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Abstract

In this article we apply some number theoretical techniques to derive re-
sults on Boolean functions. We apply Stickelberger’s theorem on 2-adic

valuations of Gauss sums to the Kasami-Welch functions trL(x4k−2k+1) on
F2n , where n is odd and (k, n) = 1. We obtain information on the Fourier
spectrum, including a characterization of the support of the Fourier trans-
form. One interesting feature is that the behaviour is different for different
values of k. We also apply the Gross-Koblitz formula to the Gold func-

tions trL(x2k+1).
Keywords: Kasami-Welch; Fourier transform; Walsh-Hadamard trans-
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AMS Classification: 05C38, 11T24, 94B15.

1 Introduction

Let L = Fq, the finite field with q = 2n elements. Let trL denote the trace map
from L to F2. The Fourier transform of any real-valued function F defined on
L is the function F̂ defined by

F̂ (a) =
∑
x∈L

F (x)(−1)trL(ax)
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for a ∈ L. The Fourier spectrum of F is the set of values of F̂ , that is the set

{F̂ (a) : a ∈ L}.

To a Boolean function f : L −→ F2 we associate the real-valued function
F = (−1)f . When we say the Fourier spectrum of f , we mean the Fourier
spectrum of the associated function F = (−1)f . For a general f it is difficult to
find the Fourier spectrum.

When the Fourier spectrum of a Boolean function is known, further infor-
mation can be obtained using Stickelberger’s theorem on 2-adic valuations of
Gauss sums, but often the information is difficult to extract. Studying Boolean
functions using Stickelberger’s theorem leads to the study of a set which we
call the J-set. We will give the definition in section 2. It is this J-set that is
often hard to find explicitly, but when found it reaps rich rewards. Finding the
J-set leads to finer information about the Fourier spectrum, and its support.
For example, in section 5 we easily determine the degree of the characteristic
function of the support using our results.

A Boolean function is said to be bent if its Fourier spectrum consists of the
two values ±2n/2, and thus n is necessarily even. An analysis of the J-set of
Kasami-Welch bent functions, functions of the form trL(x4k−2k+1), was carried
out in Langevin-Leander [7]. In this article we undertake an analysis of the
J-set of trL(x4k−2k+1) for n odd. This is different from the n even case, and
the complete result depends on paths in a certain graph (see sections 3 and 4).

One motivation for this article is a question of Hans Dobbertin, who asked for
a trace description of the support of the Fourier transform of the Kasami-Welch
functions. Dillon gives a description in [2], answering Dobbertin’s question,
although the description is not a trace description. In particular, he proves the
No-Chung-Yun conjecture for n odd, which concerns one particular k, when
3k ≡ ±1 (mod n), and does give a trace description in that case. In the Dillon-
Dobbertin [1] paper the n even case is proved. Our description is by its nature
a trace description, which coincides with that of [2] in the 3k ≡ ±1 (mod n)
case (see section 6).

We were also motivated by a desire to explain the data in Langevin-Veron
[8]. As part of that research they searched on a computer for examples of the
simplest possible J-set. It was observed that a single Kasami exponent has a
J-set of this simple form. We are able to prove this result (see section 6).

Viewing the Kasami-Welch exponent as the t = 3 case of the family (2tk +
1)/(2k + 1), we also consider in detail the next case, when t = 5. We are able to
determine the J-set in terms of paths in two graphs (see section 7). The family
of exponents (2tk + 1)/(2k + 1) is of great interest because most known cases of
a Fourier spectrum with five or fewer values belong to this family. The t = 5
case is known by results of Kasami to have 5-valued spectrum.

Finally, we discuss the Gross-Koblitz formula in our context in section 8, and
apply this to the Gold functions in section 9. This allows us to determine the
sign of the Fourier coefficient at 1, showing yet again how finer information can
be deduced using these techniques. Besides Stickelberger’s theorem and Gross-
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Koblitz formula, all our analyses make heavy use of the fundamental formula in
[4] on modular multiplication.

2 Stickelberger’s Theorem and the J-Set

Let n be odd. Let µ(y) = (−1)trL(y), so µ is the canonical additive character of
L. We let L× = L\{0}.

Let Q2 denote the field of 2-adic (or dyadic) numbers, and let Q2 denote its
algebraic closure. As usual Z2 denotes the ring of 2-adic integers. We consider
characters of L× taking values in Q2. In fact, the character values will lie in
the unramified algebraic extension of Q2 of degree n.

