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Abstract

We consider the problem of finding short strings that contain all permutations
of order k over an alphabet of size n, with k ≤ n. We show constructively
that k(n− 2) + 3 is an upper bound on the length of shortest such strings, for
n ≥ k ≥ 10. Consequently, for n ≥ 10, the shortest strings that contain all
permutations of order n have length at most n2− 2n+ 3. These two new upper
bounds improve with one unit the previous known upper bounds.
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1. Introduction

The problem of finding (shortest) strings that contain, as subsequences, all
permutations of order n was identified by R. Karp in 1971, and stated in [3]. In
the sequel, it has been investigated in [7, 1, 5, 4, 6], which show constructively
that n2 − 2n + 4 is an upper bound on the length of shortest such strings,
each work presenting a different construction. Moreover, M. Newey [7] showed
that this bound is tight for n ≤ 7. However, while it is tempting to conjecture
tightness also for n ≥ 8, counterexamples of length 83 and 102 have been recently
and anonymously identified [2] for n = 10 and respectively n = 11. Motivated by
these counterexamples, we present a construction of strings of length n2−2n+3
that contain all permutations of order n, for any n ≥ 10.

A generalization of the above problem consists of finding (shortest) strings
that contain all permutations of order k over an alphabet of size n. (For k = n
we find the original problem.) M. Newey [7] and C. Savage [8] present different
constructions which show that k(n− 2) + 4 is an upper bound on the length of
shortest such strings. Following C. Savage’s approach, we use the construction
from the particular case to build strings of length k(n− 2) + 3 that contain all
permutations of order k over an alphabet of size n. We thus obtain the new
upper bound k(n− 2) + 3 in the general case, for n ≥ k ≥ 10.

2. Preliminaries

We mainly use L. Adleman’s [1] notations.
When a string σ is a subsequence of a string γ, we say that γ contains σ,

or σ is contained in γ. For instance, abc contains ac. Given a set of strings Q,
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the string γ is Q-complete if γ contains each string in Q. For example, aba is
{ab, ba}-complete.

For an alphabet Σ, we let PΣ denote the set of all permutations of Σ, and
Lk

Σ denote the set of all strings in Σ∗ of length k in which no letter occurs twice.
For any n ≥ 1, Σn denotes an alphabet of size n. We assume without loss of

generality that Σn = {1, . . . , n}. Pn abbreviates PΣn and Lk
n abbreviates Lk

Σn
.

Note that L1
n = Σn, Ln

n = Pn, and any element of Pn is L1
n-complete. For

instance, P3 = {123, 132, 213, 231, 312, 321}, L2
3 = {12, 13, 21, 23, 31, 32}, the

string 1213121 is P3-complete, and the string 1122332211 is L2
3-complete.

Concatenation of strings is written as juxtaposition. The notation is ex-
tended to sets of strings as expected. For example, γQ := {γσ | σ ∈ Q}.

A string σ = s1s2 . . . sk ∈ Σ∗n with si ∈ Σn is an Rn-string if si+1 = (si
mod n) + 1 for all 1 ≤ i ≤ k− 1. We denote by R`

n(a) the Rn-string of length `
that starts with the letter a. For instance, R5

3(2) = 23123.

3. Two previous constructions

Before presenting the details of our construction, we sketch the ones of [1]
and [8].

L. Adleman’s construction [1] starts from the string R
(n−2)(n−1)+2
n−1 (1). Next,

the string is split into n− 1 strings (n− 3 strings of length n− 2, first and last
string of length n − 1); we call these strings α-blocks. Finally, the letter n is
inserted between the blocks, before the first block, and after the last block. The
string thus obtained is Pn-complete. The proof is based on the following key
property: any Rn-string of length k(n− 1) + 1 is Lk

n-complete.
C. Savage [8] generalizes L. Adleman’s construction by starting instead from

the string R
(k−2)(k−1)+2
k−1 (1), splitting it into k − 1 blocks, and inserting the

string1 k(k + 1) . . . n between the blocks, before the first block, and after the
last block. The obtained string is Lk

n-complete and the proof is based on the
same key property.

