by
the columns [[β ′]] j and respectively [[γ ′]] j of Table 1 (on page 9), while for ok we have
ok(i) = true for i ∈ {0, . . . ,4} and ok(5) = false.

Well-formed Specifications Note that well-definedness is a semantic restriction on
LOLA specifications. To detect ill-defined specifications, like y = y or y = ¬y, we present
next a syntactic restriction that guarantees well-definedness.

Let E be a LOLA specification over X and Y . A dependency graph for E is a
weighted and directed multi-graph with vertex set X ∪Y . There is an edge (z,z′,w)
from z to z′ with weight w iff the expression exp contains z′[w|c] as a subexpression
of exp, where exp is z’s expression in E, i.e. (z = exp) ∈ E. Intuitively, the edge records
that the value of (the stream denoted by) z at a particular position depends on the value
of z′, offset by w positions. Note that there can be multiple edges between z and z′ with
different weights on each edge. Vertices x ∈ X have no outgoing edges.

A walk of a graph is a sequence v1,e1,v2, . . . ,vk,ek,vk+1 of vertices and edges, for
k ≥ 1, such that ei = (vi,vi+1,wi), for all i with 1 ≤ i ≤ k. The walk is closed iff v1 =
vk+1. The weight of a walk is the sum of weights of its edges.

A LOLA specification specification is well-formed if there is no closed walk with
total weight zero in its dependency graph. Every well-formed LOLA specification is
well-defined [29]. The converse is not true. For instance, the specification y = y∧¬y is
well-defined, but not well-formed.

7.3 Monitoring Algorithm

The monitoring algorithm takes as input a LOLA specification E over X and Y , with
E assumed to be well-formed, and an input valuation θX of E, which is processed
iteratively. That is, at the (i+ 1)st iteration, the monitor receives the values of all in-
put streams at position i, namely θX (x)(i), for x ∈ X . The goal of the monitoring al-
gorithm is to incrementally compute the output valuation θY . Concretely, the moni-
tor outputs at each iteration the newly computed values θY (y)(j), where y ∈ Y and
j ∈ {0, . . . , |θX |−1}.

Before presenting the algorithm, we introduce some additional notation. Let XZ be
the set of variables {z j | z ∈ Z,0≤ j ≤ |θX |}, for Z ∈ {X ,Y}, and let X := XX ∪XY .
Given a stream expression exp and a position j ∈ {0, . . . , |θX |−1}, we denote by t j(exp)
the following term over X defined inductively over the structure of exp: if exp = z then
t j(exp) = z j, if exp = f (exp1, . . . ,expk) then t j(exp) = f (t j(exp1), . . . , t j(expk)), and if
exp = z[`|c] then t j(exp) = z j+` if 0≤ j+ ` < |θX | and t j(exp) = c otherwise.

The monitoring algorithm maintains two sets of equations:

– A set R of resolved equations zi = c, where zi ∈X and c is a constant.
– A set U of unresolved equations yi = t, where yi ∈XY and t is a non-ground term

over X .

30

Initially both stores are empty. At the (i+ 1)st iteration, the values θX (x)(i) for x ∈ X
become available and the monitor carries out the following steps:

1. The equation xi = θX (x)(i) is added to R, for each x ∈ X .
2. The equation yi = ti(exp) is added to U , for each equation (y = exp) ∈ E.
3. The equations in U are simplified as much as possible, using the following rules:

– Partial evaluation rules for function applications, such as 0+a→ a.
– If (y j = c) ∈ R, then every occurrence of y j in (the terms in) U is substituted

by c and possibly simplified further.
If an equation becomes of the form y j = c, it is removed from U and added to R;
furthermore, θY (y)(j) is set to c.

4. Equations zi−k = c are removed from R, where

k := max({0}∪{` | ` > 0 and z[−`|c] is a subexpression in E})

Concerning the last step, we have that, for any position j, the position j+k is the latest
future position for which the monitor requires the value of (θX ∪ θY)(z)(j). Thus the
equation zi−k = c can be safely removed from R at position i. This is important as it
places a bound on the amount of history that needs to be stored. Also, note that the
well-formedness condition ensures that each equation in U is eventually resolved.