Let L̂× denote the group of characters of L× taking values in Q2. Elements
of L̂× are sometimes called multiplicative characters of L. The group L̂× is a
cyclic group of order 2n−1, generated by the Teichmüller character. In order to
define the Teichmüller character, let i be any primitive (2n− 1)-th root of unity
in Q2. The ring of integers of the extension Q2(i) is Z2[i], and this local ring
has a unique maximal ideal generated by 2. The quotient Z2[i]/(2) is a finite
field of order 2n, and is therefore isomorphic to L. We use this representation
of L for the definition.

The Teichmüller character ω : L −→ Q2(i) is defined by the relation

ω(ij mod 2) = ij , j = 0, 1, . . . , 2n − 2. (1)

Using the convention ω(0) = 0, the above relation is equivalent to saying that

∀a ∈ L, ω(a) mod 2 = a. (2)

Next we recall Gauss sums. The Gauss sum associated to χ ∈ L̂× is

τ(χ) = −
∑
x∈L×

χ(x)µ(x). (3)

There are good justifications to introduce the minus sign in the definition of
Gauss sums. The reader who is not familiar with the above definitions will
find the basic material (characters and Gauss sums) in the book of Lidl and
Niederreiter [9], and in the course of Koblitz [5] for the p-adic approach.

The following theorem can be found in [7].

Theorem 1 Continuing the above notation, if f(x) = µ(xd) then

f̂(a) ≡ −
2n−1∑
j=1

τ(ωj) τ(ωjd) ωjd(a) (mod 2n). (4)

For any integer m, let wt2(m) denote the 2-weight of m, namely
∑
imi

where m mod (2n − 1) =
∑
imi2i is the base 2 expansion of m mod (2n − 1).
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A well known result of Stickelberger shows that for all integers 0 ≤ j < 2n−1,
the following congruence holds:

τ(ω̄j) ≡ 2wt2(j) (mod 21+wt2(j)) (5)

and so this gives us the 2-adic valuation of the Gauss sums in equation (4).
It follows that the 2-adic valuation of each term in the sum (4) for f̂(a) is
wt2(j) + wt2(−jd), and the overall 2-adic valuation of f̂(a) is not less than the
minimum of the numbers wt2(j) + wt2(−jd) over all j = 1, 2, . . . , 2n − 2.

Definition 1 Continuing the above notation, if f(x) = µ(xd) let

Md = min
j∈{1,2,...,2n−2}

[wt2(j) + wt2(−jd)].

Definition 2 Continuing the above notation, if f(x) = µ(xd) let

Jd =
{
j ∈ {1, 2, . . . , 2n − 2} : wt2(j) + wt2(−jd) = Md

}
.

We refer to this set Jd as the J-set. Its importance is summarized in the
following Lemma.

Lemma 1 Continuing the above notation, if f(x) = µ(xd) it holds that

2Md+1|f̂(a) ⇔
∑
j∈Jd

a−jd = 0.

Proof. Using the definition of Jd and Theorem 1,

f̂(a) ≡ 2Md

∑
j∈J

ωjd(a) (mod 2Md+1)

by definition of the Teichmüller character a ≡ ω(a) mod 2. Thus the valuation
of f̂(a) is greater than Md if and only if

∑
j∈Jd

a−jd = 0.
tu

Note that the J-set is closed under multiplication by 2, and so is a union
of cyclotomic cosets. Let J̃d denote a set of cyclotomic representatives of Jd.
Then, since n is odd,∑

j∈Jd

a−jd = trL(
∑
j∈J̃d

a−jd).

As the reader will see, determining the J-set leads to information about the
Fourier spectrum. For the Kasami exponent d = 4k − 2k + 1, where n is odd
and (k, n) = 1, we use the well-known fact (see [3] for example) that the Fourier
spectrum is {0,±2(n+1)/2}.

Corollary 1 Continuing the above notation, if the Fourier spectrum of f(x) =
µ(xd) is {0,±2(n+1)/2} then Md = (n + 1)/2, and the support of the Fourier
transform is {a ∈ L : trL(

∑
j∈J̃d

a−jd) = 1}.
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3 J-Sets for All Kasami Exponents

Let n be odd. Let d = 4k − 2k + 1 be a Kasami exponent, with k > 1 relatively
prime to n. In this section we shall collect some results about the J-set.

We assume that j is an element of the J-set, with binary expansion

j =
n−1∑
i=0

ji2i.

Let s = jd mod (2n − 1). Then

s =
n−1∑
i=0

(ji−2k − ji−k + ji)2i mod (2n − 1).

As usual, all subscripts are considered modulo n. First we recall the funda-
mental relation derived in [4]:

2ci + si = ji−2k − ji−k + ji + ci−1, i = 0, 1, . . . , n− 1, (6)

where the i-th carry ci is an integer in the set {−1, 0, 1} and
∑
i si2

i is the
binary expansion of s. Let c be the sequence c0, c1, . . . , cn−1. Overloading the
notation, we write wt2(c) for

∑
i ci.