Our approach is similar. We start directly from k − 1 so-called β-blocks,
which are build from α-blocks by inserting the letter (k − 1) in appropriate
positions. We then apply C. Savage’s construction on the β-blocks, inserting
the string k(k + 1) . . . n between, before, and after the β-blocks, to obtain an
Lk
n-complete string. However, as we do not have an analogue of the key property

for β-blocks, our proof is completely different from the ones in [1] and [8].

4. A construction of Lk
n-complete strings of length k(n − 2) + 3

From now on, we fix two integers n and k, with n ≥ k ≥ 10. Also, we denote
the letter (k − 1) by A.

1Actually, instead of the string k(k+1) . . . n, any permutation of {k, k+1, . . . , n} would do.
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The construction makes use of the so-called α-blocks and β-blocks. The
α-blocks α1, . . . , αk−1 are the following strings:

α1 := α2 := Rk−2
k−2(1) = 12 . . . (k − 2),

αj := Rk−3
k−2(k − j + 2), for 3 ≤ j ≤ k − 3,

αk−1 := αk−2 := Rk−2
k−2(4) = 45 . . . (k − 2)123.

The β-blocks β1, . . . , βk−1 are the following strings:

β1 := α1A, β2 := α2, β3 := Aα3,
βj := a1a2 . . . ak−4Aak−3, for 4 ≤ j ≤ bk2 c − 1,
βj := αj , for bk2 c ≤ j ≤ d

k
2 e

βj := a1Aa2 . . . ak−4ak−3, for dk2 e+ 1 ≤ j ≤ k − 4,
βk−3 := αk−3A, βk−2 := αk−2, βk−1 := Aαk−1,

where αj = a1 . . . ak−3 for 4 ≤ j ≤ k − 4. Note that bk2 c ≤ j ≤ d
k
2 e is equivalent

with j = ` when k = 2`, and with j ∈ {`, `+ 1} when k = 2`+ 1.
Table 1 details the β-blocks in all cases. A letter b ∈ Σk−1 is missing from βj

if b does not occur in βj .
Let Σk,n := {k, . . . , n} and ΣA,n := Σk,n ∪ {A}. The set of strings T k

n is{
τ1β1τ2 . . . τk−1βk−1τk | τj ∈ PΣA,n

for k odd and j = dk2 e,
τj ∈ PΣk,n

otherwise
}
.

That is, strings in T k
n are obtained by concatenating the β-blocks and inserting

between them, before the first block, and after the last block, arbitrary permu-
tations of the set Σk,n; with one exception: for k odd (k = 2` + 1), the block
inserted in the middle (that is, τ`+1) is an arbitrary permutation of ΣA,n.

The set we have just built is the focus of this paper. As examples, the
following two strings are in T 10

10 and respectively in T 11
13 :

– a ·12345678A ·a ·12345678 ·a ·A1234567 ·a ·812345A6 ·a ·7812345 ·a ·6A781234 ·
a · 5678123A · a · 45678123 · a ·A45678123 · a and

– bcd ·123456789A ·cbd ·123456789 ·dbc ·A12345678 ·cbd ·9123456A7 ·bcd ·89123456 ·
bAdc·78912345·dcb·6A7891234·dcb·56789123A·dbc·456789123·bdc·A456789123·
bdc,

where · denotes concatenation and delimits the β-blocks, and a, b, c, and d
denote the letters 10, 11, 12, and respectively 13. We recall that A = 9 in the
first string, and A = 10 in the second.

5. Main result

This section is devoted to the proof of the following theorem.