Example 13. To illustrate the last point, consider the specification y = y[−3|0]+x. The
value of k for y is 3 and for x is 0. This indicates that for any input stream σ , the
equation x j = σ(j) can be removed from R at position j itself. Similarly, y j = τ(j) can
be removed from R at (or after) position j+3, where τ is the output stream.

If in a specification all offsets are negative, that is, the stream expressions only refer
to current or previous stream positions, then at the end of each iteration all equations
are resolved, i.e. U = /0, because all new terms in U can be evaluated and simplified to
constants. The specifications from Section 7.1 and Example 12 fall in this category. We
therefore illustrate next the algorithm on a specification which contains positive offsets.

Example 14. Consider the specification y = x′ ∨ (x∧ y[1|false]) over {x,x′} and {y},
corresponding to the LTL specification xWx′ over finite traces, where W denotes the
“weak until” operator. That is, y j stores the satisfaction of xWx′ on the word encoding
the suffixes of the streams x and x′ starting at position j. The associated equations are:

y j =

{
x′j ∨ (x j ∧ y j+1) if j < n−1,
x′j otherwise (that is, j = n−1)

for 0≤ j < n, with n the input streams’ length. Let x,x′ be the following input streams.

x false false true true true true true
x′ true false false false false false false

Table 3 lists the contents of the sets R and U at various stream positions j. For each
position j there are two rows in the table; the first row lists the contents of R and U
after executing steps 1 and 2 of the algorithm, while the second row does the same after

31

position R U
0 x0 = false, x′0 = true y0 = x′0∨ (x0∧ y1)

y0 = true -
1 x1 = false, x′1 = false y1 = x′1∨ (x1∧ y2)

y1 = false -
2 x2 = true, x′2 = false y2 = x′2∨ (x2∧ y3)

- y2 = y3

6 x6 = true, x′6 = false y2 = y3, y3 = y4, y4 = y5, y5 = y6, y6 = x′6
y2 = false, y3 = false, y4 = false, -
y5 = false, y6 = false

Table 3. Sample execution of the monitoring algorithm.

executing steps 3 and 4. At position 0, we add x0 = x(0), i.e. x0 = false, and x′0 = x′(0),
i.e. x′0 = true, to R, and y0 = x′0 ∨ (x0 ∧ y1) to U . The equation for y0 simplifies to
y0 = true, and is thus moved to R. At position 1, we have x1 = false and x′1 = false in R
and thus we can set y1 = false, which is also added to R. From j = 2 until j = 5, we have
x j = true and x′j = false. At each of these positions the equations y j = y j+1 are added
to U . The set U now contains the equations y2 = y3,y3 = y4, . . . ,y5 = y6. At position 6,
we have x6 = true and x′6 = false with the added information that the trace has ended,
i.e. y6 = x′6. Thus we set y6 = false and add it to R. This lets us resolve the equations
in U and set y j = false, for all the positions j from 2 to 6.

We end this section by noting that a run of the algorithm on the UnsafeMapIterator
property can be easily simulated by the reader; see the remark from Example 12.

8 Discussion

In this section we briefly discuss and compare the five different approaches outlined.
It is common to compare approaches on expressiveness of the specification languages,
their elegance, and efficiency of monitoring algorithms. However, due to lack of avail-
able complete results, our comparison is inherently subjective, rather than objective
based on concrete data. Hopefully future research and future editions of the runtime
verification competition (CRV) [14, 38, 60] will improve on this situation. Some first
steps in this direction have been taken in [61]. We also compare the approaches in terms
of the type of data structure used to store data values and of the type of produced output.