Lemma 2 wt2(c) = −n−1
2 .

Proof. Summing equation (6) over all i gives

2
∑

ci +
∑

si =
∑

ji −
∑

ji +
∑

ji +
∑

ci

or

wt2(c) = wt2(j)− wt2(s)
= wt2(j)− (n− wt2(−s))
= wt2(j) + wt2(−jd)− n

=
n+ 1

2
− n

= −n− 1
2

.

tu

Lemma 3 ([4]) For all i, ci + ci−k ∈ {−1, 0, 1}.

Corollary 2 c has exactly (n− 1)/2 entries equal to −1. The remaining (n+
1)/2 entries are equal to 0.
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Proof. By Lemma 3, ci and ci−k cannot both be −1. This means that c has
at most (n − 1)/2 entries equal to −1. But combining Lemma 2 with the fact
that ci ∈ {−1, 0, 1}, gives that c has at most (n−1)/2 entries equal to −1. This
shows the result.

tu

As (k, n) = 1 we may re-order the sequence ci as

c0, c−k, c−2k, c−3k, . . . , c−(n−1)k. (7)

In this ordering no two consecutive entries can be −1 by Lemma 3. We may
assume c0 = c1 = 0 up to cyclotomic equivalence, and then in this re-ordering
the sequence ci is

0, 0,−1, 0,−1, 0,−1, 0, . . . , 0,−1. (8)

In other words, if we change the subscript variable to r where i = −rk, then
cr = 0 if r ∈ {0, 1, 3, 5, . . . , n−2}, and cr = −1 if r ∈ {2, 4, 6, . . . , n−1}. In this
new ordering, the fundamental relation (6) becomes

2cr + sr = jr+2 − jr+1 + jr + cr+e (9)

where ek ≡ 1 (mod n). We will assume wlog that e is odd (if e is even then
replace k by n− k).

Note that if r + e < n then the subscript r + e has the opposite parity to r,
whereas if r + e ≥ n then r + e (reduced modulo n) has the same parity as r.

Let ` = n− e, which we note is even. We now show that exactly ` + 3 bits
in j are uniquely determined. These bits are:

j2, j3, . . . , j`+2, j`+3, j`+4.

These are determined because for 0 < r ≤ ` and r even, the relation (9) becomes

−2 + sr = jr+2 − jr+1 + jr + 0 (10)

and there is a unique solution sr = 1, jr+2 = 0, jr+1 = 1, jr = 0. The r = `+ 1
equation is

s`+1 = j`+3 − j`+2 + j`+1

which determines j`+3 = 0. Then the r = `+ 2 equation is

−1 + s`+2 = j`+4 − j`+3 + j`+2

which implies j`+4 = 0.
The remaining n − ` − 3 = e − 3 bits of j are not determined uniquely, in

general. The number of solutions is equal to the number of paths of length
(e − 3)/2 starting at a certain vertex in a certain directed graph, as we will
explain in the next section. If e = 3 then j is completely determined and the
J-set has one element (in this case j`+3 = j0 and j`+4 = j1). We will discuss
particular values of e later.
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4 The Graph describing the J-Sets

First we note that the equations for r > `+ 2 are

−2 + sr = jr+2 − jr+1 + jr − 1, r even,

and

0 + sr = jr+2 − jr+1 + jr + 0, r odd,

which do not have a unique solution. For example, although j`+3 = 0, j`+4 = 0,
the r = `+ 3 equation is

s`+3 = j`+5 − j`+4 + j`+3

which does not determine j`+5 (assuming e > 3).
Equations for r between 2 and ` + 2 have already been used. We will take

the equations for r > `+2 in pairs; the first corresponds to an odd r, the second
to an even r. If r is odd, and x = jr, y = jr+1, z = jr+2, t = jr+3, the fact that
the r-th equation has a solution is equivalent to

x− y + z ∈ {0, 1} (11)

and the fact that the next equation for r + 1 has a solution is equivalent to

y − z + t+ 1 ∈ {0, 1}. (12)

We consider (11) and (12) as the restrictions in moving from one odd-even pair
of bits (x, y) to the next odd-even pair (z, t). We note that these are the only
restrictions on (z, t), and we further note that when (z, t) are chosen, they in
turn will use (11) and (12) to determine the next odd-even pair. The next
odd-even pair will not depend on x and y at all, only on z and t.

In this way, we can track how ordered pairs (jr, jr+1) (with r odd) of un-
determined bits give rise to possibilities for the next pair of undetermined bits.
We can express this situation very concisely in the form of the directed graph
G given in Figure 1.