Theorem 1. Any string in T k
n is Lk

n-complete and has length k(n− 2) + 3.
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j βj |βj | missing
1 1 2 3 . . . (k − 4) (k − 3) (k − 2)A k − 1 -
2 1 2 3 . . . (k − 4) (k − 3) (k − 2) k − 2 A
3 A 1 2 . . . (k − 5) (k − 4) (k − 3) k − 2 k − 2
4 (k − 2) 1 2 . . . (k − 5)A (k − 4) k − 2 k − 3
5 (k − 3) (k − 2) 1 . . . (k − 6)A (k − 5) k − 2 k − 4

...
j (k − j + 2) . . . (k − j − 1)A (k − j) k − 2 k − j + 1

...

k = 2`

 `− 1 (`+ 3) (`+ 4) (`+ 5) . . . ` A (`+ 1) k − 2 `+ 2
` (`+ 2) (`+ 3) (`+ 4) . . . (`− 2) (`− 1) ` k − 3 `+ 1, A
`+ 1 (`+ 1)A (`+ 2) . . . (`− 3) (`− 2) (`− 1) k − 2 `

or

k = 2`+ 1


`− 1 (`+ 4) (`+ 5) (`+ 6) . . . (`+ 1)A (`+ 2) k − 2 `+ 3
` (`+ 3) (`+ 4) (`+ 5) . . . (`− 1) ` (`+ 1) k − 2 `+ 2, A
`+ 1 (`+ 2) (`+ 3) (`+ 4) . . . (`− 2) (`− 1) ` k − 3 `+ 1, A
`+ 2 (`+ 1)A (`+ 2) . . . (`− 3) (`− 2) (`− 1) k − 2 `

...
k − 5 7A 8 . . . 3 4 5 k − 2 6
k − 4 6A 6 . . . 2 3 4 k − 2 5
k − 3 5 6 7 . . . 2 3A k − 2 4
k − 2 4 5 6 . . . 1 2 3 k − 2 A
k − 1 A 4 5 6 . . . 1 2 3 k − 1 -

Table 1: The β-blocks.

The length of a string in T k
n is

∑k
j=1 |τj |+

∑k−1
j=1 |βj | = k(n− k+ 1) + 2(k−

1) + 1(k − 3) + (k − 1− 3)(k − 2) = k(n− 2) + 3. When counting the length of
β1β2 . . . βk, we note that for k even, there are 2 blocks of length k − 1, 1 block
of length k− 3, and the rest of the blocks has length k− 2. For k odd the same
counting holds by moving the letter A from the τ`+1-block to the β`-block.

We define recursively the following sets of strings:

S1 := PΣk,n
β1,

Sj+1 :=

{
Sj PΣA,n

βj+1 for k odd and j = dk2 e,
Sj PΣk,n

βj+1 otherwise,

with 1 ≤ j < k− 1. Note that any string in Sj is a prefix of a string in T k
n , and

that Sk−1PΣk,n
= T k

n .
The first point of the following lemma is key in establishing the theorem.

However, in order to prove it, its statement needs to be strengthened.
For a string γ, we let γ−i be γ without the last i letters.

Lemma 1. The following statements hold:

(1) For any 1 ≤ j ≤ k − 1, any γ ∈ Sj, γ is Lj
Σn

-complete.

(2) For any 1 ≤ j ≤ bk2 c − 1, any γ ∈ Sj, γ
−2 is Lj

Σn−{k−j−1,A}-complete.

Proof. We will often use the following property: if γ = amam−1 . . . a1 ∈ Σ∗ is
Lj

Σ-complete, then γ−i is Lj
Σ−{a1,...,ai}-complete, where i < m and j ≤ |Σ| − i.

In what follows, γj denotes an arbitrary element of Sj .
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We proceed by induction on j.
Base cases. Clearly, γ1 is L1

Σn
-complete and γ−2

1 is L1
Σn−{k−2,A}-complete.

We also easily check that γ2 is L2
Σn

-complete and γ−2
2 is L2

Σn−{k−3,A}-complete.
Inductive case. Suppose now that j ≥ 3. We let γj = γj−1τjβj with

γj−1 ∈ Sj−1 and τj ∈ PΣk,n
, and γj−1 = γj−2τj−1βj−1, with γj−2 ∈ Sj−2

and τj−1 ∈ PΣk,n
. By induction hypothesis, γj−1 is Lj−1

Σn
-complete, γj−2 is

Lj−2
Σn

-complete, and, if j ≤ bk2 c−1 then γ−2
j−1 is Lj−1

Σn−{k−j,A}-complete and γ−2
j−2

is Lj−2
Σn−{k−j+1,A}-complete.