Expressiveness The FOTL-based approach supports extensions to real-time con-
straints and aggregation operators, which allow for a wide range of practically relevant
properties to be specified in a convenient manner. FOTL specifications are furthermore
compatible with an interpretation over infinite traces, which means that specifications
can be used for model checking purposes as well as for monitoring purposes. MMT
provides a generic framework that allows to use a variety of data algebras with ex-
isting monitoring approaches for temporal logics. This genericity allows for a wide
range of specifications to be expressed. Furthermore, the MMT approach can monitor
any FOTL formula that can be put in prenex normal form — a different kind of re-
striction than that imposed by the FOTL-based approach. The expressiveness of QEA,

32

LF, and LOLA depend on their guard, assignment, expression, and function languages.
Assuming rich such languages, these systems are Turing complete, and therefore more
expressive than temporal logics such as FOTL and TDL. However, it is unclear that full
Turing completeness is required for a practically useful RV specification language. The
extended state machines of QEA allow fundamentally to write programs, assuming a
general guard and assignment language. The rule-based LOGFIRE allows a form of pro-
gramming where arbitrary data can be passed as arguments to facts, thereby simulating
a program state. Added to that is that LOGFIRE is an internal DSL (an API) allowing full
fledged programming in SCALA. The LOLA framework phrases runtime verification as
a stream processing problem. The framework goes beyond property checking and gener-
ally supports computation of any data from traces (quantitative analysis). FOTL, QEA,
and LOGFIRE also support such quantitative analysis. Finally, we note that in LOLA
much of the performed stream computations are not specified within the approach, but
instead through interpreted functions.

Elegance First-order temporal logics such as FOTL and TDL are quite standard,
and allow for very elegant specifications, compared to the other approaches described
here. Although this should not be a surprise, it is quite a commonly stated opinion
(folklore) that temporal logics are hard to use by practitioners. However, as discussed in
[48], we believe that in many cases a temporal logic specification is the most convenient
form of formalisation, and that temporal logics certainly deserve to be taken seriously
for runtime verification purposes, preferably augmented with other constructs such as
sequencing, scopes, etc. Specifications in the other formalisms are less elegant in the
average case due to the fact that they operate at a lower level of operational abstraction.
For example, in QEA states in state machines have to explicitly named. This issue
could be alleviated by extending the approach to multiple plugins, as is done in the
JAVAMOP work which QEA builds on. Similarly, in LOGFIRE, intermediate facts have
to be named, created, and deleted. One way to look at QEA, LOGFIRE, and LOLA, is as
low-level formalisms to be targets of translations from higher-level logics. For instance,
a translation from FOTL’s monitorable fragment to LOLA seems straightforward.

Efficiency The analysis of the complexity of monitoring algorithms for specifica-
tions with data has not received much attention so far. Of the presented approaches,
we know that the FOTL-based algorithm has polynomial time and space complexity in
the number of data values in the trace (see [17] for details), while LOLA’s algorithm
uses time and space that is linear in the length of the trace under the assumption that
interpreted functions execute in linear time [29].19 We note that under the anticipation
requirement [55] (which asks that a verdict should be output as soon as every extension
of the current trace leads to the same verdict), the monitoring problem often becomes
a hard one because it requires to solve the satisfiability problem for the considered
specification language, which is usually a hard problem for expressive languages (e.g.,
for FOTL it is undecidable). Anticipation is partially supported among the systems pre-
sented here by MMT and QEA. Finally, part of the reason for the scarcity of worst-case
complexity analyses is that such results often offer little insight into the efficiency of
the tools implementing the monitoring algorithms, an aspect that we consider next.

19This assumption is not satisfied for our formalisations of the UnsafeMapIterator property.