It is now evident that solutions for the undetermined bits correspond to
paths in this graph G that start at 00. The length of the path should be one
half the number of undetermined bits, i.e., (e − 3)/2. The last vertex in the
path is the final pair of undetermined bits (j0, j1). We have proved:

Theorem 2 There is a one-to-one correspondence between paths in G of length
(e − 3)/2 that start at 00, and representatives from cyclotomic cosets in the
J-set.

5 The Degree of The Support Function

The support of the Fourier transform is described by the function

a 7→ trL(
∑
j∈J̃d

a−jd),
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Figure 1: Graph G of Transitions (jr, jr+1)→ (jr+2, jr+3)8



called the support function. An application of our results is that we can deter-
mine the degree of this function for any Kasami exponent.

Theorem 3 Let n be odd. Let d = 4k−2k+1 be the Kasami exponent, with ek ≡
1 (mod n), e odd. Then the degree of the support function a 7→ trL(

∑
j∈J̃d

a−jd)
is (e+ 1)/2.

Proof. The degree of the support function is determined by the maximum
value of wt2(−jd) where j is in the J-set. As

wt2(j) + wt2(−jd) =
n+ 1

2

this maximum is achieved by minimising wt2(j). By Theorem 2, elements of
the J-set correspond to paths in the graph G. This minimum is achieved by
choosing a path in G of smallest weight. It is clear that a path of weight 0 can
always be chosen, simply by choosing the loop from 00 to itself for each edge.
The resulting element of the J-set has weight `/2, so

max
j∈Jd

wt2(−jd) =
n+ 1

2
− `

2
=
n+ 1− (n− e)

2
=
e+ 1

2
.

tu

6 J-Sets for Particular Kasami Exponents

Experimental results in Langevin-Veron [8] showed that for n < 39 and not
divisible by 3, there is exactly one Kasami exponent that has a J-set consisting of
one cyclotomic coset. We are now able to prove this, and identify the exponent.
It turns out that Dillon [2] and Dillon-Dobbertin [1] discussed this particular
Kasami exponent before, and gave the trace description of the support of the
Fourier transform. We give a different proof of this trace description as a simple
corollary of our description of the J-set.

Theorem 4 Let n be odd and not divisible by 3. Let d = 4k − 2k + 1 be the
Kasami exponent with 3k ≡ 1 (mod n).

(1) There is exactly one element in the J-set up to cyclotomy, which is 1/(2−2k−
1), i.e.,

Jd =
{ 2i

2−2k − 1
: i = 0, 1, 2, . . . , n− 1

}
.

(2) This is the only Kasami exponent whose J-set consists of a single cyclo-
tomic coset.

(3) The support of the Fourier transform is {a ∈ L : trL(a2k+1) = 1}.
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Proof. (1) Here e = 3 and ` = n− e = n− 3. By Theorem 2 the J-set has one
element j up to cyclotomic equivalence. The element is completely determined
as we explained in section 4. The bits of j in the re-ordering are

j2 = 0, j3 = 1, j4 = 0, j5 = 1, . . . ,

j`+1 = 1, j`+2 = 0, j`+3 = j0 = 0, j`+4 = j1 = 0.

Upon reverting to the original ordering, this gives j as

j =
(n−3)/2∑
s=1

2−k(2s+1) = 2−3k

(n−5)/2∑
s=0

2−2sk = 2−3k 2−2k(n−3)/2 − 1
2−2k − 1

=
1

2−2k − 1
.

(2) We assume k 6= 1, and thus e 6= 1 because k = 1 is the Gold case d = 3.
As e is odd, any other value of e is at least 5 and there are at least three paths in
G of the required type, and therefore the J-set contains at least three cyclotomic
cosets.

(3) As we showed in section 2 the support of the Fourier transform is given
by

{a : trL(
∑
j∈J̃d

a−jd) = 1}.

In this case d = 22k − 2k + 1 = (2k + 1)(22k − 1) so jd = −(2k + 1).
tu

Theorem 5 Let n be odd and not divisible by 5. Let d = 4k − 2k + 1 be the
Kasami exponent with 5k ≡ 1 (mod n).

(1) There are exactly three elements in the J-set up to cyclotomy, which are

1
2−2k − 1

, 1 +
22k−1

2−2k − 1
, 1 + 2−k +

22k−1

2−2k − 1
.

(2) This is the only Kasami exponent whose J-set consists of three cyclotomic
cosets.

(3) The support of the Fourier transform is the set of a ∈ L such that

trL(a23k+2k+1 + a22k+1 + a) = 1.