We consider the two statements in turn.

(1) Let σ = s1 . . . sj ∈ Lj
Σn

.

Suppose first that sj occurs in τjβj . As γj−1 is Lj−1
Σn

-complete, γj−1 contains
s1 . . . sj−1. Thus γj contains σ.
Suppose now that sj does not occur in τjβj . Then j ≤ k− 2. Note that for
k odd and j = dk2 e, the letter A is missing from βj , but it is not missing
from τjβj . Depending on the value of j, we can have one of the following
cases:

(a) sj = k − j + 1, for 3 ≤ j ≤ k − 3. We have that the last letter of γj−1

is (k − j + 1). Then γ−1
j−1 is Lj−1

Σn−{k−j+1}-complete. Hence s1 . . . sj−1

is contained in γ−1
j−1, and sj equals the last letter of γj−1. Thus, σ is

contained in γj−1, and moreover in γj .

(b) sj = A, for j = k − 2. As γj−1 is Lj−1
Σn

-complete and the last letter

of γj−1 is A, we have that γ−1
j−1 is Lj−1

Σn−{A}-complete. Hence σ is

contained in γj−1.
(c) sj = A, for j = k

2 , k even, and for j = bk2 c, k odd. Note that j ≥ 5
and that sj equals the second last letter of βj−1. We can have:

(i) sj−1 6∈ {k− j + 1, k− j + 2}. That is, sj−1 is neither the missing
letter from βj−1, nor the letter after A in βj−1 (i.e. the last letter

of βj−1). Then sj−1 is contained in τj−1β
−2
j−1. As γj−2 is Lj−2

Σn
-

complete, s1 . . . sj−2 is contained in γj−2. Hence σ is contained
in γj−1.

(ii) sj−1 = k − j + 2 (the missing letter from βj−1). As γj−2 is

Lj−2
Σn

-complete and the last letter of βj−2 is (k − j + 2), we have

that γ−1
j−2 is Lj−2

Σn−{k−j+2}-complete, hence also Lj−2
Σn−{k−j+2,A}-

complete. Hence s1 . . . sj−2 is contained in γ−1
j−2, and sj−1 equals

the last letter of γj−2. Thus σ is contained in γj−1.
(iii) sj−1 = k − j + 1 (the last letter of βj−1). We distinguish

two cases:

– For j − 2 ≥ 4, as γ−2
j−2 is Lj−2

Σn−{k−j+1,A}-complete and the

last letter of γ−2
j−2 is (k − j + 1), it follows that γ−3

j−2 is

Lj−2
Σn−{k−j+1,A}-complete. Thus s1 . . . sj−2 is contained in

γ−3
j−2 and sj−1 equals the third last letter of γj−2. Hence
σ is contained in γj−2.
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– If j−2 < 4 then j−2 = 3 (since j ≥ 5). The last letter of γ−1
j−2

is (k−j+1). It follows that γ−1
j−2 is Lj−2

Σn−{k−j+1,A}-complete.

Thus s1 . . . sj−2 is contained in γ−2
j−2 and sj−1 equals the sec-

ond last letter of γj−2. Hence σ is contained in γj−1.

(2) Let σ = s1 . . . sj ∈ Lj
Σn−{k−j−1,A}. We can have:

(a) sj 6∈ {k − j + 1, k − j}. That is, sj is neither the missing letter of βj
nor the last letter of βj . Then sj is contained in τjβ

−2
j . And as γj−1

is Lj−1
Σn

-complete, it follows that σ is contained in γ−2
j .