33

Each of the monitoring approaches presented here has been implemented. There is
not enough data to make thorough comparisons between the performance of these tools.
However, based on the results of the runtime verification competitions, and experimen-
tal evaluation sections in various papers, we can still formulate some observations. The
most efficient tools so far explored in the literature appear to be those based on the slic-
ing approach, which was introduced in systems such as TRACEMATCHES and MOP,
and carried further in MARQ [59]. The key advantage of parametric trace slicing is
that it admits efficient indexing approaches that have a significant impact on monitor-
ing overhead. The generic nature of MMT, which allows to combine any data algebra
with temporal logic, and the use of an SMT solver to check, for each incoming event,
the generated constraints, makes performance an issue. Performance can be improved
significantly by using a dedicated decision procedure instead of a generic solver. Fur-
thermore, on a particular class of properties, namely LTL over tree-ordered ids (and a
particular theory, namely that of equality), the MMT algorithm lent itself to a highly
effective optimisation [30], implemented in the MUFIN tool. LOGFIRE’s implementa-
tion, which uses the RETE algorithm, is rather complex, and does not seem to yield the
same efficient solution for runtime verification as trace slicing. As documented in [47],
however, LOGFIRE performs well compared to other rule systems.

Data Structures We focus here on the general nature of the data structures used
for representing the observed history in the trace at any point during monitoring. With
this perspective three different approaches emerge. Both the FOTL and the LOGFIRE
algorithms store observed data explicitly as data records, that is, tuples of data values.
The FOTL-based algorithm operates with relations (sets of such tuples), which can
also be seen as database tables, while LOGFIRE operates with individual tuples, stored
as facts in a network. The QEA-based algorithm stores a mapping from valuations to
automata states. Valuations can also be seen as data records. Valuations are indexed such
that the relevant ones can be found efficiently. The MMT and LOLA systems approach
the problem differently by storing constraints between variables and data values; their
denotation are the data records stored in the other approaches. As such the five different
algorithms use three main approaches to storage of data during monitoring: data record
collections, indexed mappings, and constraints.

Monitor Output The systems presented yield different forms of output. FOTL
outputs sets of tuples, representing violations. MMT yields a verdict from an arbitrary
truth-value lattice, which can include values like “unknown”. QEA yields a verdict from
a 4-valued Boolean logic.20 LOGFIRE by default only outputs a result (an error trace)
if the specification is violated, but for each event it offers access to the set of all facts
generated so far. LOLA produces a data value at each step during monitoring as part of
an output stream. QEA, LOGFIRE, and to some extent FOTL, also can produce any
form of output from a trace, although these systems were not created for this purpose.

9 Related Work

In the following we discuss some related work, grouping it by the five presented ap-
proaches. As with the FOTL and MMT approaches, a number of other runtime veri-

20Assuming a guard and assignment language such that checking QEA emptiness is decidable.

34

fication approaches also use formalisms based on extensions of (linear) temporal log-
ics with variables modeling event parameters. All these (linear) temporal logic exten-
sions thus exhibit variable quantification, either implicitly or explicitly. In most ex-
tensions [44, 64, 63, 18, 12, 46, 19], the domain of a quantifier is restricted to the data
appearing at the current position in the trace. When a single event can occur at a posi-
tion in the trace, as in this chapter and in [44, 12], the domain thus consists of at most
one value and quantification has the flavor of the so-called freeze quantification [7].
In all these works, quantification is handled algorithmically by encoding (at runtime)
quantifiers with a finite number of conjunctions (∀) and disjunctions (∃), one for each
variable instantiation encountered during runtime. The monitoring algorithms are ei-
ther based on a translation from the underlying propositional formulas to automata, as
in [63, 19], or on a syntax-oriented tableaux-like procedure, as in [18, 12, 46]. In con-
trast to the above, in the FOTL and MMT approaches quantification is over the whole
data domain as it is in classic first-order logic. This is also the case with [27], which
presents a similar monitoring algorithm to that in [17].

The presented FOTL monitoring approach shares similarities with algorithms for
checking temporal integrity constraints of databases and for specifying temporal database
triggers, and in particular with [26], which the approach in [17] extends. The MMT
framework takes an indirect approach for monitoring first-order temporal logics, by
providing a way to lift propositional monitors to the setting of data values. Thus, in
its aim to achieve a temporal logic independent solution, the MMT approach presents
similarities with the MOP framework [25, 56].