Proof. (1) Here e = 5 and ` = n − e = n − 5. By Theorem 2 the J-set has
three elements up to cyclotomic equivalence. All bits except two are completely
determined. The bits of j in the re-ordering are

j2 = 0, j3 = 1, j4 = 0, j5 = 1, . . . ,
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j`+1 = 1, j`+2 = 0, j`+3 = 0, j`+4 = 0.

Here j`+5 = j0, j`+6 = j1 are undetermined, the possibilities are determined by
length one paths in the graph G starting at 00. There are three such paths, so
the possibilities for (j0, j1) are 00, 10, and 11. Call the corresponding elements
of the J-set j(0), j(1), j(2) respectively. Upon reverting to the original ordering,
this gives j(0) as

j(0) =
(n−5)/2∑
s=1

2−k(2s+1) = 2−3k

(n−7)/2∑
s=0

2−2sk = 2−3k 2−2k(n−5)/2 − 1
2−2k − 1

=
22k−1

2−2k − 1
.

Then j(1) = j(0) +1 and j(2) = j(0) +1+2−k, by adding the appropriate powers
of 2 according to the path.

(2) We assume k 6= 1, and thus e 6= 1, because k = 1 is the Gold case d = 3.
We showed that the e = 3 case has one element in the J-set. As e is odd,
any other value of e is at least 7 and there are more than three paths in G of
the required type, and therefore the J-set contains more than three cyclotomic
cosets.

(3) As we showed in section 2 the support of the Fourier transform is given
by

{a : trL(
∑
j∈J̃d

a−jd) = 1}.

By part (1) this gives the support as the a such that

trL(a−d[
1

2−2k−1
] + a

−d[1+ 22k−1

2−2k−1
] + a

−d[1+2−k+ 22k−1

2−2k−1
]) = 1.

Note that, in this case, d = (23k + 2k + 1)(22k − 1) and thus

−d
(

1
2−2k − 1

)
= (23k + 2k + 1)22k

which is cyclotomic equivalent to 23k + 2k + 1. Furthermore,

−d
(

1 +
22k−1

2−2k − 1

)
= 2−k(22k + 1)

which is cyclotomic equivalent to 22k + 1 and finally

−d
(

1 + 2−k +
22k−1

2−2k − 1

)
= 1.

Therefore, the support is given by

trL(a23k+2k+1 + a22k+1 + a) = 1

as claimed.
tu
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Theorem 6 Let n be odd. For any k > 1 with (k, n) = 1, the J-set (for
d = 4k − 2k + 1) contains the element

1
2−2k − 1

.

Proof. This element is derived as in the proof of Theorem 5, by choosing the
path in the graph G with all vertices 00.

tu

7 The Case d = 25k+1
2k+1

In this section we shall extend the methods used to determine the J-set for the
Kasami-Welch exponent d = 23k+1

2k+1
= 4k − 2k + 1 to the exponent d = 25k+1

2k+1
=

16k − 8k + 4k − 2k + 1. For this exponent it is known that the Fourier spectrum
is 5-valued, and that the values are {0,±2(n+1)/2,±2(n+3)/2}. Thus we know
that Md = (n+ 1)/2 here, the same as for the Kasami-Welch case. However the
analysis of the J-set is more complicated here. There are two graphs instead
of one graph, and the number of solutions corresponds to paths in both graphs
that link up correctly.

Using the same notations as in section 3, the fundamental relation of [4]
becomes

2ci + si = ji−4k − ji−3k + ji−2k − ji−k + ji + ci−1, (13)

where ci ∈ {−2,−1, 0, 1, 2}.

Lemma 4 wt2(c) = −n−1
2 .

Proof. Same as for the Kasami-Welch case (Lemma 2).
tu

Lemma 5 ([4]) For all i, ci + ci−k ∈ {−1, 0, 1}.

Corollary 3 c has at least (n− 1)/2 entries equal to −1.

Proof. Applying the previous lemma gives the following information.

ci = 2 =⇒ ci+k ∈ {−2,−1}
ci = 1 =⇒ ci+k ∈ {−2,−1, 0}
ci = 0 =⇒ ci+k ∈ {−1, 0, 1}

ci = −1 =⇒ ci+k ∈ {0, 1, 2}
ci = −2 =⇒ ci+k ∈ {1, 2}.

¿From this it follows that if ci = −2 then both ci−k and ci+k are +1 or +2.
Therefore any ci that is −2 cannot contribute anything towards wt2(c). Since
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the 2-weight must reach −(n−1)/2, and any −2 entries contribute nothing, the
only contribution can come from −1 entries.

tu

Corollary 4 c has exactly (n− 1)/2 entries equal to −1. The remaining (n+
1)/2 entries are equal to 0.