(b) sj = k − j + 1. As γj−1 is Lj−1
Σn

-complete and (k − j + 1) is the last

letter of γj−1 we have that γ−1
j−1 is Lj−1

Σn−{k−j+1}-complete. It follows

that γ−1
j−1 contains s1 . . . sj−1, and thus σ is contained in γj−1, thus

in γ−2
j .

(c) sj = k − j. As γ−2
j−1 is Lj−1

Σn−{k−j,A}-complete, we have that γ−2
j−1

contains s1 . . . sj−1. For j − 1 ≤ 3, (k − j) is the second last letter of
γj−1, hence γ−1

j−1 contains σ. For j−1 > 3, (k−j) is the third last letter

of γj−1, hence γ−3
j−1 is Lj−1

Σn−{k−j,A}-complete, thus γ−2
j−1 contains σ.

The following lemma implies that the reverse of any string in T k
n is iso-

morphic with a string in T k
n . Let us denote by ω the reverse of a string ω.

Also, for γ = τ1β1τ2 . . . τk−1βk−1τk ∈ T k
n , let γj := βjτj+1 . . . βk−1τk for any

1 ≤ j ≤ k − 1.
Let g be the bijection on Σn given by g(a) := 1 + (k + 1− a) mod (k − 2)

for 1 ≤ a ≤ k − 2, and g(a) := a for k − 1 ≤ a ≤ n.

Lemma 2. For any γ ∈ T k
n , for any 1 ≤ j ≤ k − 1, we have γj ∈ g(Sk−j).

Proof. Clearly, τ ∈ PΣk,n
for any τ ∈ PΣk,n

.

We have αj = g(αk−j) for any 1 ≤ j ≤ k − 1. Hence also βj = g(βk−j) for
any 1 ≤ j ≤ k − 1. It follows that γj = βjτj+1 . . . βk−1τk = τkβk−1 . . . τj+1βj =
τk g(β1) . . . τj+1 g(βk−j) = g(τkβ1 . . . τj+1βk−j). As τkβ1 . . . τj+1βk−j ∈ Sk−j ,
we have γj ∈ g(Sk−j).

We can now conclude the proof of Theorem 1.
Let γ be an arbitrary string in T k

n and σ = s1 . . . sk be an arbitrary string
in Lk

n. Let j be such that sj ∈ Σk,n, with 1 ≤ j ≤ k. There is such a j by the
pigeonhole principle, as |Σn − Σk,n| = k − 1 and the k letters of σ are distinct.
Let γ′ = τ1β1τ2 . . . τj−1βj−1 and γ′′ = βjτj+1βj+1 . . . βk−1τk. Then γ = γ′τjγ

′′.
(If j = 1 then γ′ = ε and γ = τ1γ

′′, while if j = k then γ′′ = ε and γ = γ′τk,
where ε is the empty string.)

As γ′ ∈ Sj−1, by Lemma 1(1), we have that γ′ contains s1 . . . sj−1. By
Lemma 2, we have that γ′′ ∈ g(Sk−j). Thus, again by Lemma 1(1), we have that
g−1(γ′′) contains g−1(sk . . . sj+1), and hence γ′′ contains sj+1 . . . sk. Clearly, τj
contains sj . Putting the three pieces together, we obtain that γ contains σ.
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6. Conclusions

In this paper we have built a set T k
n of strings, each string being of length

k(n−2)+3 and containing all permutations of order k over an alphabet of size n,
for n ≥ k ≥ 10. We thus improve by one unit the previous known upper bound
on the length of the shortest such strings, which was k(n − 2) + 4. It remains
open if further improvements are possible. We also do not know whether the set
T k
n is complete, that is, whether there exist other such strings, not isomorphic

with the ones in T k
n .

In the particular case when k = n, our construction shows that f(n) ≤
n2−2n+3, for n ≥ 10, where f(n) denotes the length of the shortest strings that
contain all permutations of order n (over an alphabet of size n). As M. Newey [7]
proved that f(n) = n2−2n+4, for 3 ≤ n ≤ 7, it is compelling to find the values
of f(8) and f(9).
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