Trace slicing was introduced in [5] with a suffix-matching semantics and then ex-
tended to total-matching (which is non-trivial) in the JAVAMOP work [56]. The latter
work also introduces different notions of matching which are difficult to capture in the
quantification framework introduced earlier, for example, on non-total and connected21

bindings. The JAVAMOP language, however, introduces an unnecessary restriction on
expressiveness by enforcing a unique mapping from event names to parameter names,
disallowing an event name to be used with different parameters in a specification. This
prevents, for example, a property like “a lock acquired by a thread t cannot be acquired
by another thread t ′ until first released by t” as here the lock action refers to two dif-
ferent variables. On the other hand, JAVAMOP supports infinite-state specifications as
context-free grammars (CFGs), which are not supported directly by any of the other for-
malisms. CFG properties can be only expressed indirectly, and much less elegantly, in
other formalisms (including QEA and LOGFIRE) by simulating push-down automata.
The work of [8] extends the parametric trace slicing approach with constraints, similar
to the combination of free variables and guards in QEA. The work in [30] introduces
more efficient monitoring algorithm by restricting specifications to those with hierarchi-
cal relationships between quantified variables. Other parametric monitoring approaches,
that like QEA are automata-based, include LARVA [28] and ORCHIDS [43].

The RETE-based LOGFIRE is inspired by the RULER rule system [9, 13] (not based
on RETE), which again was influenced by the EAGLE system [11] (a linear µ-calculus
supporting parametric monitoring with past time, future time, and sequencing opera-
tors). Several RETE-based external rule DSLs exist, such as DROOLS [2] and CLIPS [1].

21Bindings whose values are explicitly connected by events in the trace.

35

HAMMURABI [41] (actor-based) and ROOSCALOO [3] (RETE based) are two other in-
ternal SCALA rule DSLs. Unlike LOGFIRE, none of these rule systems treat events spe-
cially. A RETE-based system for aspect-oriented programming with history pointcuts is
described in [49].

The stream-based approach of LOLA resembles synchronous programming langua-
ges such as Lustre [45] and Esterel [23]. The approach was extended in LOLA 2.0 [39]
with two new language features, namely template stream expressions and dynamic
stream generation, which support a notion of slicing similar to that found in QEA.

10 Conclusion

We have described five different formalisms for parameterised runtime verification. The
field of runtime verification is still young and there is no clear agreement on what con-
stitutes a good specification formalism. This is in contrast to the field of e.g. model
checking, where LTL and CTL have become de facto standards. Part of the reason is
possibly data parameterisation, which opens up new doors as to what a specification
language can look like, as this chapter illustrates.

References

1. Clips website. http://clipsrules.sourceforge.net.
2. Drools website. http://www.jboss.org/drools.
3. Rooscaloo website. https://github.com/daveray/rooscaloo.
4. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases: The Logical Level. Addison

Wesley (1994)
5. Allan, C., Avgustinov, P., Christensen, A.S., Hendren, L., Kuzins, S., Lhoták, O., de Moor,

O., Sereni, D., Sittampalam, G., Tibble, J.: Adding trace matching with free variables to
AspectJ. SIGPLAN Not. 40, 345–364 (October 2005)

6. Alur, R., Etessami, K., Madhusudan, P.: A temporal logic of nested calls and returns. In:
TACAS. LNCS, vol. 2988, pp. 467–481. Springer (2004)

7. Alur, R., Henzinger, T.A.: A really temporal logic. J. ACM 41(1), 181–204 (1994)
8. Ballarin, C.: Two generalisations of Roşu and Chen’s trace slicing algorithm A. In: Proc. of

the 5th Int. Conf. on Runtime Verification (RV’14). pp. 15–30. Springer (2014)
9. Barringer, H., Rydeheard, D., Havelund, K.: Rule systems for run-time monitoring: from