Proof. By Lemma 5, ci and ci+k cannot both be −1. This means that c has at
most (n− 1)/2 entries equal to −1. Combining this with Corollary 3 gives the
first statement.

If any ci is positive, there are at least (n+ 1)/2 ci’s equal to −1 because of
the 2-weight. This would imply there is an i with ci and ci+k both −1.

tu

As we did in the Kasami-Welch case, we may re-order the sequence ci as

c0, c−k, c−2k, c−3k, . . . , c−(n−1)k (14)

which again wlog is

0, 0,−1, 0,−1, 0,−1, 0, . . . , 0,−1. (15)

In other words, if we change to the “r-ordering” where i = −rk, then cr = 0
if r ∈ {0, 1, 3, 5, . . . , n − 2}, and cr = −1 if r ∈ {2, 4, 6, . . . , n − 1}. In this new
ordering, the fundamental relation (13) becomes

2cr + sr = jr+4 − jr+3 + jr+2 − jr+1 + jr + cr+e (16)

where ek ≡ 1 (mod n). We will assume wlog that e is odd (if e is even then
replace k by n− k).

As before we let ` = n − e, which is even. In the Kasami-Welch case, for
some values of r the equation (16) had a unique solution. This does not happen
here. There are four cases, depending on the parity of r and r + e:

r ∈ {1, 2, . . . `}, r odd, (cr, cr+e) = (0,−1) (17)
r ∈ {1, 2, . . . `}, r even, (cr, cr+e) = (−1, 0) (18)

r ∈ {`+ 1, `+ 2, . . . n− 1}, r odd, (cr, cr+e) = (0, 0) (19)
r ∈ {`+ 1, `+ 2, . . . n− 1}, r even, (cr, cr+e) = (−1,−1). (20)

The r = n = 0 equation also has (cr, cr+e) = (0, 0).
We consider the bits of j in fours, starting at r = 1 although this is

arbitrary. For any four bits (jr, jr+1, jr+2, jr+3), the transition to the next
four bits (jr+4, jr+5, jr+6, jr+7) is determined by the four equations (16) for
r, r + 1, r + 2, r + 3. These four equations completely determine the transition.
Therefore, we define two graphs. We consider the case n ≡ 1 (mod 4) and ` ≡ 0
(mod 4), the other cases being similar but slightly different.
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Figure 2: Graph G1 of Transitions (jr, jr+1, jr+2, jr+3) →
(jr+4, jr+5, jr+6, jr+7) for r ∈ {1, 2, . . . `}.
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Figure 3: Graph G2 of Transitions

The first graph G1 is for r ∈ {1, 2, . . . `}. The four equations governing the
transition will alternate between (17) and (18). The graph G1 (Figure 2) shows
all allowable transitions, and paths give us all possible solutions for j1, . . . , j`+4.

The graph G2 (Figure 3) does the same job for determining all solutions for
j`+5, . . . jn−1. The start vertex in G2 must be the ending vertex of the path
in G1.

Finally, the ending vertex of the path in G2 must link back to the starting
vertex in G1, satisfying the equations for r = n− 4, n− 3, n− 2, n− 1, 0. These
are all the equations involving j0.

Let vs(P ) denote the first vertex of a path P , and let ve(P ) denote the last
vertex.

Theorem 7 Let n ≡ 1 (mod 4) and ` = n−e ≡ 0 (mod 4). There is a one-to-
one correspondence between representatives from cyclotomic cosets in the J-set,
and pairs (P1, P2), where P1 is a path in G1 of length `/4− 1 and P2 is a path
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in G2 of length (n− 1− `)/4, such that

1. ve(P1) = vs(P2)

2. there exists a path from ve(P2) to vs(P1) consistent with the r = n−4, n−
3, n− 2, n− 1, 0 equations.

Example Take n = 13, e = k = 1, and d = 11. Here ` = n − 1 so we are
only interested in paths of length 2 in G1 and G2 is not involved at all. There
are three paths satisfying Theorem 7:

0000 −→ 1000 −→ 1000 (j0 = 1)
0000 −→ 1010 −→ 0010 (j0 = 1)
0110 −→ 1000 −→ 1000 (j0 = 1).

yielding three elements in the J-set, which up to cyclotomy are {273, 325, 557}.

8 Gross-Koblitz’s Formula and the K-Set

Let us denote by ν the minimal dyadic valuation of the Fourier coefficient of
the power mapping xd. By section 2, we know that ν = Md. The goal of this
section is to study the dyadic expansion of the Fourier coefficients, and thus to
describe the Boolean functions f0 and f1 such that :

f̂(a) = 2ν
(
f0(a) + f1(a)21 + · · ·

)
(21)

As we saw, ν and f0 are connected to the J-set of d. The determination of
f1 will depend on the K-set of d :

Kd = {j | wt2(j) + wt2(−jd) = Md + 1}.