Eagle to RuleR. In: Proc. of the 7th Int. Workshop on Runtime Verification (RV’07). LNCS,
vol. 4839, pp. 111–125. Springer (2007)

10. Barringer, H., Falcone, Y., Havelund, K., Reger, G., Rydeheard, D.: Quantified event au-
tomata: Towards expressive and efficient runtime monitors. In: Proc. of the 18th Int. Sympo-
sium on Formal Methods (FM’12). pp. 68–84. Springer (2012)

11. Barringer, H., Goldberg, A., Havelund, K., Sen, K.: Rule-based runtime verification. In: VM-
CAI. LNCS, vol. 2937, pp. 44–57. Springer (2004)

12. Barringer, H., Havelund, K.: TraceContract: A Scala DSL for trace analysis. In: Proc. of the
17th Int. Symposium on Formal Methods (FM’11). LNCS, vol. 6664, pp. 57–72 (2011)

13. Barringer, H., Rydeheard, D.E., Havelund, K.: Rule systems for run-time monitoring: From
Eagle to RuleR. Journal of Logic and Computation 20(3), 675–706 (2010)

36

14. Bartocci, E., Falcone, Y., Bonakdarpour, B., Colombo, C., Decker, N., Havelund, K., Joshi,
Y., Klaedtke, F., Milewicz, R., Reger, G., Rosu, G., Signoles, J., Thoma, D., Zălinescu, E.,
Zhang, Y.: First international competition on runtime verification: rules, benchmarks, tools,
and final results of crv 2014. Int. J. Softw. Tools Technol. Trans. pp. 1–40 (2017)

15. Basin, D., Harvan, M., Klaedtke, F., Zălinescu, E.: MONPOLY: Monitoring usage-control
policies. In: Proc. of the 2nd Int. Conf. on Runtime Verification (RV’11). LNCS, vol. 7186,
pp. 360–364. Springer (2012)

16. Basin, D.A., Klaedtke, F., Marinovic, S., Zălinescu, E.: Monitoring of temporal first-order
properties with aggregations. Form. Method. Syst. Des. 46(3), 262–285 (2015)

17. Basin, D.A., Klaedtke, F., Müller, S., Zălinescu, E.: Monitoring metric first-order temporal
properties. J. ACM 62(2), 15 (2015)

18. Bauer, A., Goré, R., Tiu, A.: A first-order policy language for history-based transaction mon-
itoring. In: Proc. of the 6th Int. Colloquium on Theoretical Aspects of Computing (ICTAC).
LNCS, vol. 5684, pp. 96–111. Springer (2009)

19. Bauer, A., Küster, J., Vegliach, G.: The ins and outs of first-order runtime verification. Form.
Method. Syst. Des. 46(3), 286–316 (2015)

20. Bauer, A., Leucker, M., Schallhart, C.: Monitoring of real-time properties. In: FSTTCS.
LNCS, Springer (2006)

21. Bauer, A., Leucker, M., Schallhart, C.: The good, the bad, and the ugly, but how ugly is ugly?
In: RV. LNCS, Springer (2007)

22. Bauer, A., Leucker, M., Schallhart, C.: Runtime verification for LTL and TLTL. ACM Trans.
Softw. Eng. Methodol. 20, 1–64 (2011)

23. Berry, G.: Proof, language, and interaction. chap. The Foundations of Esterel, pp. 425–454.
MIT Press (2000)

24. Bozzelli, L., Sánchez, C.: Foundations of Boolean stream runtime verification. Theoret.
Comput. Sci. 631, 118–138 (2016)

25. Chen, F., Roşu, G.: Parametric trace slicing and monitoring. In: Proc. of the 15th Int. Conf.
on Tools and Algorithms for the Construction and Analysis of Systems (TACAS’09). pp.
246–261. Springer (2009)

26. Chomicki, J.: Efficient checking of temporal integrity constraints using bounded history en-
coding. ACM Trans. Database Syst. 20(2), 149–186 (1995)

27. Chowdhury, O., Jia, L., Garg, D., Datta, A.: Temporal mode-checking for runtime monitoring
of privacy policies. In: Proc. of the 26th Int. Conf. on Computer Aided Verification (CAV’14).
LNCS, vol. 8559, pp. 131–149. Springer (2014)

28. Colombo, C., Pace, G.J., Schneider, G.: LARVA — safer monitoring of real-time Java pro-
grams (tool paper). In: Proc. of the 7th IEEE Int. Conf. on Software Engineering and Formal
Methods. pp. 33–37. SEFM ’09, IEEE Computer Society (2009)

29. D’Angelo, B., Sankaranarayanan, S., Sánchez, C., Robinson, W., Finkbeiner, B., Sipma,
H.B., Mehrotra, S., Manna, Z.: LOLA: Runtime monitoring of synchronous systems. In:
Proc. of the 12th Int. Symposium on Temporal Representation and Reasoning. pp. 166–174.
IEEE Computer Society (2005)

30. Decker, N., Harder, J., Scheffel, T., Schmitz, M., Thoma, D.: Runtime monitoring with
union-find structures. In: Proc. of the 22nd Int. Conf. on Tools and Algorithms for the Con-
struction and Analysis of Systems. LNCS, vol. 9636, pp. 868–884. Springer (2016)

31. Decker, N., Leucker, M., Thoma, D.: Impartiality and anticipation for monitoring of visibly
context-free properties. In: RV. LNCS, Springer (2013)

32. Decker, N., Leucker, M., Thoma, D.: jUnitRV–Adding Runtime Verification to jUnit, pp.
459–464. Springer (2013)

33. Decker, N., Leucker, M., Thoma, D.: Monitoring modulo theories. In: Proc. of the 20th Int.
Conf. on Tools and Algorithms for the Construction and Analysis of Systems (TACAS’14).
pp. 341–356. Springer (2014)

37

34. Decker, N., Leucker, M., Thoma, D.: Monitoring modulo theories. Int. J. Softw. Tools Tech-
nol. Trans. 18(2), 205–225 (2016)

35. Dong, W., Leucker, M., Schallhart, C.: Impartial anticipation in runtime-verification. In:
Proc. of 6th Int. Symposium on Automated Technology for Verification and Analysis (ATVA
2008). pp. 386–396. Springer (2008)

36. Doorenbos, R.B.: Production Matching for Large Learning Systems. Ph.D. thesis, Carnegie
Mellon University, Pittsburgh, PA (1995)

37. Eisner, C., Fisman, D., Havlicek, J., Lustig, Y., McIsaac, A., Campenhout, D.V.: Reasoning
with temporal logic on truncated paths. In: Proc. of the 15th Int. Conf. on Computer Aided
Verification (CAV 2003). LNCS, vol. 2725, pp. 27–39. Springer (2003)

38. Falcone, Y., Ničković, D., Reger, G., Thoma, D.: Second international competition on
runtime verification: CRV 2015. In: Proc. of the 15th Int. Conf. on Runtime Verification
(RV’15). LNCS, vol. 9333, pp. 405–422. Springer (2015)

39. Faymonville, P., Finkbeiner, B., Schirmer, S., Torfah, H.: A Stream-Based Specification Lan-
guage for Network Monitoring, pp. 152–168. Springer (2016)

40. Forgy, C.: Rete: A fast algorithm for the many pattern/many object pattern match problem.
Artificial Intelligence 19, 17–37 (1982)

41. Fusco, M.: Hammurabi - a Scala rule engine. In: Scala Days 2011, Stanford University,
California (2011)

42. Garcia-Molina, H., Ullman, J.D., Widom, J.: Database systems: The complete book. Pearson
Education (2009)

43. Goubault-Larrecq, J., Olivain, J.: A smell of ORCHIDS. In: Proc. of the 8th Int. Workshop
on Runtime Verification (RV’08). LNCS, vol. 5289, pp. 1–20. Springer (2008)