The Gross-Koblitz formula [5, 10] claims that, for any residue j modulo 2n− 1,
the following equality holds:

τ(ω̄j) = (−2)wt2(j)
n−1∏
i=0

Γ
(
1− 〈 2ij

2n − 1
〉
)

(22)

where 〈x〉 is the fractional part of x, and Γ the dyadic Gamma function. The
dyadic Gamma function is defined over N the set of positive integers by

∀k ∈ N, Γ(k) = (−1)k
∏
j < k
j odd

j. (23)

If x and y are two positive integers such that x ≡ y (mod 2k) then Γ(x) ≡
Γ(y) (mod 2k). The dyadic Γ function is extended by continuity over the ring
of dyadic numbers i.e.

∀s ∈ Z2, Γ(s) = lim
N3k→s

Γ(k).
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In particular,

Γ(
(
1− 〈 j

2n − 1
〉
)
≡ Γ(1 + j0 + 2j1) (mod 4), (24)

where j0 +2j1 + . . . in the dyadic expansion of j. Note that an empty product in
(23) is equal to 1. The first values of the dyadic Gamma function are: Γ(0) = 1,
Γ(1) = −1, Γ(2) = +1, Γ(3) = −1, and Γ(4) = 3 ≡ −1 (mod 4). In other
words, for all bits u, v ∈ {0, 1}, we have Γ(1 + u + 2v) ≡ (−1)1+u+uv (mod 4)
and the following congruence holds

Γ(
(
1− 〈 j

2n − 1
〉
)
≡ Γ(1 + j0 + 2j1) ≡ (−1)1+j0+j0j1 (mod 4). (25)

It follows that

τ(ω̄j) ≡ (−2)wt2(j)(−1)n(−1)wt2(j)(−1)Q(j)

≡ (−1)n2wt2(j)(−1)Q(j) (mod 2wt2(j)+2)

where Q(j) = j0j1 + j1j2 + · · · + jn−1j0 is the number of consecutive pairs of
ones in the dyadic expansion of j.

Let us denote by g the Boolean function defined by∑
j∈Jd

ω̄(a)jd ≡ f0(a) + 2g(a) (mod 4). (26)

Then

g(a) ≡
∑
j < k
j, k ∈ Jd

ω̄(a)(j+k)d (mod 2). (27)

Indeed, squaring (26) we obtain:

2
∑
j < k
j, k ∈ Jd

ω̄(a)(j+k)d +
∑
j∈Jd

ω̄(a)jd ≡ f0(a) (mod 4) (28)

and so

2
∑
j < k
j, k ∈ Jd

ω̄(a)(j+k)d + 2g(a) ≡ 0 (mod 4). (29)

Now, if we introduce the set J ′d = {j ∈ Jd | Q(j) = 1}, we obtain the
complete description of f1(a) as :

f1(a) =
∑
j∈K

ω̄jd(a) +
∑
j∈J′d

ω̄jd(a) +
∑
j < k
j, k ∈ Jd

ω̄(j+k)d(a).

As a first consequence, the degree of f0 is less than ν, and the degree of f1
is less than 2ν − 1.
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9 An Application to Gold Exponents

Now, we propose to use the theory developed in the preceding section to re-find
a recent result of Lahtonen, McGuire and Ward [6] concerning the sign of the
Fourier coefficient at 1 of the Gold exponent (the result for the Kasami-Welch
exponent is also proved). This result for the Gold exponent is also stated in the
appendix of [1].

Let n be odd, k be an integer coprime to n, and d = 2k + 1. Let us denote
by f the Gold mapping f(x) = µ(x2k+1). The Fourier coefficient at one of f
satisfies

f̂(1) =

{
+2(n+1)/2, n ≡ ±1 (mod 8),
−2(n+1)/2, n ≡ ±3 (mod 8).

(30)

Note that

f̂(1) > 0⇐⇒ ]Kd ≡ ]J ′d (mod 2).

Indeed, the sign of f̂(a) is completely determined by the value of f0(a) +
2f1(a). In the case of a = 1, we get :

f0(1) + 2f1(1) ≡ (]Jd)2 + 2]Kd + 2]J ′d (mod 4).

9.1 J-Set

For the computation of the J-set and K-set in the Gold case we restricted
ourselves without loss of generality to the case where the inverse e of k modulo
n is even.