44. Håkansson, J., Jonsson, B., Lundqvist, O.: Generating online test oracles from temporal logic
specifications. Int. J. Softw. Tools Technol. Trans. 4(4), 456–471 (2003)

45. Halbwachs, N., Caspi, P., Raymond, P., Pilaud, D.: The synchronous dataflow programming
language Lustre. Proc. of the IEEE 79(9), 1305–1320 (September 1991)

46. Hallé, S., Villemaire, R.: Runtime enforcement of web service message contracts with data.
IEEE Trans. Services Computing 5(2), 192–206 (2012)

47. Havelund, K.: Rule-based runtime verification revisited. Int. J. Softw. Tools Technol. Trans.
17(2), 143–170 (2015)

48. Havelund, K., Reger, G.: Runtime verification logics - a language design perspective. In:
KIMfest - a conference in honour of Kim G. Larsen on the occasion of his 60th birthday,
Aalborg University, 19-20 August 2017. LNCS, Springer (2017), to appear

49. Herzeel, C., Gybels, K., Costanza, P.: Escaping with future variables in HALO. In: Proc.
of the 7th Int. Workshop on Runtime Verification (RV’07). LNCS, vol. 4839, pp. 51–62.
Springer (2007)

50. Hodkinson, I.M., Wolter, F., Zakharyaschev, M.: Decidable fragment of first-order temporal
logics. Annals of Pure and Applied Logic 106(1-3), 85–134 (2000)

51. Holzmann, G.J.: The Spin Model Checker – Primer and Reference Manual. Addison-Wesley
(2004)

52. Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to automata theory, languages, and
computation. Addison-Wesley (2003)

53. Koymans, R.: Specifying real-time properties with metric temporal logic. Real-Time Syst.
2(4), 255–299 (1990)

54. Leucker, M., Sánchez, C.: Regular linear temporal logic. In: ICTAC. LNCS, Springer (2007)
55. Leucker, M., Schallhart, C.: A brief account of runtime verification. J. Log. Algebr. Program.

78(5), 293–303 (2009)
56. Meredith, P.O., Jin, D., Griffith, D., Chen, F., Roşu, G.: An overview of the MOP runtime

verification framework. Int. J. Softw. Tools Technol. Trans. 14(3), 249–289 (2012)

38

57. Purandare, R., Dwyer, M.B., Elbaum, S.: Monitoring Finite State Properties: Algorithmic
Approaches and Their Relative Strengths, pp. 381–395. Springer (2012)

58. Reger, G.: Automata Based Monitoring and Mining of Execution Traces. Ph.D. thesis, Uni-
versity of Manchester (2014)

59. Reger, G., Cruz, H.C., Rydeheard, D.: MarQ: Monitoring at runtime with QEA. In: Proc. of
the 21st Int. Conf. on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS’15). pp. 596–610. Springer (2015)

60. Reger, G., Hallé, S., Falcone, Y.: Third international competition on runtime verification:
CRV 2016. In: Proc. of the 16th Int. Conf. on Runtime Verification (RV’16). LNCS, vol.
10012, pp. 21–40. Springer (2016)

61. Reger, G., Rydeheard, D.: From first-order temporal logic to parametric trace slicing. In:
Proc. of 6th Int. Conf. on Runtime Verification (RV’15). pp. 216–232. Springer (2015)

62. Roşu, G., Chen, F.: Semantics and algorithms for parametric monitoring. Logical Methods
in Computer Science 8(1) (2012)

63. Stolz, V.: Temporal assertions with parameterized propositions. J. Logic Comput. 20(3),
743–757 (2010)

64. Stolz, V., Bodden, E.: Temporal assertions using AspectJ. In: Proc. of the 5th Int. Workshop
on Runtime Verification (RV’05). ENTCS, vol. 144(4), pp. 109–124. Elsevier (2006)

39