The fundamental equation for the Gold exponent d = 2k + 1 is

2ci + si = ji + ji−k + ci−1

where in this case the carries are usual bits, i.e. ci ∈ {0, 1}. In particular we
have the following relation

wt2(c) + wt2((2k + 1)j) = 2wt2(j). (31)

As it has been shown in [4] for the Gold case we get Md = (n+1)/2 and therefore
the J-set is characterized by

j ∈ Jd ⇔ wt2(j) + wt2(−dj) = (n+ 1)/2.

In particular we have wt2(j) < (n + 1)/2. From equation (31) it follows that
wt2(dj) ≤ 2wt2(j) with equality iff all carry bits are zero. Thus we get

(n+ 1)/2 = wt2(j) + wt2(−dj) = wt2(j) + n− wt2(dj) ≥ n− wt2(j).
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This implies wt2(j) ≥ (n − 1)/2, and therefore wt2(j) = (n − 1)/2. But this
means nothing else than wt2(−dj) = 1. Thus in the Gold case the J-set consists
of a single cyclotomic coset, or more precisely,

Jd =
{
− 2i

2k + 1
: i ∈ {0, . . . , n− 1}

}
.

In order to use the ideas developed in the previous section, we have to compute

]J ′d = Q

(
− 1

2k + 1

)
mod 2.

For this note that, as we do not get any non-zero carry, in the k-ordering of the
bits ji we do not have any consecutive ones. Furthermore, due to cyclotomic
equivalence, we can assume that in the k-ordering we have

j0, jk, j2k, . . . , j(n−1)k = 0, 0, 1, 0, 1, 0, . . . , 1, 0, 1.

In other words, we can assume that ji = 1 if and only if there exist t ∈
{1, . . . , (n− 1)/2} such that i = 2kt.

To compute Q(j) we have to compute the number of consecutive ones in the
normal ordering, i.e. the number of indices i such that ji = 1 and ji+1 = 1.
This corresponds to the number of solutions t, t′ ∈ {1, . . . , (n− 1)/2} such that

2kt ≡ 2kt′ + 1 (mod n),

which implies

t− t′ ≡ e

2
(mod n).

Due to the restriction t, t′ ∈ {1, . . . , (n − 1)/2} and the assumption that e is
even, this number can easily be computed to be (n− 1)/2− e/2. The following
lemma summarizes these results.

Lemma 6 Let d = 2k + 1 with ke ≡ 1 (mod n) and e even. The J-set corre-
sponds to the cyclotomic class of

j̃ = −1
d

and we have

Q(j̃) = ((n− 1)/2− e/2) mod 2.

9.2 K-Set

Using the same arguments as for the J-set, it is easy to see that elements in the
set

K =
{
j : wt2(j) + wt2(−(2k + 1)j) =

n+ 3
2

}
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can only have two possible weights and we split the set accordingly into two
subsets K = K1 ∪K2 where

K1 =
{
j ∈ K : wt2(j) =

n− 3
2

}
and

K2 =
{
j ∈ K : wt2(j) =

n− 1
2

}
which we treat separately.

Size of K1 Elements of K1 have weight n−3
2 and therefore we have n − 3 =

wt2((2k+1)j) = 2wt2(j), which implies that all carries ci are zero (see equation
(31)). Thus, in the k-ordering, we have to count the number of bit-strings of
length n and weight n−3

2 with no consecutive ones. Using elementary combina-
torics the size of K1 can be shown to be

]K1 =
(n+1

2

3

)
+
(n+3

2

3

)
.

Size of K2 Elements of K2 have weight n−1
2 , which implies that all but one

carries ci are zero and exactly one carry equals one. Again considering the k-
ordering, we have exactly two consecutive bits. Due to cyclotomic equivalence
we can assume that j0 = jr = 1. In this case having exactly one non-zero carry
implies that j1 = jr+1 = 0 and jk(n−1) = j2k = 0. The remaining positions
have to be filled with n−5

2 ones and n−7
2 zeros with the restriction that there

are no additional consecutive ones. This gives n−e−3
2 possibilities and therefore,

including cyclotomic equivalent elements we get

]K2 =
n− e− 3

2
n

Computing (]J ′d + ]K) mod 2 we get

]J ′d + ]K = Q(j̃) + ]K (mod 2)

= Q(j̃) + ]K1 + ]K2 (mod 2)

≡ n− 1− e
2

+ ]K1 +
n− e− 3

2
n (mod 2)

≡ ]K1 (mod 2)

=
(n+1

2

3

)
+
(n+3

2

3

)
(mod 2)

≡

{
0, n ≡ ±1 (mod 8)
1, n ≡ ±3 (mod 8)

and this is equivalent to (30).
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